1
|
Youssef JR, Boraie NA, Ismail FA, Bakr BA, Allam EA, El-Moslemany RM. Brain targeted lactoferrin coated lipid nanocapsules for the combined effects of apocynin and lavender essential oil in PTZ induced seizures. Drug Deliv Transl Res 2025; 15:534-555. [PMID: 38819768 PMCID: PMC11683025 DOI: 10.1007/s13346-024-01610-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/21/2024] [Indexed: 06/01/2024]
Abstract
Apocynin (APO) is a plant derived antioxidant exerting specific NADPH oxidase inhibitory action substantiating its neuroprotective effects in various CNS disorders, including epilepsy. Due to rapid elimination and poor bioavailability, treatment with APO is challenging. Correspondingly, novel APO-loaded lipid nanocapsules (APO-LNC) were formulated and coated with lactoferrin (LF-APO-LNC) to improve br ain targetability and prolong residence time. Lavender oil (LAV) was incorporated into LNC as a bioactive ingredient to act synergistically with APO in alleviating pentylenetetrazol (PTZ)-induced seizures. The optimized LF-APO-LAV/LNC showed a particle size 59.7 ± 4.5 nm with narrow distribution and 6.07 ± 1.6mV zeta potential) with high entrapment efficiency 92 ± 2.4% and sustained release (35% in 72 h). Following subcutaneous administration, LF-APO-LAV/LNC brought about ⁓twofold increase in plasma AUC and MRT compared to APO. A Log BB value of 0.2 ± 0.14 at 90 min reflects increased brain accumulation. In a PTZ-induced seizures rat model, LF-APO-LAV/LNC showed a Modified Racine score of 0.67 ± 0.47 with a significant increase in seizures latency and decrease in duration. Moreover, oxidant/antioxidant capacity and inflammatory markers levels in brain tissue were significantly improved. Histopathological and immunohistochemical assessment of brain tissue sections further supported these findings. The results suggest APO/LAV combination in LF-coated LNC as a promising approach to counteract seizures.
Collapse
Affiliation(s)
- Julie R Youssef
- Department of Pharmaceutics, Faculty of Pharmacy, Alexandria University, 1 Khartoum Square, Azarita, Messalla Post Office, P.O. Box 21521, Alexandria, Egypt.
| | - Nabila A Boraie
- Department of Pharmaceutics, Faculty of Pharmacy, Alexandria University, 1 Khartoum Square, Azarita, Messalla Post Office, P.O. Box 21521, Alexandria, Egypt
| | - Fatma A Ismail
- Department of Pharmaceutics, Faculty of Pharmacy, Alexandria University, 1 Khartoum Square, Azarita, Messalla Post Office, P.O. Box 21521, Alexandria, Egypt
| | - Basant A Bakr
- Department of Zoology, Faculty of Science, Alexandria University, Alexandria, 21523, Egypt
| | - Eman A Allam
- Department of Medical Physiology, Faculty of Medicine, Alexandria University, Alexandria, 21131, Egypt
| | - Riham M El-Moslemany
- Department of Pharmaceutics, Faculty of Pharmacy, Alexandria University, 1 Khartoum Square, Azarita, Messalla Post Office, P.O. Box 21521, Alexandria, Egypt
| |
Collapse
|
2
|
He F, Yu Z, Luo S, Meng X, Wang L, Jin X, Huang Z, Zhang Y, Deng P, Peng WK, Ke L, Wang H, Zhou J, Wall P, Rao P. Why are clams steamed with wine in Mediterranean cuisine? NPJ Sci Food 2024; 8:44. [PMID: 38992032 PMCID: PMC11239664 DOI: 10.1038/s41538-024-00279-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Accepted: 06/14/2024] [Indexed: 07/13/2024] Open
Abstract
Wine is renowned for its rich content of polyphenols, including resveratrol (Res), known for their health promoting properties. Steamed clam with wine, a popular Mediterranean delicacy that highlights the role of wine as a key ingredient. However, despite these benefits, resveratrol's low bioavailability poses challenges. Could the process of steaming together with clam alter the digestive fate of resveratrol from wine? This study explores the potential of proteoglycan-based nanoparticles from freshwater clam (CFNPs) as a delivery vehicle for enhancing the stability and bioavailability of resveratrol, compared with wine and free Res' solution, aiming to elucidate mechanisms facilitating Res' absorption. The results demonstrated that CFNPs can effectively encapsulate Res with an efficiency over 70%, leading to a uniform particle size of 70.5±0.1 nm (PDI < 0.2). Resveratrol loaded in CFNPs (CFNPs-Res) exhibited an improved antioxidant stability under various conditions, retaining over 90% of antioxidant capacity after three-day storage at room temperature. The controlled-release profile of Res loaded in CFNPs fits both first and Higuchi order kinetics and was more desirable than that of wine and the free Res. Examined by the simulated gastrointestinal digestion, CFNPs-Res showed a significantly higher bioaccessibility and antioxidant retention compared to free Res and the wines. The discovery and use of food derived nanoparticles to carry micronutrients and antioxidants could lead to a shift in functional food design and nutritional advice, advocating much more attention on these entities over solely conventional molecules.
Collapse
Affiliation(s)
- Fangzhou He
- SIBS-Zhejiang Gongshang University Joint Centre for Food and Nutrition Sciences, Zhejiang Gongshang University, Hangzhou, 310012, China
- Songshan Lake Materials Laboratory, University Innovation Park, Dongguan, 523-808, China
| | - Zhaoshuo Yu
- National Nutrition Surveillance Centre, University College Dublin, Belfield, Dublin 4, Ireland
- UCD Institute of Food and Health, University College Dublin, Belfield, Dublin 4, Ireland
| | - Sihao Luo
- SIBS-Zhejiang Gongshang University Joint Centre for Food and Nutrition Sciences, Zhejiang Gongshang University, Hangzhou, 310012, China
| | - Xiangyu Meng
- SIBS-Zhejiang Gongshang University Joint Centre for Food and Nutrition Sciences, Zhejiang Gongshang University, Hangzhou, 310012, China
| | - Leying Wang
- SIBS-Zhejiang Gongshang University Joint Centre for Food and Nutrition Sciences, Zhejiang Gongshang University, Hangzhou, 310012, China
| | - Xuanlu Jin
- SIBS-Zhejiang Gongshang University Joint Centre for Food and Nutrition Sciences, Zhejiang Gongshang University, Hangzhou, 310012, China
| | - Zongke Huang
- SIBS-Zhejiang Gongshang University Joint Centre for Food and Nutrition Sciences, Zhejiang Gongshang University, Hangzhou, 310012, China
| | - Yue Zhang
- SIBS-Zhejiang Gongshang University Joint Centre for Food and Nutrition Sciences, Zhejiang Gongshang University, Hangzhou, 310012, China
| | - Peishan Deng
- Songshan Lake Materials Laboratory, University Innovation Park, Dongguan, 523-808, China
| | - Weng Kung Peng
- Songshan Lake Materials Laboratory, University Innovation Park, Dongguan, 523-808, China
| | - Lijing Ke
- SIBS-Zhejiang Gongshang University Joint Centre for Food and Nutrition Sciences, Zhejiang Gongshang University, Hangzhou, 310012, China.
- School of Food Science and Nutrition, University of Leeds, Leeds, LS2 9JT, UK.
| | - Huiqin Wang
- SIBS-Zhejiang Gongshang University Joint Centre for Food and Nutrition Sciences, Zhejiang Gongshang University, Hangzhou, 310012, China.
- College of Food and Bioengineering, Fujian Polytechnic Normal University, Fuqing, Fujian, 310300, China.
| | - Jianwu Zhou
- SIBS-Zhejiang Gongshang University Joint Centre for Food and Nutrition Sciences, Zhejiang Gongshang University, Hangzhou, 310012, China
- College of Food and Bioengineering, Fujian Polytechnic Normal University, Fuqing, Fujian, 310300, China
| | - Patrick Wall
- National Nutrition Surveillance Centre, University College Dublin, Belfield, Dublin 4, Ireland.
| | - Pingfan Rao
- SIBS-Zhejiang Gongshang University Joint Centre for Food and Nutrition Sciences, Zhejiang Gongshang University, Hangzhou, 310012, China
| |
Collapse
|
3
|
Boostani S, Sarabandi K, Tarhan O, Rezaei A, Assadpour E, Rostamabadi H, Falsafi SR, Tan C, Zhang F, Jafari SM. Multiple Pickering emulsions stabilized by food-grade particles as innovative delivery systems for bioactive compounds. Adv Colloid Interface Sci 2024; 328:103174. [PMID: 38728772 DOI: 10.1016/j.cis.2024.103174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 03/21/2024] [Accepted: 04/30/2024] [Indexed: 05/12/2024]
Abstract
The most common carrier for encapsulation of bioactive components is still simple emulsion. Recently, bio-based novel emulsion systems such as multiple emulsions (MEs) and Pickering emulsions (PEs) have been introduced as innovative colloidal delivery systems for encapsulation and controlled release of bioactive compounds. Multiple PEs (MPEs), which carries both benefit of MEs and PEs could be fabricated by relatively scalable and simple operations. In comparison with costly synthetic surfactants and inorganic particles which are widely used for stabilization of both MEs and PEs, MPEs stabilized by food-grade particles, while having health-promoting aspects, are able to host the "clean label" and "green label" attributes. Nevertheless, in achieving qualified techno-functional attributes and encapsulation properties, the selection of suitable materials is a crucial step in the construction of such complex systems. Current review takes a cue from both MEs and PEs emulsification techniques to grant a robust background for designing various MPEs. Herein, various fabrication methods of MEs and PEs are described comprehensively in a physical viewpoint in order to find key conception of successful formulation of MPEs. This review also highlights the link between the underlying aspects and exemplified specimens of evidence which grant insights into the rational design of MPEs through food-based ingredients to introduces MPEs as novel colloidal/functional materials. Their utilization for encapsulation of bioactive compounds is discussed as well. In the last part, instability behavior of MPEs under various conditions will be discussed. In sum, this review aims to gain researchers who work with food-based components, basics of innovative design of MPEs.
Collapse
Affiliation(s)
- Sareh Boostani
- Shiraz Pharmaceutical Products Technology Incubator, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Khashayar Sarabandi
- Department of Food Chemistry, Research Institute of Food Science and Technology (RIFST), Mashhad, Iran
| | - Ozgur Tarhan
- Food Engineering Department, Engineering Faculty, Uşak University, 1 Eylul Campus, Uşak 64100, Türkiye
| | - Atefe Rezaei
- Department of Food Science and Technology, School of Nutrition and Food Science, Food Security Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Elham Assadpour
- Food Industry Research Co., Gorgan, Iran; Food and Bio-Nanotech International Research Center (Fabiano), Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran
| | - Hadis Rostamabadi
- Nutrition and Food Security Research Center, Isfahan University of Medical Sciences, Isfahan 81746-73461, Iran
| | - Seid Reza Falsafi
- Isfahan Endocrine and Metabolism Research Center, Isfahan University of Medical Sciences, Isfahan 81746-73461, Iran
| | - Chen Tan
- Key Laboratory of Geriatric Nutrition and Health (Beijing Technology and Business University), Ministry of Education. China-Canada Joint Lab of Food Nutrition and Health (Beijing), School of Food and Health, Beijing Technology and Business University (BTBU), Beijing 100048, China
| | - Fuyuan Zhang
- College of Food Science and Technology, Hebei Agricultural University, Baoding 071001, China.
| | - Seid Mahdi Jafari
- Department of Food Materials and Process Design Engineering, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran; Halal Research Center of IRI, Iran Food and Drug Administration, Ministry of Health and Medical Education, Tehran, Iran.
| |
Collapse
|
4
|
Moreira R, Nóbrega C, de Almeida LP, Mendonça L. Brain-targeted drug delivery - nanovesicles directed to specific brain cells by brain-targeting ligands. J Nanobiotechnology 2024; 22:260. [PMID: 38760847 PMCID: PMC11100082 DOI: 10.1186/s12951-024-02511-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Accepted: 04/29/2024] [Indexed: 05/19/2024] Open
Abstract
Neurodegenerative diseases are characterized by extensive loss of function or death of brain cells, hampering the life quality of patients. Brain-targeted drug delivery is challenging, with a low success rate this far. Therefore, the application of targeting ligands in drug vehicles, such as lipid-based and polymeric nanoparticles, holds the promise to overcome the blood-brain barrier (BBB) and direct therapies to the brain, in addition to protect their cargo from degradation and metabolization. In this review, we discuss the barriers to brain delivery and the different types of brain-targeting ligands currently in use in brain-targeted nanoparticles, such as peptides, proteins, aptamers, small molecules, and antibodies. Moreover, we present a detailed review of the different targeting ligands used to direct nanoparticles to specific brain cells, like neurons (C4-3 aptamer, neurotensin, Tet-1, RVG, and IKRG peptides), astrocytes (Aquaporin-4, D4, and Bradykinin B2 antibodies), oligodendrocytes (NG-2 antibody and the biotinylated DNA aptamer conjugated to a streptavidin core Myaptavin-3064), microglia (CD11b antibody), neural stem cells (QTRFLLH, VPTQSSG, and NFL-TBS.40-63 peptides), and to endothelial cells of the BBB (transferrin and insulin proteins, and choline). Reports demonstrated enhanced brain-targeted delivery with improved transport to the specific cell type targeted with the conjugation of these ligands to nanoparticles. Hence, this strategy allows the implementation of high-precision medicine, with reduced side effects or unwanted therapy clearance from the body. Nevertheless, the accumulation of some of these nanoparticles in peripheral organs has been reported indicating that there are still factors to be improved to achieve higher levels of brain targeting. This review is a collection of studies exploring targeting ligands for the delivery of nanoparticles to the brain and we highlight the advantages and limitations of this type of approach in precision therapies.
Collapse
Grants
- under BrainHealth2020 projects (CENTRO-01-0145-FEDER-000008), through the COMPETE 2020 - Operational Programme for Competitiveness and Internationalization and Portuguese national funds via FCT - Fundação para a Ciência e a Tecnologia, under projects - UIDB/04539/2020 and UIDP/04539/2020, POCI-01-0145-FEDER-030737 (NeuroStemForMJD, PTDC/BTM-ORG/30737/2017), CEECIND/04242/2017, and PhD Scholarship European Regional Development Fund (ERDF) through the Centro 2020 Regional Operational Programme
- under BrainHealth2020 projects (CENTRO-01-0145-FEDER-000008), through the COMPETE 2020 - Operational Programme for Competitiveness and Internationalization and Portuguese national funds via FCT - Fundação para a Ciência e a Tecnologia, under projects - UIDB/04539/2020 and UIDP/04539/2020, POCI-01-0145-FEDER-030737 (NeuroStemForMJD, PTDC/BTM-ORG/30737/2017), CEECIND/04242/2017, and PhD Scholarship European Regional Development Fund (ERDF) through the Centro 2020 Regional Operational Programme
Collapse
Affiliation(s)
- Ricardo Moreira
- CNC - Center for Neuroscience and Cell Biology, University of Coimbra, Rua Larga, polo 1, Coimbra, FMUC, 3004-504, Portugal
- CIBB - Center for Innovative Biomedicine and Biotechnology, University of Coimbra, Coimbra, 3004-504, Portugal
- Faculty of Pharmacy, University of Coimbra, Coimbra, 3000-548, Portugal
| | - Clévio Nóbrega
- Algarve Biomedical Center Research Institute (ABC-RI), University of Algarve, Faro, 8005-139, Portugal
- Faculty of Medicine and Biomedical Sciences, University of Algarve, Faro, 8005-139, Portugal
| | - Luís Pereira de Almeida
- CNC - Center for Neuroscience and Cell Biology, University of Coimbra, Rua Larga, polo 1, Coimbra, FMUC, 3004-504, Portugal
- CIBB - Center for Innovative Biomedicine and Biotechnology, University of Coimbra, Coimbra, 3004-504, Portugal
- Faculty of Pharmacy, University of Coimbra, Coimbra, 3000-548, Portugal
- Institute of Interdisciplinary Research, University of Coimbra, Coimbra, 3030-789, Portugal
| | - Liliana Mendonça
- CNC - Center for Neuroscience and Cell Biology, University of Coimbra, Rua Larga, polo 1, Coimbra, FMUC, 3004-504, Portugal.
- CIBB - Center for Innovative Biomedicine and Biotechnology, University of Coimbra, Coimbra, 3004-504, Portugal.
- Institute of Interdisciplinary Research, University of Coimbra, Coimbra, 3030-789, Portugal.
| |
Collapse
|
5
|
Duan Q, Liu R, Luo JQ, Zhang JY, Zhou Y, Zhao J, Du JZ. Virus-Inspired Glucose and Polydopamine (GPDA)-Coating as an Effective Strategy for the Construction of Brain Delivery Platforms. NANO LETTERS 2024; 24:402-410. [PMID: 38153842 DOI: 10.1021/acs.nanolett.3c04175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2023]
Abstract
The ability of drugs to cross the blood-brain barrier (BBB) is crucial for treating central nervous system (CNS) disorders. Inspired by natural viruses, here we report a glucose and polydopamine (GPDA) coating method for the construction of delivery platforms for efficient BBB crossing. Such platforms are composed of nanoparticles (NPs) as the inner core and surface functionalized with glucose-poly(ethylene glycol) (Glu-PEG) and polydopamine (PDA) coating. Glu-PEG provides selective targeting of the NPs to brain capillary endothelial cells (BCECs), while PDA enhances the transcytosis of the NPs. This strategy is applicable to gold NPs (AuNPs), silica, and polymeric NPs, which achieves as high as 1.87% of the injected dose/g of brain in healthy brain tissues. In addition, the GPDA coating manages to deliver NPs into the tumor tissue in the orthotopic glioblastoma model. Our study may provide a universal strategy for the construction of delivery platforms for efficient BBB crossing and brain drug delivery.
Collapse
Affiliation(s)
- Qijia Duan
- School of Medicine, South China University of Technology, Guangzhou 510006, China
| | - Rong Liu
- School of Medicine, South China University of Technology, Guangzhou 510006, China
| | - Jia-Qi Luo
- School of Medicine, South China University of Technology, Guangzhou 510006, China
| | - Jing-Yang Zhang
- School of Biomedical Sciences and Engineering, Guangzhou International Campus, South China University of Technology, Guangzhou 511442, China
| | - Yubo Zhou
- School of Materials Science and Engineering, South China University of Technology, Guangzhou 510640, China
| | - Junpeng Zhao
- School of Materials Science and Engineering, South China University of Technology, Guangzhou 510640, China
| | - Jin-Zhi Du
- School of Medicine, South China University of Technology, Guangzhou 510006, China
- National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou 510006, China
- Key Laboratory of Biomedical Materials and Engineering of the Ministry of Education, and Guangdong Provincial Key Laboratory of Biomedical Engineering, South China University of Technology, Guangzhou 510006, China
- Innovation Centre of Ministry of Education for Development and Diseases, School of Medicine, South China University of Technology, Guangzhou 510006, China
| |
Collapse
|
6
|
Fatima J, Siddique YH. Application of Nanocomposites and Nanoparticles in Treating Neurodegenerative Disorders. CNS & NEUROLOGICAL DISORDERS DRUG TARGETS 2024; 23:1217-1233. [PMID: 38288843 DOI: 10.2174/0118715273283338240104112106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 12/02/2023] [Accepted: 12/12/2023] [Indexed: 08/28/2024]
Abstract
Neurodegenerative diseases represent a formidable global health challenge, affecting millions and imposing substantial burdens on healthcare systems worldwide. Conditions, like Alzheimer's, Parkinson's, and Huntington's diseases, among others, share common characteristics, such as neuronal loss, misfolded protein aggregation, and nervous system dysfunction. One of the major obstacles in treating these diseases is the presence of the blood-brain barrier, limiting the delivery of therapeutic agents to the central nervous system. Nanotechnology offers promising solutions to overcome these challenges. In Alzheimer's disease, NPs loaded with various compounds have shown remarkable promise in preventing amyloid-beta (Aβ) aggregation and reducing neurotoxicity. Parkinson's disease benefits from improved dopamine delivery and neuroprotection. Huntington's disease poses its own set of challenges, but nanotechnology continues to offer innovative solutions. The promising developments in nanoparticle-based interventions for neurodegenerative diseases, like amyotrophic lateral sclerosis (ALS) and multiple sclerosis (MS), have offered new avenues for effective treatment. Nanotechnology represents a promising frontier in biomedical research, offering tailored solutions to the complex challenges posed by neurodegenerative diseases. While much progress has been made, ongoing research is essential to optimize nanomaterial designs, improve targeting, and ensure biocompatibility and safety. Nanomaterials possess unique properties that make them excellent candidates for targeted drug delivery and neuroprotection. They can effectively bypass the blood-brain barrier, opening doors to precise drug delivery strategies. This review explores the extensive research on nanoparticles (NPs) and nanocomposites in diagnosing and treating neurodegenerative disorders. These nanomaterials exhibit exceptional abilities to target neurodegenerative processes and halt disease progression.
Collapse
Affiliation(s)
- Javeria Fatima
- Laboratory of Alternative Animal Models, Section of Genetics, Department of Zoology, Faculty of Life Sciences, Aligarh Muslim University, Aligarh, 202002, Uttar Pradesh, India
| | - Yasir Hasan Siddique
- Laboratory of Alternative Animal Models, Section of Genetics, Department of Zoology, Faculty of Life Sciences, Aligarh Muslim University, Aligarh, 202002, Uttar Pradesh, India
| |
Collapse
|
7
|
Singh YP, Kumar N, Chauhan BS, Garg P. Carbamate as a potential anti-Alzheimer's pharmacophore: A review. Drug Dev Res 2023; 84:1624-1651. [PMID: 37694498 DOI: 10.1002/ddr.22113] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 08/20/2023] [Accepted: 08/30/2023] [Indexed: 09/12/2023]
Abstract
Alzheimer's disease (AD) is a progressive age-related neurodegenerative brain disorder, which leads to loss of memory and other cognitive dysfunction. The underlying mechanisms of AD pathogenesis are very complex and still not fully explored. Cholinergic neuronal loss, accumulation of amyloid plaque, metal ions dyshomeostasis, tau hyperphosphorylation, oxidative stress, neuroinflammation, and mitochondrial dysfunction are major hallmarks of AD. The current treatment options for AD are acetylcholinesterase inhibitors (donepezil, rivastigmine, and galantamine) and NMDA receptor antagonists (memantine). These FDA-approved drugs mainly provide symptomatic relief without addressing the pathological aspects of disease progression. So, there is an urgent need for novel drug development that not only addresses the basic mechanisms of the disease but also shows the neuroprotective property. Various research groups across the globe are working on the development of multifunctional agents for AD amelioration using different core scaffolds for their design, and carbamate is among them. Rivastigmine was the first carbamate drug investigated for AD management. The carbamate fragment, a core scaffold of rivastigmine, act as a potential inhibitor of acetylcholinesterase. In this review, we summarize the last 10 years of research conducted on the modification of carbamate with different substituents which primarily target ChE inhibition, reduce oxidative stress, and modulate Aβ aggregation.
Collapse
Affiliation(s)
- Yash Pal Singh
- Department of Medicinal Chemistry, Virginia Commonwealth University, Richmond, Virginia, USA
| | - Navneet Kumar
- Department of Pharmacoinformatics, National Institute of Pharmaceutical Education and Research (NIPER), S.A.S. Nagar, Punjab, India
| | | | - Prabha Garg
- Department of Pharmacoinformatics, National Institute of Pharmaceutical Education and Research (NIPER), S.A.S. Nagar, Punjab, India
| |
Collapse
|
8
|
Babazadeh A, Rayner SL, Lee A, Chung RS. TDP-43 as a therapeutic target in neurodegenerative diseases: Focusing on motor neuron disease and frontotemporal dementia. Ageing Res Rev 2023; 92:102085. [PMID: 37813308 DOI: 10.1016/j.arr.2023.102085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 10/04/2023] [Accepted: 10/06/2023] [Indexed: 10/11/2023]
Abstract
A common feature of adult-onset neurodegenerative diseases is the presence of characteristic pathological accumulations of specific proteins. These pathological protein depositions can vary in their protein composition, cell-type distribution, and intracellular (or extracellular) location. For example, abnormal cytoplasmic protein deposits which consist of the TDP-43 protein are found within motor neurons in patients with amyotrophic lateral sclerosis (ALS, a common form of motor neuron disease) and frontotemporal dementia (FTD). The presence of these insoluble intracellular TDP-43 inclusions suggests that restoring TDP-43 homeostasis represents a potential therapeutical strategy, which has been demonstrated in alleviating neurodegenerative symptoms in cell and animal models of ALS/FTD. We have reviewed the mechanisms that lead to disrupted TDP-43 homeostasis and discussed how small molecule-based therapies could be applied in modulating these mechanisms. This review covers recent advancements and challenges in small molecule-based therapies that could be used to clear pathological forms of TDP-43 through various protein homeostasis mechanisms and advance the way towards finding effective therapeutical drug discoveries for neurodegenerative diseases characterized by TDP-43 proteinopathies, especially ALS and FTD. We also consider the wider insight of these therapeutic strategies for other neurodegenerative diseases.
Collapse
Affiliation(s)
- Afshin Babazadeh
- Centre for Motor Neuron Disease Research, Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, NSW 2109, Australia.
| | - Stephanie L Rayner
- Centre for Motor Neuron Disease Research, Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, NSW 2109, Australia.
| | - Albert Lee
- Centre for Motor Neuron Disease Research, Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, NSW 2109, Australia.
| | - Roger S Chung
- Centre for Motor Neuron Disease Research, Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, NSW 2109, Australia.
| |
Collapse
|
9
|
Puranik N, Yadav D, Song M. Advancements in the Application of Nanomedicine in Alzheimer's Disease: A Therapeutic Perspective. Int J Mol Sci 2023; 24:14044. [PMID: 37762346 PMCID: PMC10530821 DOI: 10.3390/ijms241814044] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 09/11/2023] [Accepted: 09/11/2023] [Indexed: 09/29/2023] Open
Abstract
Alzheimer's disease (AD) is a progressive neurodegenerative disease that affects most people worldwide. AD is a complex central nervous system disorder. Several drugs have been designed to cure AD, but with low success rates. Because the blood-brain and blood-cerebrospinal fluid barriers are two barriers that protect the central nervous system, their presence has severely restricted the efficacy of many treatments that have been studied for AD diagnosis and/or therapy. The use of nanoparticles for the diagnosis and treatment of AD is the focus of an established and rapidly developing field of nanomedicine. Recent developments in nanomedicine have made it possible to effectively transport drugs to the brain. However, numerous obstacles remain to the successful use of nanomedicines in clinical settings for AD treatment. Furthermore, given the rapid advancement in nanomedicine therapeutics, better outcomes for patients with AD can be anticipated. This article provides an overview of recent developments in nanomedicine using different types of nanoparticles for the management and treatment of AD.
Collapse
Affiliation(s)
| | | | - Minseok Song
- Department of Life Sciences, Yeungnam University, Gyeongsan 38541, Republic of Korea; (N.P.); (D.Y.)
| |
Collapse
|
10
|
Hernando S, Santos-Vizcaíno E, Igartua M, Hernandez RM. Targeting the central nervous system: From synthetic nanoparticles to extracellular vesicles-Focus on Alzheimer's and Parkinson's disease. WILEY INTERDISCIPLINARY REVIEWS. NANOMEDICINE AND NANOBIOTECHNOLOGY 2023; 15:e1898. [PMID: 37157144 DOI: 10.1002/wnan.1898] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 03/14/2023] [Accepted: 04/12/2023] [Indexed: 05/10/2023]
Abstract
Neurodegenerative diseases (NDs) such as Alzheimer's disease (AD) and Parkinson's disease (PD) are an accelerating global health problem as life expectancy rises worldwide. Despite their significant burden in public health systems to date, the existing treatments only manage the symptoms without slowing down disease progression. Thus, the ongoing neurodegenerative process remains untreated. Moreover, the stronghold of the brain-the blood-brain barrier (BBB)-prevents drug penetrance and dwindles effective treatments. In the last years, nanotechnology-based drug delivery systems (DDS) have become a promising approach to target and treat these disorders related to the central nervous system (CNS). PLGA based nanoparticles (NPs) were the first employed DDS for effective drug delivery. However, the poor drug loading capacity and localized immunogenicity prompted the scientific community to move to another DDS such as lipid-based NPs. Despite the lipid NPs' safety and effectiveness, their off-target accumulation together with the denominated CARPA (complement activation-related pseudo allergy) reaction has limited their complete clinical translation. Recently, biological NPs naturally secreted by cells, termed as extracellular vesicles (EVs) have emerged as promising more complex biocompatible DDS. In addition, EVs act as dual players in NDs treatment, as a "cell free" therapy themselves, as well as new biological NPs with numerous characteristics that qualify them as promising carriers over synthetic DDS. The present review aims to display advantages, drawbacks, current limitations and future prospective of the previously cited synthetic and biological DDS to enter the brain and treat one of 21st century most challenging diseases, NDs. This article is categorized under: Therapeutic Approaches and Drug Discovery > Nanomedicine for Neurological Disease.
Collapse
Affiliation(s)
- Sara Hernando
- NanoBioCel Research Group, Laboratory of Pharmaceutics, School of Pharmacy, University of the Basque Country (UPV/EHU), Vitoria Gasteiz, Spain
- CIBER-BBN, ISCIII, Madrid, Spain
- Bioaraba, NanoBioCel Research Group, Vitoria Gasteiz, Spain
| | - Edorta Santos-Vizcaíno
- NanoBioCel Research Group, Laboratory of Pharmaceutics, School of Pharmacy, University of the Basque Country (UPV/EHU), Vitoria Gasteiz, Spain
- CIBER-BBN, ISCIII, Madrid, Spain
- Bioaraba, NanoBioCel Research Group, Vitoria Gasteiz, Spain
| | - Manoli Igartua
- NanoBioCel Research Group, Laboratory of Pharmaceutics, School of Pharmacy, University of the Basque Country (UPV/EHU), Vitoria Gasteiz, Spain
- CIBER-BBN, ISCIII, Madrid, Spain
- Bioaraba, NanoBioCel Research Group, Vitoria Gasteiz, Spain
| | - Rosa Maria Hernandez
- NanoBioCel Research Group, Laboratory of Pharmaceutics, School of Pharmacy, University of the Basque Country (UPV/EHU), Vitoria Gasteiz, Spain
- CIBER-BBN, ISCIII, Madrid, Spain
- Bioaraba, NanoBioCel Research Group, Vitoria Gasteiz, Spain
| |
Collapse
|
11
|
Chen Y, Lu H, Ding Y, Liu S, Ding Y, Lu B, Xiao J, Zhou X. Dietary Protective Potential of Fucoxanthin as an Active Food Component on Neurological Disorders. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:3599-3619. [PMID: 36802555 DOI: 10.1021/acs.jafc.2c08249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
The prevalence of neurodegenerative, cerebrovascular, and psychiatric diseases and other neurological disorders has increased dramatically worldwide. Fucoxanthin is an algal pigment with many biological functions, and there is rising evidence that fucoxanthin plays a preventive and therapeutic role in neurological disorders. This review focuses on the metabolism, bioavailability, and blood-brain barrier penetration of fucoxanthin. Furthermore, the neuroprotective potential of fucoxanthin in neurodegenerative diseases, cerebrovascular diseases, and psychiatric diseases as well as other neurological disorders such as epilepsy, neuropathic pain, and brain tumors by acting on multiple targets will be summarized. The multiple targets include regulating apoptosis, reducing oxidative stress, activating the autophagy pathway, inhibiting Aβ aggregation, improving dopamine secretion, reducing α-synuclein aggregation, attenuating neuroinflammation, modulating gut microbiota, and activating brain-derived neurotrophic factor, etc. Additionally, we look forward to brain-targeted oral transport systems due to the low bioavailability and blood-brain barrier permeability of fucoxanthin. We also propose exploring the systemic mechanisms of fucoxanthin metabolism and transport through the gut-brain process and envision new therapeutic targets for fucoxanthin to act on the central nervous system. Finally, we propose dietary fucoxanthin delivery interventions to achieve preventive effects on neurological disorders. This review provides a reference for the application of fucoxanthin in the neural field.
Collapse
Affiliation(s)
- Yufeng Chen
- College of Food Science and Technology, Key Laboratory of Marine Fishery Resources Exploitment & Utilization of Zhejiang Province, National R&D Branch Center for Pelagic Aquatic Products Processing, Zhejiang University of Technology, Hangzhou 310014, China
- Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian 116034, China
| | - Hao Lu
- College of Food Science and Technology, Key Laboratory of Marine Fishery Resources Exploitment & Utilization of Zhejiang Province, National R&D Branch Center for Pelagic Aquatic Products Processing, Zhejiang University of Technology, Hangzhou 310014, China
- Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian 116034, China
| | - Yicheng Ding
- College of Food Science and Technology, Key Laboratory of Marine Fishery Resources Exploitment & Utilization of Zhejiang Province, National R&D Branch Center for Pelagic Aquatic Products Processing, Zhejiang University of Technology, Hangzhou 310014, China
- Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian 116034, China
| | - Shulai Liu
- College of Food Science and Technology, Key Laboratory of Marine Fishery Resources Exploitment & Utilization of Zhejiang Province, National R&D Branch Center for Pelagic Aquatic Products Processing, Zhejiang University of Technology, Hangzhou 310014, China
- Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian 116034, China
| | - Yuting Ding
- College of Food Science and Technology, Key Laboratory of Marine Fishery Resources Exploitment & Utilization of Zhejiang Province, National R&D Branch Center for Pelagic Aquatic Products Processing, Zhejiang University of Technology, Hangzhou 310014, China
- Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian 116034, China
| | - Baiyi Lu
- College of Biosystems Engineering and Food Science, Key Laboratory for Agro-Products Nutritional Evaluation of Ministry of Agriculture and Rural Affairs, Zhejiang University, Hangzhou 310058, China
| | - Jianbo Xiao
- Nutrition and Bromatology Group, Department of Analytical Chemistry and Food Science, Faculty of Food Science and Technology, University of Vigo-Ourense Campus, E-32004 Ourense, Spain
| | - Xuxia Zhou
- College of Food Science and Technology, Key Laboratory of Marine Fishery Resources Exploitment & Utilization of Zhejiang Province, National R&D Branch Center for Pelagic Aquatic Products Processing, Zhejiang University of Technology, Hangzhou 310014, China
- Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian 116034, China
| |
Collapse
|
12
|
Babazadeh A, Vahed FM, Liu Q, Siddiqui SA, Kharazmi MS, Jafari SM. Natural Bioactive Molecules as Neuromedicines for the Treatment/Prevention of Neurodegenerative Diseases. ACS OMEGA 2023; 8:3667-3683. [PMID: 36743024 PMCID: PMC9893457 DOI: 10.1021/acsomega.2c06098] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Accepted: 12/29/2022] [Indexed: 06/18/2023]
Abstract
The brain is vulnerable to different types of stresses, particularly oxidative stress as a result of oxygen requirements/utilization in the body. Large amounts of unsaturated fatty acids present in the brain increase this vulnerability. Neurodegenerative diseases (NDDs) are brain disorders that are characterized by the gradual loss of specific neurons and are attributed to broad evidence of cell-level oxidative stress. The accurate characterization of neurological disorders relies on several parameters along with genetics and environmental risk factors, making therapies less efficient to fight NDDs. On the way to tackle oxidative damage and discover efficient and safe therapies, bioactives are at the edge of NDD science. Naturally occurring bioactive compounds such as polyphenols, carotenoids, essential fatty acids, phytosterols, essential oils, etc. are particularly of interest owing to their potent antioxidant and anti-inflammatory activities, and they offer lots of brain-health-promoting features. This Review focuses on probing the neuroefficacy and bioefficacy of bioactives and their role in supporting relatively low antioxidative and low regenerative capacities of the brain, neurogenesis, neuroprotection, and ameliorating/treating NDDs.
Collapse
Affiliation(s)
- Afshin Babazadeh
- Center
for Motor Neuron Disease Research, Macquarie Medical School, Faculty
of Medicine, Health and Human Sciences, Macquarie University, Sydney, New South Wales 2109, Australia
| | - Fereshteh Mohammadi Vahed
- Center
for Motor Neuron Disease Research, Macquarie Medical School, Faculty
of Medicine, Health and Human Sciences, Macquarie University, Sydney, New South Wales 2109, Australia
| | - Qi Liu
- Institute
of Translational Medicine, Medical College, Yangzhou University, Yangzhou 225009, China
- Jiangsu
Key Laboratory of Integrated Traditional Chinese and Western Medicine
for Prevention and Treatment of Senile Diseases, Yangzhou University, Yangzhou 225009, China
| | - Shahida Anusha Siddiqui
- Technical
University of Munich Campus Straubing for Biotechnology and Sustainability, Essigberg 3, 94315 Straubing, Germany
- German
Institute of Food Technologies (DIL e.V.), Prof.-von-Klitzing-Straße 7, 49610 D Quakenbrück, Germany
| | | | - Seid Mahdi Jafari
- Department
of Food Materials and Process Design Engineering, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan 4913815739, Iran
- Nutrition
and Bromatology Group, Department of Analytical Chemistry and Food
Science, Faculty of Science, Universidade
de Vigo, E-32004 Ourense, Spain
- College
of Food Science and Technology, Hebei Agricultural
University, Baoding 071001, China
| |
Collapse
|
13
|
Cheng G, Li Z, Liu Y, Ma R, Chen X, Liu W, Song Y, Zhang Y, Yu G, Wu Z, Chen T. "Swiss Army Knife" black phosphorus-based nanodelivery platform for synergistic antiparkinsonian therapy via remodeling the brain microenvironment. J Control Release 2023; 353:752-766. [PMID: 36526020 DOI: 10.1016/j.jconrel.2022.12.024] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 11/22/2022] [Accepted: 12/10/2022] [Indexed: 12/23/2022]
Abstract
The combination of excessive reactive oxygen species (ROS) levels, neuroinflammation, and pathogenic protein aggregation disrupt the homeostasis of brain microenvironment, creating conditions conducive to the progression of Parkinson's disease (PD). Restoring homeostasis by remodeling the brain microenvironment could reverse this complex pathological progression. However, treatment strategies that can induce this effect are currently unavailable. Herein, we developed a "Swiss Army Knife" nanodelivery platform consisting of matrine (MT) and polyethylene glycol-modified black phosphorus nanosheets (BP) that enables PD treatment by restoring brain microenvironment homeostasis. Under NIR irradiation, the photothermal effect induced by BP allowed the nanomedicine to cross the blood-brain barrier (BBB) and entered the brain parenchyma. In PD brains, the biological effects of BP and MT resulted in the removal of excess ROS, effective reduction of neuroinflammation, decreased aggregation of pathogenic proteins, and improved neurotransmitter delivery, eventually restoring dopamine levels in the striatum. This study demonstrated the effective capacity of a BP-based nanodelivery platform to enter the brain parenchyma and trigger multiple neuropathological changes in PD brains. The platform serves as a safe and effective anti-PD nanomedicine with immense clinical potential.
Collapse
Affiliation(s)
- Guowang Cheng
- Key Laboratory of Modern Preparation of Traditional Chinese Medicine, Ministry of Education, Jiangxi University of Chinese Medicine, Nanchang 330004, China
| | - Zhongjun Li
- Department of Neurosurgery & Shenzhen Key Laboratory of Neurosurgery, The First Affiliated Hospital of Shenzhen University/Shenzhen Second People's Hospital, Shenzhen University, Shenzhen 518035, China
| | - Yujing Liu
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou 510405, China
| | - Rui Ma
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou 510405, China
| | - Xiaojia Chen
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau 999078, China
| | - Wen Liu
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau 999078, China
| | - Yafang Song
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou 510405, China
| | - Yuan Zhang
- Department of Neurosurgery & Shenzhen Key Laboratory of Neurosurgery, The First Affiliated Hospital of Shenzhen University/Shenzhen Second People's Hospital, Shenzhen University, Shenzhen 518035, China.
| | - Guangtao Yu
- Stomatological Hospital, Southern Medical University, Guangzhou 510280, China.
| | - Zhenfeng Wu
- Key Laboratory of Modern Preparation of Traditional Chinese Medicine, Ministry of Education, Jiangxi University of Chinese Medicine, Nanchang 330004, China.
| | - Tongkai Chen
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou 510405, China.
| |
Collapse
|
14
|
Dai W, Zhao M, Chen C, Zhou C, Wang P, Yang Z, Gao S, Lu Y, Zhang J, Liu X. Nano C60 Promotes Synaptic Distribution of Phosphorylated CaMKIIα and Improves Cognitive Function in APP/PS1 Transgenic Mice. ACS Chem Neurosci 2022; 13:3534-3543. [PMID: 36441865 DOI: 10.1021/acschemneuro.2c00569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
The wide disparity in outcomes of Alzheimer's disease (AD) treatment from preclinical to clinical studies suggests an urgent need for more effective therapeutic targets and approaches to treat AD. CaMKII is a potential target for AD therapy; however, conflicting reports on the relationship between CaMKII and AD suggest a lack of deeper understanding of the interaction between CaMKII and AD. In addition to the lack of effective therapeutic targets, pharmacokinetic limitations of neuroprotective drugs, such as low lipophilicity to cross blood brain barrier, need to be urgently addressed in the practice of AD therapy. In this study, we prepared a carbon-based nanoparticle, Nano C60, and demonstrated that Nano C60 treatment promoted the translocation of phosphorylated CaMKIIα from the cytoplasm to the synapse in Aβ42 oligomers-treated cells and APP/PS1 mice. As a result, Nano C60 administration significantly improved spatial learning and memory in APP/PS1 mice. Our study suggests that synaptic-activated CaMKII may be more important than total CaMKII in AD treatment and provides a new strategy for AD therapy.
Collapse
Affiliation(s)
- Wei Dai
- Department of Anesthesiology, the First Affiliated Hospital of Anhui Medical University, Key Laboratory of Anesthesiology and Perioperative Medicine of Anhui Higher Education Institutes, Anhui Medical University, Hefei 230000, China
| | - Mingxu Zhao
- Department of Anesthesiology, the First Affiliated Hospital of Anhui Medical University, Key Laboratory of Anesthesiology and Perioperative Medicine of Anhui Higher Education Institutes, Anhui Medical University, Hefei 230000, China
| | - Caiyun Chen
- Department of Anesthesiology, the First Affiliated Hospital of Anhui Medical University, Key Laboratory of Anesthesiology and Perioperative Medicine of Anhui Higher Education Institutes, Anhui Medical University, Hefei 230000, China
| | - Chang Zhou
- Department of Anesthesiology, the First Affiliated Hospital of Anhui Medical University, Key Laboratory of Anesthesiology and Perioperative Medicine of Anhui Higher Education Institutes, Anhui Medical University, Hefei 230000, China
| | - Peng Wang
- Department of Anesthesiology, the First Affiliated Hospital of Anhui Medical University, Key Laboratory of Anesthesiology and Perioperative Medicine of Anhui Higher Education Institutes, Anhui Medical University, Hefei 230000, China
| | - Zhilai Yang
- Department of Anesthesiology, the First Affiliated Hospital of Anhui Medical University, Key Laboratory of Anesthesiology and Perioperative Medicine of Anhui Higher Education Institutes, Anhui Medical University, Hefei 230000, China
| | - Shan Gao
- Department of Pharmacology, Basic Medical College, Anhui Medical University, Hefei 230000, China
| | - Yao Lu
- Department of Anesthesiology, the First Affiliated Hospital of Anhui Medical University, Key Laboratory of Anesthesiology and Perioperative Medicine of Anhui Higher Education Institutes, Anhui Medical University, Hefei 230000, China
| | - Jiqian Zhang
- Department of Anesthesiology, the First Affiliated Hospital of Anhui Medical University, Key Laboratory of Anesthesiology and Perioperative Medicine of Anhui Higher Education Institutes, Anhui Medical University, Hefei 230000, China
| | - Xuesheng Liu
- Department of Anesthesiology, the First Affiliated Hospital of Anhui Medical University, Key Laboratory of Anesthesiology and Perioperative Medicine of Anhui Higher Education Institutes, Anhui Medical University, Hefei 230000, China
| |
Collapse
|
15
|
Hou Q, Wang L, Xiao F, Wang L, Liu X, Zhu L, Lu Y, Zheng W, Jiang X. Dual targeting nanoparticles for epilepsy therapy. Chem Sci 2022; 13:12913-12920. [PMID: 36519053 PMCID: PMC9645397 DOI: 10.1039/d2sc03298h] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Accepted: 10/19/2022] [Indexed: 12/07/2024] Open
Abstract
For epilepsy therapy, one-third of the patients worldwide are resistant to antiepileptic drugs mainly due to the existence of the blood-brain barrier (BBB) that prevents the drugs from reaching the epileptic lesions. Here, we design a double targeting nanoparticle carrying lamotrigine (LTG) to cross the BBB and further concentrate at the neurons. We prepare the nanoparticles on a microfluidic chip by encapsulating LTG in poly(lactic-co-glycolic acid) (PLGA) to form a core (PL) and capping the core with a shell of lipids conjugated with the D-T7 peptide (targeting the BBB) and Tet1 peptide (targeting the neuron) to form D-T7/Tet1-lipids@PL nanoparticles (NPs). In vitro and in vivo experiments show that D-T7/Tet1-lipids@PL NPs have excellent neuron targeting, antiepileptic, and protecting effects. Our approach provides a new strategy for improving the therapeutic efficacy of existing antiepileptic drugs.
Collapse
Affiliation(s)
- Qinghong Hou
- Shenzhen Key Laboratory of Smart Healthcare Engineering, Guangdong Provincial Key Laboratory of Advanced Biomaterials, Department of Biomedical Engineering, Southern University of Science and Technology Shenzhen 518055 P. R. China
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology Beijing 100190 P. R. China
- Department of Chemistry, School of Science, Tianjin University Tianjin 300350 P. R. China
| | - Lulu Wang
- CAS Key Laboratory of Brain Connectome and Manipulation, the Brain Cognition and Brain Disease Institute, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions Shenzhen 518055 P. R. China
| | - Feng Xiao
- Shenzhen Key Laboratory of Smart Healthcare Engineering, Guangdong Provincial Key Laboratory of Advanced Biomaterials, Department of Biomedical Engineering, Southern University of Science and Technology Shenzhen 518055 P. R. China
| | - Le Wang
- Shenzhen Key Laboratory of Smart Healthcare Engineering, Guangdong Provincial Key Laboratory of Advanced Biomaterials, Department of Biomedical Engineering, Southern University of Science and Technology Shenzhen 518055 P. R. China
| | - Xiaoyan Liu
- Shenzhen Key Laboratory of Smart Healthcare Engineering, Guangdong Provincial Key Laboratory of Advanced Biomaterials, Department of Biomedical Engineering, Southern University of Science and Technology Shenzhen 518055 P. R. China
| | - Lina Zhu
- Department of Chemistry, School of Science, Tianjin University Tianjin 300350 P. R. China
| | - Yi Lu
- CAS Key Laboratory of Brain Connectome and Manipulation, the Brain Cognition and Brain Disease Institute, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions Shenzhen 518055 P. R. China
| | - Wenfu Zheng
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology Beijing 100190 P. R. China
| | - Xingyu Jiang
- Shenzhen Key Laboratory of Smart Healthcare Engineering, Guangdong Provincial Key Laboratory of Advanced Biomaterials, Department of Biomedical Engineering, Southern University of Science and Technology Shenzhen 518055 P. R. China
| |
Collapse
|
16
|
Bahadur S, Jha MK. Emerging nanoformulations for drug targeting to brain through intranasal delivery: A comprehensive review. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2022.103932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
17
|
Díaz-García D, Ferrer-Donato Á, Méndez-Arriaga JM, Cabrera-Pinto M, Díaz-Sánchez M, Prashar S, Fernandez-Martos CM, Gómez-Ruiz S. Design of Mesoporous Silica Nanoparticles for the Treatment of Amyotrophic Lateral Sclerosis (ALS) with a Therapeutic Cocktail Based on Leptin and Pioglitazone. ACS Biomater Sci Eng 2022; 8:4838-4849. [PMID: 36240025 PMCID: PMC9667463 DOI: 10.1021/acsbiomaterials.2c00865] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
![]()
Amyotrophic lateral sclerosis (ALS) is a devasting neurodegenerative
disease with no cure to date. Therapeutic agents used to treat ALS
are very limited, although combined therapies may offer a more effective
treatment strategy. Herein, we have studied the potential of nanomedicine
to prepare a single platform based on mesoporous silica nanoparticles
(MSNs) for the treatment of an ALS animal model with a cocktail of
agents such as leptin (neuroprotective) and pioglitazone (anti-inflammatory),
which have already demonstrated promising therapeutic ability in other
neurodegenerative diseases. Our goal is to study the potential of
functionalized mesoporous materials as therapeutic agents against
ALS using MSNs as nanocarriers for the proposed drug cocktail leptin/pioglitazone
(MSN-LEP-PIO). The nanostructured materials have been
characterized by different techniques, which confirmed the incorporation
of both agents in the nanosystem. Subsequently, the effect, in vivo, of the proposed drug cocktail, MSN-LEP-PIO, was used in the murine model of TDP-43 proteinopathy (TDP-43A315T mice). Body weight loss was studied, and using the rotarod
test, motor performance was assessed, observing a continuous reduction
in body weight and motor coordination in TDP-43A315T mice
and wild-type (WT) mice. Nevertheless, the disease progression was
slower and showed significant improvements in motor performance, indicating
that TDP-43A315T mice treated with MSN-LEP-PIO seem to have less energy demand in the late stage of the symptoms
of ALS. Collectively, these results seem to indicate the efficiency
of the systems in vivo and the usefulness of their
use in neurodegenerative models, including ALS.
Collapse
Affiliation(s)
- Diana Díaz-García
- COMET-NANO Group, Departamento de Biología y Geología, Física y Química Inorgánica, E.S.C.E.T., Universidad Rey Juan Carlos, Calle Tulipán s/n, E-28933 Móstoles, Madrid, Spain
| | - Águeda Ferrer-Donato
- Neurometabolism Group, Research Unit of the National Hospital of Paraplegics (UDI-HNP), Finca La Peraleda s/n, 45071 Toledo, Spain
| | - José M Méndez-Arriaga
- COMET-NANO Group, Departamento de Biología y Geología, Física y Química Inorgánica, E.S.C.E.T., Universidad Rey Juan Carlos, Calle Tulipán s/n, E-28933 Móstoles, Madrid, Spain
| | - Marta Cabrera-Pinto
- Neurometabolism Group, Research Unit of the National Hospital of Paraplegics (UDI-HNP), Finca La Peraleda s/n, 45071 Toledo, Spain
| | - Miguel Díaz-Sánchez
- COMET-NANO Group, Departamento de Biología y Geología, Física y Química Inorgánica, E.S.C.E.T., Universidad Rey Juan Carlos, Calle Tulipán s/n, E-28933 Móstoles, Madrid, Spain
| | - Sanjiv Prashar
- COMET-NANO Group, Departamento de Biología y Geología, Física y Química Inorgánica, E.S.C.E.T., Universidad Rey Juan Carlos, Calle Tulipán s/n, E-28933 Móstoles, Madrid, Spain
| | - Carmen M Fernandez-Martos
- Neurometabolism Group, Research Unit of the National Hospital of Paraplegics (UDI-HNP), Finca La Peraleda s/n, 45071 Toledo, Spain.,Wicking Dementia Research and Education Centre, College of Health and Medicine, University of Tasmania, Hobart, Tasmania 7005, Australia
| | - Santiago Gómez-Ruiz
- COMET-NANO Group, Departamento de Biología y Geología, Física y Química Inorgánica, E.S.C.E.T., Universidad Rey Juan Carlos, Calle Tulipán s/n, E-28933 Móstoles, Madrid, Spain
| |
Collapse
|
18
|
McCarthy B, O’Neill G, Abu-Ghannam N. Potential Psychoactive Effects of Microalgal Bioactive Compounds for the Case of Sleep and Mood Regulation: Opportunities and Challenges. Mar Drugs 2022; 20:493. [PMID: 36005495 PMCID: PMC9410000 DOI: 10.3390/md20080493] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 07/22/2022] [Accepted: 07/26/2022] [Indexed: 01/25/2023] Open
Abstract
Sleep deficiency is now considered an emerging global epidemic associated with many serious health problems, and a major cause of financial and social burdens. Sleep and mental health are closely connected, further exacerbating the negative impact of sleep deficiency on overall health and well-being. A major drawback of conventional treatments is the wide range of undesirable side-effects typically associated with benzodiazepines and antidepressants, which can be more debilitating than the initial disorder. It is therefore valuable to explore the efficiency of other remedies for complementarity and synergism with existing conventional treatments, leading to possible reduction in undesirable side-effects. This review explores the relevance of microalgae bioactives as a sustainable source of valuable phytochemicals that can contribute positively to mood and sleep disorders. Microalgae species producing these compounds are also catalogued, thus creating a useful reference of the state of the art for further exploration of this proposed approach. While we highlight possibilities awaiting investigation, we also identify the associated issues, including minimum dose for therapeutic effect, bioavailability, possible interactions with conventional treatments and the ability to cross the blood brain barrier. We conclude that physical and biological functionalization of microalgae bioactives can have potential in overcoming some of these challenges.
Collapse
Affiliation(s)
- Bozena McCarthy
- Environmental Sustainability & Health Institute (ESHI), Technological University Dublin, Grangegorman, D07 H6K8 Dublin 7, Ireland; (B.M.); (G.O.)
| | - Graham O’Neill
- Environmental Sustainability & Health Institute (ESHI), Technological University Dublin, Grangegorman, D07 H6K8 Dublin 7, Ireland; (B.M.); (G.O.)
- School of Food Science and Environmental Health, College of Sciences and Health, Technological University Dublin, Grangegorman, D07 H6K8 Dublin 7, Ireland
| | - Nissreen Abu-Ghannam
- Environmental Sustainability & Health Institute (ESHI), Technological University Dublin, Grangegorman, D07 H6K8 Dublin 7, Ireland; (B.M.); (G.O.)
- School of Food Science and Environmental Health, College of Sciences and Health, Technological University Dublin, Grangegorman, D07 H6K8 Dublin 7, Ireland
| |
Collapse
|
19
|
Chopra H, Bibi S, Singh I, Kamal MA, Islam F, Alhumaydhi FA, Emran TB, Cavalu S. Nanomedicines in the Management of Alzheimer's Disease: Current View and Future Prospects. Front Aging Neurosci 2022; 14:879114. [PMID: 35875806 PMCID: PMC9304964 DOI: 10.3389/fnagi.2022.879114] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Accepted: 06/17/2022] [Indexed: 12/27/2022] Open
Abstract
Alzheimer's disease (AD) is a kind of dementia that creates serious challenges for sufferers' memory, thinking, and behavior. It commonly targeting the aging population and decay the brain cells, despite attempts have been performed to enhance AD diagnostic and therapeutic techniques. Hence, AD remains incurable owing to its complex and multifactorial consequences and still there is lack of appropriate diagnostics/therapeutics option for this severe brain disorder. Therefore, nanotechnology is currently bringing new tools and insights to improve the previous knowledge of AD and ultimately may provide a novel treatment option and a ray of hope to AD patients. Here in this review, we highlighted the nanotechnologies-based findings for AD, in both diagnostic and therapeutic aspects and explained how advances in the field of nanotechnology/nanomedicine could enhance patient prognosis and quality of life. It is highly expected these emerging technologies could bring a research-based revolution in the field of neurodegenerative disorders and may assist their clinical experiments and develop an efficacious drug for AD also. The main aim of review is to showcase readers the recent advances in nanotechnology-based approaches for treatment and diagnosing of AD.
Collapse
Affiliation(s)
- Hitesh Chopra
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| | - Shabana Bibi
- Department of Biosciences, Shifa Tameer-e-Millat University, Islamabad, Pakistan
- Yunnan Herbal Laboratory, College of Ecology and Environmental Sciences, Yunnan University, Kunming, China
| | - Inderbir Singh
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| | - Mohammad Amjad Kamal
- Institutes for Systems Genetics, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, China
- King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka, Bangladesh
- Enzymoics, Novel Global Community Educational Foundation, Hebersham, NSW, Australia
| | - Fahadul Islam
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka, Bangladesh
| | - Fahad A. Alhumaydhi
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah, Saudi Arabia
| | - Talha Bin Emran
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka, Bangladesh
- Department of Pharmacy, BGC Trust University Bangladesh, Chittagong, Bangladesh
| | - Simona Cavalu
- Faculty of Medicine and Pharmacy, University of Oradea, Oradea, Romania
| |
Collapse
|
20
|
Wu Y, Rakotoarisoa M, Angelov B, Deng Y, Angelova A. Self-Assembled Nanoscale Materials for Neuronal Regeneration: A Focus on BDNF Protein and Nucleic Acid Biotherapeutic Delivery. NANOMATERIALS 2022; 12:nano12132267. [PMID: 35808102 PMCID: PMC9268293 DOI: 10.3390/nano12132267] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 06/26/2022] [Accepted: 06/27/2022] [Indexed: 02/04/2023]
Abstract
Enabling challenging applications of nanomedicine and precision medicine in the treatment of neurodegenerative disorders requires deeper investigations of nanocarrier-mediated biomolecular delivery for neuronal targeting and recovery. The successful use of macromolecular biotherapeutics (recombinant growth factors, antibodies, enzymes, synthetic peptides, cell-penetrating peptide–drug conjugates, and RNAi sequences) in clinical developments for neuronal regeneration should benefit from the recent strategies for enhancement of their bioavailability. We highlight the advances in the development of nanoscale materials for drug delivery in neurodegenerative disorders. The emphasis is placed on nanoformulations for the delivery of brain-derived neurotrophic factor (BDNF) using different types of lipidic nanocarriers (liposomes, liquid crystalline or solid lipid nanoparticles) and polymer-based scaffolds, nanofibers and hydrogels. Self-assembled soft-matter nanoscale materials show favorable neuroprotective characteristics, safety, and efficacy profiles in drug delivery to the central and peripheral nervous systems. The advances summarized here indicate that neuroprotective biomolecule-loaded nanoparticles and injectable hydrogels can improve neuronal survival and reduce tissue injury. Certain recently reported neuronal dysfunctions in long-COVID-19 survivors represent early manifestations of neurodegenerative pathologies. Therefore, BDNF delivery systems may also help in prospective studies on recovery from long-term COVID-19 neurological complications and be considered as promising systems for personalized treatment of neuronal dysfunctions and prevention or retarding of neurodegenerative disorders.
Collapse
Affiliation(s)
- Yu Wu
- CNRS, Institut Galien Paris-Saclay, Université Paris-Saclay, F-92290 Châtenay-Malabry, France; (Y.W.); (M.R.)
| | - Miora Rakotoarisoa
- CNRS, Institut Galien Paris-Saclay, Université Paris-Saclay, F-92290 Châtenay-Malabry, France; (Y.W.); (M.R.)
| | - Borislav Angelov
- Institute of Physics, ELI Beamlines, Academy of Sciences of the Czech Republic, Na Slovance 2, CZ-18221 Prague, Czech Republic;
| | - Yuru Deng
- Wenzhou Institute, University of Chinese Academy of Sciences, No. 1, Jinlian Road, Longwan District, Wenzhou 325001, China;
| | - Angelina Angelova
- CNRS, Institut Galien Paris-Saclay, Université Paris-Saclay, F-92290 Châtenay-Malabry, France; (Y.W.); (M.R.)
- Correspondence:
| |
Collapse
|
21
|
Jan Z, Mollazadeh S, Abnous K, Taghdisi SM, Danesh A, Ramezani M, Alibolandi M. Targeted Delivery Platforms for the Treatment of Multiple Sclerosis. Mol Pharm 2022; 19:1952-1976. [PMID: 35501974 DOI: 10.1021/acs.molpharmaceut.1c00892] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Multiple sclerosis (MS) is a neurodegenerative condition of the central nervous system (CNS) that presents with varying levels of disability in patients, displaying the significance of timely and effective management of this complication. Though several treatments have been developed to protect nerves, comprehensive improvement of MS is still considered an essential bottleneck. Therefore, the development of innovative treatment methods for MS is one of the core research areas. In this regard, nanoscale platforms can offer practical and ideal approaches to the diagnosis and treatment of various diseases, especially immunological disorders such as MS, to improve the effectiveness of conventional therapies. It should be noted that there is significant progress in the development of neuroprotective strategies through the implementation of various nanoparticles, monoclonal antibodies, peptides, and aptamers. In this study, we summarize different particle systems as well as targeted therapies, such as antibodies, peptides, nucleic acids, and engineered cells for the treatment of MS, and discuss their potential in the treatment of MS in the preclinical and clinical stages. Future advances in targeted delivery of medical supplies may offer new strategies for complete recovery as well as practical treatment of progressive forms of MS.
Collapse
Affiliation(s)
- Zeinab Jan
- Department of Pharmaceutical Biotechnology, School of Pharmacy, Mashhad University of Medical Science, 7GJP+VPQ Mashhad, Iran
| | - Samaneh Mollazadeh
- Natural Products and Medicinal Plants Research Center, North Khorasan University of Medical Sciences, F82C+G8V Bojnurd, Iran
| | - Khalil Abnous
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, 7GJP+VPQ Mashhad, Iran
| | - Seyed Mohammad Taghdisi
- Targeted Drug Delivery Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, 7GJP+VPQ Mashhad, Iran
| | - Abolghasem Danesh
- Department of Pharmaceutical Biotechnology, School of Pharmacy, Mashhad University of Medical Science, 7GJP+VPQ Mashhad, Iran
| | - Mohammad Ramezani
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, 7GJP+VPQ Mashhad, Iran
| | - Mona Alibolandi
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, 7GJP+VPQ Mashhad, Iran
| |
Collapse
|
22
|
Abstract
Pentamidine (PTM), which is a diamine that is widely known for its antimicrobial activity, is a very interesting drug whose mechanism of action is not fully understood. In recent years, PTM has been proposed as a novel potential drug candidate for the treatment of mental illnesses, myotonic dystrophy, diabetes, and tumors. Nevertheless, the systemic administration of PTM causes severe side effects, especially nephrotoxicity. In order to efficiently deliver PTM and reduce its side effects, several nanosystems that take advantage of the chemical characteristics of PTM, such as the presence of two positively charged amidine groups at physiological pH, have been proposed as useful delivery tools. Polymeric, lipidic, inorganic, and other types of nanocarriers have been reported in the literature for PTM delivery, and they are all in different development phases. The available approaches for the design of PTM nanoparticulate delivery systems are reported in this review, with a particular emphasis on formulation strategies and in vitro/in vivo applications. Furthermore, a critical view of the future developments of nanomedicine for PTM applications, based on recent repurposing studies, is provided. Created with BioRender.com.
Collapse
|
23
|
Fakhri S, Abdian S, Zarneshan SN, Moradi SZ, Farzaei MH, Abdollahi M. Nanoparticles in Combating Neuronal Dysregulated Signaling Pathways: Recent Approaches to the Nanoformulations of Phytochemicals and Synthetic Drugs Against Neurodegenerative Diseases. Int J Nanomedicine 2022; 17:299-331. [PMID: 35095273 PMCID: PMC8791303 DOI: 10.2147/ijn.s347187] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Accepted: 12/24/2021] [Indexed: 12/12/2022] Open
Abstract
As the worldwide average life expectancy has grown, the prevalence of age-related neurodegenerative diseases (NDDs) has risen dramatically. A progressive loss of neuronal function characterizes NDDs, usually followed by neuronal death. Inflammation, apoptosis, oxidative stress, and protein misfolding are critical dysregulated signaling pathways that mainly orchestrate neuronal damage from a mechanistic point. Furthermore, in afflicted families with genetic anomalies, mutations and multiplications of α-synuclein and amyloid-related genes produce some kinds of NDDs. Overproduction of such proteins, and their excessive aggregation, have been proven in various models of neuronal malfunction and death. In this line, providing multi-target therapies carried by novel delivery systems would pave the road to control NDDs through simultaneous modulation of such dysregulated pathways. Phytochemicals are multi-target therapeutic agents, which employ several mechanisms towards neuroprotection. Besides, the blood-brain barrier (BBB) is a critical issue in managing NDDs since it inhibits the accessibility of drugs to the brain in sufficient concentration. Besides, discovering novel delivery systems is vital to improving the efficacy, bioavailability, and pharmacokinetic of therapeutic agents. Such novel formulations are also employed to improve the drug's biodistribution, allow for the co-delivery of several medicines, and offer targeted intracellular delivery against NDDs. The present review proposes nanoformulations of phytochemicals and synthetic agents to combat NDDs by modulating neuroinflammation, neuroapoptosis, neuronal oxidative stress pathways and protein misfolding.
Collapse
Affiliation(s)
- Sajad Fakhri
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Sadaf Abdian
- Student Research Committee, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | | | - Seyed Zachariah Moradi
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
- Medical Biology Research Center, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Mohammad Hosein Farzaei
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Mohammad Abdollahi
- Toxicology and Diseases Group, Pharmaceutical Sciences Research Center (PSRC), The Institute of Pharmaceutical Sciences (TIPS), Tehran University of Medical Sciences, Tehran, Iran
- Department of Toxicology and Pharmacology, School of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
24
|
Shanmugam H, Rengarajan C, Nataraj S, Sharma A. Interactions of plant food bioactives‐loaded nano delivery systems at the nano‐bio interface and its pharmacokinetics: An overview. FOOD FRONTIERS 2022. [DOI: 10.1002/fft2.130] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Affiliation(s)
- Haripriya Shanmugam
- Department of Nano Science and Technology Tamil Nadu Agricultural University Tamil Nadu India
| | - Chitra Rengarajan
- Department of Nano Science and Technology Tamil Nadu Agricultural University Tamil Nadu India
| | - Swathika Nataraj
- Department of Nano Science and Technology Tamil Nadu Agricultural University Tamil Nadu India
| | - Aashima Sharma
- Department of Chemistry Panjab University Chandigarh India
| |
Collapse
|
25
|
Zhang F, Wen L, Wang K, Huang Z, Jin X, Xiong R, He S, Hu F. Effect of axitinib regulating the pathological blood-brain barrier functional recovery for glioblastoma therapeutics. CNS Neurosci Ther 2021; 28:411-421. [PMID: 34967104 PMCID: PMC8841308 DOI: 10.1111/cns.13788] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2021] [Revised: 11/11/2021] [Accepted: 12/01/2021] [Indexed: 11/01/2022] Open
Abstract
AIMS Dysfunction of the blood-brain barrier (BBB) is a prominent pathological feature of glioblastoma (GBM). Vascular endothelial growth factor (VEGF) is confirmed to be abnormally elevated in the pathogenesis of GBM, causing BBB pathological disruption, which further allows the leakage of neurotoxic blood-derived molecules into the central nervous system (CNS), interfering brain homeostasis and leading to poor patient outcome. Since BBB is an integral and pivotal part of the brain microenvironment, which strongly supports the occurrence and the pathological progression of GBM, here we have selected the VEGFR antagonist axitinib as a BBB functional regulator and hypothesized to regulate pathological BBB restoration for GBM effective treatment. METHODS The pathological BBB cell model was constructed to investigate the timeliness and dose effect of axitinib regulating pathological BBB restoration. In order to investigate the efficacy and safety of axitinib regulating pathological BBB restoration for anti-GBM treatment, the orthotropic GBM-bearing mice model was established for in vivo study, and bioluminescent imaging was used to real-time and noninvasively monitor tumor growth response in vivo, and survival time was also recorded. RESULTS Axitinib under non-cytotoxic dosage regulated pathological BBB restoration in a time-dependent mode, and multiple intervention of axitinib could realize a visible restoration of pathological BBB in vitro. Moreover, axitinib treatment restored pathological BBB in orthotropic GBM-bearing mice. We further confirmed that functional restoration of pathological BBB with axitinib had certain curative effect in prolonging median survival of orthotropic GBM-bearing mice at non-cytotoxic dosages in vivo. CONCLUSION The mechanism of axitinib involved in BBB functional regulation in the treatment of GBM is first illuminated in this report; moreover, this is the first report first referring to regulating pathological BBB functional recovery for GBM effective therapeutics. Overall, the view of regulating pathological BBB functional recovery may offer a novel sight for other CNS diseases relating to BBB permeability effective therapeutics.
Collapse
Affiliation(s)
- Fengtian Zhang
- Medical College of Soochow University, 199 Renai Road, Suzhou Industrial Park, Suzhou, China.,Department of Orthopedics, First Affiliated Hospital of Gannan Medical University, Ganzhou, China
| | - Lijuan Wen
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China.,National Engineering Research Center for Modernization of Tranditional Chinese Medicine-Hakka Medical Resources Branch, College of Pharmacy, Gannan Medical University, Ganzhou, China
| | - Kai Wang
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Zhihua Huang
- Department of Physiology, School of Basic Medical Sciences, Institute for Medical Sciences of Pain, Gannan Medical University, Ganzhou, China.,Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases of Ministry of Education, Gannan Medical University, Ganzhou, China
| | - Xiangyu Jin
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Ruiwen Xiong
- National Engineering Research Center for Modernization of Tranditional Chinese Medicine-Hakka Medical Resources Branch, College of Pharmacy, Gannan Medical University, Ganzhou, China
| | - Shiying He
- National Engineering Research Center for Modernization of Tranditional Chinese Medicine-Hakka Medical Resources Branch, College of Pharmacy, Gannan Medical University, Ganzhou, China
| | - Fuqiang Hu
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| |
Collapse
|
26
|
Kokošová V, Filip P, Kec D, Baláž M. Bidirectional Association Between Sleep and Brain Atrophy in Aging. Front Aging Neurosci 2021; 13:726662. [PMID: 34955805 PMCID: PMC8693777 DOI: 10.3389/fnagi.2021.726662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Accepted: 10/29/2021] [Indexed: 11/23/2022] Open
Abstract
Human brain aging is characterized by the gradual deterioration of its function and structure, affected by the interplay of a multitude of causal factors. The sleep, a periodically repeating state of reversible unconsciousness characterized by distinct electrical brain activity, is crucial for maintaining brain homeostasis. Indeed, insufficient sleep was associated with accelerated brain atrophy and impaired brain functional connectivity. Concurrently, alteration of sleep-related transient electrical events in senescence was correlated with structural and functional deterioration of brain regions responsible for their generation, implying the interconnectedness of sleep and brain structure. This review discusses currently available data on the link between human brain aging and sleep derived from various neuroimaging and neurophysiological methods. We advocate the notion of a mutual relationship between the sleep structure and age-related alterations of functional and structural brain integrity, pointing out the position of high-quality sleep as a potent preventive factor of early brain aging and neurodegeneration. However, further studies are needed to reveal the causality of the relationship between sleep and brain aging.
Collapse
Affiliation(s)
- Viktória Kokošová
- Department of Neurology, Faculty of Medicine, University Hospital Brno and Masaryk University, Brno, Czechia
| | - Pavel Filip
- Department of Neurology, First Faculty of Medicine, General University Hospital Prague and Charles University, Prague, Czechia.,Center for Magnetic Resonance Research (CMRR), University of Minnesota, Minneapolis, MN, United States
| | - David Kec
- Department of Neurology, Faculty of Medicine, University Hospital Brno and Masaryk University, Brno, Czechia
| | - Marek Baláž
- First Department of Neurology, Faculty of Medicine, University Hospital of St. Anne and Masaryk University, Brno, Czechia
| |
Collapse
|
27
|
Nehra M, Uthappa UT, Kumar V, Kumar R, Dixit C, Dilbaghi N, Mishra YK, Kumar S, Kaushik A. Nanobiotechnology-assisted therapies to manage brain cancer in personalized manner. J Control Release 2021; 338:224-243. [PMID: 34418523 DOI: 10.1016/j.jconrel.2021.08.027] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 08/14/2021] [Accepted: 08/16/2021] [Indexed: 12/24/2022]
Abstract
There are numerous investigated factors that limit brain cancer treatment efficacy such as ability of prescribed therapy to cross the blood-brain barrier (BBB), tumor specific delivery of a therapeutics, transport within brain interstitium, and resistance of tumor cells against therapies. Recent breakthroughs in the field of nano-biotechnology associated with developing multifunctional nano-theranostic emerged as an effective way to manage brain cancer in terms of higher efficacy and least possible adverse effects. Keeping challenges and state-of-art accomplishments into consideration, this review proposes a comprehensive, careful, and critical discussion focused on efficient nano-enabled platforms including nanocarriers for drug delivery across the BBB and nano-assisted therapies (e.g., nano-immunotherapy, nano-stem cell therapy, and nano-gene therapy) investigated for brain cancer treatment. Besides therapeutic efficacy point-of-view, efforts are being made to explore ways projected to tune such developed nano-therapeutic for treating patients in personalized manner via controlling size, drug loading, delivery, and retention. Personalized brain tumor management based on advanced nano-therapies can potentially lead to excellent therapeutic benefits based on unique genetic signatures in patients and their individual disease profile. Moreover, applicability of nano-systems as stimulants to manage the brain cancer growth factors has also been discussed in photodynamic therapy and radiotherapy. Overall, this review offers a comprehensive information on emerging opportunities in nanotechnology for advancing the brain cancer treatment.
Collapse
Affiliation(s)
- Monika Nehra
- Department of Bio and Nano Technology, Guru Jambheshwar University of Science and Technology, Hisar, Haryana 125001, India; Department of Mechanical Engineering, University Institute of Engineering and Technology, Panjab University, Chandigarh 160014, India
| | - U T Uthappa
- Department of Environment and Energy Engineering, Chonnam National University, 77 Yongbong-ro, Buk-gu, Gwangju 61186, Republic of Korea; Centre for Nano and Material Sciences, Jain University, Jain Global Campus, Bengaluru 562112, Karnataka, India
| | - Virendra Kumar
- Department of Bio and Nano Technology, Guru Jambheshwar University of Science and Technology, Hisar, Haryana 125001, India
| | - Rajesh Kumar
- Department of Mechanical Engineering, University Institute of Engineering and Technology, Panjab University, Chandigarh 160014, India
| | - Chandra Dixit
- Department of Chemistry, University of Connecticut, Storrs, CT, USA
| | - Neeraj Dilbaghi
- Department of Bio and Nano Technology, Guru Jambheshwar University of Science and Technology, Hisar, Haryana 125001, India
| | - Yogendra Kumar Mishra
- Smart Materials, NanoSYD, Mads Clausen Institute, University of Southern Denmark, Alsion 2, 6400, Sønderborg, Denmark
| | - Sandeep Kumar
- Department of Bio and Nano Technology, Guru Jambheshwar University of Science and Technology, Hisar, Haryana 125001, India.
| | - Ajeet Kaushik
- NanoBioTech Laboratory, Health Systems Engineering, Department of Environmental Engineering, Florida Polytechnic University, Lakeland, FL 33805-8531, United States.
| |
Collapse
|
28
|
Li D, Yang Y, Li D, Pan J, Chu C, Liu G. Organic Sonosensitizers for Sonodynamic Therapy: From Small Molecules and Nanoparticles toward Clinical Development. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 17:e2101976. [PMID: 34350690 DOI: 10.1002/smll.202101976] [Citation(s) in RCA: 93] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2021] [Revised: 05/17/2021] [Indexed: 06/13/2023]
Abstract
Sonodynamic therapy (SDT) is a novel noninvasive therapeutic modality that combines low-intensity ultrasound and sonosensitizers. Versus photo-mediated therapy, SDT has the advantages of deeper tissue penetration, high accuracy, and less side effects. Sonosensitizers are critical for therapeutic efficacy during SDT and organic sonosensitizers are important because of their clear structure, easy monitoring, evaluation of drug metabolism, and clinical transformation. Notably, nanotechnology can be used in the field of sonosensitizers and SDT to overcome the inherent obstacles and achieve sustainable innovation. This review introduces organic small molecule sonosensitizers, nano organic sonosensitizers, and their clinical translation by providing ideas and references for the design of sonosensitizers and SDT so as to promote its transformation to clinical applications in the future.
Collapse
Affiliation(s)
- Dong Li
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics & Center for Molecular Imaging and Translational Medicine School of Public Health, Xiamen University, Xiamen, 361102, China
| | - Yang Yang
- Department of Cardiovascular, Xiang'an Hospital of Xiamen University, Xiamen, 361102, China
| | - Dengfeng Li
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics & Center for Molecular Imaging and Translational Medicine School of Public Health, Xiamen University, Xiamen, 361102, China
| | - Jie Pan
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics & Center for Molecular Imaging and Translational Medicine School of Public Health, Xiamen University, Xiamen, 361102, China
| | - Chengchao Chu
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics & Center for Molecular Imaging and Translational Medicine School of Public Health, Xiamen University, Xiamen, 361102, China
- Eye Institute of Xiamen University, Fujian Provincial Key Laboratory of Ophthalmology and Visual Science, Engineering Research Center of Eye Regenerative Medicine, School of Medicine, Xiamen University, Xiamen, 361102, China
| | - Gang Liu
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics & Center for Molecular Imaging and Translational Medicine School of Public Health, Xiamen University, Xiamen, 361102, China
| |
Collapse
|
29
|
Low LE, Wang Q, Chen Y, Lin P, Yang S, Gong L, Lee J, Siva SP, Goh BH, Li F, Ling D. Microenvironment-tailored nanoassemblies for the diagnosis and therapy of neurodegenerative diseases. NANOSCALE 2021; 13:10197-10238. [PMID: 34027535 DOI: 10.1039/d1nr02127c] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Neurodegenerative disorder is an illness involving neural dysfunction/death attributed to complex pathological processes, which eventually lead to the mortality of the host. It is generally recognized through features such as mitochondrial dysfunction, protein aggregation, oxidative stress, metal ions dyshomeostasis, membrane potential change, neuroinflammation and neurotransmitter impairment. The aforementioned neuronal dysregulations result in the formation of a complex neurodegenerative microenvironment (NME), and may interact with each other, hindering the performance of therapeutics for neurodegenerative disease (ND). Recently, smart nanoassemblies prepared from functional nanoparticles, which possess the ability to interfere with different NME factors, have shown great promise to enhance the diagnostic and therapeutic efficacy of NDs. Herein, this review highlights the recent advances of stimuli-responsive nanoassemblies that can effectively combat the NME for the management of ND. The first section outlined the NME properties and their interrelations that are exploitable for nanoscale targeting. The discussion is then extended to the controlled assembly of functional nanoparticles for the construction of stimuli-responsive nanoassemblies. Further, the applications of stimuli-responsive nanoassemblies for the enhanced diagnosis and therapy of ND are introduced. Finally, perspectives on the future development of NME-tailored nanomedicines are given.
Collapse
Affiliation(s)
- Liang Ee Low
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, P. R. China. and Biofunctional Molecule Exploratory (BMEX) Research Group, School of Pharmacy, Monash University Malaysia, 47500 Bandar Sunway, Selangor Darul Ehsan, Malaysia
| | - Qiyue Wang
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, P. R. China. and Hangzhou Institute of Innovative Medicine, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, P. R. China
| | - Ying Chen
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, P. R. China. and Hangzhou Institute of Innovative Medicine, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, P. R. China
| | - Peihua Lin
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, P. R. China. and Hangzhou Institute of Innovative Medicine, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, P. R. China
| | - Shengfei Yang
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, P. R. China. and Hangzhou Institute of Innovative Medicine, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, P. R. China
| | - Linji Gong
- National Center for Translational Medicine, Frontiers Science Center for Transformative Molecules, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| | - Jiyoung Lee
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, P. R. China.
| | - Sangeetaprivya P Siva
- Chemical Engineering Discipline, School of Engineering, Monash University Malaysia, 47500 Bandar Sunway, Selangor Darul Ehsan, Malaysia
| | - Bey-Hing Goh
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, P. R. China. and Biofunctional Molecule Exploratory (BMEX) Research Group, School of Pharmacy, Monash University Malaysia, 47500 Bandar Sunway, Selangor Darul Ehsan, Malaysia
| | - Fangyuan Li
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, P. R. China. and Hangzhou Institute of Innovative Medicine, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, P. R. China
| | - Daishun Ling
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, P. R. China. and Hangzhou Institute of Innovative Medicine, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, P. R. China and National Center for Translational Medicine, Frontiers Science Center for Transformative Molecules, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, P. R. China and Key Laboratory of Biomedical Engineering of the Ministry of Education, College of Biomedical Engineering & Instrument Science, Zhejiang University, Hangzhou, 310027, P. R. China
| |
Collapse
|
30
|
Rostamabadi H, Falsafi SR, Rostamabadi MM, Assadpour E, Jafari SM. Electrospraying as a novel process for the synthesis of particles/nanoparticles loaded with poorly water-soluble bioactive molecules. Adv Colloid Interface Sci 2021; 290:102384. [PMID: 33706198 DOI: 10.1016/j.cis.2021.102384] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Revised: 02/17/2021] [Accepted: 02/18/2021] [Indexed: 12/21/2022]
Abstract
Hydrophobicity and low aqueous-solubility of different drugs/nutraceuticals remain a persistent challenge for their development and clinical/food applications. A range of nanotechnology strategies have been implemented to address this issue, and amongst which a particular emphasis has been made on those that afford an improved biological performance and tunable release kinetic of bioactives through a one-step process. More recently, the technique of electrospraying (or electrohydrodynamic atomization) has attained notable impulse in virtue of its potential to tune attributes of nano/micro-structured particles (e.g., porosity, particle size, etc.), rendering a near zero-order release kinetics, diminished burst release manner, as well as its simplicity, reproducibility, and applicability to a broad spectrum of hydrophobic and poorly water-soluble bioactives. Controlled morphology or monodispersity of designed particles could be properly obtained via electrospraying, with a high encapsulation efficiency and without unfavorable denaturation of thermosensitive bioactives upon encapsulation. This paper overviews the recent technological advances in electrospraying for the encapsulation of low queues-soluble bioactive agents. State-of-the-art, advantages, applications, and challenges for its implementation in pharmaceutical/food researches are also discussed.
Collapse
Affiliation(s)
- Hadis Rostamabadi
- Faculty of Food Science and Technology, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran.
| | - Seid Reza Falsafi
- Faculty of Food Science and Technology, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran
| | - Mohammad Mahdi Rostamabadi
- Department of Food Science and Technology, College of Agriculture, Isfahan University of Technology, Isfahan 84156-83111, Iran
| | - Elham Assadpour
- Faculty of Food Science and Technology, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran
| | - Seid Mahdi Jafari
- Faculty of Food Science and Technology, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran.
| |
Collapse
|
31
|
Iqubal A, Iqubal MK, Fazal SA, Pottoo FH, Haque SE. Nutraceuticals and their Derived Nano-formulations for the Prevention and Treatment of Alzheimer's disease. Curr Mol Pharmacol 2021; 15:23-50. [PMID: 33687906 DOI: 10.2174/1874467214666210309115605] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 11/22/2020] [Accepted: 12/02/2020] [Indexed: 11/22/2022]
Abstract
Alzheimer's disease is one of the common chronic neurological disorders and associated with cognitive dysfunction, depression and progressive dementia. Presence of β-amyloid or senile plaques, hyper-phosphorylated tau proteins, neurofibrillary tangle, oxidative-nitrative stress, mitochondrial dysfunction, endoplasmic reticulum stress, neuroinflammation and derailed neurotransmitter status are the hallmark of AD. Currently, donepezil, memantine, rivastigmine and galantamine are approved by the FDA for symptomatic management. It is well-known that these approved drugs only exert symptomatic relief and possess poor patient-compliance. Additionally, various published evidence shows the neuroprotective potential of various nutraceuticals via their antioxidant, anti-inflammatory and anti-apoptotic effects in the preclinical and clinical studies. These nutraceuticals possess a significant neuroprotective potential and hence, can be a future pharmacotherapeutic for the management and treatment of AD. However, nutraceutical suffers from certain major limitations such as poor solubility, low bioavailability, low stability, fast hepatic-metabolism and larger particle size. These pharmacokinetic attributes restrict their entry into the brain via the blood-brain barrier. Therefore, to over such issues, various nanoformulation of nutraceuticals was developed, that allows their effective delivery into brain owning to reduced particle size, increased lipophilicity increased bioavailability and avoidance of fast hepatic metabolism. Thus, in this review, we have discussed the etiology of AD, focused on the pharmacotherapeutics of nutraceuticals with preclinical and clinical evidence, discussed pharmaceutical limitation and regulatory aspects of nutraceuticals to ensure safety and efficacy. We further explored the latitude of various nanoformulation of nutraceuticals as a novel approach to overcome the existing pharmaceutical limitation and for effective delivery into the brain.
Collapse
Affiliation(s)
- Ashif Iqubal
- Department of Pharmacology, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi-110062. India
| | - Mohammad Kashif Iqubal
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi-110062. India
| | - Syed Abul Fazal
- Department of Pharmacology, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi-110062. India
| | - Faheem Hyder Pottoo
- Department of Pharmacology, College of Clinical Pharmacy, Imam Abdulrahman Bin Faisal, University, P.O.BOX 1982, Damman, 31441. Saudi Arabia
| | - Syed Ehtaishamul Haque
- Department of Pharmacology, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi-110062. India
| |
Collapse
|
32
|
Zhou Z, Sun T, Jiang C. Recent advances on drug delivery nanocarriers for cerebral disorders. Biomed Mater 2021; 16:024104. [PMID: 33455956 DOI: 10.1088/1748-605x/abdc97] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Pharmacotherapies for brain disorders are generally faced with obstacles from the blood-brain barrier (BBB). There are a variety of drug delivery systems that have been put forward to cross or bypass the BBB with the access to the central nervous system. Brain drug delivery systems have benefited greatly from the development of nanocarriers, including lipids, polymers and inorganic materials. Consequently, various kinds of brain drug delivery nano-systems have been established, such as liposomes, polymeric nanoparticles (PNPs), nanomicelles, nanohydrogels, dendrimers, mesoporous silica nanoparticles and magnetic iron oxide nanoparticles. The characteristics of their carriers and preparations usually differ from each other, as well as their transportation mechanisms into intracerebral lesions. In this review, different types of brain drug delivery nanocarriers are classified and summarized, especially their significant achievements, to present several recommendations and directions for future strategies of cerebral delivery.
Collapse
Affiliation(s)
- Zheng Zhou
- Key Laboratory of Smart Drug Delivery (Ministry of Education), State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Department of Pharmaceutics, School of Pharmacy, Fudan University, Shanghai 201203, People's Republic of China
| | | | | |
Collapse
|
33
|
Opportunities and challenges for the nanodelivery of green tea catechins in functional foods. Food Res Int 2021; 142:110186. [PMID: 33773663 DOI: 10.1016/j.foodres.2021.110186] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 01/20/2021] [Accepted: 01/24/2021] [Indexed: 12/12/2022]
Abstract
Green tea, the least processed tea product, is scientifically known for its rich antioxidant content originating from polyphenols, especially catechins. The most potent green tea catechin is epigallocatechin-3-gallate (EGCG), which is responsible for a wide range of health benefits including anticancer, antidiabetics, and anti-inflammatory properties. However, green tea catechins (GTCs) are very labile under both environmental and gastrointestinal conditions; their chemical stability and bioavailability primarily depend on the processing and formulation conditions. Nanocarriers can protect GTCs against such conditions, and consequently, can be applicable for designing nanodelivery systems suitable for GTCs. In this review, the latest findings about both opportunities and limitations for the nanodelivery of GTCs and their incorporation into various functional food products are discussed. The scientific findings so far confirm that nanodelivery of GTCs can be an efficient approach towards the enhancement of their health-promoting effects with a minimal dose, controlled and targeted release, lessening the dose-related toxicity, and the efficient incorporation into functional foods. However, further investigation is yet needed to fully explain the cellular mechanisms of action of GTCs on human health and to elucidate the effect of encapsulation on their bioefficacy using well-designed, systematic, long-term, and large-scale clinical interventions. There also exists a substantial concern regarding the safety of the manufactured nanoparticles, their absorption, and the associated release mechanisms.
Collapse
|
34
|
Se Thoe E, Fauzi A, Tang YQ, Chamyuang S, Chia AYY. A review on advances of treatment modalities for Alzheimer's disease. Life Sci 2021; 276:119129. [PMID: 33515559 DOI: 10.1016/j.lfs.2021.119129] [Citation(s) in RCA: 89] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 01/10/2021] [Accepted: 01/19/2021] [Indexed: 12/15/2022]
Abstract
Alzheimer's disease (AD) is a multifactorial neurodegenerative disease which is mainly characterized by progressive impairment in cognition, emotion, language and memory in older population. Considering the impact of AD, formulations of pharmaceutical drugs and cholinesterase inhibitors have been widely propagated, receiving endorsement by FDA as a form of AD treatment. However, these medications were gradually discovered to be ineffective in removing the root of AD pathogenesis but merely targeting the symptoms so as to improve a patient's cognitive outcome. Hence, a search for better disease-modifying alternatives is put into motion. Having a clear understanding of the neuroprotective mechanisms and diverse properties undertaken by specific genes, antibodies and nanoparticles is central towards designing novel therapeutic agents. In this review, we provide a brief introduction on the background of Alzheimer's disease, the biology of blood-brain barrier, along with the potentials and drawbacks associated with current therapeutic treatment avenues pertaining to gene therapy, immunotherapy and nanotherapy for better diagnosis and management of Alzheimer's disease.
Collapse
Affiliation(s)
- Ewen Se Thoe
- School of Biosciences, Faculty of Health & Medical Sciences, Taylor's University, 47500 Selangor, Malaysia
| | - Ayesha Fauzi
- School of Biosciences, Faculty of Health & Medical Sciences, Taylor's University, 47500 Selangor, Malaysia
| | - Yin Quan Tang
- School of Biosciences, Faculty of Health & Medical Sciences, Taylor's University, 47500 Selangor, Malaysia
| | - Sunita Chamyuang
- School of Science, Mae Fah Luang University, Chaing Rai 57100, Thailand; Microbial Products and Innovation Research Group, Mae Fah Luang University, Chaing Rai 57100, Thailand
| | - Adeline Yoke Yin Chia
- School of Biosciences, Faculty of Health & Medical Sciences, Taylor's University, 47500 Selangor, Malaysia.
| |
Collapse
|
35
|
Micro- to Nanoscale Bio-Hybrid Hydrogels Engineered by Ionizing Radiation. Biomolecules 2020; 11:biom11010047. [PMID: 33396401 PMCID: PMC7824687 DOI: 10.3390/biom11010047] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 12/26/2020] [Accepted: 12/28/2020] [Indexed: 02/06/2023] Open
Abstract
Bio-hybrid hydrogels consist of a water-swollen hydrophilic polymer network encapsulating or conjugating single biomolecules, or larger and more complex biological constructs like whole cells. By modulating at least one dimension of the hydrogel system at the micro- or nanoscale, the activity of the biological component can be extremely upgraded with clear advantages for the development of therapeutic or diagnostic micro- and nano-devices. Gamma or e-beam irradiation of polymers allow a good control of the chemistry at the micro-/nanoscale with minimal recourse to toxic reactants and solvents. Another potential advantage is to obtain simultaneous sterilization when the absorbed doses are within the sterilization dose range. This short review will highlight opportunities and challenges of the radiation technologies to produce bio-hybrid nanogels as delivery devices of therapeutic biomolecules to the target cells, tissues, and organs, and to create hydrogel patterns at the nano-length and micro-length scales on surfaces.
Collapse
|
36
|
Rostamabadi H, Falsafi SR, Assadpour E, Jafari SM. Evaluating the structural properties of bioactive‐loaded nanocarriers with modern analytical tools. Compr Rev Food Sci Food Saf 2020; 19:3266-3322. [DOI: 10.1111/1541-4337.12653] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Revised: 08/27/2020] [Accepted: 09/21/2020] [Indexed: 12/12/2022]
Affiliation(s)
- Hadis Rostamabadi
- Faculty of Food Science and Technology Gorgan University of Agricultural Sciences and Natural Resources Gorgan Iran
| | - Seid Reza Falsafi
- Faculty of Food Science and Technology Gorgan University of Agricultural Sciences and Natural Resources Gorgan Iran
| | - Elham Assadpour
- Faculty of Food Science and Technology Gorgan University of Agricultural Sciences and Natural Resources Gorgan Iran
| | - Seid Mahdi Jafari
- Faculty of Food Science and Technology Gorgan University of Agricultural Sciences and Natural Resources Gorgan Iran
| |
Collapse
|
37
|
Jalali-Jivan M, Garavand F, Jafari SM. Microemulsions as nano-reactors for the solubilization, separation, purification and encapsulation of bioactive compounds. Adv Colloid Interface Sci 2020; 283:102227. [PMID: 32781299 DOI: 10.1016/j.cis.2020.102227] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2020] [Revised: 07/28/2020] [Accepted: 07/28/2020] [Indexed: 02/06/2023]
Abstract
Bioactive components possess various functionalities and are most interested for different food, nutraceutical and pharmaceutical formulations. The current review will discuss the preparation methods and fabrication techniques to design microemulsions (MEs) for the solubilization, separation, encapsulation and purification of various agro-food bioactive compounds. ME systems have shown suitable potential in enhancing oil recovery, protein extraction, and isolation of bioactive compounds. Moreover, the capability of ME based systems as drug and nutraceutical delivery cargos, and synthesis of various organic and inorganic nanoparticles, especially using biopolymers, will be investigated. ME liquid membranes are also developed as nano-extractor/nano-reactor vehicles, capable of simultaneous extraction, encapsulation or even synthesis of hydrophilic and lipophilic bioactive compounds for food, nutraceutical and drug applications.
Collapse
Affiliation(s)
- Mehdi Jalali-Jivan
- Food Colloids and Rheology Lab, Department of Food Science and Technology, Faculty of Agriculture, Tarbiat Modares University, Tehran, Iran
| | - Farhad Garavand
- Department of Food Chemistry and Technology, Teagasc Food Research Centre, Moorepark, Fermoy, Co. Cork, Ireland
| | - Seid Mahdi Jafari
- Department of Food Materials and Process Design Engineering, Gorgan University of Agricultural Science and Natural Resources, Gorgan, Iran.
| |
Collapse
|
38
|
Yang G, Wu P, Yu C, Zhang J, Song J. Facile Engineering of Anti‐Inflammatory Nanotherapies by Host‐Guest Self‐Assembly. ChemistrySelect 2020. [DOI: 10.1002/slct.202001590] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Guoyu Yang
- College of Stomatology Chongqing Key Laboratory of Oral Diseases and Biomedical SciencesChongqing Medical University 426 Songshibei Road Chongqing 401147 China
| | - Peng Wu
- Department of Pharmaceutics College of PharmacyThird Military Medical University (Army Medical University) 30 Gaotanyan Main Street Chongqing 400038 China
| | - Cong Yu
- College of Stomatology Chongqing Key Laboratory of Oral Diseases and Biomedical SciencesChongqing Medical University 426 Songshibei Road Chongqing 401147 China
| | - Jianxiang Zhang
- Department of Pharmaceutics College of PharmacyThird Military Medical University (Army Medical University) 30 Gaotanyan Main Street Chongqing 400038 China
| | - Jinlin Song
- College of Stomatology Chongqing Key Laboratory of Oral Diseases and Biomedical SciencesChongqing Medical University 426 Songshibei Road Chongqing 401147 China
| |
Collapse
|
39
|
Garcia-Chica J, D Paraiso WK, Tanabe S, Serra D, Herrero L, Casals N, Garcia J, Ariza X, Quader S, Rodriguez-Rodriguez R. An overview of nanomedicines for neuron targeting. Nanomedicine (Lond) 2020; 15:1617-1636. [PMID: 32618490 DOI: 10.2217/nnm-2020-0088] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Medical treatments of neuron-related disorders are limited due to the difficulty of targeting brain cells. Major drawbacks are the presence of the blood-brain barrier and the lack of specificity of the drugs for the diseased cells. Nanomedicine-based approaches provide promising opportunities for overcoming these limitations. Although many previous reviews are focused on brain targeting with nanomedicines in general, none of those are concerned explicitly on the neurons, while targeting neuronal cells in central nervous diseases is now one of the biggest challenges in nanomedicine and neuroscience. We review the most relevant advances in nanomedicine design and strategies for neuronal drug delivery that might successfully bridge the gap between laboratory and bedside treatment in neurology.
Collapse
Affiliation(s)
- Jesus Garcia-Chica
- Department of Basic Sciences, Faculty of Medicine & Health Sciences, Universitat Internacional de Catalunya, 08195, Sant Cugat del Vallès, Spain
- Department of Biochemistry & Physiology, School of Pharmacy & Food Sciences, Institut de Biomedicina de la Universitat de Barcelona (IBUB), Universitat de Barcelona, E-08028, Barcelona, Spain
- Department of Inorganic & Organic Chemistry, Faculty of Chemistry, Institut de Biomedicina de la Universitat de Barcelona (IBUB), Universitat de Barcelona, E-08028, Barcelona, Spain
| | - West Kristian D Paraiso
- Innovation Center of Nanomedicine, Kawasaki Institute of Industrial Promotion, Kawasaki, Kanagawa, 210-0821, Japan
| | - Shihori Tanabe
- Division of Risk Assessment, Center for Biological Safety & Research, National Institute of Health Sciences, Kawasaki, Kanagawa, 210-9501, Japan
| | - Dolors Serra
- Department of Biochemistry & Physiology, School of Pharmacy & Food Sciences, Institut de Biomedicina de la Universitat de Barcelona (IBUB), Universitat de Barcelona, E-08028, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y la Nutrición (CIBEROBN), Instituto de Salud Carlos III, E-28029, Madrid, Spain
| | - Laura Herrero
- Department of Biochemistry & Physiology, School of Pharmacy & Food Sciences, Institut de Biomedicina de la Universitat de Barcelona (IBUB), Universitat de Barcelona, E-08028, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y la Nutrición (CIBEROBN), Instituto de Salud Carlos III, E-28029, Madrid, Spain
| | - Núria Casals
- Department of Basic Sciences, Faculty of Medicine & Health Sciences, Universitat Internacional de Catalunya, 08195, Sant Cugat del Vallès, Spain
- Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y la Nutrición (CIBEROBN), Instituto de Salud Carlos III, E-28029, Madrid, Spain
| | - Jordi Garcia
- Department of Inorganic & Organic Chemistry, Faculty of Chemistry, Institut de Biomedicina de la Universitat de Barcelona (IBUB), Universitat de Barcelona, E-08028, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y la Nutrición (CIBEROBN), Instituto de Salud Carlos III, E-28029, Madrid, Spain
| | - Xavier Ariza
- Department of Inorganic & Organic Chemistry, Faculty of Chemistry, Institut de Biomedicina de la Universitat de Barcelona (IBUB), Universitat de Barcelona, E-08028, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y la Nutrición (CIBEROBN), Instituto de Salud Carlos III, E-28029, Madrid, Spain
| | - Sabina Quader
- Innovation Center of Nanomedicine, Kawasaki Institute of Industrial Promotion, Kawasaki, Kanagawa, 210-0821, Japan
| | - Rosalia Rodriguez-Rodriguez
- Department of Basic Sciences, Faculty of Medicine & Health Sciences, Universitat Internacional de Catalunya, 08195, Sant Cugat del Vallès, Spain
| |
Collapse
|
40
|
Falsafi SR, Rostamabadi H, Assadpour E, Jafari SM. Morphology and microstructural analysis of bioactive-loaded micro/nanocarriers via microscopy techniques; CLSM/SEM/TEM/AFM. Adv Colloid Interface Sci 2020; 280:102166. [PMID: 32387755 DOI: 10.1016/j.cis.2020.102166] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Revised: 04/19/2020] [Accepted: 04/20/2020] [Indexed: 12/11/2022]
Abstract
Efficient characterization of the physicochemical attributes of bioactive-loaded micro/nano-vehicles is crucial for the successful product development. The introduction of outstanding science-based strategies and techniques makes it possible to realize how the characteristics of the formulation ingredients affect the structural and (bio)functional properties of the final bioactive-loaded carriers. The important points to be solved, at a microscopic level, are investigating how the features of the formulation ingredients affect the morphology, surface, size, dispersity, as well as the particulate interactions within bioactive-comprising nano/micro-delivery systems. This review presents a detailed description concerning the application of advanced microscopy techniques, i.e., confocal laser scanning microscopy (CLSM), scanning electron microscopy (SEM), transmission electron microscopy (TEM), and atomic force microscopy (AFM) in characterizing the attributes of nano/microcarriers for the efficient delivery of bioactive compounds. Furthermore, the fundamental principles of these approaches, instrumentation, specific applications, and the strategy to choose the most proper technique for different carriers has been discussed.
Collapse
|
41
|
Vaiserman A, Koliada A, Lushchak O. Neuroinflammation in pathogenesis of Alzheimer's disease: Phytochemicals as potential therapeutics. Mech Ageing Dev 2020; 189:111259. [PMID: 32450086 DOI: 10.1016/j.mad.2020.111259] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2020] [Revised: 05/02/2020] [Accepted: 05/02/2020] [Indexed: 02/07/2023]
Abstract
Accumulation of neurotoxic forms of amyloid-β proteins in senile plaques and hyperphosphorylated tau proteins in neurofibrillary tangles is a well-known pathophysiological hallmark of Alzheimer's disease (AD). However, clinical trials with drugs targeting amyloid-β and tau have failed to demonstrate efficacy in treating AD. All currently FDA-approved anti-AD drugs have symptomatic effects only and are not able to cure this disease. This makes necessary to search for alternative therapeutic targets. Accumulating evidence suggests that systemic inflammation and related vascular dysfunction play important etiological roles in AD and precede its clinical manifestation. Therefore, novel therapeutic modalities targeted at these pathophysiological components of AD are intensively developed now. Phytochemicals such as resveratrol, curcumin, quercetin, genistein and catechins are promising anti-AD therapeutics due to their ability to affect major pathogenetic mechanisms of AD, including oxidative stress, neuroinflammation and mitochondrial dysfunction. The implementation of innovative approaches for phytochemical delivery, including the nanotechnology-based ones which enable to significantly enhance their oral bioavailability, would likely provide an opportunity to address many challenges of conventional anti-AD therapies. In this review, roles of inflammation and vascular dysregulation in AD are described and phytobioactive compound-based treatment strategies for AD are discussed.
Collapse
Affiliation(s)
- Alexander Vaiserman
- Laboratory of Epigenetics, D.F. Chebotarev Institute of Gerontology, NAMS, 67 Vyshgorodska str., Kyiv, 04114, Ukraine.
| | - Alexander Koliada
- Laboratory of Epigenetics, D.F. Chebotarev Institute of Gerontology, NAMS, 67 Vyshgorodska str., Kyiv, 04114, Ukraine
| | - Oleh Lushchak
- Department of Biochemistry and Biotechnology, Vasyl Stefanyk Precarpathian National University, 57 Shevchenka str., Ivano-Frankivsk, 76018, Ukraine
| |
Collapse
|
42
|
Application of nano/microencapsulated phenolic compounds against cancer. Adv Colloid Interface Sci 2020; 279:102153. [PMID: 32289738 DOI: 10.1016/j.cis.2020.102153] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Revised: 03/30/2020] [Accepted: 03/30/2020] [Indexed: 12/19/2022]
Abstract
Nowadays, polyphenols as bioactive compounds are being used in producing anti-cancer drugs. Low stability against harsh environmental conditions, untargeted release, low solubility, and low absorption of pure phenolic molecules are significant barriers, which decrease the functions of polyphenols. Recently, the nanoencapsulation processes have been applied to overcome these restrictions, in which the anti-cancer activity of polyphenols has been noticeably increased. This review will focus on the anti-cancer activity of polyphenols, and the effect of loading polyphenolics into various micro/nanoencapsulation systems on their anti-cancer activity. Different encapsulation systems such as lipid and polymer based nanoparticles, and solid form of encapsulated phenolic molecules by nano-spray dryer and electrospinnig have been used for loading of polyphenols. Incorporation of phenolic molecules into various carriers inevitably increases their anti-cancer activity. Because, in this way, encapsulated cargos can provide a targeted release, which will increase the bioavailability of phenolic molecules and their functions such as absorption into cancer cell.
Collapse
|
43
|
Elkholy NS, Shafaa MW, Mohammed HS. Biophysical characterization of lutein or beta carotene-loaded cationic liposomes. RSC Adv 2020; 10:32409-32422. [PMID: 35685615 PMCID: PMC9127840 DOI: 10.1039/d0ra05683a] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Accepted: 08/17/2020] [Indexed: 12/19/2022] Open
Abstract
The interactions between carotenoids and membrane constituents are vital for understanding the mechanism of their dynamic action. Lutein and beta-carotene were loaded separately into the bilayer of dipalmitoylphosphatidylcholine (DPPC) mixed at a molar ratio with l-α-phosphatidylethanolamine derived from sheep brain (cephalin) and stearylamine (SA) to form cationic liposomes. The molecular interaction between lutein or beta-carotene with cationic liposomes was studied using transmission electron microscopy (TEM), dynamic light scattering (DLS), differential scanning calorimetry (DSC), and Fourier transform infrared (FTIR) spectroscopy. Encapsulation efficiency (EE %) and in vitro drug release were determined. The DLS measurements confirmed the mono-dispersity of all samples. TEM results revealed that liposomal samples were oval-shaped and there was a change in their morphology and size upon encapsulation of lutein or beta-carotene. Beta-carotene was observed to adhere to the boundary surface within the liposomal assembly with external morphological alterations. EE% of lutein and beta-carotene exceeded 98.8 ± 0.3% and 87 ± 4%, respectively. Lutein doped with cationic liposomes shows better in vitro release stability (about 30%) than beta-carotene (about 45%) between the 3rd and the 6th hour manifested by lower leakage rate percentage of lutein which would lead to higher lutein retention. The incorporated lutein resulted in broadening and shifting of the major endothermic peak of the co-liposomes, while the incorporation of beta-carotene did not induce a noticeable shift. An FTIR study was employed to reveal structure alterations in the vesicles after the encapsulation of lutein or beta-carotene into liposomes. Encapsulation of lutein or beta-carotene into liposomes induced a change in the frequency of the symmetric and asymmetric CH2 stretching bands in the acyl chain that may influence the order of the membrane. The interactions between carotenoids and membrane constituents are vital for understanding the mechanism of their dynamic action.![]()
Collapse
Affiliation(s)
- Nourhan S. Elkholy
- Medical Biophysics Division
- Physics Department
- Faculty of Science
- Helwan University
- Cairo
| | - Medhat W. Shafaa
- Medical Biophysics Division
- Physics Department
- Faculty of Science
- Helwan University
- Cairo
| | | |
Collapse
|