1
|
Phung CD, Nguyen BL, Jeong J, Chang J, Jin SG, Choi H, Ku SK, Kim JO. Shaping the "hot" immunogenic tumor microenvironment by nanoparticles co-delivering oncolytic peptide and TGF-β1 siRNA for boosting checkpoint blockade therapy. Bioeng Transl Med 2023; 8:e10392. [PMID: 37693065 PMCID: PMC10487304 DOI: 10.1002/btm2.10392] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 06/24/2022] [Accepted: 07/16/2022] [Indexed: 09/12/2023] Open
Abstract
Induction of potent immune responses toward tumors remains challenging in cancer immunotherapy, in which it only showed benefits in a minority of patients with "hot" tumors, which possess pre-existing effector immune cells within the tumor. In this study, we proposed a nanoparticle-based strategy to fire up the "cold" tumor by upregulating the components associated with T and NK cell recruitment and activation and suppressing TGF-β1 secretion by tumor cells. Specifically, LTX-315, a first-in-class oncolytic cationic peptide, and TGF-β1 siRNA were co-entrapped in a polymer-lipid hybrid nanoparticle comprising PLGA, DSPE-mPEG, and DSPE-PEG-conjugated with cRGD peptide (LTX/siR-NPs). The LTX/siR-NPs showed significant inhibition of TGF-β1 expression, induction of type I interferon release, and triggering immunogenic cell death (ICD) in treated tumor cells, indicated via the increased levels of danger molecules, an in vitro setting. The in vivo data showed that the LTX/siR-NPs could effectively protect the LTX-315 peptide from degradation in serum, which highly accumulated in tumor tissue. Consequently, the LTX/siR-NPs robustly suppressed TGF-β1 production by tumor cells and created an immunologically active tumor with high infiltration of antitumor effector immune cells. As a result, the combination of LTX/siR-NP treatment with NKG2A checkpoint inhibitor therapy remarkably increased numbers of CD8+NKG2D+ and NK1.1+NKG2D+ within tumor masses, and importantly, inhibited the tumor growth and prolonged survival rate of treated mice. Taken together, this study suggests the potential of the LTX/siR-NPs for inflaming the "cold" tumor for potentiating the efficacy of cancer immunotherapy.
Collapse
Affiliation(s)
- Cao Dai Phung
- College of PharmacyYeungnam UniversityGyeongsanRepublic of Korea
| | - Bao Loc Nguyen
- College of PharmacyYeungnam UniversityGyeongsanRepublic of Korea
| | - Jee‐Heon Jeong
- Department of Precision Medicine, School of MedicineSungkyunkwan UniversitySuwonRepublic of Korea
| | - Jae‐Hoon Chang
- College of PharmacyYeungnam UniversityGyeongsanRepublic of Korea
| | - Sung Giu Jin
- Department of Pharmaceutical EngineeringDankook UniversityCheonanRepublic of Korea
| | - Han‐Gon Choi
- College of Pharmacy & Institute of Pharmaceutical Science and TechnologyHanyang UniversityAnsanRepublic of Korea
| | - Sae Kwang Ku
- College of Korean MedicineDaegu Haany UniversityGyeongsanRepublic of Korea
| | - Jong Oh Kim
- College of PharmacyYeungnam UniversityGyeongsanRepublic of Korea
| |
Collapse
|
2
|
Nanocarriers: A Reliable Tool for the Delivery of Anticancer Drugs. Pharmaceutics 2022; 14:pharmaceutics14081566. [PMID: 36015192 PMCID: PMC9415391 DOI: 10.3390/pharmaceutics14081566] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 07/23/2022] [Accepted: 07/25/2022] [Indexed: 12/26/2022] Open
Abstract
Nanomedicines have gained popularity due to their potential therapeutic applications, especially cancer treatment. Targeted nanoparticles can deliver drugs directly to cancer cells and enable prolonged drug release, reducing off-target toxicity and increasing therapeutic efficacy. However, translating nanomedicines from preclinical to clinical settings has been difficult. Rapid advancements in nanotechnology promise to enhance cancer therapies. Nanomedicine offers advanced targeting and multifunctionality. Nanoparticles (NPs) have several uses nowadays. They have been studied as drug transporters, tumor gene delivery agents, and imaging contrast agents. Nanomaterials based on organic, inorganic, lipid, or glycan substances and synthetic polymers have been used to enhance cancer therapies. This review focuses on polymeric nanoparticle delivery strategies for anticancer nanomedicines.
Collapse
|
3
|
Qin S, Tang X, Chen Y, Chen K, Fan N, Xiao W, Zheng Q, Li G, Teng Y, Wu M, Song X. mRNA-based therapeutics: powerful and versatile tools to combat diseases. Signal Transduct Target Ther 2022; 7:166. [PMID: 35597779 PMCID: PMC9123296 DOI: 10.1038/s41392-022-01007-w] [Citation(s) in RCA: 254] [Impact Index Per Article: 84.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 04/04/2022] [Accepted: 04/19/2022] [Indexed: 02/06/2023] Open
Abstract
The therapeutic use of messenger RNA (mRNA) has fueled great hope to combat a wide range of incurable diseases. Recent rapid advances in biotechnology and molecular medicine have enabled the production of almost any functional protein/peptide in the human body by introducing mRNA as a vaccine or therapeutic agent. This represents a rising precision medicine field with great promise for preventing and treating many intractable or genetic diseases. In addition, in vitro transcribed mRNA has achieved programmed production, which is more effective, faster in design and production, as well as more flexible and cost-effective than conventional approaches that may offer. Based on these extraordinary advantages, mRNA vaccines have the characteristics of the swiftest response to large-scale outbreaks of infectious diseases, such as the currently devastating pandemic COVID-19. It has always been the scientists’ desire to improve the stability, immunogenicity, translation efficiency, and delivery system to achieve efficient and safe delivery of mRNA. Excitingly, these scientific dreams have gradually been realized with the rapid, amazing achievements of molecular biology, RNA technology, vaccinology, and nanotechnology. In this review, we comprehensively describe mRNA-based therapeutics, including their principles, manufacture, application, effects, and shortcomings. We also highlight the importance of mRNA optimization and delivery systems in successful mRNA therapeutics and discuss the key challenges and opportunities in developing these tools into powerful and versatile tools to combat many genetic, infectious, cancer, and other refractory diseases.
Collapse
Affiliation(s)
- Shugang Qin
- Department of Critical Care Medicine, Frontiers Science Center for Disease-related Molecular Network, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Xiaoshan Tang
- Department of Critical Care Medicine, Frontiers Science Center for Disease-related Molecular Network, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Yuting Chen
- Department of Critical Care Medicine, Frontiers Science Center for Disease-related Molecular Network, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Kepan Chen
- Department of Critical Care Medicine, Frontiers Science Center for Disease-related Molecular Network, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Na Fan
- Department of Critical Care Medicine, Frontiers Science Center for Disease-related Molecular Network, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Wen Xiao
- Department of Critical Care Medicine, Frontiers Science Center for Disease-related Molecular Network, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Qian Zheng
- Department of Critical Care Medicine, Frontiers Science Center for Disease-related Molecular Network, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Guohong Li
- Department of Critical Care Medicine, Frontiers Science Center for Disease-related Molecular Network, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Yuqing Teng
- Department of Critical Care Medicine, Frontiers Science Center for Disease-related Molecular Network, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Min Wu
- Department of Biomedical Sciences, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, ND, 58203, USA
| | - Xiangrong Song
- Department of Critical Care Medicine, Frontiers Science Center for Disease-related Molecular Network, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, China.
| |
Collapse
|
4
|
Raikwar S, Jain A, Saraf S, Bidla PD, Panda PK, Tiwari A, Verma A, Jain SK. Opportunities in combinational chemo-immunotherapy for breast cancer using nanotechnology: an emerging landscape. Expert Opin Drug Deliv 2022; 19:247-268. [PMID: 35184620 DOI: 10.1080/17425247.2022.2044785] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
INTRODUCTION Breast carcinoma (BC) is one of the most frequent causes of cancer-related death among women, which is due to the poor response to conventional therapy. There are several complications associated with monotherapy for cancer, such as cytotoxicity to normal cells, multidrug resistance (MDR), side effects, and limited applications. To overcome these challenges, a combination of chemotherapy and immunotherapy (monoclonal antibodies, anticancer vaccines, checkpoint inhibitors, and cytokines) has been introduced. Drug delivery systems (DDSs) based on nanotechnology have more applications in BC treatment owing to their controlled and targeted drug release with lower toxicity and reduced adverse drug effects. Several nanocarriers, such as liposomes, nanoparticles, dendrimers, and micelles, have been used for the effective delivery of drugs. AREAS COVERED This article presents opportunities and challenges in BC treatment, the rationale for cancer immunotherapy, and several combinational approaches with their applications for BC treatment. EXPERT OPINION Nanotechnology can be used for the early prognosis and cure of BC. Several novel and targeted DDSs have been developed to enhance the efficacy of anticancer drugs. This article aims to understand new strategies for the treatment of BC and the appropriate design of nanocarriers used as a combinational DDS.
Collapse
Affiliation(s)
- Sarjana Raikwar
- Department of Pharmaceutical Sciences, Pharmaceutics Research Projects Laboratory, Dr. Harisingh Gour Vishwavidyalaya, Sagar (M.P.), India
| | - Ankit Jain
- Department of Materials Engineering, Indian Institute of Science, Bangalore, Karnataka, India
| | - Shivani Saraf
- Department of Pharmaceutical Sciences, Pharmaceutics Research Projects Laboratory, Dr. Harisingh Gour Vishwavidyalaya, Sagar (M.P.), India
| | - Pooja Das Bidla
- Department of Pharmaceutical Sciences, Pharmaceutics Research Projects Laboratory, Dr. Harisingh Gour Vishwavidyalaya, Sagar (M.P.), India
| | - Pritish Kumar Panda
- Department of Pharmaceutical Sciences, Pharmaceutics Research Projects Laboratory, Dr. Harisingh Gour Vishwavidyalaya, Sagar (M.P.), India
| | - Ankita Tiwari
- Department of Pharmaceutical Sciences, Pharmaceutics Research Projects Laboratory, Dr. Harisingh Gour Vishwavidyalaya, Sagar (M.P.), India
| | - Amit Verma
- Department of Pharmaceutical Sciences, Pharmaceutics Research Projects Laboratory, Dr. Harisingh Gour Vishwavidyalaya, Sagar (M.P.), India
| | - Sanjay K Jain
- Department of Pharmaceutical Sciences, Pharmaceutics Research Projects Laboratory, Dr. Harisingh Gour Vishwavidyalaya, Sagar (M.P.), India
| |
Collapse
|
5
|
Zhang J, Zhang Y, Zhao B, Lv M, Chen E, Zhao C, Jiang L, Qian H, Huang D, Zhong Y, Chen W. Cascade-Responsive Hierarchical Nanosystems for Multisite Specific Drug Exposure and Boosted Chemoimmunotherapy. ACS APPLIED MATERIALS & INTERFACES 2021; 13:58319-58328. [PMID: 34855343 DOI: 10.1021/acsami.1c16636] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
The precise delivery of multiple drugs to their distinct destinations plays a significant role in safe and efficient combination therapy; however, it is highly challenging to simultaneously realize the targets and overcome the intricate biological hindrances using an all-in-one nanosystem. Herein, a cascade-responsive hierarchical nanosystem containing checkpoint inhibitor anti-PD-L1 antibody (αPD-L1) and paclitaxel (PTX) is developed for spatially programed delivery of multiple drugs and simultaneously overcoming biological pathway barriers. The hierarchical nanoparticles (MPH-NP@A) are composed of pH-sensitive hyaluronic acid-acetal-PTX prodrugs (HA-ace-PTX(SH)) chaperoned by αPD-L1 and metalloproteinase-9 (MMP-9)-responsive outer shells, which could be fast cleaved to release αPD-L1 in the tumor microenvironment (TME). The released αPD-L1 sequentially synergizes with PTX released in the cytoplasm for boosted chemoimmunotherapy due to direct killing of PTX and intensified immune responses through immunogenic cell death (ICD) as well as suppression of immune escape by blocking the PD-1/PD-L1 axis. The in vitro and in vivo studies demonstrate that MPH-NP@A evokes distinct ICD, enhanced cytotoxic T lymphocytes infiltration, as well as significant tumor inhibition, thus providing a promising therapeutic nano-platform for safe and efficient combination therapy.
Collapse
Affiliation(s)
- Junmei Zhang
- Department of Pharmaceutical Engineering, School of Engineering, China Pharmaceutical University, Nanjing 210009, China
| | - Yuanyuan Zhang
- Department of Pharmaceutical Engineering, School of Engineering, China Pharmaceutical University, Nanjing 210009, China
| | - Bingbing Zhao
- Department of Pharmaceutical Engineering, School of Engineering, China Pharmaceutical University, Nanjing 210009, China
| | - Mengtong Lv
- Department of Pharmaceutical Engineering, School of Engineering, China Pharmaceutical University, Nanjing 210009, China
| | - Enping Chen
- Department of Pharmaceutical Engineering, School of Engineering, China Pharmaceutical University, Nanjing 210009, China
| | - Changshun Zhao
- Department of Pharmaceutical Engineering, School of Engineering, China Pharmaceutical University, Nanjing 210009, China
| | - Linyang Jiang
- Department of Pharmaceutical Engineering, School of Engineering, China Pharmaceutical University, Nanjing 210009, China
| | - Hongliang Qian
- Department of Pharmaceutical Engineering, School of Engineering, China Pharmaceutical University, Nanjing 210009, China
| | - Dechun Huang
- Department of Pharmaceutical Engineering, School of Engineering, China Pharmaceutical University, Nanjing 210009, China
- Engineering Research Center for Smart Pharmaceutical Manufacturing Technologies, Ministry of Education, School of Engineering, China Pharmaceutical University, Nanjing 210009, China
| | - Yinan Zhong
- Department of Pharmaceutical Engineering, School of Engineering, China Pharmaceutical University, Nanjing 210009, China
| | - Wei Chen
- Department of Pharmaceutical Engineering, School of Engineering, China Pharmaceutical University, Nanjing 210009, China
- Engineering Research Center for Smart Pharmaceutical Manufacturing Technologies, Ministry of Education, School of Engineering, China Pharmaceutical University, Nanjing 210009, China
| |
Collapse
|
6
|
Phung CD, Tran TH, Nguyen HT, Nguyen TT, Jeong JH, Ku SK, Yong CS, Choi HG, Kim JO. Nanovaccines silencing IL-10 production at priming phase for boosting immune responses to melanoma. J Control Release 2021; 338:211-223. [PMID: 34419495 DOI: 10.1016/j.jconrel.2021.08.031] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 08/14/2021] [Accepted: 08/18/2021] [Indexed: 01/15/2023]
Abstract
Despite the significant efforts in developing cancer vaccines, there are still numerous challenges that need to be addressed to ensure their clinical efficacy. Herein, a lymphatic dendritic cell (DC)-targeted artificial nanovaccine mimicking tumor cell membrane (ATM-NV) is developed to boost effector immune response and control immunosuppression simultaneously. The NVs are formulated with lipids, tumor cell membrane proteins, imiquimod (IMQ), and IL-10 siRNA. IL-10 siRNA is incorporated to inhibit the secretion of IL-10, an immunosuppressive cytokine, of maturated DCs upon IMQ. To enhance the DC targeting ability, the nanovaccine surface was non-covalently conjugated with the anti-CD205 antibody. The IMQ and IL-10 siRNA co-loaded, CD205 receptor-targeted artificial tumor membrane NVs (IMQ/siR@ATM-NVs) efficiently migrate to the tumor-draining lymph node and target DCs. Furthermore, immunization with IMQ/siR@ATM-NVs reduces the production of IL-10 and increases Th1-driven antitumor immunity resulted in a great tumor inhibition efficacy. Our results suggest a potential strategy to promote the vaccination's antitumor efficacy by blocking the intrinsic negative regulators in DCs.
Collapse
Affiliation(s)
- Cao Dai Phung
- College of Pharmacy, Yeungnam University, Gyeongsan 38541, Republic of Korea
| | - Tuan Hiep Tran
- Faculty of Pharmacy, PHENIKAA University, Yen Nghia, Ha Dong, Hanoi 12116, Viet Nam; PHENIKAA Research and Technology Institute (PRATI), A&A Green Phoenix Group JSC, No.167 Hoang Ngan, Trung Hoa, Cau Giay, Hanoi 11313, Viet Nam
| | - Hanh Thuy Nguyen
- College of Pharmacy, Yeungnam University, Gyeongsan 38541, Republic of Korea
| | - Tien Tiep Nguyen
- College of Pharmacy, Yeungnam University, Gyeongsan 38541, Republic of Korea
| | - Jee-Heon Jeong
- College of Pharmacy, Yeungnam University, Gyeongsan 38541, Republic of Korea
| | - Sae Kwang Ku
- College of Korean Medicine, Daegu Haany University, Gyeongsan 38610, Republic of Korea
| | - Chul Soon Yong
- College of Pharmacy, Yeungnam University, Gyeongsan 38541, Republic of Korea
| | - Han-Gon Choi
- College of Pharmacy, Hanyang University, 55, Hanyangdaehak-ro, Sangnok-gu, Ansan 15588, Gyeonggi-do, Republic of Korea.
| | - Jong Oh Kim
- College of Pharmacy, Yeungnam University, Gyeongsan 38541, Republic of Korea.
| |
Collapse
|
7
|
Progress in the study of D-α-tocopherol polyethylene glycol 1000 succinate (TPGS) reversing multidrug resistance. Colloids Surf B Biointerfaces 2021; 205:111914. [PMID: 34130211 DOI: 10.1016/j.colsurfb.2021.111914] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 05/28/2021] [Accepted: 06/06/2021] [Indexed: 12/13/2022]
Abstract
Currently, multidrug resistance (MDR) is one of the major reasons for failure in clinical cancer chemotherapy. Overexpression of the ATP binding cassette (ABC) transporter P-glycoprotein (P-gp), which significantly increases the efflux of anticancer drugs from tumor cells, enhances MDR. In the past few decades, four generations of P-gp inhibitors have appeared. However, they are limited in clinical application due to their severe toxic side effects. As a P-gp inhibitor and carrier for loading chemotherapy agents, TPGS has received increasing attention due to its advantages and unique properties of reversing MDR. TPGS is an amphipathic agent that increases the solubility of most chemotherapy drugs and decreases severe side effects. In addition, TPGS is an excellent carrier with P-gp-inhibiting ability. In this review, we summarize the latest articles on TPGS-based nanodelivery systems to prevent MDR.
Collapse
|
8
|
Zhao M, Li J, Liu J, Xu M, Ji H, Wu S, Chen D, Hu H. Charge-switchable nanoparticles enhance Cancer immunotherapy based on mitochondrial dynamic regulation and immunogenic cell death induction. J Control Release 2021; 335:320-332. [PMID: 34062192 DOI: 10.1016/j.jconrel.2021.05.036] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 04/16/2021] [Accepted: 05/24/2021] [Indexed: 02/05/2023]
Abstract
Cancer immunotherapy has emerged as a promising option for various malignant tumors therapy. Unfortunately, the existence of an immunosuppressive tumor microenvironment (ITM) and the absence of an effective delivery strategy limit its further application. To reverse the ITM and exploit a favorable delivery system for cancer immunotherapy, twin-like charge-switchable nanoparticles (shMFN1-NPs + DOX-NPs, termed as MIX-NPs) were developed to selectively target tumor-associated macrophages (TAMs) and cancer cells, respectively. The shMFN1-NPs (150 nm) and DOX-NPs (160 nm) both had uniform spherical-shaped structures and showed favorable tumor tissue accumulation. Based on the pH-responsive core-shell separation, the nanoparticles obtained an excellent balance between the circulation time and cellular uptake. Mitochondrial dynamics are involved in macrophage polarization by regulating a novel signaling network, involving the modulation from fusion (M2-TAMs) to mitochondrial fission (M1-TAMs). M2-TAMs targeting nanoparticles shMFN1-NPs were fabricated to deliver shMFN1 for repolarization of TAMs from the M2 to M1 phenotype by inhibiting mitochondrial fusion. Moreover, DOX-NPs effectively triggered the immunogenic cell death (ICD) of cancer cells, and the succeeding maturation of dendritic cells (DCs) promoted the infiltration and activation of CD8+ T cells. MIX-NPs displayed the strongest antitumor efficacy (TIR = 83%) in the subcutaneous 4T1 tumor model. MIX-NPs suppressed the myeloid-derived suppressor cells (MDSCs) and regulatory T lymphocytes (Tregs) to further remodel the ITM. Taken together, our developed drug delivery strategy reversed the ITM and activated the antitumor immune response, providing a profound prospective treatment strategy in cancer immunotherapy.
Collapse
Affiliation(s)
- Ming Zhao
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, No. 103, Wenhua Road, Shenyang, 110016, PR China
| | - Ji Li
- Department of Traditional Chinese Medicine, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, PR China
| | - Jingwen Liu
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, No. 103, Wenhua Road, Shenyang, 110016, PR China
| | - Moxi Xu
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, No. 103, Wenhua Road, Shenyang, 110016, PR China
| | - Hongrui Ji
- Department of Pharmacy Administration and Clinical Pharmacy, School of Pharmacy, Xi'an Jiaotong University, Xi'an, 710061, PR China
| | - Siwen Wu
- State Key Laboratory of Biotherapy/Collaborative Innovation Center of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, PR China
| | - Dawei Chen
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, No. 103, Wenhua Road, Shenyang, 110016, PR China.
| | - Haiyang Hu
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, No. 103, Wenhua Road, Shenyang, 110016, PR China.
| |
Collapse
|
9
|
Gao A, Liu X, Lin W, Wang J, Wang S, Si F, Huang L, Zhao Y, Sun Y, Peng G. Tumor-derived ILT4 induces T cell senescence and suppresses tumor immunity. J Immunother Cancer 2021; 9:e001536. [PMID: 33653799 PMCID: PMC7929805 DOI: 10.1136/jitc-2020-001536] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/20/2020] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Current immunotherapies including checkpoint blockade therapy have limited success rates in certain types of cancers. Identification of alternative checkpoint molecules for the development of effective strategies for tumor immunotherapy is urgently needed. Immunoglobulin-like transcript 4 (ILT4) is an immunosuppressive molecule expressed in both myeloid innate cells and malignant tumor cells. However, the role of tumor-derived ILT4 in regulating cancer biology and tumor immunity remains unclear. METHODS ILT4 expression in tumor cells and patient samples was determined by real-time PCR, flow cytometry, and immunohistochemistry. T cell senescence induced by tumor was evaluated using multiple markers and assays. Moreover, metabolic enzyme and signaling molecule expression and lipid droplets in tumor cells were determined using real-time PCR, western blot and oil red O staining, respectively. Loss-of-function and gain-of-function strategies were used to identify the causative role of ILT4 in tumor-induced T cell senescence. In addition, breast cancer and melanoma mouse tumor models were performed to demonstrate the role of ILT4 as a checkpoint molecule for tumor immunotherapy. RESULTS We reported that ILT4 is highly expressed in human tumor cells and tissues, which is negatively associated with clinical outcomes. Furthermore, tumor-derived ILT4/PIR-B (ILT4 ortholog in mouse) is directly involved in induction of cell senescence in naïve/effector T cells mediated by tumor cells in vitro and in vivo. Mechanistically, ILT4/PIR-B increases fatty acid synthesis and lipid accumulation in tumor cells via activation of MAPK ERK1/2 signaling, resulting in promotion of tumor growth and progression, and induction of effector T cell senescence. In addition, blocking tumor-derived PIR-B can reprogram tumor metabolism, prevent senescence development in tumor-specific T cells, and enhance antitumor immunity in both breast cancer and melanoma mouse models. CONCLUSIONS These studies identify a novel mechanism responsible for ILT4-mediated immune suppression in the tumor microenvironment, and prove a novel concept of ILT4 as a critical checkpoint molecule for tumor immunotherapy.
Collapse
MESH Headings
- Animals
- Cell Line, Tumor
- Female
- Gene Expression Regulation, Neoplastic
- Humans
- Immunosenescence
- Immunotherapy, Adoptive
- Lymphocytes, Tumor-Infiltrating/immunology
- Lymphocytes, Tumor-Infiltrating/metabolism
- Male
- Membrane Glycoproteins/genetics
- Membrane Glycoproteins/metabolism
- Mice
- Mice, Inbred C57BL
- Mice, Inbred NOD
- Mice, SCID
- Neoplasms/immunology
- Neoplasms/metabolism
- Neoplasms/pathology
- Neoplasms/therapy
- Paracrine Communication
- Receptors, Immunologic/genetics
- Receptors, Immunologic/metabolism
- Signal Transduction
- T-Lymphocytes/immunology
- T-Lymphocytes/metabolism
- T-Lymphocytes/transplantation
- Tumor Escape
- Tumor Microenvironment
Collapse
Affiliation(s)
- Aiqin Gao
- Department of Oncology, Jinan Central Hospital, affiliated to Shandong University Cheeloo College of Medicine and Shandong First Medical University, Jinan, Shandong, China
- Division of Infectious Diseases, Allergy & Immunology and Department of Internal Medicine, Saint Louis University School of Medicine, Saint Louis, Missouri, USA
| | - Xia Liu
- Division of Infectious Diseases, Allergy & Immunology and Department of Internal Medicine, Saint Louis University School of Medicine, Saint Louis, Missouri, USA
| | - Wenli Lin
- Department of Oncology, Jinan Central Hospital, affiliated to Shandong University Cheeloo College of Medicine and Shandong First Medical University, Jinan, Shandong, China
- Division of Infectious Diseases, Allergy & Immunology and Department of Internal Medicine, Saint Louis University School of Medicine, Saint Louis, Missouri, USA
| | - Jingnan Wang
- Department of Oncology, Jinan Central Hospital, affiliated to Shandong University Cheeloo College of Medicine and Shandong First Medical University, Jinan, Shandong, China
| | - Shuyun Wang
- Department of Oncology, Jinan Central Hospital, affiliated to Shandong University Cheeloo College of Medicine and Shandong First Medical University, Jinan, Shandong, China
| | - Fusheng Si
- Division of Infectious Diseases, Allergy & Immunology and Department of Internal Medicine, Saint Louis University School of Medicine, Saint Louis, Missouri, USA
| | - Lan Huang
- Division of Infectious Diseases, Allergy & Immunology and Department of Internal Medicine, Saint Louis University School of Medicine, Saint Louis, Missouri, USA
| | - Yangjing Zhao
- Division of Infectious Diseases, Allergy & Immunology and Department of Internal Medicine, Saint Louis University School of Medicine, Saint Louis, Missouri, USA
| | - Yuping Sun
- Department of Oncology, Jinan Central Hospital, affiliated to Shandong University Cheeloo College of Medicine and Shandong First Medical University, Jinan, Shandong, China
| | - Guangyong Peng
- Division of Infectious Diseases, Allergy & Immunology and Department of Internal Medicine, Saint Louis University School of Medicine, Saint Louis, Missouri, USA
| |
Collapse
|
10
|
|
11
|
Phung CD, Pham TT, Nguyen HT, Nguyen TT, Ou W, Jeong JH, Choi HG, Ku SK, Yong CS, Kim JO. Anti-CTLA-4 antibody-functionalized dendritic cell-derived exosomes targeting tumor-draining lymph nodes for effective induction of antitumor T-cell responses. Acta Biomater 2020; 115:371-382. [PMID: 32798721 DOI: 10.1016/j.actbio.2020.08.008] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Revised: 07/31/2020] [Accepted: 08/04/2020] [Indexed: 12/26/2022]
Abstract
The therapeutic efficacy of current cancer vaccines is far from optimal, mainly because of insufficient induction of antigen-specific T cells and because tumor cells can hijack immunosuppressive mechanisms to evade the immune responses. Generating specific, robust, and long-term immune responses against cancer cells and the attenuating of immunosuppressive factors are critical for effective cancer vaccination. Recently, the engineering of exosomes specifically bind to T cells, and then stimulating tumor-specific T-cell immune responses has emerged as a potential alternative strategy for cancer vaccination. In this study, we generated a bifunctional exosome combining the strategy of vaccination and checkpoint blockade. Exosomes prepared from Ovalbumin (OVA)-pulsed, activated dendritic cells were modified with anti-CTLA-4 antibody (EXO-OVA-mAb) to block this inhibitory molecule and to enhance the specificity of the exosomes toward T cells. Our study provides a unique strategy for functionalizing exosome membrane with anti-CTLA-4 antibody via lipid-anchoring method to synergize efficacy of cancer vaccination and immune checkpoint blockade against the tumor. STATEMENT OF SIGNIFICANCE: We designed T-cell-targeting exosomes (EXO-OVA-mAb) decorated with costimulatory molecules, MHCs, antigenic OVA peptide, and anti-CTLA-4 antibody, combining the strategies of vaccines and checkpoint blockade. The exosomes showed enhanced binding to T cells in tumor-draining lymph nodes, effectively induced T-cell activation, and improved the tumor homing of effector T cells, ultimately significantly restraining tumor growth. Thus, EXO-OVA-mAb greatly facilitates T-cell targeting, induces a strong tumor-specific T-cell response, and increased the ratio of effector T cells/regulatory T cells within tumors, resulting in appreciable tumor growth inhibition.
Collapse
Affiliation(s)
- Cao Dai Phung
- College of Pharmacy, Yeungnam University, Gyeongsan 38541, Republic of Korea
| | - Thanh Tung Pham
- College of Pharmacy, Yeungnam University, Gyeongsan 38541, Republic of Korea
| | - Hanh Thuy Nguyen
- College of Pharmacy, Yeungnam University, Gyeongsan 38541, Republic of Korea
| | - Tien Tiep Nguyen
- College of Pharmacy, Yeungnam University, Gyeongsan 38541, Republic of Korea
| | - Wenquan Ou
- College of Pharmacy, Yeungnam University, Gyeongsan 38541, Republic of Korea
| | - Jee-Heon Jeong
- College of Pharmacy, Yeungnam University, Gyeongsan 38541, Republic of Korea
| | - Han-Gon Choi
- College of Pharmacy, Hanyang University, 55, Hanyangdaehak-ro, Sangnok-gu, Ansan 426-791 Republic of Korea
| | - Sae Kwang Ku
- College of Korean Medicine, Daegu Haany University, Gyeongsan 38610, Republic of Korea
| | - Chul Soon Yong
- College of Pharmacy, Yeungnam University, Gyeongsan 38541, Republic of Korea
| | - Jong Oh Kim
- College of Pharmacy, Yeungnam University, Gyeongsan 38541, Republic of Korea.
| |
Collapse
|
12
|
Nguyen HT, Phung CD, Tran TH, Pham TT, Pham LM, Nguyen TT, Jeong JH, Choi HG, Ku SK, Yong CS, Kim JO. Manipulating immune system using nanoparticles for an effective cancer treatment: Combination of targeted therapy and checkpoint blockage miRNA. J Control Release 2020; 329:524-537. [PMID: 32971203 DOI: 10.1016/j.jconrel.2020.09.034] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Revised: 09/14/2020] [Accepted: 09/17/2020] [Indexed: 02/08/2023]
Abstract
Accumulating clinical data shows that less than half of patients are beneficial from PD-1/PD-L1 blockage therapy owing to the limited infiltration of effector immune cells into the tumor and abundant of the immunosuppressive factors in the tumor microenvironment. In this study, PD-L1 inhibition therapy and BRAF-targeted therapy, which showed clinical benefit, were combined in a CXCR4-targeted nanoparticle co-delivering dabrafenib (Dab), a BRAF inhibitor, and miR-200c which can down-regulate PD-L1 expression. The cationic PCL-PEI core containing Dab- and miR-200c- were coated with poly-L-glutamic acid conjugated with LY2510924, a CXCR-4 antagonist peptide, (PGA-pep) to obtain miR@PCL-PEI/Dab@PGA-pep nanoformulation. The stimulus pH- and redox- reactive of PGA-pep was ascribed to exhibit an enhanced release of drug in the tumor microenvironment as well as improve the stability of miR-200c during the blood circulation. In addition, the presence of LY2510924 peptide would enhance the binding affinity of miR@PCL-PEI/Dab@PGA-pep NPs to cancer cells, leading to improved cellular uptake, cytotoxicity, and in vivo accumulation into tumor area. The in vivo results indicated that both, the immunogenic cell death (ICD) and the inhibition of PD-L1 expression, induced by treatment with CXCR-4 targeted nanoparticles, enables to improve the DC maturation in lymph node and CD8+ T cell activation in the spleen. More importantly, effector T cells were increasingly infiltrated into the tumor, whereas the immunosuppressive factors like PD-L1 expression and regulatory T cells were significantly reduced. They, all together, promote the immune responses against the tumor, indicating the therapeutic efficiency of the current strategy in cancer treatment.
Collapse
Affiliation(s)
- Hanh Thuy Nguyen
- College of Pharmacy, Yeungnam University, Gyeongsan 38541, Republic of Korea
| | - Cao Dai Phung
- College of Pharmacy, Yeungnam University, Gyeongsan 38541, Republic of Korea
| | - Tuan Hiep Tran
- Faculty of Pharmacy, Phenikaa University, Yen Nghia, Ha Dong, Hanoi 12116, Viet Nam; PHENIKAA Research and Technology Institute (PRATI), A&A Green Phoenix Group JSC, No.167 Hoang Ngan, Trung Hoa, Cau Giay, Hanoi 11313, Viet Nam
| | - Tung Thanh Pham
- College of Pharmacy, Yeungnam University, Gyeongsan 38541, Republic of Korea
| | - Le Minh Pham
- College of Pharmacy, Yeungnam University, Gyeongsan 38541, Republic of Korea
| | - Tiep Tien Nguyen
- College of Pharmacy, Yeungnam University, Gyeongsan 38541, Republic of Korea
| | - Jee-Heon Jeong
- College of Pharmacy, Yeungnam University, Gyeongsan 38541, Republic of Korea
| | - Han-Gon Choi
- College of Pharmacy, Hanyang University, 55, Hanyangdaehak-ro, Sangnok-gu, Ansan 426-791, Republic of Korea
| | - Sae Kwang Ku
- College of Korean Medicine, Daegu Haany University, Gyeongsan 712-715, Republic of Korea
| | - Chul Soon Yong
- College of Pharmacy, Yeungnam University, Gyeongsan 38541, Republic of Korea.
| | - Jong Oh Kim
- College of Pharmacy, Yeungnam University, Gyeongsan 38541, Republic of Korea.
| |
Collapse
|
13
|
PEGylated-Paclitaxel and Dihydroartemisinin Nanoparticles for Simultaneously Delivering Paclitaxel and Dihydroartemisinin to Colorectal Cancer. Pharm Res 2020; 37:129. [DOI: 10.1007/s11095-020-02819-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Accepted: 04/07/2020] [Indexed: 12/17/2022]
|
14
|
Phung CD, Tran TH, Pham LM, Nguyen HT, Jeong JH, Yong CS, Kim JO. Current developments in nanotechnology for improved cancer treatment, focusing on tumor hypoxia. J Control Release 2020; 324:413-429. [PMID: 32461115 DOI: 10.1016/j.jconrel.2020.05.029] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Revised: 05/15/2020] [Accepted: 05/19/2020] [Indexed: 12/12/2022]
Abstract
Hypoxia is a common feature of the tumor microenvironment, which is characterized by tissue oxygen deficiency due to an aggressive proliferation of cancer cells. Hypoxia activates hypoxia-inducible factor-dependent signaling, which in turn regulates metabolic reprogramming, immune suppression, resistance to apoptosis, angiogenesis, metastasis, and invasion to secondary sites. In this review, we provide an overview of the use of nanotechnology to harmonize intra-tumoral oxygen or suppress hypoxia-related signaling for an improved efficacy of cancer treatment. The biological background was followed by conducting a literature review on the (1) nanoparticles responsible for enhancing oxygen levels within the tumor, (2) nanoparticles sensitizing hypoxia, (3) nanoparticles suppressing hypoxia-inducing factor, (4) nanoparticles that relieve tumor hypoxia for enhancement of chemotherapy, photodynamic therapy, and immunotherapy, either individually or in combination. Lastly, the heterogeneity of cancer and limitations of nanotechnology are discussed to facilitate translational therapeutic treatment.
Collapse
Affiliation(s)
- Cao Dai Phung
- College of Pharmacy, Yeungnam University, 280 Deahak-ro, Gyeongsan 38541, Republic of Korea
| | - Tuan Hiep Tran
- Faculty of Pharmacy, PHENIKAA University, Yen Nghia, Ha Dong, Hanoi 12116, Viet Nam; PHENIKAA Research and Technology Institute (PRATI), A&A Green Phoenix Group JSC, No.167 Hoang Ngan, Trung Hoa, Cau Giay, Hanoi 11313, Viet Nam
| | - Le Minh Pham
- College of Pharmacy, Yeungnam University, 280 Deahak-ro, Gyeongsan 38541, Republic of Korea
| | - Hanh Thuy Nguyen
- Department of Industrial & Physical Pharmacy, College of Pharmacy, Purdue University, 575 Stadium Mall Drive, West Lafayette, IN 47907, United States
| | - Jee-Heon Jeong
- College of Pharmacy, Yeungnam University, 280 Deahak-ro, Gyeongsan 38541, Republic of Korea
| | - Chul Soon Yong
- College of Pharmacy, Yeungnam University, 280 Deahak-ro, Gyeongsan 38541, Republic of Korea
| | - Jong Oh Kim
- College of Pharmacy, Yeungnam University, 280 Deahak-ro, Gyeongsan 38541, Republic of Korea.
| |
Collapse
|
15
|
Chen SX, Ma M, Xue F, Shen S, Chen Q, Kuang Y, Liang K, Wang X, Chen H. Construction of microneedle-assisted co-delivery platform and its combining photodynamic/immunotherapy. J Control Release 2020; 324:218-227. [PMID: 32387551 DOI: 10.1016/j.jconrel.2020.05.006] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Revised: 04/29/2020] [Accepted: 05/04/2020] [Indexed: 10/24/2022]
Abstract
Despite advances in photodynamic therapy (PDT) for treating superficial tumor, the prospect of this monotherapy remains challenges in the context of systemic phototoxicity and poor efficacy. In this work, a physiologically self-degradable microneedle (MN)-assisted platform is developed for combining PDT and immunotherapy via controlled co-delivery of photosensitizer (PS) and checkpoint inhibitor anti-CTLA4 antibody (aCTLA4), which generates synergistic reinforcement outcome while reducing side effects. MN is composed of biocompatible hyaluronic acid integrated with the pH-sensitive dextran nanoparticles, which is fabricated to simultaneously encapsulate hydrophobic (Zinc Phthalocyanine) and hydrophilic agents (aCTLA4) via a double emulsion method. This co-loading carrier can aggregate effectively around topical tumor by microneedle-assisted transdermal delivery. In vivo studies using 4T1 mouse models, PDT firstly exerts its effect to killing tumor and triggers the immune responses, subsequently, facilitating the immunotherapy with immune checkpoint inhibitor (aCTLA4). The possible mechanism and systemic effects of the combined therapy are investigated, which demonstrate that this co-administration platform can be a promising tool for focal cancer treatment.
Collapse
Affiliation(s)
- Shi-Xiong Chen
- State Key Laboratory of High Performance Ceramics and Superfine Microstructures, Shanghai Institute of Ceramics, d, Shanghai, 200050, PR China; Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Ming Ma
- State Key Laboratory of High Performance Ceramics and Superfine Microstructures, Shanghai Institute of Ceramics, d, Shanghai, 200050, PR China; Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Fengfeng Xue
- State Key Laboratory of High Performance Ceramics and Superfine Microstructures, Shanghai Institute of Ceramics, d, Shanghai, 200050, PR China; Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Shuzhan Shen
- Institute of Photomedicine, Shanghai Skin Disease Hospital, Tongji University School of Medicine, Shanghai 200443, PR China
| | - Qian Chen
- State Key Laboratory of High Performance Ceramics and Superfine Microstructures, Shanghai Institute of Ceramics, d, Shanghai, 200050, PR China; Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Yichen Kuang
- State Key Laboratory of High Performance Ceramics and Superfine Microstructures, Shanghai Institute of Ceramics, d, Shanghai, 200050, PR China; Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Kaicheng Liang
- State Key Laboratory of High Performance Ceramics and Superfine Microstructures, Shanghai Institute of Ceramics, d, Shanghai, 200050, PR China; Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Xiuli Wang
- Institute of Photomedicine, Shanghai Skin Disease Hospital, Tongji University School of Medicine, Shanghai 200443, PR China
| | - Hangrong Chen
- State Key Laboratory of High Performance Ceramics and Superfine Microstructures, Shanghai Institute of Ceramics, d, Shanghai, 200050, PR China; Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, PR China.
| |
Collapse
|
16
|
Li Q, Li J, Wang S, Wang J, Chen X, Zhou D, Fang Y, Gao A, Sun Y. Overexpressed immunoglobulin-like transcript (ILT) 4 in lung adenocarcinoma is correlated with immunosuppressive T cell subset infiltration and poor patient outcomes. Biomark Res 2020; 8:11. [PMID: 32368343 PMCID: PMC7191800 DOI: 10.1186/s40364-020-00191-7] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2019] [Accepted: 04/17/2020] [Indexed: 12/28/2022] Open
Abstract
Background The poor response to current PD-1/PD-L1 inhibitors in lung cancer patients requires development of novel immunotargets. Immunoglobulin-like transcript (ILT)4 is an immunosuppressive molecule mainly expressed in myeloid innate cells. Recent studies showed that ILT4 was highly expressed in multiple malignant cells and regulated tumor biologies including proliferation, invasion and metastasis. However, the immunomodulatory role of tumor cell-derived ILT4 is unclear. Here we aimed to analyze the correlation of tumor cell ILT4 expression with T cell infiltration and subset distribution, illustrate ILT4-regulated immunosuppressive microenvironment, and raise tumor cell-derived ILT4 as a novel immunotherapeutic target and prognostic biomarker for lung adenocarcinoma (LUAD) patients. Methods We collected the tissue samples and corresponding clinicopathological data from 216 primary LUAD patients. Using immunohistochemical staining and public database analyses we investigated the relationship between ILT4 expression and different T cell subset density as well as patient outcomes. Results Enriched ILT4 expression in tumor cells of LUAD tissues indicated reduced T cell infiltration in the tumor microenvironment (TME), advanced diseases and poor patient overall survival (OS). Further T cell subset analyses revealed that ILT4 expression was correlated with decreased CD8+T cell and increased Treg frequency in both cancer nest and stroma, but not with altered CD4+T cell frequency. High ILT4 level combined with low CD8+T cell/high Treg density predicted markedly poorer clinical outcomes compared with any of these biomarkers alone. Conclusions Tumor cell-derived ILT4 is correlated with immunosuppressive T cell subset infiltration and poor clinical outcomes, and might be a potential immunotherapeutic target and prognostic biomarker for LUAD patients. Combined ILT4 expression and CD8+ T cell/Treg frequency in tumor infiltrating lymphocytes (TILs) are stronger predictors for patient outcomes.
Collapse
Affiliation(s)
- Qing Li
- 1Department of Oncology, Jinan Central Hospital affiliated to Shandong University, Jinan, 250013 Shandong P. R. China.,2Department of Oncology, Yantaishan Hospital, Yantai, 264000 Shandong P.R. China
| | - Juan Li
- 1Department of Oncology, Jinan Central Hospital affiliated to Shandong University, Jinan, 250013 Shandong P. R. China.,3Department of Oncology, Jinan Central Hospital affiliated to Shandong First Medical University, Jinan, 250013 Shandong P. R. China
| | - Shuyun Wang
- 1Department of Oncology, Jinan Central Hospital affiliated to Shandong University, Jinan, 250013 Shandong P. R. China.,3Department of Oncology, Jinan Central Hospital affiliated to Shandong First Medical University, Jinan, 250013 Shandong P. R. China
| | - Jingnan Wang
- 1Department of Oncology, Jinan Central Hospital affiliated to Shandong University, Jinan, 250013 Shandong P. R. China.,3Department of Oncology, Jinan Central Hospital affiliated to Shandong First Medical University, Jinan, 250013 Shandong P. R. China
| | - Xiaozheng Chen
- 1Department of Oncology, Jinan Central Hospital affiliated to Shandong University, Jinan, 250013 Shandong P. R. China
| | - Dongmei Zhou
- 2Department of Oncology, Yantaishan Hospital, Yantai, 264000 Shandong P.R. China
| | - Yuying Fang
- 1Department of Oncology, Jinan Central Hospital affiliated to Shandong University, Jinan, 250013 Shandong P. R. China
| | - Aiqin Gao
- 1Department of Oncology, Jinan Central Hospital affiliated to Shandong University, Jinan, 250013 Shandong P. R. China.,3Department of Oncology, Jinan Central Hospital affiliated to Shandong First Medical University, Jinan, 250013 Shandong P. R. China
| | - Yuping Sun
- 1Department of Oncology, Jinan Central Hospital affiliated to Shandong University, Jinan, 250013 Shandong P. R. China.,3Department of Oncology, Jinan Central Hospital affiliated to Shandong First Medical University, Jinan, 250013 Shandong P. R. China
| |
Collapse
|
17
|
Zhang N, Liu S, Shi S, Chen Y, Xu F, Wei X, Xu Y. Solubilization and delivery of Ursolic-acid for modulating tumor microenvironment and regulatory T cell activities in cancer immunotherapy. J Control Release 2020; 320:168-178. [PMID: 31926193 DOI: 10.1016/j.jconrel.2020.01.015] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Revised: 01/01/2020] [Accepted: 01/07/2020] [Indexed: 12/17/2022]
Abstract
Ursolic acid (UA) is a potent triterpenoid compound found in plants and fruits with activities modulating key cell signaling pathways involving STATs, NF-κB, and TRAIL. But it's highly hydrophobic and very poorly soluble in nature. It had been prepared as nanocrystals, solid dispersion and loaded in nanoparticles but the achieved systemic exposure and circulation half-life were not ideal. We reported the development of UA-liposomes made by HPβCD assisted active loading. Compared to lipid suspensions of UA (Lipid-UA) with similar lipid composition, the novel process enabled the formation of UA-Ca crystalline structures inside the liposomes and therefore sustained release of UA in vivo. While the UA-liposomes were not generally toxic towards 4T1 triple negative breast cancer cells, they could effectively modulate CD4+CD25+Foxp3+ T cells from 4T1 tumor bearing mouse by inhibiting STAT5 phosphorylation and IL-10 secretion. In vivo administration of UA-liposomes at 10 mg/kg dose led to reduced numbers of myeloid derived suppressor cells (MDSCs) and regulatory T cells (Tregs) residing in tumor tissues. These changes signified the correction of the tumor mediated immune-suppressive microenvironment. The UA-liposomes treatment alone was already effective in deterring tumor growth. Such a formulation may be highly promising as an immunotherapy agent and be combined with chemotherapeutics or targeted drugs.
Collapse
Affiliation(s)
- Ning Zhang
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, China; School of Pharmacy, Shanghai Jiao Tong University, Shanghai, China
| | - Shounan Liu
- School of Pharmacy, Shanghai Jiao Tong University, Shanghai, China
| | - Sanyuan Shi
- School of Pharmacy, Shanghai Jiao Tong University, Shanghai, China
| | - Yuetan Chen
- School of Pharmacy, Shanghai Jiao Tong University, Shanghai, China
| | - Fengwei Xu
- School of Pharmacy, Shanghai Jiao Tong University, Shanghai, China
| | - Xiaohui Wei
- School of Pharmacy, Shanghai Jiao Tong University, Shanghai, China
| | - Yuhong Xu
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, China; School of Pharmacy and Chemistry, Dali University, China.
| |
Collapse
|
18
|
Phung CD, Tran TH, Kim JO. Engineered nanoparticles to enhance natural killer cell activity towards onco-immunotherapy: a review. Arch Pharm Res 2020; 43:32-45. [DOI: 10.1007/s12272-020-01218-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Accepted: 01/20/2020] [Indexed: 12/12/2022]
|
19
|
Han S, Huang K, Gu Z, Wu J. Tumor immune microenvironment modulation-based drug delivery strategies for cancer immunotherapy. NANOSCALE 2020; 12:413-436. [PMID: 31829394 DOI: 10.1039/c9nr08086d] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
The past years have witnessed promising clinical feedback for anti-cancer immunotherapies, which have become one of the hot research topics; however, they are limited by poor delivery kinetics, narrow patient response profiles, and systemic side effects. To the best of our knowledge, the development of cancer is highly associated with the immune system, especially the tumor immune microenvironment (TIME). Based on the comprehensive understanding of the complexity and diversity of TIME, drug delivery strategies focused on the modulation of TIME can be of great significance for directing and improving cancer immunotherapy. This review highlights the TIME modulation in cancer immunotherapy and summarizes the versatile TIME modulation-based cancer immunotherapeutic strategies, medicative principles and accessory biotechniques for further clinical transformation. Remarkably, the recent advances of cancer immunotherapeutic drug delivery systems and future prospects of TIME modulation-based drug delivery systems for much more controlled and precise cancer immunotherapy will be emphatically discussed.
Collapse
Affiliation(s)
- Shuyan Han
- Key Laboratory of Sensing Technology and Biomedical Instrument of Guangdong Province, School of Biomedical Engineering, Sun Yat-sen University, Guangzhou 510006, PR China.
| | | | | | | |
Collapse
|
20
|
Sun HR, Wang S, Yan SC, Zhang Y, Nelson PJ, Jia HL, Qin LX, Dong QZ. Therapeutic Strategies Targeting Cancer Stem Cells and Their Microenvironment. Front Oncol 2019; 9:1104. [PMID: 31709180 PMCID: PMC6821685 DOI: 10.3389/fonc.2019.01104] [Citation(s) in RCA: 67] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Accepted: 10/07/2019] [Indexed: 12/12/2022] Open
Abstract
Cancer stem cells (CSCs) have been demonstrated in a variety of tumors and are thought to act as a clonogenic core for the genesis of new tumor growth. This small subpopulation of cancer cells has been proposed to help drive tumorigenesis, metastasis, recurrence and conventional therapy resistance. CSCs show self-renewal and flexible clonogenic properties and help define specific tumor microenvironments (TME). The interaction between CSCs and TME is thought to function as a dynamic support system that fosters the generation and maintenance of CSCs. Investigation of the interaction between CSCs and the TME is shedding light on the biologic mechanisms underlying the process of tumor malignancy, metastasis, and therapy resistance. We summarize recent advances in CSC biology and their environment, and discuss the challenges and future strategies for targeting this biology as a new therapeutic approach.
Collapse
Affiliation(s)
- Hao-Ran Sun
- Department of General Surgery, Cancer Metastasis Institute, Institutes of Biomedical Sciences, Huashan Hospital, Fudan University, Shanghai, China
| | - Shun Wang
- Department of General Surgery, Cancer Metastasis Institute, Institutes of Biomedical Sciences, Huashan Hospital, Fudan University, Shanghai, China
| | - Shi-Can Yan
- Department of General Surgery, Cancer Metastasis Institute, Institutes of Biomedical Sciences, Huashan Hospital, Fudan University, Shanghai, China
| | - Yu Zhang
- Department of General Surgery, Cancer Metastasis Institute, Institutes of Biomedical Sciences, Huashan Hospital, Fudan University, Shanghai, China
| | - Peter J Nelson
- Medizinische Klinik und Poliklinik IV, Ludwig-Maximilian-University (LMU), Munich, Germany
| | - Hu-Liang Jia
- Department of General Surgery, Cancer Metastasis Institute, Institutes of Biomedical Sciences, Huashan Hospital, Fudan University, Shanghai, China
| | - Lun-Xiu Qin
- Department of General Surgery, Cancer Metastasis Institute, Institutes of Biomedical Sciences, Huashan Hospital, Fudan University, Shanghai, China
| | - Qiong-Zhu Dong
- Department of General Surgery, Cancer Metastasis Institute, Institutes of Biomedical Sciences, Huashan Hospital, Fudan University, Shanghai, China
| |
Collapse
|
21
|
Lim S, Park J, Shim MK, Um W, Yoon HY, Ryu JH, Lim DK, Kim K. Recent advances and challenges of repurposing nanoparticle-based drug delivery systems to enhance cancer immunotherapy. Theranostics 2019; 9:7906-7923. [PMID: 31695807 PMCID: PMC6831456 DOI: 10.7150/thno.38425] [Citation(s) in RCA: 86] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Accepted: 09/17/2019] [Indexed: 12/15/2022] Open
Abstract
Cancer immunotherapy is an attractive treatment option under clinical settings. However, the major challenges of immunotherapy include limited patient response, limited tumor specificity, immune-related adverse events, and immunosuppressive tumor microenvironment. Therefore, nanoparticle (NP)-based drug delivery has been used to not only increase the efficacy of immunotherapeutic agents, but it also significantly reduces the toxicity. In particular, NP-based drug delivery systems alter the pharmacokinetic (PK) profile of encapsulated or conjugated immunotherapeutic agents to targeted cancer cells or immune cells and facilitate the delivery of multiple therapeutic combinations to targeted cells using single NPs. Recently, advanced NP-based drug delivery systems were effectively utilized in cancer immunotherapy to reduce the toxic side effects and immune-related adverse events. Repurposing these NPs as delivery systems of immunotherapeutic agents may overcome the limitations of current cancer immunotherapy. In this review, we focus on recent advances in NP-based immunotherapeutic delivery systems, such as immunogenic cell death (ICD)-inducing drugs, cytokines and adjuvants for promising cancer immunotherapy. Finally, we discuss the challenges facing current NP-based drug delivery systems that need to be addressed for successful clinical application.
Collapse
Affiliation(s)
- Seungho Lim
- Center for Theragnosis, Biomedical Research Institute, Korea Institute of Science and Technology (KIST), 5, Hwarangno 14-gil, Seongbuk-gu, Seoul, 02792, Republic of Korea
| | - Jooho Park
- Center for Theragnosis, Biomedical Research Institute, Korea Institute of Science and Technology (KIST), 5, Hwarangno 14-gil, Seongbuk-gu, Seoul, 02792, Republic of Korea
| | - Man Kyu Shim
- Center for Theragnosis, Biomedical Research Institute, Korea Institute of Science and Technology (KIST), 5, Hwarangno 14-gil, Seongbuk-gu, Seoul, 02792, Republic of Korea
| | - Wooram Um
- Center for Theragnosis, Biomedical Research Institute, Korea Institute of Science and Technology (KIST), 5, Hwarangno 14-gil, Seongbuk-gu, Seoul, 02792, Republic of Korea
| | - Hong Yeol Yoon
- Center for Theragnosis, Biomedical Research Institute, Korea Institute of Science and Technology (KIST), 5, Hwarangno 14-gil, Seongbuk-gu, Seoul, 02792, Republic of Korea
| | - Ju Hee Ryu
- Center for Theragnosis, Biomedical Research Institute, Korea Institute of Science and Technology (KIST), 5, Hwarangno 14-gil, Seongbuk-gu, Seoul, 02792, Republic of Korea
| | - Dong-Kwon Lim
- KU-KIST Graduate School of Converging Science and Technology, Korea University, 145, Anam-ro, Seongbuk-gu, Seoul, 02841, Republic of Korea
| | - Kwangmeyung Kim
- Center for Theragnosis, Biomedical Research Institute, Korea Institute of Science and Technology (KIST), 5, Hwarangno 14-gil, Seongbuk-gu, Seoul, 02792, Republic of Korea
- KU-KIST Graduate School of Converging Science and Technology, Korea University, 145, Anam-ro, Seongbuk-gu, Seoul, 02841, Republic of Korea
| |
Collapse
|
22
|
Soe ZC, Kwon JB, Thapa RK, Ou W, Nguyen HT, Gautam M, Oh KT, Choi HG, Ku SK, Yong CS, Kim JO. Transferrin-Conjugated Polymeric Nanoparticle for Receptor-Mediated Delivery of Doxorubicin in Doxorubicin-Resistant Breast Cancer Cells. Pharmaceutics 2019; 11:E63. [PMID: 30717256 PMCID: PMC6410246 DOI: 10.3390/pharmaceutics11020063] [Citation(s) in RCA: 63] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2018] [Revised: 01/23/2019] [Accepted: 01/30/2019] [Indexed: 12/20/2022] Open
Abstract
In this study, a transferrin (Tf)-conjugated polymeric nanoparticle was developed for the targeted delivery of the chemotherapeutic agent doxorubicin (Dox) in order to overcome multi-drug resistance in cancer treatment. Our objective was to improve Dox delivery for producing significant antitumor efficacy in Dox-resistant (R) breast cancer cell lines with minimum toxicity to healthy cells. The results of our experiments revealed that Dox was successfully loaded inside a transferrin (Tf)-conjugated polymeric nanoparticle composed of poloxamer 407 (F127) and 123 (P123) (Dox/F127&P123-Tf), which produced nanosized particles (~90 nm) with a low polydispersity index (~0.23). The accelerated and controlled release profiles of Dox from the nanoparticles were characterized in acidic and physiological pH and Dox/F127&P123-Tf enhanced Dox cytotoxicity in OVCAR-3, MDA-MB-231, and MDA-MB-231(R) cell lines through induction of cellular apoptosis. Moreover, Dox/F127&P123-Tf inhibited cell migration and altered the cell cycle patterns of different cancer cells. In vivo study in MDA-MB-231(R) tumor-bearing mice demonstrated enhanced delivery of nanoparticles to the tumor site when coated in a targeting moiety. Therefore, Dox/F127&P123-Tf has been tailored, using the principles of nanotherapeutics, to overcome drug-resistant chemotherapy.
Collapse
Affiliation(s)
- Zar Chi Soe
- College of Pharmacy, Yeungnam University, 214-1, Dae-dong, Gyeongsan 712-749, Korea.
- Department of Pharmaceutics, University of Pharmacy (Yangon), Waybargi Road, North Okkalapa township, Yangon 11031, Myanmar.
| | - Jun Bum Kwon
- College of Pharmacy, Yeungnam University, 214-1, Dae-dong, Gyeongsan 712-749, Korea.
| | - Raj Kumar Thapa
- College of Pharmacy, Yeungnam University, 214-1, Dae-dong, Gyeongsan 712-749, Korea.
| | - Wenquan Ou
- College of Pharmacy, Yeungnam University, 214-1, Dae-dong, Gyeongsan 712-749, Korea.
| | - Hanh Thuy Nguyen
- College of Pharmacy, Yeungnam University, 214-1, Dae-dong, Gyeongsan 712-749, Korea.
| | - Milan Gautam
- College of Pharmacy, Yeungnam University, 214-1, Dae-dong, Gyeongsan 712-749, Korea.
| | - Kyung Taek Oh
- College of Pharmacy, Chung-Ang University, 221 Heuksuk-dong Dongjak-gu, Seoul 156-756, Korea.
| | - Han-Gon Choi
- College of Pharmacy, Institute of Pharmaceutical Science and Technology, Hanyang University, 55 Hanyangdaehak-ro, Sangnok-gu, Ansan 426-791, Korea.
| | - Sae Kwang Ku
- College of Korean Medicine, Daegu Haany University, Gyeongsan 712-715, Korea.
| | - Chul Soon Yong
- College of Pharmacy, Yeungnam University, 214-1, Dae-dong, Gyeongsan 712-749, Korea.
| | - Jong Oh Kim
- College of Pharmacy, Yeungnam University, 214-1, Dae-dong, Gyeongsan 712-749, Korea.
| |
Collapse
|