1
|
Fang L, Gao D, Wang T, Zhao H, Zhang Y, Wang S. From nature to clinic: Quercetin's role in breast cancer immunomodulation. Front Immunol 2024; 15:1483459. [PMID: 39712006 PMCID: PMC11659267 DOI: 10.3389/fimmu.2024.1483459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Accepted: 11/19/2024] [Indexed: 12/24/2024] Open
Abstract
Immunotherapy has brought hope to many breast cancer patients, but not all patients benefit from it. Quercetin (Qu), a natural product found in various sources, has anti-inflammatory and anti-tumor properties. We conducted a review of the pharmacological research of Qu in regulating anti-tumor immunity in vivo and in vitro. Qu can directly regulate the local tumor microenvironment (TME) by enhancing the activity of immune cells which includes promoting the infiltration of T cells and natural killer (NK) cells, inhibiting the recruitment of myeloid-derived suppressor cells and tumor-associated macrophages. Additionally, Qu inhibits anaerobic glycolysis in tumor cells, thereby reducing the production and transport of lactic acid. It also suppresses tumor angiogenesis by targeting the vascular endothelial growth factor (VEGF) pathway and the vitamin D pathway. Furthermore, Qu can enhance the efficacy of immunotherapy for breast cancer by modulating the systemic microenvironment. This includes inhibiting obesity-related chronic inflammation to decrease the production of inflammatory factors, regulating the composition of intestinal microbiota, and intervening in the metabolism of intestinal flora. At the same time, we also address challenges in the clinical application of Qu, such as low absorption rates and unknown effective doses. In conclusion, we highlight Qu as a natural immunomodulator that enhances immune cell activity and has the potential to be developed as an adjunct for breast cancer.
Collapse
Affiliation(s)
- Liguang Fang
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| | - Dandan Gao
- The First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| | - Tong Wang
- School of Nursing, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| | - Haijun Zhao
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
- Shandong Co-Innovation Center of Classic Traditional Chinese Medicine (TCM) Formula, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| | - Yanan Zhang
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| | - Shijun Wang
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
- Shandong Co-Innovation Center of Classic Traditional Chinese Medicine (TCM) Formula, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| |
Collapse
|
2
|
Song P, Song F, Shao T, Wang P, Li R, Chen ZS, Zhang Z, Xue G. Natural products: promising therapeutics for targeting regulatory immune cells in the tumor microenvironment. Front Pharmacol 2024; 15:1481850. [PMID: 39605905 PMCID: PMC11598344 DOI: 10.3389/fphar.2024.1481850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Accepted: 10/23/2024] [Indexed: 11/29/2024] Open
Abstract
Regulatory immune cells regulate immune responses through various mechanisms, affecting the occurrence, development, and therapeutic effects of tumors. In this article, we reviewed the important roles of regulatory immune cells, such as regulatory T cells (Tregs), regulatory B cells (Bregs), myeloid-derived suppressor cells (MDSCs), regulatory dendritic cells (DCregs), and tumor-associated macrophages (TAMs), in the tumor microenvironment (TME). The immunomodulatory effects of natural products, such as polysaccharides, polyphenols, glycosides, alkaloids, terpenoids, quinones, and other compounds, which affect the functions of regulatory immune cells through molecular signaling pathways, thereby enhancing the potential of the antitumor immune response, are discussed. These findings provide new ideas and possibilities for the application of natural products in tumor treatment, which can help enhance the effectiveness of tumor treatment and improve patient prognosis.
Collapse
Affiliation(s)
- Peng Song
- Gansu University of Chinese Medicine, Lanzhou, China
- Affiliated Hospital of Gansu University of Chinese Medicine, Lanzhou, China
| | - Fei Song
- Gansu University of Chinese Medicine, Lanzhou, China
- Affiliated Hospital of Gansu University of Chinese Medicine, Lanzhou, China
| | - Tingting Shao
- Gansu University of Chinese Medicine, Lanzhou, China
- Affiliated Hospital of Gansu University of Chinese Medicine, Lanzhou, China
| | - Pengjuan Wang
- Gansu University of Chinese Medicine, Lanzhou, China
- Affiliated Hospital of Gansu University of Chinese Medicine, Lanzhou, China
| | - Rongkun Li
- Gansu University of Chinese Medicine, Lanzhou, China
- Affiliated Hospital of Gansu University of Chinese Medicine, Lanzhou, China
| | - Zhe-Sheng Chen
- College of Pharmacy and Health Sciences, St. John’s University, Queens, NY, United States
| | - Zhaofang Zhang
- Gansu University of Chinese Medicine, Lanzhou, China
- Affiliated Hospital of Gansu University of Chinese Medicine, Lanzhou, China
| | - Guozhong Xue
- Gansu University of Chinese Medicine, Lanzhou, China
- Affiliated Hospital of Gansu University of Chinese Medicine, Lanzhou, China
| |
Collapse
|
3
|
Zhang H, Felthaus O, Eigenberger A, Klein S, Prantl L. Treg Cell Therapeutic Strategies for Breast Cancer: Holistic to Local Aspects. Cells 2024; 13:1526. [PMID: 39329710 PMCID: PMC11429654 DOI: 10.3390/cells13181526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 09/06/2024] [Accepted: 09/10/2024] [Indexed: 09/28/2024] Open
Abstract
Regulatory T cells (Tregs) play a key role in maintaining immune homeostasis and preventing autoimmunity through their immunosuppressive function. There have been numerous reports confirming that high levels of Tregs in the tumor microenvironment (TME) are associated with a poor prognosis, highlighting their role in promoting an immunosuppressive environment. In breast cancer (BC), Tregs interact with cancer cells, ultimately leading to the suppression of immune surveillance and promoting tumor progression. This review discusses the dual role of Tregs in breast cancer, and explores the controversies and therapeutic potential associated with targeting these cells. Researchers are investigating various strategies to deplete or inhibit Tregs, such as immune checkpoint inhibitors, cytokine antagonists, and metabolic inhibition. However, the heterogeneity of Tregs and the variable precision of treatments pose significant challenges. Understanding the functional diversity of Tregs and the latest advances in targeted therapies is critical for the development of effective therapies. This review highlights the latest approaches to Tregs for BC treatment that both attenuate Treg-mediated immunosuppression in tumors and maintain immune tolerance, and advocates precise combination therapy strategies to optimize breast cancer outcomes.
Collapse
Affiliation(s)
- Hanwen Zhang
- Department of Plastic, Hand and Reconstructive Surgery, University Hospital Regensburg, Franz-Josef-Strauss Allee 11, 93053 Regensburg, Germany (L.P.)
| | | | | | | | | |
Collapse
|
4
|
Chen Y, Zhou Q, Jia Z, Cheng N, Zhang S, Chen W, Wang L. Enhancing cancer immunotherapy: Nanotechnology-mediated immunotherapy overcoming immunosuppression. Acta Pharm Sin B 2024; 14:3834-3854. [PMID: 39309502 PMCID: PMC11413684 DOI: 10.1016/j.apsb.2024.05.032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 05/12/2024] [Accepted: 05/24/2024] [Indexed: 09/25/2024] Open
Abstract
Immunotherapy is an important cancer treatment method that offers hope for curing cancer patients. While immunotherapy has achieved initial success, a major obstacle to its widespread adoption is the inability to benefit the majority of patients. The success or failure of immunotherapy is closely linked to the tumor's immune microenvironment. Recently, there has been significant attention on strategies to regulate the tumor immune microenvironment in order to stimulate anti-tumor immune responses in cancer immunotherapy. The distinctive physical properties and design flexibility of nanomedicines have been extensively utilized to target immune cells (including tumor-associated macrophages (TAMs), T cells, myeloid-derived suppressor cells (MDSCs), and tumor-associated fibroblasts (TAFs)), offering promising advancements in cancer immunotherapy. In this article, we have reviewed treatment strategies aimed at targeting various immune cells to regulate the tumor immune microenvironment. The focus is on cancer immunotherapy models that are based on nanomedicines, with the goal of inducing or enhancing anti-tumor immune responses to improve immunotherapy. It is worth noting that combining cancer immunotherapy with other treatments, such as chemotherapy, radiotherapy, and photodynamic therapy, can maximize the therapeutic effects. Finally, we have identified the challenges that nanotechnology-mediated immunotherapy needs to overcome in order to design more effective nanosystems.
Collapse
Affiliation(s)
- Yunna Chen
- Key Laboratory of Molecular Biology (Brain diseases), Anhui University of Chinese Medicine, Hefei 230012, China
| | - Qianqian Zhou
- MOE-Anhui Joint Collaborative Innovation Center for Quality Improvement of Anhui Genuine Chinese Medicinal Materials, Hefei 230012, China
- Anhui Province Key Laboratory of Chinese Medicinal Formula, Hefei 230012, China
| | - Zongfang Jia
- MOE-Anhui Joint Collaborative Innovation Center for Quality Improvement of Anhui Genuine Chinese Medicinal Materials, Hefei 230012, China
- Anhui Province Key Laboratory of Chinese Medicinal Formula, Hefei 230012, China
| | - Nuo Cheng
- MOE-Anhui Joint Collaborative Innovation Center for Quality Improvement of Anhui Genuine Chinese Medicinal Materials, Hefei 230012, China
- Anhui Province Key Laboratory of Chinese Medicinal Formula, Hefei 230012, China
| | - Sheng Zhang
- Key Laboratory of Molecular Biology (Brain diseases), Anhui University of Chinese Medicine, Hefei 230012, China
| | - Weidong Chen
- MOE-Anhui Joint Collaborative Innovation Center for Quality Improvement of Anhui Genuine Chinese Medicinal Materials, Hefei 230012, China
- Anhui Province Key Laboratory of Chinese Medicinal Formula, Hefei 230012, China
| | - Lei Wang
- MOE-Anhui Joint Collaborative Innovation Center for Quality Improvement of Anhui Genuine Chinese Medicinal Materials, Hefei 230012, China
- Anhui Province Key Laboratory of Chinese Medicinal Formula, Hefei 230012, China
| |
Collapse
|
5
|
Chauhan A, Pathak VM, Yadav M, Chauhan R, Babu N, Chowdhary M, Ranjan A, Mathkor DM, Haque S, Tuli HS, Ramniwas S, Yadav V. Role of ursolic acid in preventing gastrointestinal cancer: recent trends and future perspectives. Front Pharmacol 2024; 15:1405497. [PMID: 39114347 PMCID: PMC11303223 DOI: 10.3389/fphar.2024.1405497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2024] [Accepted: 06/03/2024] [Indexed: 08/10/2024] Open
Abstract
Gastrointestinal malignancies are one of the major worldwide health concerns. In the present review, we have assessed the plausible therapeutic implication of Ursolic Acid (UA) against gastrointestinal cancer. By modulating several signaling pathways critical in cancer development, UA could offer anti-inflammatory, anti-proliferative, and anti-metastatic properties. However, being of low oral bioavailability and poor permeability, its clinical value is restricted. To deliver and protect the drug, liposomes and polymer micelles are two UA nanoformulations that can effectively increase medicine stability. The use of UA for treating cancers is safe and appropriate with low toxicity characteristics and a predictable pharmacokinetic profile. Although the bioavailability of UA is limited, its nanoformulations could emerge as an alternative to enhance its efficacy in treating GI cancers. Further optimization and validation in the clinical trials are necessary. The combination of molecular profiling with nanoparticle-based drug delivery technologies holds the potential for bringing UA to maximum efficacy, looking for good prospects with GI cancer treatment.
Collapse
Affiliation(s)
- Abhishek Chauhan
- Amity Institute of Environmental Toxicology Safety and Management, Amity University, Noida, Uttar Pradesh, India
| | | | - Monika Yadav
- Cancer Biology Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi, India
| | - Ritu Chauhan
- Department of Biotechnology, Graphic Era Deemed to be University, Dehradun, Uttarakhand, India
| | - Neelesh Babu
- Department of Microbiology, Baba Farid Institute of Technology, Dehradun, Uttarakhand, India
| | - Manish Chowdhary
- CSIR-Institute of Genomics and Integrative Biology, New Delhi, India
| | - Anuj Ranjan
- Academy of Biology and Biotechnology, Southern Federal University, Rostov-on-Don, Russia
| | - Darin Mansor Mathkor
- Research and Scientific Studies Unit, College of Nursing and Allied Health Sciences, Jazan University, Jazan, Saudi Arabia
| | - Shafiul Haque
- Research and Scientific Studies Unit, College of Nursing and Allied Health Sciences, Jazan University, Jazan, Saudi Arabia
- Gilbert and Rose-Marie Chagoury School of Medicine, Lebanese American University, Beirut, Lebanon
| | - Hardeep Singh Tuli
- Department of Bio-Sciences and Technology, Maharishi Markandeshwar Engineering College, Maharishi Markandeshwar (Deemed to Be University), Ambala, India
| | - Seema Ramniwas
- University Centre for Research and Development, University Institute of Pharmaceutical Sciences, Chandigarh University, Mohali, India
| | - Vikas Yadav
- Department of Translational Medicine, Clinical Research Centre, Skåne University Hospital, Lund University, Malmö, Sweden
| |
Collapse
|
6
|
Khatua R, Bhar B, Dey S, Jaiswal C, J V, Mandal BB. Advances in engineered nanosystems: immunomodulatory interactions for therapeutic applications. NANOSCALE 2024; 16:12820-12856. [PMID: 38888201 DOI: 10.1039/d4nr00680a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/20/2024]
Abstract
Advances in nanotechnology have led to significant progress in the design and fabrication of nanoparticles (NPs) with improved therapeutic properties. NPs have been explored for modulating the immune system, serving as carriers for drug delivery or vaccine adjuvants, or acting as therapeutics themselves against a wide range of deadly diseases. The combination of NPs with immune system-targeting moieties has facilitated the development of improved targeted immune therapies. Targeted delivery of therapeutic agents using NPs specifically to the disease-affected cells, distinguishing them from other host cells, offers the major advantage of concentrating the therapeutic effect and reducing systemic side effects. Furthermore, the properties of NPs, including size, shape, surface charge, and surface modifications, influence their interactions with the targeted biological components. This review aims to provide insights into these diverse emerging and innovative approaches that are being developed and utilized for modulating the immune system using NPs. We reviewed various types of NPs composed of different materials and their specific application for modulating the immune system. Furthermore, we focused on the mechanistic effects of these therapeutic NPs on primary immune components, including T cells, B cells, macrophages, dendritic cells, and complement systems. Additionally, a recent overview of clinically approved immunomodulatory nanomedicines and potential future perspectives, offering new paradigms of this field, is also highlighted.
Collapse
Affiliation(s)
- Rupam Khatua
- Biomaterials and Tissue Engineering Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati - 781039, Assam, India.
| | - Bibrita Bhar
- Biomaterials and Tissue Engineering Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati - 781039, Assam, India.
| | - Souradeep Dey
- Centre for Nanotechnology, Indian Institute of Technology Guwahati, Guwahati - 781039, Assam, India
| | - Chitra Jaiswal
- Biomaterials and Tissue Engineering Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati - 781039, Assam, India.
| | - Victoria J
- Biomaterials and Tissue Engineering Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati - 781039, Assam, India.
| | - Biman B Mandal
- Biomaterials and Tissue Engineering Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati - 781039, Assam, India.
- Centre for Nanotechnology, Indian Institute of Technology Guwahati, Guwahati - 781039, Assam, India
- Jyoti and Bhupat Mehta School of Health Sciences and Technology, Indian Institute of Technology Guwahati, Guwahati - 781039, Assam, India
| |
Collapse
|
7
|
Alqathama A. Natural products as promising modulators of breast cancer immunotherapy. Front Immunol 2024; 15:1410300. [PMID: 39050852 PMCID: PMC11266008 DOI: 10.3389/fimmu.2024.1410300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Accepted: 06/28/2024] [Indexed: 07/27/2024] Open
Abstract
Breast cancer (BC) is the most common malignancy among women and is considered a major global health challenge worldwide due to its high incidence and mortality rates. Treatment strategies for BC is wide-ranging and include surgery, radiotherapy, chemotherapy, targeted hormonal therapy and immunotherapy. Immunotherapy has gained popularity recently and is often integrated as a component of personalized cancer care because it aims to strengthen the immune system and enable it to recognize and eradicate transformed cells. It has fewer side-effects and lower toxicity than other treatment strategies, such as chemotherapy. Many natural products are being investigated for a wide range of therapeutic pharmacological properties, such as immune system modulation and activity against infection, auto-immune disease, and cancer. This review presents an overview of the major immune response-related pathways in BC, followed by detailed explanation of how natural compounds can act as immunomodulatory agents against biomolecular targets. Research has been carried out on many forms of natural products, including extracts, isolated entities, synthetic derivatives, nanoparticles, and combinations of natural compounds. Findings have shown significant regulatory effects on immune cells and immune cytokines that lead to immunogenic cancer cell death, as well as upregulation of macrophages and CD+8 T cells, and increased natural killer cell and dendritic cell activity. Natural products have also been found to inhibit some immuno-suppressive cells such as Treg and myeloid-derived suppressor cells, and to decrease immunosuppressive factors such as TGF-β and IL-10. Also, some natural compounds have been found to target and hinder immune checkpoints such as PD-L1.
Collapse
Affiliation(s)
- Aljawharah Alqathama
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Umm Al-Qura University, Makkah, Saudi Arabia
| |
Collapse
|
8
|
Wang R, Huang X, Chen X, Zhang Y. Nanoparticle-Mediated Immunotherapy in Triple-Negative Breast Cancer. ACS Biomater Sci Eng 2024; 10:3568-3598. [PMID: 38815129 PMCID: PMC11167598 DOI: 10.1021/acsbiomaterials.4c00108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 05/05/2024] [Accepted: 05/07/2024] [Indexed: 06/01/2024]
Abstract
Triple-negative breast cancer (TNBC) is an aggressive subtype with the worst prognosis and highest recurrence rates. The treatment choices are limited due to the scarcity of endocrine and HER2 targets, except for chemotherapy. However, the side effects of chemotherapy restrict its long-term usage. Immunotherapy shows potential as a promising therapeutic strategy, such as inducing immunogenic cell death, immune checkpoint therapy, and immune adjuvant therapy. Nanotechnology offers unique advantages in the field of immunotherapy, such as improved delivery and targeted release of immunotherapeutic agents and enhanced bioavailability of immunomodulators. As well as the potential for combination therapy synergistically enhanced by nanocarriers. Nanoparticles-based combined application of multiple immunotherapies is designed to take the tactics of enhancing immunogenicity and reversing immunosuppression. Moreover, the increasing abundance of biomedical materials holds more promise for the development of this field. This review summarizes the advances in the field of nanoparticle-mediated immunotherapy in terms of both immune strategies for treatment and the development of biomaterials and presents challenges and hopes for the future.
Collapse
Affiliation(s)
- Ruoyi Wang
- Department of Breast
Surgery, The Second Norman Bethune Hospital
of Jilin University, Changchun 130021, P.R.C
| | - Xu Huang
- Department of Breast
Surgery, The Second Norman Bethune Hospital
of Jilin University, Changchun 130021, P.R.C
| | - Xiaoxi Chen
- Department of Breast
Surgery, The Second Norman Bethune Hospital
of Jilin University, Changchun 130021, P.R.C
| | - Yingchao Zhang
- Department of Breast
Surgery, The Second Norman Bethune Hospital
of Jilin University, Changchun 130021, P.R.C
| |
Collapse
|
9
|
Shang Q, Liu W, Leslie F, Yang J, Guo M, Sun M, Zhang G, Zhang Q, Wang F. Nano-formulated delivery of active ingredients from traditional Chinese herbal medicines for cancer immunotherapy. Acta Pharm Sin B 2024; 14:1525-1541. [PMID: 38572106 PMCID: PMC10985040 DOI: 10.1016/j.apsb.2023.12.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Revised: 11/15/2023] [Accepted: 12/12/2023] [Indexed: 04/05/2024] Open
Abstract
Cancer immunotherapy has garnered promise in tumor progression, invasion, and metastasis through establishing durable and memorable immunological activity. However, low response rates, adverse side effects, and high costs compromise the additional benefits for patients treated with current chemical and biological agents. Chinese herbal medicines (CHMs) are a potential treasure trove of natural medicines and are gaining momentum in cancer immunomodulation with multi-component, multi-target, and multi-pathway characteristics. The active ingredient extracted from CHMs benefit generalized patients through modulating immune response mechanisms. Additionally, the introduction of nanotechnology has greatly improved the pharmacological qualities of active ingredients through increasing the hydrophilicity, stability, permeability, and targeting characteristics, further enhancing anti-cancer immunity. In this review, we summarize the mechanism of active ingredients for cancer immunomodulation, highlight nano-formulated deliveries of active ingredients for cancer immunotherapy, and provide insights into the future applications in the emerging field of nano-formulated active ingredients of CHMs.
Collapse
Affiliation(s)
- Qi Shang
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Wandong Liu
- School of Basic Medical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China
- Key Laboratory of Blood-stasis-toxin Syndrome of Zhejiang Province, Hangzhou 310053, China
| | - Faith Leslie
- Department of Chemical and Biomolecular Engineering, Whiting School of Engineering, the Johns Hopkins University, Baltimore, MD 21218, USA
| | - Jiapei Yang
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Mingmei Guo
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Mingjiao Sun
- Department of Chemical and Biomolecular Engineering, Whiting School of Engineering, the Johns Hopkins University, Baltimore, MD 21218, USA
| | - Guangji Zhang
- School of Basic Medical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China
- Key Laboratory of Blood-stasis-toxin Syndrome of Zhejiang Province, Hangzhou 310053, China
- Traditional Chinese Medicine “Preventing Disease” Wisdom Health Project Research Center of Zhejiang, Hangzhou 310053, China
| | - Qiang Zhang
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery Systems, State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Feihu Wang
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| |
Collapse
|
10
|
Paun RA, Jurchuk S, Tabrizian M. A landscape of recent advances in lipid nanoparticles and their translational potential for the treatment of solid tumors. Bioeng Transl Med 2024; 9:e10601. [PMID: 38435821 PMCID: PMC10905562 DOI: 10.1002/btm2.10601] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 08/30/2023] [Accepted: 09/05/2023] [Indexed: 03/05/2024] Open
Abstract
Lipid nanoparticles (LNPs) are biocompatible drug delivery systems that have found numerous applications in medicine. Their versatile nature enables the encapsulation and targeting of various types of medically relevant molecular cargo, including oligonucleotides, proteins, and small molecules for the treatment of diseases, such as cancer. Cancers that form solid tumors are particularly relevant for LNP-based therapeutics due to the enhanced permeation and retention effect that allows nanoparticles to accumulate within the tumor tissue. Additionally, LNPs can be formulated for both locoregional and systemic delivery depending on the tumor type and stage. To date, LNPs have been used extensively in the clinic to reduce systemic toxicity and improve outcomes in cancer patients by encapsulating chemotherapeutic drugs. Next-generation lipid nanoparticles are currently being developed to expand their use in gene therapy and immunotherapy, as well as to enable the co-encapsulation of multiple drugs in a single system. Other developments include the design of targeted LNPs to specific cells and tissues, and triggerable release systems to control cargo delivery at the tumor site. This review paper highlights recent developments in LNP drug delivery formulations and focuses on the treatment of solid tumors, while also discussing some of their current translational limitations and potential opportunities in the field.
Collapse
Affiliation(s)
- Radu A. Paun
- Department of Biomedical Engineering, Faculty of Medicine and Health SciencesMcGill UniversityMontrealQuebecCanada
| | - Sarah Jurchuk
- Department of Biomedical Engineering, Faculty of Medicine and Health SciencesMcGill UniversityMontrealQuebecCanada
| | - Maryam Tabrizian
- Department of Biomedical Engineering, Faculty of Medicine and Health SciencesMcGill UniversityMontrealQuebecCanada
- Faculty of Dentistry and Oral Health SciencesMcGill UniversityMontrealQuebecCanada
| |
Collapse
|
11
|
Le JQ, Song XH, Tong LW, Lin YQ, Feng KK, Tu YF, Hu YS, Shao JW. Dual-drug controllable co-assembly nanosystem for targeted and synergistic treatment of hepatocellular carcinoma. J Colloid Interface Sci 2024; 656:177-188. [PMID: 37989051 DOI: 10.1016/j.jcis.2023.11.109] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 11/15/2023] [Accepted: 11/17/2023] [Indexed: 11/23/2023]
Abstract
The effectiveness of chemotherapeutic agents for hepatocellular carcinoma (HCC) is unsatisfactory because of tumor heterogeneity, multidrug resistance, and poor target accumulation. Therefore, multimodality-treatment with accurate drug delivery has become increasingly popular. Herein, a cell penetrating peptide-aptamer dual modified-nanocomposite (USILA NPs) was successfully constructed by coating a cell penetrating peptide and aptamer onto the surface of sorafenib (Sora), ursolic acid (UA) and indocyanine green (ICG) condensed nanodrug (USI NPs) via one-pot assembly for targeted and synergistic HCC treatment. USILA NPs showed higher cellular uptake and cytotoxicity in HepG2 and H22 cells, with a high expression of epithelial cell adhesion molecule (EpCAM). Furthermore, these NPs caused more significant mitochondrial membrane potential reduction and cell apoptosis. These NPs could selectively accumulate at the tumor site of H22 tumor-bearing mice and were detected with the help of ICG fluorescence; moreover, they retarded tumor growth better than monotherapy. Thus, USILA NPs can realize the targeted delivery of dual drugs and the integration of diagnosis and treatment. Moreover, the effects were more significant after co-administration of iRGD peptide, a tumor-penetrating peptide with better penetration promoting ability or programmed cell death ligand 1 (PD-L1) antibody for the reversal of the immunosuppressive state in the tumor microenvironment. The tumor inhibition rates of USILA NPs + iRGD peptide or USILA NPs + PD-L1 antibody with good therapeutic safety were 72.38 % and 67.91 % compared with control, respectively. Overall, this composite nanosystem could act as a promising targeted tool and provide an effective intervention strategy for enhanced HCC synergistic treatment.
Collapse
Affiliation(s)
- Jing-Qing Le
- Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, College of Chemistry, Fuzhou University, Fuzhou 350116, China
| | - Xun-Huan Song
- Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, College of Chemistry, Fuzhou University, Fuzhou 350116, China
| | - Ling-Wu Tong
- Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, College of Chemistry, Fuzhou University, Fuzhou 350116, China
| | - Ying-Qi Lin
- Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, College of Chemistry, Fuzhou University, Fuzhou 350116, China
| | - Ke-Ke Feng
- Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, College of Chemistry, Fuzhou University, Fuzhou 350116, China
| | - Yi-Fan Tu
- Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, College of Chemistry, Fuzhou University, Fuzhou 350116, China
| | - Yong-Shan Hu
- Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, College of Chemistry, Fuzhou University, Fuzhou 350116, China
| | - Jing-Wei Shao
- Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, College of Chemistry, Fuzhou University, Fuzhou 350116, China.
| |
Collapse
|
12
|
Yuan J, Fu Y, Liu Y. Identification of hub genes and drug candidates for NF2-related vestibular schwannoma by bioinformatics tools. Medicine (Baltimore) 2023; 102:e36696. [PMID: 38115252 PMCID: PMC10727542 DOI: 10.1097/md.0000000000036696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 10/05/2023] [Accepted: 11/27/2023] [Indexed: 12/21/2023] Open
Abstract
Neurofibromatosis type 2 (NF2)-related vestibular schwannoma (NF2-VS) is a rare genetic disorder that results in bilateral acoustic neuromas. However, the exact pathogenesis of the disease is still unclear. This study aims to use bioinformatics analyses to identify potential hub genes and therapeutic. We retrieved the mRNA expression profiles (GSE108524 and GSE141801) of NF2-VS from the database, and selected the leading 25% genes with the most variance across samples for weighted correlation network analysis. Subsequently, we conducted gene ontology term and Kyoto Encyclopedia of Genes and Genomes signaling network enrichment analyses. The STRING database was employed for protein-protein interaction (PPI) axis construction. The mRNA-miRNA modulatory network was generated via the miRTarBase database. Differentially expressed genes (DEGs) were identified via the R package "limma" in both datasets, and hub genes were screened via intersection of common DEGs, candidate hub genes from the PPI axis, and candidate hub genes from the key module. Finally, common DEGs were uploaded onto the connectivity map database to determine drug candidates. Based on our observations, the blue module exhibited the most significant relation to NF2-VS, and it included the NF2 gene. Using enrichment analysis, we demonstrated that the blue modules were intricately linked to modulations of cell proliferation, migration, adhesion, junction, and actin skeleton. Overall, 356 common DEGs were screened in both datasets, and 33 genes carrying a degree > 15 were chosen as candidate hub genes in the PPI axis. Subsequently, 4 genes, namely, GLUL, CAV1, MYH11, and CCND1 were recognized as real hub genes. In addition, 10 drugs with enrichment scores < -0.7 were identified as drug candidates. Our conclusions offered a novel insight into the potential underlying mechanisms behind NF2-VS. These findings may facilitate the identification of novel therapeutic targets in the future.
Collapse
Affiliation(s)
- Jiasheng Yuan
- Department of Otorhinolaryngology Head and Neck Surgery, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
| | - Yanpeng Fu
- Department of Otorhinolaryngology Head and Neck Surgery, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
| | - Yuehui Liu
- Department of Otorhinolaryngology Head and Neck Surgery, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
| |
Collapse
|
13
|
Zhang X, Zhao Q, Li B. Current and promising therapies based on the pathogenesis of Graves' ophthalmopathy. Front Pharmacol 2023; 14:1217253. [PMID: 38035032 PMCID: PMC10687425 DOI: 10.3389/fphar.2023.1217253] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Accepted: 11/01/2023] [Indexed: 12/02/2023] Open
Abstract
Graves' ophthalmopathy (GO) is a hyperthyroidism-related and immune-mediated disease that poses a significant threat to human health. The pathogenesis of GO primarily involves T cells, B cells, and fibroblasts, suggesting a pivotal role for the thyrotropin-antibody-immunocyte-fibroblast axis. Traditional treatment approaches for Graves' disease (GD) or GO encompass antithyroid drugs (ATDs), radioactive iodine, and beta-blockers. However, despite decades of treatment, there has been limited improvement in the global incidence of GO. In recent years, promising therapies, including immunotherapy, have emerged as leading contenders, demonstrating substantial benefits in clinical trials by inhibiting the activation of immune cells like Th1 and B cells. Furthermore, the impact of diet, gut microbiota, and metabolites on GO regulation has been recognized, suggesting the potential of non-pharmaceutical interventions. Moreover, as traditional Chinese medicine (TCM) components have been extensively explored and have shown effective results in treating autoimmune diseases, remarkable progress has been achieved in managing GO with TCM. In this review, we elucidate the pathogenesis of GO, summarize current and prospective therapies for GO, and delve into the mechanisms and prospects of TCM in its treatment.
Collapse
Affiliation(s)
- Xin Zhang
- Eye School of Chengdu University of Traditional Chinese Medicine, Chengdu, China
- Department of Ophthalmology, Chengdu Integrated TCM and Western Medicine Hospital/Chengdu First People’s Hospital, Chengdu, China
- Key Laboratory of Standardization of Chinese Medicine, Ministry of Education, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Qixiang Zhao
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, State Key Laboratory of Vascular Homeostasis and Remodeling, Peking University, Beijing, China
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu, China
| | - Bei Li
- Department of Ophthalmology, Chengdu Integrated TCM and Western Medicine Hospital/Chengdu First People’s Hospital, Chengdu, China
| |
Collapse
|
14
|
Yenurkar D, Nayak M, Mukherjee S. Recent advances of nanocrystals in cancer theranostics. NANOSCALE ADVANCES 2023; 5:4018-4040. [PMID: 37560418 PMCID: PMC10408581 DOI: 10.1039/d3na00397c] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Accepted: 07/10/2023] [Indexed: 08/11/2023]
Abstract
Emerging cancer cases across the globe and treating them with conventional therapies with multiple limitations have been challenging for decades. Novel drug delivery systems and alternative theranostics are required for efficient detection and treatment. Nanocrystals (NCs) have been established as a significant cancer diagnosis and therapeutic tool due to their ability to deliver poorly water-soluble drugs with sustained release, low toxicity, and flexibility in the route of administration, long-term sustainable drug release, and noncomplicated excretion. This review summarizes several therapies of NCs, including anticancer, immunotherapy, radiotherapy, biotheranostics, targeted therapy, photothermal, and photodynamic. Further, different imaging and diagnostics using NCs are mentioned, including imaging, diagnosis through magnetic resonance imaging (MRI), computed tomography (CT), biosensing, and luminescence. In addition, the limitations and potential solutions of NCs in the field of cancer theranostics are discussed. Preclinical and clinical data depicting the importance of NCs in the spotlight of cancer, its current status, future aspects, and challenges are covered in detail.
Collapse
Affiliation(s)
- Devyani Yenurkar
- School of Biomedical Engineering, Indian Institute of Technology, BHU Varanasi-221005 UP India
| | - Malay Nayak
- School of Biomedical Engineering, Indian Institute of Technology, BHU Varanasi-221005 UP India
| | - Sudip Mukherjee
- School of Biomedical Engineering, Indian Institute of Technology, BHU Varanasi-221005 UP India
| |
Collapse
|
15
|
He JJ, Li QQ, Zhao C, Zhou J, Wu J, Zhang HB, Zhao YQ, Zhang HH, Lei TY, Zhao XY, You Z, Song QB, Xu B. Advancement and Applications of Nanotherapy for Cancer Immune Microenvironment. Curr Med Sci 2023; 43:631-646. [PMID: 37558863 DOI: 10.1007/s11596-023-2763-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Accepted: 04/27/2023] [Indexed: 08/11/2023]
Abstract
Cancer treatment has evolved rapidly due to major advances in tumor immunity research. However, due to the complexity, heterogeneity, and immunosuppressive microenvironment of tumors, the overall efficacy of immunotherapy is only 20%. In recent years, nanoparticles have attracted more attention in the field of cancer immunotherapy because of their remarkable advantages in biocompatibility, precise targeting, and controlled drug delivery. However, the clinical application of nanomedicine also faces many problems concerning biological safety, and the synergistic mechanism of nano-drugs with immunity remains to be elucidated. Our study summarizes the functional characteristics and regulatory mechanisms of nanoparticles in the cancer immune microenvironment and how nanoparticles activate and long-term stimulate innate immunity and adaptive immunity. Finally, the current problems and future development trends regarding the application of nanoparticles are fully discussed and prospected to promote the transformation and application of nanomedicine used in cancer treatment.
Collapse
Affiliation(s)
- Jun-Ju He
- Cancer Center, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Qing-Qing Li
- Cancer Center, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Chen Zhao
- Cancer Center, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Jin Zhou
- Cancer Center, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Jie Wu
- Cancer Center, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Hui-Bo Zhang
- Cancer Center, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Ya-Qi Zhao
- Cancer Center, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Hao-Han Zhang
- Cancer Center, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Tian-Yu Lei
- Cancer Center, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Xin-Yi Zhao
- Cancer Center, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Zuo You
- Department of Traditional Chinese Medicine, Xianfeng County People's Hospital, Enshi, 445000, China
| | - Qi-Bin Song
- Cancer Center, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Bin Xu
- Cancer Center, Renmin Hospital of Wuhan University, Wuhan, 430060, China.
| |
Collapse
|
16
|
Fan S, Han H, Yan Z, Lu Y, He B, Zhang Q. Lipid-based nanoparticles for cancer immunotherapy. MEDICAL REVIEW (2021) 2023; 3:230-269. [PMID: 37789955 PMCID: PMC10542882 DOI: 10.1515/mr-2023-0020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Accepted: 07/07/2023] [Indexed: 10/05/2023]
Abstract
As the fourth most important cancer management strategy except surgery, chemotherapy and radiotherapy, cancer immunotherapy has been confirmed to elicit durable antitumor effects in the clinic by leveraging the patient's own immune system to eradicate the cancer cells. However, the limited population of patients who benefit from the current immunotherapies and the immune related adverse events hinder its development. The immunosuppressive microenvironment is the main cause of the failure, which leads to cancer immune evasion and immunity cycle blockade. Encouragingly, nanotechnology has been engineered to enhance the efficacy and reduce off-target toxicity of their therapeutic cargos by spatiotemporally controlling the biodistribution and release kinetics. Among them, lipid-based nanoparticles are the first nanomedicines to make clinical translation, which are now established platforms for diverse areas. In this perspective, we discuss the available lipid-based nanoparticles in research and market here, then describe their application in cancer immunotherapy, with special emphasis on the T cells-activated and macrophages-targeted delivery system. Through perpetuating each step of cancer immunity cycle, lipid-based nanoparticles can reduce immunosuppression and promote drug delivery to trigger robust antitumor response.
Collapse
Affiliation(s)
- Shumin Fan
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery Systems, State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, China
| | - Huize Han
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery Systems, State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, China
| | - Zhicheng Yan
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery Systems, State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, China
| | - Yao Lu
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery Systems, State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, China
| | - Bing He
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery Systems, State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, China
- Ningbo Institute of Marine Medicine, Peking University, Ningbo, Zhejiang Province, China
| | - Qiang Zhang
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery Systems, State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, China
- Ningbo Institute of Marine Medicine, Peking University, Ningbo, Zhejiang Province, China
| |
Collapse
|
17
|
Fathi HA, Yousry C, Elsabahy M, El-Badry M, El Gazayerly ON. Effective loading of incompatible drugs into nanosized vesicles: a strategy to allow concurrent administration of furosemide and midazolam in simulated clinical settings. Int J Pharm 2023; 636:122852. [PMID: 36934884 DOI: 10.1016/j.ijpharm.2023.122852] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 01/25/2023] [Accepted: 03/12/2023] [Indexed: 03/19/2023]
Abstract
The current study aims to assess the use of nanocarriers to limit drug incompatibilities in clinical settings, and thus eliminating serious clinical consequences (e.g., catheter obstruction and embolism), and enhancing in vivo bioavailability and efficacy. As a proof-of-concept, the impact of loading well-documented physically incompatible drugs (i.e., furosemide and midazolam) into nanosized vesicles on in vitro stability and in vivo bioavailability of the two drugs was investigated. Furosemide and midazolam were loaded into nanosized spherical vesicles at high entrapment efficiency (ca. 62-69%). The drug-loaded vesicles demonstrated a sustained drug release patterns, high physical stability and negligible hemolytic activity. Physical incompatibility was assessed by exploiting microscopic technique coupled with image processing and analysis, dynamic light scattering and laser Doppler anemometry. Incorporation of drugs separately inside the nanosized vesicles dramatically decreased size and number of the precipitated particles. In vivo, the niosomal drug mixture demonstrated a significant improvement in pharmacokinetic profiles of furosemide and midazolam compared to the mixed free drug solutions, as evidenced by their longer circulation half-lives and higher area under the plasma-concentration time curves of both drugs. Nanocarriers could provide an auspicious strategy for circumventing drug incompatibilities, thus reducing adverse reactions, hospitalization period and improving therapeutic outcomes.
Collapse
Affiliation(s)
- Heba A Fathi
- Assiut International Center of Nanomedicine, Al-Rajhy Liver Hospital, Assiut University, Assiut 71515, Egypt
| | - Carol Yousry
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Cairo University, Cairo 11562, Egypt
| | - Mahmoud Elsabahy
- School of Biotechnology and BUC Research Center, Badr University in Cairo, Badr City, Cairo 11829, Egypt; Department of Chemistry, Texas A&M University, College Station, TX 77842, USA; Department of Pharmaceutics, Faculty of Pharmacy, Assiut University, Assiut 71515, Egypt.
| | - Mahmoud El-Badry
- Assiut International Center of Nanomedicine, Al-Rajhy Liver Hospital, Assiut University, Assiut 71515, Egypt; Department of Pharmaceutics, Faculty of Pharmacy, Assiut University, Assiut 71515, Egypt
| | - Omaima N El Gazayerly
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Cairo University, Cairo 11562, Egypt
| |
Collapse
|
18
|
Breast cancer tumor microenvironment affects Treg/IL-17-producing Treg/Th17 cell axis: Molecular and therapeutic perspectives. Mol Ther Oncolytics 2023; 28:132-157. [PMID: 36816749 PMCID: PMC9922830 DOI: 10.1016/j.omto.2023.01.001] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
The tumor microenvironment (TME) comprises a variety of immune cells, among which T cells exert a prominent axial role in tumor development or anti-tumor responses in patients with breast cancer (BC). High or low levels of anti-inflammatory cytokines, such as transforming growth factor β, in the absence or presence of proinflammatory cytokines, such as interleukin-6 (IL-6), delineate the fate of T cells toward either regulatory T (Treg) or T helper 17 (Th17) cells, respectively. The transitional state of RORγt+Foxp3+ Treg (IL-17-producing Treg) resides in the middle of this reciprocal polarization, which is known as Treg/IL-17-producing Treg/Th17 cell axis. TME secretome, including microRNAs, cytokines, and extracellular vesicles, can significantly affect this axis. Furthermore, immune checkpoint inhibitors may be used to reconstruct immune cells; however, some of these novel therapies may favor tumor development. Therefore, understanding secretory and cell-associated factors involved in their differentiation or polarization and functions may be targeted for BC management. This review discusses microRNAs, cytokines, and extracellular vesicles (as secretome), as well as transcription factors and immune checkpoints (as cell-associated factors), which influence the Treg/IL-17-producing Treg/Th17 cell axis in BC. Furthermore, approved or ongoing clinical trials related to the modulation of this axis in the TME of BC are described to broaden new horizons of promising therapeutic approaches.
Collapse
|
19
|
Potential Nanotechnology-Based Therapeutics to Prevent Cancer Progression through TME Cell-Driven Populations. Pharmaceutics 2022; 15:pharmaceutics15010112. [PMID: 36678741 PMCID: PMC9864587 DOI: 10.3390/pharmaceutics15010112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 12/20/2022] [Accepted: 12/23/2022] [Indexed: 12/30/2022] Open
Abstract
Triple-negative breast cancer (TNBC) is the most aggressive subtype of breast cancer with a high risk of metastasis and therapeutic resistance. These issues are closely linked to the tumour microenvironment (TME) surrounding the tumour tissue. The association between residing TME components with tumour progression, survival, and metastasis has been well elucidated. Focusing on cancer cells alone is no longer considered a viable approach to therapy; thus, there is a high demand for TME targeting. The benefit of using nanoparticles is their preferential tumour accumulation and their ability to target TME components. Several nano-based platforms have been investigated to mitigate microenvironment-induced angiogenesis, therapeutic resistance, and tumour progression. These have been achieved by targeting mesenchymal originating cells (e.g., cancer-associated fibroblasts, adipocytes, and stem cells), haematological cells (e.g., tumour-associated macrophages, dendritic cells, and myeloid-derived suppressor cells), and the extracellular matrix within the TME that displays functional and architectural support. This review highlights the importance of nanotechnology-based therapeutics as a promising approach to target the TME and improve treatment outcomes for TNBC patients, which can lead to enhanced survival and quality of life. The role of different nanotherapeutics has been explored in the established TME cell-driven populations.
Collapse
|
20
|
Ren M, Zheng X, Gao H, Jiang A, Yao Y, He W. Nanomedicines Targeting Metabolism in the Tumor Microenvironment. Front Bioeng Biotechnol 2022; 10:943906. [PMID: 35992338 PMCID: PMC9388847 DOI: 10.3389/fbioe.2022.943906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2022] [Accepted: 06/01/2022] [Indexed: 12/02/2022] Open
Abstract
Cancer cells reprogram their metabolism to meet their growing demand for bioenergy and biosynthesis. The metabolic profile of cancer cells usually includes dysregulation of main nutritional metabolic pathways and the production of metabolites, which leads to a tumor microenvironment (TME) having the characteristics of acidity, hypoxic, and/or nutrient depletion. Therapies targeting metabolism have become an active and revolutionary research topic for anti-cancer drug development. The differential metabolic vulnerabilities between tumor cells and other cells within TME provide nanotechnology a therapeutic window of anti-cancer. In this review, we present the metabolic characteristics of intrinsic cancer cells and TME and summarize representative strategies of nanoparticles in metabolism-regulating anti-cancer therapy. Then, we put forward the challenges and opportunities of using nanoparticles in this emerging field.
Collapse
Affiliation(s)
- Mengdi Ren
- Department of Oncology, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Xiaoqiang Zheng
- Institute for Stem Cell and Regenerative Medicine, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Huan Gao
- Department of Oncology, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Aimin Jiang
- Department of Oncology, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Yu Yao
- Department of Oncology, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
- *Correspondence: Yu Yao, ; Wangxiao He,
| | - Wangxiao He
- Department of Talent Highland, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
- *Correspondence: Yu Yao, ; Wangxiao He,
| |
Collapse
|
21
|
Kutoka PT, Seidu TA, Baye V, Khamis AM, Omonova CTQ, Wang B. Current nano-strategies to target tumor microenvironment (TME) to improve anti-tumor efficiency. OPENNANO 2022. [DOI: 10.1016/j.onano.2022.100041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
22
|
Navarro-Ocón A, Blaya-Cánovas JL, López-Tejada A, Blancas I, Sánchez-Martín RM, Garrido MJ, Griñán-Lisón C, Calahorra J, Cara FE, Ruiz-Cabello F, Marchal JA, Aptsiauri N, Granados-Principal S. Nanomedicine as a Promising Tool to Overcome Immune Escape in Breast Cancer. Pharmaceutics 2022; 14:505. [PMID: 35335881 PMCID: PMC8950730 DOI: 10.3390/pharmaceutics14030505] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 02/15/2022] [Accepted: 02/23/2022] [Indexed: 12/13/2022] Open
Abstract
Breast cancer is the most common type of malignancy and leading cause of cancer death among women worldwide. Despite the current revolutionary advances in the field of cancer immunotherapy, clinical response in breast cancer is frequently below expectations, in part due to various mechanisms of cancer immune escape that produce tumor variants that are resistant to treatment. Thus, a further understanding of the molecular events underlying immune evasion in breast cancer may guarantee a significant improvement in the clinical success of immunotherapy. Furthermore, nanomedicine provides a promising opportunity to enhance the efficacy of cancer immunotherapy by improving the delivery, retention and release of immunostimulatory agents in targeted cells and tumor tissues. Hence, it can be used to overcome tumor immune escape and increase tumor rejection in numerous malignancies, including breast cancer. In this review, we summarize the current status and emerging trends in nanomedicine-based strategies targeting cancer immune evasion and modulating the immunosuppressive tumor microenvironment, including the inhibition of immunosuppressive cells in the tumor area, the activation of dendritic cells and the stimulation of the specific antitumor T-cell response.
Collapse
Affiliation(s)
- Alba Navarro-Ocón
- GENYO, Centre for Genomics and Oncological Research, Pfizer/University of Granada/Andalusian Regional Government, 18016 Granada, Spain; (A.N.-O.); (J.L.B.-C.); (A.L.-T.); (R.M.S.-M.); (C.G.-L.); (J.C.); (F.E.C.)
- Instituto de Investigación Biosanitaria (ibs.GRANADA), 18012 Granada, Spain; (I.B.); (F.R.-C.); (J.A.M.)
| | - Jose L. Blaya-Cánovas
- GENYO, Centre for Genomics and Oncological Research, Pfizer/University of Granada/Andalusian Regional Government, 18016 Granada, Spain; (A.N.-O.); (J.L.B.-C.); (A.L.-T.); (R.M.S.-M.); (C.G.-L.); (J.C.); (F.E.C.)
- Instituto de Investigación Biosanitaria (ibs.GRANADA), 18012 Granada, Spain; (I.B.); (F.R.-C.); (J.A.M.)
- UGC de Oncología Médica, Complejo Hospitalario de Jaen, 23007 Jaen, Spain
| | - Araceli López-Tejada
- GENYO, Centre for Genomics and Oncological Research, Pfizer/University of Granada/Andalusian Regional Government, 18016 Granada, Spain; (A.N.-O.); (J.L.B.-C.); (A.L.-T.); (R.M.S.-M.); (C.G.-L.); (J.C.); (F.E.C.)
- Instituto de Investigación Biosanitaria (ibs.GRANADA), 18012 Granada, Spain; (I.B.); (F.R.-C.); (J.A.M.)
- Department of Biochemistry and Molecular Biology 2, School of Pharmacy, University of Granada, 18011 Granada, Spain
| | - Isabel Blancas
- Instituto de Investigación Biosanitaria (ibs.GRANADA), 18012 Granada, Spain; (I.B.); (F.R.-C.); (J.A.M.)
- UGC de Oncología, Hospital Universitario “San Cecilio”, 18016 Granada, Spain
| | - Rosario M. Sánchez-Martín
- GENYO, Centre for Genomics and Oncological Research, Pfizer/University of Granada/Andalusian Regional Government, 18016 Granada, Spain; (A.N.-O.); (J.L.B.-C.); (A.L.-T.); (R.M.S.-M.); (C.G.-L.); (J.C.); (F.E.C.)
- Instituto de Investigación Biosanitaria (ibs.GRANADA), 18012 Granada, Spain; (I.B.); (F.R.-C.); (J.A.M.)
| | - María J. Garrido
- Department of Pharmaceutical Technology and Chemistry, School of Pharmacy & Nutrition, Navarra Institute for Health Research (IdisNA), University of Navarra, 31080 Pamplona, Spain;
| | - Carmen Griñán-Lisón
- GENYO, Centre for Genomics and Oncological Research, Pfizer/University of Granada/Andalusian Regional Government, 18016 Granada, Spain; (A.N.-O.); (J.L.B.-C.); (A.L.-T.); (R.M.S.-M.); (C.G.-L.); (J.C.); (F.E.C.)
- Instituto de Investigación Biosanitaria (ibs.GRANADA), 18012 Granada, Spain; (I.B.); (F.R.-C.); (J.A.M.)
- UGC de Oncología Médica, Complejo Hospitalario de Jaen, 23007 Jaen, Spain
| | - Jesús Calahorra
- GENYO, Centre for Genomics and Oncological Research, Pfizer/University of Granada/Andalusian Regional Government, 18016 Granada, Spain; (A.N.-O.); (J.L.B.-C.); (A.L.-T.); (R.M.S.-M.); (C.G.-L.); (J.C.); (F.E.C.)
- Instituto de Investigación Biosanitaria (ibs.GRANADA), 18012 Granada, Spain; (I.B.); (F.R.-C.); (J.A.M.)
- UGC de Oncología Médica, Complejo Hospitalario de Jaen, 23007 Jaen, Spain
| | - Francisca E. Cara
- GENYO, Centre for Genomics and Oncological Research, Pfizer/University of Granada/Andalusian Regional Government, 18016 Granada, Spain; (A.N.-O.); (J.L.B.-C.); (A.L.-T.); (R.M.S.-M.); (C.G.-L.); (J.C.); (F.E.C.)
- Instituto de Investigación Biosanitaria (ibs.GRANADA), 18012 Granada, Spain; (I.B.); (F.R.-C.); (J.A.M.)
| | - Francisco Ruiz-Cabello
- Instituto de Investigación Biosanitaria (ibs.GRANADA), 18012 Granada, Spain; (I.B.); (F.R.-C.); (J.A.M.)
- Department of Biochemistry, Molecular Biology 3 and Immunology, School of Medicine, University of Granada, 18071 Granada, Spain
| | - Juan A. Marchal
- Instituto de Investigación Biosanitaria (ibs.GRANADA), 18012 Granada, Spain; (I.B.); (F.R.-C.); (J.A.M.)
- Department of Human Anatomy and Embryology, School of Medicine, University of Granada, 18016 Granada, Spain
| | - Natalia Aptsiauri
- Instituto de Investigación Biosanitaria (ibs.GRANADA), 18012 Granada, Spain; (I.B.); (F.R.-C.); (J.A.M.)
- Department of Biochemistry, Molecular Biology 3 and Immunology, School of Medicine, University of Granada, 18071 Granada, Spain
| | - Sergio Granados-Principal
- GENYO, Centre for Genomics and Oncological Research, Pfizer/University of Granada/Andalusian Regional Government, 18016 Granada, Spain; (A.N.-O.); (J.L.B.-C.); (A.L.-T.); (R.M.S.-M.); (C.G.-L.); (J.C.); (F.E.C.)
- Instituto de Investigación Biosanitaria (ibs.GRANADA), 18012 Granada, Spain; (I.B.); (F.R.-C.); (J.A.M.)
- Department of Biochemistry and Molecular Biology 2, School of Pharmacy, University of Granada, 18011 Granada, Spain
| |
Collapse
|
23
|
Milan A, Mioc A, Prodea A, Mioc M, Buzatu R, Ghiulai R, Racoviceanu R, Caruntu F, Şoica C. The Optimized Delivery of Triterpenes by Liposomal Nanoformulations: Overcoming the Challenges. Int J Mol Sci 2022; 23:1140. [PMID: 35163063 PMCID: PMC8835305 DOI: 10.3390/ijms23031140] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 01/13/2022] [Accepted: 01/18/2022] [Indexed: 02/06/2023] Open
Abstract
The last decade has witnessed a sustained increase in the research development of modern-day chemo-therapeutics, especially for those used for high mortality rate pathologies. However, the therapeutic landscape is continuously changing as a result of the currently existing toxic side effects induced by a substantial range of drug classes. One growing research direction driven to mitigate such inconveniences has converged towards the study of natural molecules for their promising therapeutic potential. Triterpenes are one such class of compounds, intensively investigated for their therapeutic versatility. Although the pharmacological effects reported for several representatives of this class has come as a well-deserved encouragement, the pharmacokinetic profile of these molecules has turned out to be an unwelcomed disappointment. Nevertheless, the light at the end of the tunnel arrived with the development of nanotechnology, more specifically, the use of liposomes as drug delivery systems. Liposomes are easily synthesizable phospholipid-based vesicles, with highly tunable surfaces, that have the ability to transport both hydrophilic and lipophilic structures ensuring superior drug bioavailability at the action site as well as an increased selectivity. This study aims to report the results related to the development of different types of liposomes, used as targeted vectors for the delivery of various triterpenes of high pharmacological interest.
Collapse
Affiliation(s)
- Andreea Milan
- Faculty of Pharmacy, “Victor Babeş” University of Medicine and Pharmacy, 2 E. Murgu Sq., 300041 Timişoara, Romania; (A.M.); (A.M.); (A.P.); (R.G.); (R.R.); (C.Ş.)
- Research Centre for Pharmaco-Toxicological Evaluation, “Victor Babes” University of Medicine and Pharmacy, Eftimie Murgu Sq., No. 2, 300041 Timişoara, Romania
| | - Alexandra Mioc
- Faculty of Pharmacy, “Victor Babeş” University of Medicine and Pharmacy, 2 E. Murgu Sq., 300041 Timişoara, Romania; (A.M.); (A.M.); (A.P.); (R.G.); (R.R.); (C.Ş.)
- Research Centre for Pharmaco-Toxicological Evaluation, “Victor Babes” University of Medicine and Pharmacy, Eftimie Murgu Sq., No. 2, 300041 Timişoara, Romania
| | - Alexandra Prodea
- Faculty of Pharmacy, “Victor Babeş” University of Medicine and Pharmacy, 2 E. Murgu Sq., 300041 Timişoara, Romania; (A.M.); (A.M.); (A.P.); (R.G.); (R.R.); (C.Ş.)
- Research Centre for Pharmaco-Toxicological Evaluation, “Victor Babes” University of Medicine and Pharmacy, Eftimie Murgu Sq., No. 2, 300041 Timişoara, Romania
| | - Marius Mioc
- Faculty of Pharmacy, “Victor Babeş” University of Medicine and Pharmacy, 2 E. Murgu Sq., 300041 Timişoara, Romania; (A.M.); (A.M.); (A.P.); (R.G.); (R.R.); (C.Ş.)
- Research Centre for Pharmaco-Toxicological Evaluation, “Victor Babes” University of Medicine and Pharmacy, Eftimie Murgu Sq., No. 2, 300041 Timişoara, Romania
| | - Roxana Buzatu
- Faculty of Dental Medicine, “Victor Babeş” University of Medicine and Pharmacy Timişoara, 2 Eftimie Murgu Street, 300041 Timişoara, Romania
| | - Roxana Ghiulai
- Faculty of Pharmacy, “Victor Babeş” University of Medicine and Pharmacy, 2 E. Murgu Sq., 300041 Timişoara, Romania; (A.M.); (A.M.); (A.P.); (R.G.); (R.R.); (C.Ş.)
- Research Centre for Pharmaco-Toxicological Evaluation, “Victor Babes” University of Medicine and Pharmacy, Eftimie Murgu Sq., No. 2, 300041 Timişoara, Romania
| | - Roxana Racoviceanu
- Faculty of Pharmacy, “Victor Babeş” University of Medicine and Pharmacy, 2 E. Murgu Sq., 300041 Timişoara, Romania; (A.M.); (A.M.); (A.P.); (R.G.); (R.R.); (C.Ş.)
- Research Centre for Pharmaco-Toxicological Evaluation, “Victor Babes” University of Medicine and Pharmacy, Eftimie Murgu Sq., No. 2, 300041 Timişoara, Romania
| | - Florina Caruntu
- Faculty of Medicine, “Victor Babeş” University of Medicine and Pharmacy Timişoara, 2 Eftimie Murgu Street, 300041 Timişoara, Romania;
| | - Codruţa Şoica
- Faculty of Pharmacy, “Victor Babeş” University of Medicine and Pharmacy, 2 E. Murgu Sq., 300041 Timişoara, Romania; (A.M.); (A.M.); (A.P.); (R.G.); (R.R.); (C.Ş.)
- Research Centre for Pharmaco-Toxicological Evaluation, “Victor Babes” University of Medicine and Pharmacy, Eftimie Murgu Sq., No. 2, 300041 Timişoara, Romania
| |
Collapse
|
24
|
Miatmoko A, Mianing EA, Sari R, Hendradi E. Nanoparticles use for Delivering Ursolic Acid in Cancer Therapy: A Scoping Review. Front Pharmacol 2022; 12:787226. [PMID: 35002719 PMCID: PMC8740088 DOI: 10.3389/fphar.2021.787226] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 11/29/2021] [Indexed: 12/12/2022] Open
Abstract
Ursolic acid is a natural pentacyclic triterpenoid that exerts a potent anticancer effect. Furthermore, it is classified as a BCS class IV compound possessing low permeability and water solubility, consequently demonstrating limited bioavailability in addition to low therapeutic effectiveness. Nanoparticles are developed to modify the physical characteristics of drug and can often be produced in the range of 30–200 nm, providing highly effective cancer therapy due to the Enhanced Permeation and Retention (EPR) Effect. This study aims to provide a review of the efficacy and safety of various types of Ursolic Acid-loading nanoparticles within the setting of preclinical and clinical anticancer studies. This literature study used scoping review method, where the extracted data must comply with the journal inclusion criteria of within years of 2010–2020. The identification stage produced 237 suitable articles. Duplicate screening was then conducted followed by the initial selection of 18 articles that had been reviewed and extracted for data analysis. Based on this review, the use of nanoparticles can be seen to increase the anticancer efficacy of Ursolic Acid in terms of several parameters including pharmacokinetic data, survival rates and inhibition rates, as well as the absence of serious toxicity in preclinical and clinical trials in terms of several parameters including body weight, blood clinical chemistry, and organ histipathology. Based on this review, the use of nanoparticles has been able to increase the anticancer efficacy of Ursolic Acid, as well as show the absence of serious toxicity in preclinical and clinical trials. Evenmore, the liposome carrier provides development data that has reached the clinical trial phase I. The use of nanoparticle provides high potential for Ursolic Acid delivery in cancer therapy.
Collapse
Affiliation(s)
- Andang Miatmoko
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Universitas Airlangga, Surabaya, Indonesia.,Stem Cell Research and Development Center, Universitas Airlangga, Surabaya, Indonesia
| | - Ester Adelia Mianing
- Study Program of Pharmacy, Faculty of Pharmacy, Universitas Airlangga, Surabaya, Indonesia
| | - Retno Sari
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Universitas Airlangga, Surabaya, Indonesia
| | - Esti Hendradi
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Universitas Airlangga, Surabaya, Indonesia
| |
Collapse
|
25
|
Cao X, He Q. Ursolic acid inhibits proliferation, migration and invasion of human papillary thyroid carcinoma cells via CXCL12/CXCR4/CXCR7 axis through cancer-associated fibroblasts. Hum Exp Toxicol 2022; 41:9603271221111333. [PMID: 35786050 DOI: 10.1177/09603271221111333] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
As a pentacyclic triterpenoid compound, Ursolic acid (UA) broads range of biological effects. CXCL12 is a ligand for CXCR4 and CXCR7 proteins on thyroid cancer cells. Here we examined the effects of UA on the proliferation, migration and invasion of papillary thyroid carcinoma (PTCs) in a dose-manner. In addition, UA can reduce the expression levels of CXCR4 and CXCR7 in PTCs. In addition to this direct anticancer pathway, studies have shown that UA can play an anticancer role by affecting the secretion of CXCL12 in cancer-associated fibroblasts (CAFs). After treated with UA, normal fibroblasts and CAFs culture medium (CM) showed differential CXCL12 expression levels. We prepared fibroblast conditioned medium according to the intervention of UA, then cultured TPC-1 and B-CPAP cells with differential CM, and detected significant differences in the proliferation, migration and invasion of cancer cells. Our findings uncovered an indirect anticancer mechanism of UA. This cancer chemopreventive properties is expected to make UA a clinically useful chemopreventive agent.
Collapse
Affiliation(s)
- Xianjiao Cao
- Department of Thyroid and Breast Surgery, The 960th Hospital of the PLA Joint Logistics Support Force, Jinan, China
| | - Qingqing He
- Department of Thyroid and Breast Surgery, The 960th Hospital of the PLA Joint Logistics Support Force, Jinan, China
| |
Collapse
|
26
|
Fu D, Ni Z, Wu K, Cheng P, Ji X, Li G, Shang X. A novel redox-responsive ursolic acid polymeric prodrug delivery system for osteosarcoma therapy. Drug Deliv 2021; 28:195-205. [PMID: 33438472 PMCID: PMC7808744 DOI: 10.1080/10717544.2020.1870583] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Revised: 12/25/2020] [Accepted: 12/28/2020] [Indexed: 12/29/2022] Open
Abstract
Ursolic acid (UA), found widely in nature, exerts effective anti-tumoral activity against various malignant tumors. However, the low water solubility and poor bioavailability of UA have greatly hindered its translation to the clinic. To overcome these drawbacks, a simple redox-sensitive UA polymeric prodrug was synthesized by conjugating UA to polyethylene glycol using a disulfide bond. This formulation can self-assemble into micelles (U-SS-M) in aqueous solutions to produce small size micelles (∼62.5 nm in diameter) with high drug loading efficiency (∼16.7%) that exhibit pH and reduction dual-sensitivity. The cell and animal studies performed using the osteosarcoma MG-63 cell line and MG-63 cancer xenograft mice as the model systems consistently confirmed that the U-SS-M formulation could significantly prolong the circulation in blood and favor accumulation in tumor tissue. Targeted accumulation allows the U-SS-M to be effectively internalized by cancer cells, where the rapid release of UA is favored by a glutathione-rich and acidic intracellular environment, and ultimately achieves potent antitumor efficacy.
Collapse
Affiliation(s)
- Daijie Fu
- Department of Orthopedics, The First Affiliated Hospital of University of Science and Technology of China, Hefei, China
| | - Zhe Ni
- Department of Orthopedics, The First Affiliated Hospital of University of Science and Technology of China, Hefei, China
| | - Kerong Wu
- Department of Orthopedics, The First Affiliated Hospital of University of Science and Technology of China, Hefei, China
| | - Peng Cheng
- Department of Orthopedics, The First Affiliated Hospital of University of Science and Technology of China, Hefei, China
| | - Xiaofeng Ji
- Department of Orthopedics, The First Affiliated Hospital of University of Science and Technology of China, Hefei, China
| | - Guoyuan Li
- Department of Orthopedics, The First Affiliated Hospital of University of Science and Technology of China, Hefei, China
| | - Xifu Shang
- Department of Orthopedics, The First Affiliated Hospital of University of Science and Technology of China, Hefei, China
| |
Collapse
|
27
|
Schito AM, Caviglia D, Piatti G, Zorzoli A, Marimpietri D, Zuccari G, Schito GC, Alfei S. Efficacy of Ursolic Acid-Enriched Water-Soluble and Not Cytotoxic Nanoparticles against Enterococci. Pharmaceutics 2021; 13:1976. [PMID: 34834390 PMCID: PMC8625572 DOI: 10.3390/pharmaceutics13111976] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 11/17/2021] [Accepted: 11/18/2021] [Indexed: 11/17/2022] Open
Abstract
Ursolic acid (UA), a pentacyclic triterpenoid acid found in many medicinal plants and aromas, is known for its antibacterial effects against multi-drug-resistant (MDR) Gram-positive bacteria, which seriously threaten human health. Unfortunately, UA water-insolubility, low bioavailability, and systemic toxicity limit the possibilities of its application in vivo. Consequently, the beneficial activities of UA observed in vitro lose their potential clinical relevance unless water-soluble, not cytotoxic UA formulations are developed. With a nano-technologic approach, we have recently prepared water-soluble UA-loaded dendrimer nanoparticles (UA-G4K NPs) non-cytotoxic on HeLa cells, with promising physicochemical properties for their clinical applications. In this work, with the aim of developing a new antibacterial agent based on UA, UA-G4K has been tested on different strains of the Enterococcus genus, including marine isolates, toward which UA-G4K has shown minimum inhibitory concentrations (MICs) very low (0.5-4.3 µM), regardless of their resistance to antibiotics. Time-kill experiments, in addition to confirming the previously reported bactericidal activity of UA against E. faecium, also established it for UA-G4K. Furthermore, cytotoxicity experiments on human keratinocytes revealed that nanomanipulation of UA significantly reduced the cytotoxicity of UA, providing UA-G4K NPs with very high LD50 (96.4 µM) and selectivity indices, which were in the range 22.4-192.8, depending on the enterococcal strain tested. Due to its physicochemical and biological properties, UA-G4K could be seriously evaluated as a novel oral-administrable therapeutic option for tackling difficult-to-treat enterococcal infections.
Collapse
Affiliation(s)
- Anna Maria Schito
- Department of Surgical Sciences and Integrated Diagnostics (DISC), University of Genoa, Viale Benedetto XV, 6, 16132 Genoa, Italy; (A.M.S.); (D.C.); (G.P.); (G.C.S.)
| | - Debora Caviglia
- Department of Surgical Sciences and Integrated Diagnostics (DISC), University of Genoa, Viale Benedetto XV, 6, 16132 Genoa, Italy; (A.M.S.); (D.C.); (G.P.); (G.C.S.)
| | - Gabriella Piatti
- Department of Surgical Sciences and Integrated Diagnostics (DISC), University of Genoa, Viale Benedetto XV, 6, 16132 Genoa, Italy; (A.M.S.); (D.C.); (G.P.); (G.C.S.)
| | - Alessia Zorzoli
- Stem Cell Laboratory and Cell Therapy Center, IRCCS Istituto Giannina Gaslini, via Gerolamo Gaslini 5, 16147 Genoa, Italy; (A.Z.); (D.M.)
| | - Danilo Marimpietri
- Stem Cell Laboratory and Cell Therapy Center, IRCCS Istituto Giannina Gaslini, via Gerolamo Gaslini 5, 16147 Genoa, Italy; (A.Z.); (D.M.)
| | - Guendalina Zuccari
- Department of Pharmacy, University of Genoa, Viale Cembrano 4, 16148 Genoa, Italy;
| | - Gian Carlo Schito
- Department of Surgical Sciences and Integrated Diagnostics (DISC), University of Genoa, Viale Benedetto XV, 6, 16132 Genoa, Italy; (A.M.S.); (D.C.); (G.P.); (G.C.S.)
| | - Silvana Alfei
- Department of Pharmacy, University of Genoa, Viale Cembrano 4, 16148 Genoa, Italy;
| |
Collapse
|
28
|
Wang S, Chang X, Zhang J, Li J, Wang N, Yang B, Pan B, Zheng Y, Wang X, Ou H, Wang Z. Ursolic Acid Inhibits Breast Cancer Metastasis by Suppressing Glycolytic Metabolism via Activating SP1/Caveolin-1 Signaling. Front Oncol 2021; 11:745584. [PMID: 34568078 PMCID: PMC8457520 DOI: 10.3389/fonc.2021.745584] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Accepted: 08/23/2021] [Indexed: 01/29/2023] Open
Abstract
Breast cancer remains the most common malignancy and the leading causality of cancer-associated mortality among women worldwide. With proven efficacy, Oldenlandia diffusa has been extensively applied in breast cancer treatment in Traditional Chinese Medicine (TCM) for thousands of years. However, the bioactive compounds of Oldenlandia diffusa accounting for its anti-breast cancer activity and the underlying biological mechanisms remain to be uncovered. Herein, bioactivity-guided fractionation suggested ursolic acid as the strongest anti-breast cancer compound in Oldenlandia diffusa. Ursolic acid treatment dramatically suppressed the proliferation and promoted mitochondrial-mediated apoptosis in breast cancer cells while brought little cytotoxicities in nonmalignant mammary epithelial cells in vitro. Meanwhile, ursolic acid dramatically impaired both the glycolytic metabolism and mitochondrial respiration function of breast cancer cells. Further investigations demonstrated that ursolic acid may impair the glycolytic metabolism of breast cancer cells by activating Caveolin-1 (Cav-1) signaling, as Cav-1 knockdown could partially abrogate the suppressive effect of ursolic acid on that. Mechanistically, ursolic acid could activate SP1-mediated CAV1 transcription by promoting SP1 expression as well as its binding with CAV1 promoter region. More meaningfully, ursolic acid administration could dramatically suppress the growth and metastasis of breast cancer in both the zebrafish and mouse xenotransplantation models of breast cancer in vivo without any detectable hepatotoxicity, nephrotoxicity or hematotoxicity. This study not only provides preclinical evidence supporting the application of ursolic acid as a promising candidate drug for breast cancer treatment but also sheds novel light on Cav-1 as a druggable target for glycolytic modulation of breast cancer.
Collapse
Affiliation(s)
- Shengqi Wang
- Section of Science and Technology, Guangxi International Zhuang Medicine Hospital, Guangxi University of Chinese Medicine, Nanning, China.,Guangdong Provincial Key Laboratory of Clinical Research on Traditional Chinese Medicine Syndrome, Guangdong Provincial Academy of Chinese Medical Sciences, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China.,Department of Mammary Disease, Panyu Hospital of Chinese Medicine, Guangzhou, China.,The Research Center of Integrative Cancer Medicine, Discipline of Integrated Chinese and Western Medicine, The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, China.,Guangdong-Hong Kong-Macau Joint Lab on Chinese Medicine and Immune Disease Research, Guangzhou University of Chinese Medicine, Guangzhou, China.,State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Xu Chang
- Department of Mammary Disease, Panyu Hospital of Chinese Medicine, Guangzhou, China
| | - Juping Zhang
- Guangdong Provincial Key Laboratory of Clinical Research on Traditional Chinese Medicine Syndrome, Guangdong Provincial Academy of Chinese Medical Sciences, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China.,The Research Center of Integrative Cancer Medicine, Discipline of Integrated Chinese and Western Medicine, The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, China.,Guangdong-Hong Kong-Macau Joint Lab on Chinese Medicine and Immune Disease Research, Guangzhou University of Chinese Medicine, Guangzhou, China.,State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Jing Li
- Guangdong Provincial Key Laboratory of Clinical Research on Traditional Chinese Medicine Syndrome, Guangdong Provincial Academy of Chinese Medical Sciences, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China.,The Research Center of Integrative Cancer Medicine, Discipline of Integrated Chinese and Western Medicine, The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, China.,Guangdong-Hong Kong-Macau Joint Lab on Chinese Medicine and Immune Disease Research, Guangzhou University of Chinese Medicine, Guangzhou, China.,State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Neng Wang
- Guangdong Provincial Key Laboratory of Clinical Research on Traditional Chinese Medicine Syndrome, Guangdong Provincial Academy of Chinese Medical Sciences, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China.,The Research Center of Integrative Cancer Medicine, Discipline of Integrated Chinese and Western Medicine, The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, China.,Guangdong-Hong Kong-Macau Joint Lab on Chinese Medicine and Immune Disease Research, Guangzhou University of Chinese Medicine, Guangzhou, China.,State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China.,The Research Center for Integrative Medicine, School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Bowen Yang
- Guangdong Provincial Key Laboratory of Clinical Research on Traditional Chinese Medicine Syndrome, Guangdong Provincial Academy of Chinese Medical Sciences, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China.,The Research Center of Integrative Cancer Medicine, Discipline of Integrated Chinese and Western Medicine, The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, China.,Guangdong-Hong Kong-Macau Joint Lab on Chinese Medicine and Immune Disease Research, Guangzhou University of Chinese Medicine, Guangzhou, China.,State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Bo Pan
- Guangdong Provincial Key Laboratory of Clinical Research on Traditional Chinese Medicine Syndrome, Guangdong Provincial Academy of Chinese Medical Sciences, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China.,The Research Center of Integrative Cancer Medicine, Discipline of Integrated Chinese and Western Medicine, The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, China.,Guangdong-Hong Kong-Macau Joint Lab on Chinese Medicine and Immune Disease Research, Guangzhou University of Chinese Medicine, Guangzhou, China.,State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yifeng Zheng
- Guangdong Provincial Key Laboratory of Clinical Research on Traditional Chinese Medicine Syndrome, Guangdong Provincial Academy of Chinese Medical Sciences, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China.,The Research Center of Integrative Cancer Medicine, Discipline of Integrated Chinese and Western Medicine, The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, China.,Guangdong-Hong Kong-Macau Joint Lab on Chinese Medicine and Immune Disease Research, Guangzhou University of Chinese Medicine, Guangzhou, China.,State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Xuan Wang
- Guangdong Provincial Key Laboratory of Clinical Research on Traditional Chinese Medicine Syndrome, Guangdong Provincial Academy of Chinese Medical Sciences, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China.,The Research Center of Integrative Cancer Medicine, Discipline of Integrated Chinese and Western Medicine, The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, China.,Guangdong-Hong Kong-Macau Joint Lab on Chinese Medicine and Immune Disease Research, Guangzhou University of Chinese Medicine, Guangzhou, China.,State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Hesheng Ou
- Section of Science and Technology, Guangxi International Zhuang Medicine Hospital, Guangxi University of Chinese Medicine, Nanning, China
| | - Zhiyu Wang
- Guangdong Provincial Key Laboratory of Clinical Research on Traditional Chinese Medicine Syndrome, Guangdong Provincial Academy of Chinese Medical Sciences, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China.,The Research Center of Integrative Cancer Medicine, Discipline of Integrated Chinese and Western Medicine, The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, China.,Guangdong-Hong Kong-Macau Joint Lab on Chinese Medicine and Immune Disease Research, Guangzhou University of Chinese Medicine, Guangzhou, China.,State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| |
Collapse
|
29
|
Alfei S, Schito AM, Zuccari G. Considerable Improvement of Ursolic Acid Water Solubility by Its Encapsulation in Dendrimer Nanoparticles: Design, Synthesis and Physicochemical Characterization. NANOMATERIALS (BASEL, SWITZERLAND) 2021; 11:2196. [PMID: 34578512 PMCID: PMC8464973 DOI: 10.3390/nano11092196] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 08/10/2021] [Accepted: 08/25/2021] [Indexed: 12/17/2022]
Abstract
Ursolic acid (UA) is a pentacyclic triterpenoid found in many medicinal plants and aromas endowed with numerous in vitro pharmacological activities, including antibacterial effects. Unfortunately, UA is poorly administered in vivo, due to its water insolubility, low bioavailability, and residual systemic toxicity, thus making urgent the development of water-soluble UA formulations. Dendrimers are nonpareil macromolecules possessing highly controlled size, shape, and architecture. In dendrimers with cationic surface, the contemporary presence of inner cavities and of hydrophilic peripheral functions, allows to encapsulate hydrophobic non-water-soluble drugs as UA, to enhance their water-solubility and stability, and to promote their protracted release, thus decreasing their systemic toxicity. In this paper, aiming at developing a new UA-based antibacterial agent administrable in vivo, we reported the physical entrapment of UA in a biodegradable not cytotoxic cationic dendrimer (G4K). UA-loaded dendrimer nanoparticles (UA-G4K) were obtained, which showed a drug loading (DL%) much higher than those previously reported, a protracted release profile governed by diffusion mechanisms, and no cytotoxicity. Also, UA-G4K was characterized by principal components analysis (PCA)-processed FTIR spectroscopy, by NMR and elemental analyses, and by dynamic light scattering experiments (DLS). The water solubility of UA-G4K was found to be 1868-fold times higher than that of pristine UA, thus making its clinical application feasible.
Collapse
Affiliation(s)
- Silvana Alfei
- Department of Pharmacy, University of Genoa, Viale Cembrano, 4-16148 Genoa, Italy;
| | - Anna Maria Schito
- Department of Surgical Sciences and Integrated Diagnostics (DISC), University of Genoa, Viale Benedetto XV, 6-16132 Genova, Italy;
| | - Guendalina Zuccari
- Department of Pharmacy, University of Genoa, Viale Cembrano, 4-16148 Genoa, Italy;
| |
Collapse
|
30
|
Fan JP, Lai XH, Zhang XH, Yang L, Yuan TT, Chen HP, Liang X. Synthesis and evaluation of the cancer cell growth inhibitory activity of the ionic derivatives of oleanolic acid and ursolic acid with improved solubility. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2021.115837] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
31
|
Grabowska K, Żmudzki P, Wróbel-Biedrawa D, Podolak I. Simultaneous Quantification of Ursolic and Oleanolic Acids in Glechoma hederacea and Glechoma hirsuta by UPLC/MS/MS. PLANTA MEDICA 2021; 87:305-313. [PMID: 33450770 DOI: 10.1055/a-1345-9377] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
The content of ursolic acid and oleanolic acid was determined in different plant parts of two Glechoma species, G. hederacea and G. hirsuta. To achieve optimal extraction conditions of ursolic acid and oleanolic acid from plant material, several methods including maceration, heat reflux, Soxhlet, and ultrasonic extraction, as well as various solvents (methanol, dichloromethane, ethyl acetate), were investigated and compared.For the simultaneous quantification of pentacyclic triterpenes in extracts from Glechoma sp., an UPLC-MS/MS was developed and validated. The method exhibited good linearity, precision, and recovery, and it also was simple, specific, and fast. We developed the method for future application in the quality control of plant materials and botanical extracts containing ursolic acid and oleanolic acid. With regard to the triterpene constituents, both G. hederacea and G. hirsuta can be used equally, and the aboveground parts of both species, but the leaves especially, are abundant sources of ursolic acid (7.1 - 7.5 mg/g dry weight [DW]). Dichloromethane as an extractant provided the best extraction efficiency as well as selectivity to obtain Glechoma extracts rich in triterpenes as compared to methanol and ethyl acetate, regardless of the particular extraction technique. Dry dichloromethane extracts from aerial parts of Glechoma sp. obtained by the heat reflux method resulted in products with a high content of UA (17 - 25% w/w) are considered to be convenient and rich sources of this compound.
Collapse
Affiliation(s)
- Karolina Grabowska
- Jagiellonian University Medical College, Faculty of Pharmacy, Department of Pharmacognosy, Kraków, Poland
| | - Paweł Żmudzki
- Jagiellonian University Medical College, Faculty of Pharmacy, Department of Medicinal Chemistry, Kraków, Poland
| | - Dagmara Wróbel-Biedrawa
- Jagiellonian University Medical College, Faculty of Pharmacy, Department of Pharmacognosy, Kraków, Poland
| | - Irma Podolak
- Jagiellonian University Medical College, Faculty of Pharmacy, Department of Pharmacognosy, Kraków, Poland
| |
Collapse
|
32
|
Mou L, Liao L, Zhang Y, Ming D, Jiang J. Ursolic acid ameliorates Nthy-ori 3-1 cells injury induced by IL-1β through limiting MALAT1/miR-206/PTGS1 ceRNA network and NF-κB signaling pathway. Psychopharmacology (Berl) 2021; 238:1141-1156. [PMID: 33452572 DOI: 10.1007/s00213-021-05761-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Accepted: 01/06/2021] [Indexed: 12/17/2022]
Abstract
RATIONALE Ursolic acid (UA) has exhibited anti-inflammatory and anti-oxidative drug effects. OBJECTIVES In the research, we assessed the effects of UA on Nthy-ori 3-1 cells stimulated by IL-1β and attempted to elucidate the mechanisms underlying the effects. METHODS Autoimmune thyroiditis (AIT) was simulated using Nthy-ori 3-1 cells by IL-1β (10 μM) treatment. UA (20 μM) was applied to ameliorate the injury of Nthy-ori 3-1 cells. The target of UA was predicted by TCMSP, BATMAN, and GEO database. Targeted relationship between lncRNA MALAT1 and miR-206, as well as miR-206 and PTGS1, was predicted by bioinformatics software and identified by dual luciferase assays. Cytokines in the cell supernatant and the apoptosis of cells were detected by ELISAs and flow cytometry assays, respectively. Expression levels of NF-κB signaling pathway-related proteins were estimated by western blot. RESULTS By enquiring TCMSP, BATMAN, and GEO database, PTGS1 was identified as a target of UA. Afterward, a ceRNA network among MALAT1, miR-206, and PTGS1 was constructed. The expression levels of MALAT1 and PTGS1 in AIT tissues were obviously enhanced. Moreover, the ceRNA network formed by MALAT1/miR-206/PTGS1 contributed to the damage of Nthy-ori 3-1 cells induced by IL-1β. However, UA ameliorated the Nthy-ori 3-1 cells injury induced by IL-1β through mediating the MALAT1/miR-206/PTGS1 ceRNA network and NF-κB signaling pathway. CONCLUSIONS UA treatment significantly relieved the injury of Nthy-ori 3-1 cells via inhibiting the ceRNA mechanism of MALAT1/miR-206/PTGS1 and inflammatory pathways, insinuating that UA may be helpful for the treatment of AIT.
Collapse
Affiliation(s)
- Lunpan Mou
- Department of Endocrinology, Quanzhou First Hospital Affiliated to Fujian Medical University, No.250, Dongjie, Quanzhou, 362000, Fujian, China
| | - Liyan Liao
- Department of Pathology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Yaping Zhang
- Department of Endocrinology, Quanzhou First Hospital Affiliated to Fujian Medical University, No.250, Dongjie, Quanzhou, 362000, Fujian, China
| | - Desong Ming
- Department of Clinical Laboratory, Quanzhou First Hospital Affiliated to Fujian Medical University, Quanzhou, China
| | - Jianjia Jiang
- Department of Endocrinology, Quanzhou First Hospital Affiliated to Fujian Medical University, No.250, Dongjie, Quanzhou, 362000, Fujian, China.
| |
Collapse
|
33
|
Nano-delivery systems focused on tumor microenvironment regulation and biomimetic strategies for treatment of breast cancer metastasis. J Control Release 2021; 333:374-390. [PMID: 33798666 DOI: 10.1016/j.jconrel.2021.03.039] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2020] [Revised: 03/26/2021] [Accepted: 03/27/2021] [Indexed: 12/14/2022]
Abstract
Breast cancer metastasis and recurrence accounts for vast majority of breast cancer-induced mortality. Tumor microenvironment (TME) plays an important role at each step of metastasis, evasion of immunosurveillance, and therapeutic resistance. Consequently, TME-targeting alternatives to traditional therapies focused on breast cancer cells are gaining increasing attention. These new therapies involve the use of tumor cells, and key TME components or secreted bioactive molecules as therapeutic targets, alone or in combination. Recently, TME-related nanoparticles have been developed to deliver various agents, such as bioactive ingredients extracted from natural sources or chemotherapeutic agents, genes, proteins, small interfering RNAs, and vaccines; they have shown great therapeutic potential against breast cancer metastasis. Among various types of nanoparticles, biomimetic nanovesicles are a promising means of addressing the limitations of conventional nanocarriers. This review highlights various nanoparticles related to or mediated by TME according to the key TME components responsible for metastasis. Furthermore, TME-related biomimetic nanoparticles against breast cancer metastasis have garnered attention owing to their promising efficiency, especially in payload delivery and therapeutic action. Here, we summarize recent representative studies on nanoparticles related to cancer-associated fibroblasts, extracellular matrix, endothelial cells, angiogenesis, and immune cells, as well as advanced biomimetic nanoparticles. Future challenges and opportunities in the field are also discussed.
Collapse
|
34
|
Griñan-Lison C, Blaya-Cánovas JL, López-Tejada A, Ávalos-Moreno M, Navarro-Ocón A, Cara FE, González-González A, Lorente JA, Marchal JA, Granados-Principal S. Antioxidants for the Treatment of Breast Cancer: Are We There Yet? Antioxidants (Basel) 2021; 10:205. [PMID: 33572626 PMCID: PMC7911462 DOI: 10.3390/antiox10020205] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 01/27/2021] [Accepted: 01/28/2021] [Indexed: 12/15/2022] Open
Abstract
Breast cancer is the most frequent cancer and the leading cause of cancer death in women. Oxidative stress and the generation of reactive oxygen species (ROS) have been related to cancer progression. Compared to their normal counterparts, tumor cells show higher ROS levels and tight regulation of REDOX homeostasis to maintain a low degree of oxidative stress. Traditionally antioxidants have been extensively investigated to counteract breast carcinogenesis and tumor progression as chemopreventive agents; however, there is growing evidence indicating their potential as adjuvants for the treatment of breast cancer. Aimed to elucidate whether antioxidants could be a reality in the management of breast cancer patients, this review focuses on the latest investigations regarding the ambivalent role of antioxidants in the development of breast cancer, with special attention to the results derived from clinical trials, as well as their potential use as plausible agents in combination therapy and their power to ameliorate the side effects attributed to standard therapeutics. Data retrieved herein suggest that antioxidants play an important role in breast cancer prevention and the improvement of therapeutic efficacy; nevertheless, appropriate patient stratification based on "redoxidomics" or tumor subtype is mandatory in order to define the dosage for future standardized and personalized treatments of patients.
Collapse
Affiliation(s)
- Carmen Griñan-Lison
- Centre for Biomedical Research (CIBM), Biopathology and Regenerative Medicine Institute (IBIMER), University of Granada, 18100 Granada, Spain; (C.G.-L.); (J.A.M.)
- Instituto de Investigación Biosanitaria Ibs.GRANADA, University Hospitals of Granada-University of Granada, 18100 Granada, Spain
- Excellence Research Unit “Modeling Nature” (MNat), University of Granada, 18100 Granada, Spain
- GENYO, Centre for Genomics and Oncological Research, Pfizer/University of Granada/Andalusian Regional Government, 18016 Granada, Spain; (J.L.B.-C.); (A.L.-T.); (M.Á.-M.); (A.N.-O.); (F.E.C.); (A.G.-G.); (J.A.L.)
| | - Jose L. Blaya-Cánovas
- GENYO, Centre for Genomics and Oncological Research, Pfizer/University of Granada/Andalusian Regional Government, 18016 Granada, Spain; (J.L.B.-C.); (A.L.-T.); (M.Á.-M.); (A.N.-O.); (F.E.C.); (A.G.-G.); (J.A.L.)
| | - Araceli López-Tejada
- GENYO, Centre for Genomics and Oncological Research, Pfizer/University of Granada/Andalusian Regional Government, 18016 Granada, Spain; (J.L.B.-C.); (A.L.-T.); (M.Á.-M.); (A.N.-O.); (F.E.C.); (A.G.-G.); (J.A.L.)
| | - Marta Ávalos-Moreno
- GENYO, Centre for Genomics and Oncological Research, Pfizer/University of Granada/Andalusian Regional Government, 18016 Granada, Spain; (J.L.B.-C.); (A.L.-T.); (M.Á.-M.); (A.N.-O.); (F.E.C.); (A.G.-G.); (J.A.L.)
| | - Alba Navarro-Ocón
- GENYO, Centre for Genomics and Oncological Research, Pfizer/University of Granada/Andalusian Regional Government, 18016 Granada, Spain; (J.L.B.-C.); (A.L.-T.); (M.Á.-M.); (A.N.-O.); (F.E.C.); (A.G.-G.); (J.A.L.)
| | - Francisca E. Cara
- GENYO, Centre for Genomics and Oncological Research, Pfizer/University of Granada/Andalusian Regional Government, 18016 Granada, Spain; (J.L.B.-C.); (A.L.-T.); (M.Á.-M.); (A.N.-O.); (F.E.C.); (A.G.-G.); (J.A.L.)
| | - Adrián González-González
- GENYO, Centre for Genomics and Oncological Research, Pfizer/University of Granada/Andalusian Regional Government, 18016 Granada, Spain; (J.L.B.-C.); (A.L.-T.); (M.Á.-M.); (A.N.-O.); (F.E.C.); (A.G.-G.); (J.A.L.)
| | - Jose A. Lorente
- GENYO, Centre for Genomics and Oncological Research, Pfizer/University of Granada/Andalusian Regional Government, 18016 Granada, Spain; (J.L.B.-C.); (A.L.-T.); (M.Á.-M.); (A.N.-O.); (F.E.C.); (A.G.-G.); (J.A.L.)
- Department of Legal Medicine, School of Medicine, University of Granada, 18016 Granada, Spain
| | - Juan A. Marchal
- Centre for Biomedical Research (CIBM), Biopathology and Regenerative Medicine Institute (IBIMER), University of Granada, 18100 Granada, Spain; (C.G.-L.); (J.A.M.)
- Instituto de Investigación Biosanitaria Ibs.GRANADA, University Hospitals of Granada-University of Granada, 18100 Granada, Spain
- Excellence Research Unit “Modeling Nature” (MNat), University of Granada, 18100 Granada, Spain
- Department of Human Anatomy and Embryology, School of Medicine, University of Granada, 18016 Granada, Spain
| | - Sergio Granados-Principal
- Instituto de Investigación Biosanitaria Ibs.GRANADA, University Hospitals of Granada-University of Granada, 18100 Granada, Spain
- GENYO, Centre for Genomics and Oncological Research, Pfizer/University of Granada/Andalusian Regional Government, 18016 Granada, Spain; (J.L.B.-C.); (A.L.-T.); (M.Á.-M.); (A.N.-O.); (F.E.C.); (A.G.-G.); (J.A.L.)
- Department of Biochemistry and Molecular Biology II, School of Pharmacy, University of Granada, 18011 Granada, Spain
| |
Collapse
|
35
|
Kim D, Wu Y, Li Q, Oh YK. Nanoparticle-Mediated Lipid Metabolic Reprogramming of T Cells in Tumor Microenvironments for Immunometabolic Therapy. NANO-MICRO LETTERS 2021; 13:31. [PMID: 34138236 PMCID: PMC8006499 DOI: 10.1007/s40820-020-00555-6] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2020] [Accepted: 10/28/2020] [Indexed: 05/05/2023]
Abstract
aCD3/F/AN, anti-CD3e f(ab')2 fragment-modified and fenofibrate-encapsulated amphiphilic nanoparticle, reprogrammed mitochondrial lipid metabolism of T cells. aCD3/F/AN specifically activated T cells in glucose-deficient conditions mimicking tumor microenvironment, and exerted an effector killing effect against tumor cells. In vivo treatment with aCD3/F/AN increased T cell infiltration, cytokine production, and prevented tumor growth. We report the activation of anticancer effector functions of T cells through nanoparticle-induced lipid metabolic reprogramming. Fenofibrate was encapsulated in amphiphilic polygamma glutamic acid-based nanoparticles (F/ANs), and the surfaces of F/ANs were modified with an anti-CD3e f(ab')2 fragment, yielding aCD3/F/ANs. An in vitro study reveals enhanced delivery of aCD3/F/ANs to T cells compared with plain F/ANs. aCD3/F/AN-treated T cells exhibited clear mitochondrial cristae, a higher membrane potential, and a greater mitochondrial oxygen consumption rate under glucose-deficient conditions compared with T cells treated with other nanoparticle preparations. Peroxisome proliferator-activated receptor-α and downstream fatty acid metabolism-related genes are expressed to a greater extent in aCD3/F/AN-treated T cells. Activation of fatty acid metabolism by aCD3/F/ANs supports the proliferation of T cells in a glucose-deficient environment mimicking the tumor microenvironment. Real-time video recordings show that aCD3/F/AN-treated T cells exerted an effector killing effect against B16F10 melanoma cells. In vivo administration of aCD3/F/ANs can increase infiltration of T cells into tumor tissues. The treatment of tumor-bearing mice with aCD3/F/ANs enhances production of various cytokines in tumor tissues and prevented tumor growth. Our findings suggest the potential of nanotechnology-enabled reprogramming of lipid metabolism in T cells as a new modality of immunometabolic therapy.
Collapse
Affiliation(s)
- Dongyoon Kim
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, 08826, Republic of Korea
| | - Yina Wu
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, 08826, Republic of Korea
| | - Qiaoyun Li
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, 08826, Republic of Korea
| | - Yu-Kyoung Oh
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, 08826, Republic of Korea.
| |
Collapse
|
36
|
Bahreyni A, Mohamud Y, Luo H. Emerging nanomedicines for effective breast cancer immunotherapy. J Nanobiotechnology 2020; 18:180. [PMID: 33298099 PMCID: PMC7727246 DOI: 10.1186/s12951-020-00741-z] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2020] [Accepted: 11/30/2020] [Indexed: 02/07/2023] Open
Abstract
Breast cancer continues to be the most frequently diagnosed malignancy among women, putting their life in jeopardy. Cancer immunotherapy is a novel approach with the ability to boost the host immune system to recognize and eradicate cancer cells with high selectivity. As a promising treatment, immunotherapy can not only eliminate the primary tumors, but also be proven to be effective in impeding metastasis and recurrence. However, the clinical application of cancer immunotherapy has faced some limitations including generating weak immune responses due to inadequate delivery of immunostimulants to the immune cells as well as uncontrolled modulation of immune system, which can give rise to autoimmunity and nonspecific inflammation. Growing evidence has suggested that nanotechnology may meet the needs of current cancer immunotherapy. Advanced biomaterials such as nanoparticles afford a unique opportunity to maximize the efficiency of immunotherapy and significantly diminish their toxic side-effects. Here we discuss recent advancements that have been made in nanoparticle-involving breast cancer immunotherapy, varying from direct activation of immune systems through the delivery of tumor antigens and adjuvants to immune cells to altering immunosuppression of tumor environment and combination with other conventional therapies.
Collapse
Affiliation(s)
- Amirhossein Bahreyni
- Centre for Heart Lung Innovation, St. Paul's Hospital, 1081 Burrard St, Vancouver, BC, V6Z 1Y6, Canada.,Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Yasir Mohamud
- Centre for Heart Lung Innovation, St. Paul's Hospital, 1081 Burrard St, Vancouver, BC, V6Z 1Y6, Canada.,Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Honglin Luo
- Centre for Heart Lung Innovation, St. Paul's Hospital, 1081 Burrard St, Vancouver, BC, V6Z 1Y6, Canada. .,Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC, Canada.
| |
Collapse
|
37
|
Sun Q, He M, Zhang M, Zeng S, Chen L, Zhou L, Xu H. Ursolic acid: A systematic review of its pharmacology, toxicity and rethink on its pharmacokinetics based on PK-PD model. Fitoterapia 2020; 147:104735. [PMID: 33010369 DOI: 10.1016/j.fitote.2020.104735] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 08/29/2020] [Accepted: 09/24/2020] [Indexed: 12/12/2022]
Abstract
Ursolic acid (UA) is a natural pentacyclic triterpenoid compound existing in various traditional Chinese medicinal herbs, and it possesses diverse pharmacological actions and some undesirable adverse effects, even toxicological activities. Due to UA's low solubility and poor bioavailability, and its interaction with gut microbiota after oral administration, the pharmacokinetics of UA remain elusive, leading to obscurity in the pharmacokinetics-pharmacodynamics (PK-PD) profile and relationship for UA. Based on literatures from PubMed, Google Scholar, ResearchGate, Web of Science and Wiley Online Library, with keywords of "pharmacology", "toxicology", "pharmacokinetics", "PK-PD" and "ursolic acid", herein we systematically review the pharmacology and toxicity of UA, and rethink on its pharmacokinetics on the basis of PK-PD model, and seek to delineate the underlying mechanisms for the characteristics of pharmacology and toxicology of UA, and for the pharmacokinetic features of UA particularly from the organ tropism and the interactions between UA and gut microbiota, and lay a solid foundation for development of UA-derived therapeutic agents in clinical settings.
Collapse
Affiliation(s)
- Qiang Sun
- Department of Pharmacology, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Man He
- Department of Pharmacology, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Meng Zhang
- Department of Pharmacology, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Sha Zeng
- Department of Pharmacology, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Li Chen
- Department of Pharmacology, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Lijuan Zhou
- Sichuan Academy of Chinese Medical Sciences, Chengdu 610041, China
| | - Haibo Xu
- Department of Pharmacology, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.
| |
Collapse
|
38
|
Masuelli L, Benvenuto M, Focaccetti C, Ciuffa S, Fazi S, Bei A, Miele MT, Piredda L, Manzari V, Modesti A, Bei R. Targeting the tumor immune microenvironment with "nutraceuticals": From bench to clinical trials. Pharmacol Ther 2020; 219:107700. [PMID: 33045254 DOI: 10.1016/j.pharmthera.2020.107700] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/30/2020] [Indexed: 02/06/2023]
Abstract
The occurrence of immune effector cells in the tissue microenvironment during neoplastic progression is critical in determining tumor growth outcomes. On the other hand, tumors may also avoid immune system-mediated elimination by recruiting immunosuppressive leukocytes and soluble factors, which coordinate a tumor microenvironment that counteracts the efficiency of the antitumor immune response. Checkpoint inhibitor therapy results have indicated a way forward via activation of the immune system against cancer. Widespread evidence has shown that different compounds in foods, when administered as purified substances, can act as immunomodulators in humans and animals. Although there is no universally accepted definition of nutraceuticals, the term identifies a wide category of natural compounds that may impact health and disease statuses and includes purified substances from natural sources, plant extracts, dietary supplements, vitamins, phytonutrients, and various products with combinations of functional ingredients. In this review, we summarize the current knowledge on the immunomodulatory effects of nutraceuticals with a special focus on the cancer microenvironment, highlighting the conceptual benefits or drawbacks and subtle cell-specific effects of nutraceuticals for envisioning future therapies employing nutraceuticals as chemoadjuvants.
Collapse
Affiliation(s)
- Laura Masuelli
- Department of Experimental Medicine, University of Rome "Sapienza", Viale Regina Elena 324, 00161 Rome, Italy
| | - Monica Benvenuto
- Saint Camillus International University of Health and Medical Sciences, via di Sant'Alessandro 8, 00131 Rome, Italy; Department of Clinical Sciences and Translational Medicine, University of Rome "Tor Vergata", Via Montpellier 1, 00133 Rome, Italy
| | - Chiara Focaccetti
- Department of Clinical Sciences and Translational Medicine, University of Rome "Tor Vergata", Via Montpellier 1, 00133 Rome, Italy; Department of Human Science and Promotion of the Quality of Life, San Raffaele University Rome, Via di Val Cannuta 247, 00166 Rome, Italy
| | - Sara Ciuffa
- Department of Clinical Sciences and Translational Medicine, University of Rome "Tor Vergata", Via Montpellier 1, 00133 Rome, Italy
| | - Sara Fazi
- Department of Experimental Medicine, University of Rome "Sapienza", Viale Regina Elena 324, 00161 Rome, Italy
| | - Arianna Bei
- Medical School, University of Rome "Tor Vergata", 00133 Rome, Italy
| | - Martino Tony Miele
- Department of Experimental Medicine, University of Rome "Tor Vergata", Via Montpellier 1, 00133 Rome, Italy
| | - Lucia Piredda
- Department of Biology, University of Rome "Tor Vergata", Via della Ricerca Scientifica 1, 00133 Rome, Italy
| | - Vittorio Manzari
- Department of Clinical Sciences and Translational Medicine, University of Rome "Tor Vergata", Via Montpellier 1, 00133 Rome, Italy
| | - Andrea Modesti
- Department of Clinical Sciences and Translational Medicine, University of Rome "Tor Vergata", Via Montpellier 1, 00133 Rome, Italy
| | - Roberto Bei
- Department of Clinical Sciences and Translational Medicine, University of Rome "Tor Vergata", Via Montpellier 1, 00133 Rome, Italy; CIMER, University of Rome "Tor Vergata", Via Montpellier 1, 00133 Rome, Italy.
| |
Collapse
|
39
|
Wang M, Theis T, Kabat M, Loers G, Agre LA, Schachner M. Functions of Small Organic Compounds that Mimic the HNK-1 Glycan. Int J Mol Sci 2020; 21:ijms21197018. [PMID: 32987628 PMCID: PMC7582369 DOI: 10.3390/ijms21197018] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Revised: 09/15/2020] [Accepted: 09/22/2020] [Indexed: 12/27/2022] Open
Abstract
Because of the importance of the HNK-1 carbohydrate for preferential motor reinnervation after injury of the femoral nerve in mammals, we screened NIH Clinical Collection 1 and 2 Libraries and a Natural Product library comprising small organic compounds for identification of pharmacologically useful reagents. The reason for this attempt was to obviate the difficult chemical synthesis of the HNK-1 carbohydrate and its isolation from natural sources, with the hope to render such compounds clinically useful. We identified six compounds that enhanced neurite outgrowth from cultured spinal motor neurons at nM concentrations and increased their neurite diameter, but not their neurite branch points. Axons of dorsal root ganglion neurons did not respond to these compounds, a feature that is in agreement with their biological role after injury. We refer to the positive functions of some of these compounds in animal models of injury and delineate the intracellular signaling responses elicited by application of compounds to cultured murine central nervous system neurons. Altogether, these results point to the potential of the HNK-1 carbohydrate mimetics in clinically-oriented settings.
Collapse
Affiliation(s)
- Minjuan Wang
- Keck Center for Collaborative Neuroscience and Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, NJ 08554, USA; (M.W.); (T.T.); (M.K.)
| | - Thomas Theis
- Keck Center for Collaborative Neuroscience and Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, NJ 08554, USA; (M.W.); (T.T.); (M.K.)
| | - Maciej Kabat
- Keck Center for Collaborative Neuroscience and Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, NJ 08554, USA; (M.W.); (T.T.); (M.K.)
| | - Gabriele Loers
- Zentrum für Molekulare Neurobiologie Hamburg, Universitätsklinikum Hamburg-Eppendorf, 20251 Hamburg, Germany;
| | - Lynn A. Agre
- Rutgers School of Arts and Sciences, Department of Statistics and Rutgers Business School, Rutgers University, Piscataway, NJ 08854, USA;
| | - Melitta Schachner
- Keck Center for Collaborative Neuroscience and Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, NJ 08554, USA; (M.W.); (T.T.); (M.K.)
- Correspondence: ; Tel.: +1-848-445-1780
| |
Collapse
|
40
|
Wu S, Zhang F, Xiong W, Molnár I, Liang J, Ji A, Li Y, Wang C, Wang S, Liu Z, Wu R, Duan L. An Unexpected Oxidosqualene Cyclase Active Site Architecture in the Iris tectorum Multifunctional α-Amyrin Synthase. ACS Catal 2020; 10:9515-9520. [PMID: 34306805 DOI: 10.1021/acscatal.0c03231] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Ordered polycyclization catalyzed by oxidosqualene synthases (OSCs) morph a common linear precursor into structurally complex and diverse triterpene scaffolds with varied bioactivities. We identified three OSCs from Iris tectorum. ItOSC2 is a rare multifunctional α-amyrin synthase. Sequence comparisons, site-directed mutagenesis and multiscale simulations revealed that three spatially clustered residues, Y531/L256/L258 form an unusual Y-LL triad at the active site, replacing the highly conserved W-xY triad occurring in other amyrin synthases. The discovery of this unprecedented active site architecture in ItOSC2 underscores the plasticity of terpene cyclase catalytic mechanisms and opens new avenues for protein engineering towards custom designed OSCs.
Collapse
Affiliation(s)
- Shidan Wu
- Joint Laboratory for Translational Cancer Research of Chinese Medicine of the Ministry of Education of the People’s Republic of China, International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou 510006, P.R. China
| | - Fan Zhang
- Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, P.R. China
| | - Wenbo Xiong
- Joint Laboratory for Translational Cancer Research of Chinese Medicine of the Ministry of Education of the People’s Republic of China, International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou 510006, P.R. China
| | - István Molnár
- Southwest Center for Natural Products Research, The University of Arizona, Tucson, Arizona 85706, United States
| | - Jincai Liang
- Joint Laboratory for Translational Cancer Research of Chinese Medicine of the Ministry of Education of the People’s Republic of China, International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou 510006, P.R. China
| | - Aijia Ji
- Joint Laboratory for Translational Cancer Research of Chinese Medicine of the Ministry of Education of the People’s Republic of China, International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou 510006, P.R. China
| | - Yu Li
- Joint Laboratory for Translational Cancer Research of Chinese Medicine of the Ministry of Education of the People’s Republic of China, International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou 510006, P.R. China
| | - Caixia Wang
- Institute of Chinese Material Medica, China Academy of Chinese Medical Sciences, Beijing 100700, P.R. China
| | - Shengliang Wang
- Joint Laboratory for Translational Cancer Research of Chinese Medicine of the Ministry of Education of the People’s Republic of China, International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou 510006, P.R. China
| | - Zhongqiu Liu
- Joint Laboratory for Translational Cancer Research of Chinese Medicine of the Ministry of Education of the People’s Republic of China, International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou 510006, P.R. China
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau (SAR) 999078, China
| | - Ruibo Wu
- Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, P.R. China
| | - Lixin Duan
- Joint Laboratory for Translational Cancer Research of Chinese Medicine of the Ministry of Education of the People’s Republic of China, International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou 510006, P.R. China
| |
Collapse
|
41
|
Zhang Y, Li X, Guo C, Dong J, Liao L. Mechanisms of Spica Prunellae against thyroid-associated Ophthalmopathy based on network pharmacology and molecular docking. BMC Complement Med Ther 2020; 20:229. [PMID: 32689994 PMCID: PMC7372882 DOI: 10.1186/s12906-020-03022-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Accepted: 07/09/2020] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Thyroid-associated ophthalmopathy (TAO) is an autoimmune inflammatory disorder, which lacks effective treatment currently. Spica Prunellae (SP) is popularly used for its anti-inflammatory and immune-regulating properties, indicating SP may have potential therapeutic value in TAO. Therefore, the purpose of this study is to identify the efficiency and potential mechanism of SP in treating TAO. METHODS A network pharmacology integrated molecular docking strategy was used to predict the underlying molecular mechanism of treating TAO. Firstly, the active compounds of SP were obtained from TCMSP database and literature research. Then we collected the putative targets of SP and TAO based on multi-sources databases to generate networks. Network topology analysis, GO and KEGG pathway enrichment analysis were performed to screen the key targets and mechanism. Furthermore, molecular docking simulation provided an assessment tool for verifying drug and target binding. RESULTS Our results showed that 8 targets (PTGS2, MAPK3, AKT1, TNF, MAPK1, CASP3, IL6, MMP9) were recognized as key therapeutic targets with excellent binding affinity after network analysis and molecular docking-based virtual screening. The results of enrichment analysis suggested that the underlying mechanism was mainly focused on the biological processes and pathways associated with immune inflammation, proliferation, and apoptosis. Notably, the key pathway was considered as the PI3K-AKT signaling pathway. CONCLUSION In summary, the present study elucidates that SP may suppress inflammation and proliferation and promote apoptosis through the PI3K-AKT pathway, which makes SP a potential treatment against TAO. And this study offers new reference points for future experimental research and provides a scientific basis for more widespread clinical application.
Collapse
Affiliation(s)
- Yuhan Zhang
- Department of Endocrinology and Metabology, Shandong Provincial Qianfoshan Hospital, Cheeloo College of Medicine, Shandong University, Jinan, 250014, China.,Laboratory of Endocrinology, Medical Research Center, Shandong Provincial Qianfoshan Hospital, the First Affiliated Hospital of Shandong First Medical University, Jinan, 250014, Shandong, China
| | - Xianzhi Li
- Department of Endocrinology and Metabology, Shandong Provincial Qianfoshan Hospital, Cheeloo College of Medicine, Shandong University, Jinan, 250014, China.,Laboratory of Endocrinology, Medical Research Center, Shandong Provincial Qianfoshan Hospital, the First Affiliated Hospital of Shandong First Medical University, Jinan, 250014, Shandong, China
| | - Congcong Guo
- Department of Endocrinology, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, 250011, China
| | - Jianjun Dong
- Division of Endocrinology, Department of Internal Medicine, Qilu Hospital of Shandong University, Jinan, 250012, China.
| | - Lin Liao
- Department of Endocrinology and Metabology, Shandong Provincial Qianfoshan Hospital, Cheeloo College of Medicine, Shandong University, Jinan, 250014, China. .,Department of Endocrinology and Metabology, the First Affiliated Hospital of Shandong First Medical University, Ji-nan, 250014, China.
| |
Collapse
|
42
|
Malla RR, Deepak K, Merchant N, Dasari VR. Breast Tumor Microenvironment: Emerging target of therapeutic phytochemicals. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2020; 70:153227. [PMID: 32339885 DOI: 10.1016/j.phymed.2020.153227] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Revised: 03/31/2020] [Accepted: 04/11/2020] [Indexed: 06/11/2023]
Abstract
Triple negative breast cancer (TNBC) is the most aggressive and challenging form of breast cancers. Tumor microenvironment (TME) of TNBC is associated with induction of metastasis, immune system suppression, escaping immune detection and drug resistance. TME is highly complex and heterogeneous, consists of tumor cells, stromal cells and immune cells. The rapid expansion of tumors induce hypoxia, which concerns the reprogramming of TME components. The reciprocal communication of tumor cells and TME cells predisposes cancer cells to metastasis by modulation of developmental pathways, Wnt, notch, hedgehog and their related mechanisms in TME. Dietary phytochemicals are non-toxic and associated with various human health benefits and remarkable spectrum of biological activities. The phytochemicals serve as vital resources for drug discovery and also as a source for breast cancer therapy. The novel properties of dietary phytochemicals propose platform for modulation of tumor signaling, overcoming drug resistance, and targeting TME. Therefore, TME could serve as promising target for the treatment of TNBC. This review presents current status and implications of experimentally evaluated therapeutic phytochemicals as potential targeting agents of TME, potential nanosystems for targeted delivery of phytochemicals and their current challenges and future implications in TNBC treatment. The dietary phytochemicals especially curcumin with significant delivery system could prevent TNBC development as it is considered safe and well tolerated in phase II clinical trials.
Collapse
Affiliation(s)
- Rama Rao Malla
- Cancer Biology Lab, Department of Biochemistry and Bioinformatics, Institute of Science, GITAM (Deemed to be University), Visakhapatnam, 530045, India.
| | - Kgk Deepak
- Cancer Biology Lab, Department of Biochemistry and Bioinformatics, Institute of Science, GITAM (Deemed to be University), Visakhapatnam, 530045, India
| | - Neha Merchant
- Department of Hematology and Medical Oncology, Winship Cancer Institute, Emory University, Atlanta, GA, 30322, USA
| | - Venkata Ramesh Dasari
- Department of Molecular and Functional Genomics, Geisinger Clinic, 100 Academy Ave, Danville, PA, 17822, USA
| |
Collapse
|