1
|
Puttasiddaiah R, Basavegowda N, Lakshmanagowda NK, Raghavendra VB, Sagar N, Sridhar K, Dikkala PK, Bhaswant M, Baek KH, Sharma M. Emerging Nanoparticle-Based Diagnostics and Therapeutics for Cancer: Innovations and Challenges. Pharmaceutics 2025; 17:70. [PMID: 39861718 PMCID: PMC11768644 DOI: 10.3390/pharmaceutics17010070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Revised: 12/29/2024] [Accepted: 01/03/2025] [Indexed: 01/27/2025] Open
Abstract
Malignant growth is expected to surpass other significant causes of death as one of the top reasons for dismalness and mortality worldwide. According to a World Health Organization (WHO) study, this illness causes approximately between 9 and 10 million instances of deaths annually. Chemotherapy, radiation, and surgery are the three main methods of treating cancer. These methods seek to completely eradicate all cancer cells while having the fewest possible unintended impacts on healthy cell types. Owing to the lack of target selectivity, the majority of medications have substantial side effects. On the other hand, nanomaterials have transformed the identification, diagnosis, and management of cancer. Nanostructures with biomimetic properties have been grown as of late, fully intent on observing and treating the sickness. These nanostructures are expected to be consumed by growth in areas with profound disease. Furthermore, because of their extraordinary physicochemical properties, which incorporate nanoscale aspects, a more prominent surface region, explicit geometrical features, and the ability to embody different substances within or on their outside surfaces, nanostructures are remarkable nano-vehicles for conveying restorative specialists to their designated regions. This review discusses recent developments in nanostructured materials such as graphene, dendrimers, cell-penetrating peptide nanoparticles, nanoliposomes, lipid nanoparticles, magnetic nanoparticles, and nano-omics in the diagnosis and management of cancer.
Collapse
Affiliation(s)
- Rachitha Puttasiddaiah
- Teresian College Research Centre, Teresian College, Siddarthanagar, Mysore 570011, India
| | - Nagaraj Basavegowda
- Department of Biotechnology, Yeungnam University, Gyeongsan 38541, Republic of Korea;
| | | | | | - Niju Sagar
- Teresian College Research Centre, Teresian College, Siddarthanagar, Mysore 570011, India
| | - Kandi Sridhar
- Department of Food Technology, Karpagam Academy of Higher Education (Deemed to be University), Coimbatore 641021, India
| | - Praveen Kumar Dikkala
- Department of Food Technology, Koneru Lakshmaiah Education Foundation, Vaddeswaram 522502, India
| | - Maharshi Bhaswant
- New Industry Creation Hatchery Center, Tohoku University, Sendai 9808579, Japan
- Center for Molecular and Nanomedical Sciences, Sathyabama Institute of Science and Technology, Chennai 600119, India
| | - Kwang-Hyun Baek
- Department of Biotechnology, Yeungnam University, Gyeongsan 38541, Republic of Korea;
| | - Minaxi Sharma
- Research Centre for Life Science and Healthcare, Nottingham Ningbo China Beacons of Excellence Research and Innovation Institute (CBI), University of Nottingham Ningbo China, Ningbo 315000, China
| |
Collapse
|
2
|
Yuan Y, Li J, Chen M, Zhao Y, Zhang B, Chen X, Zhao J, Liang H, Chen Q. Nano-encapsulation of drugs to target hepatic stellate cells: Toward precision treatments of liver fibrosis. J Control Release 2024; 376:318-336. [PMID: 39413846 DOI: 10.1016/j.jconrel.2024.10.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 10/06/2024] [Accepted: 10/08/2024] [Indexed: 10/18/2024]
Abstract
Liver fibrosis is characterized by excessive extracellular matrix (ECM) deposition triggered by hepatic stellate cells (HSCs). As central players in fibrosis progression, HSCs are the most important therapeutic targets for antifibrotic therapy. However, owing to the limitations of systemic drug administration, there is still no suitable and effective clinical treatment. In recent years, nanosystems have demonstrated expansive therapeutic potential and evolved into a clinical modality. In liver fibrosis, nanosystems have undergone a paradigm shift from targeting the whole liver to locally targeted modifying processes. Nanomedicine delivered to HSCs has significant potential in managing liver fibrosis, where optimal management would benefit from targeted delivery, personalized therapy based on the specific site of interest, and minor side effects. In this review, we present a brief overview of the role of HSCs in the pathogenesis of liver fibrosis, summarize the different types of nanocarriers and their specific delivery applications in liver fibrosis, and highlight the biological barriers associated with the use of nanosystems to target HSCs and approaches available to solve this issue. We further discuss in-depth all the molecular target receptors overexpressed during HSC activation in liver fibrosis and their corresponding ligands that have been used for drug or gene delivery targeting HSCs.
Collapse
Affiliation(s)
- Yue Yuan
- Division of Gastroenterology, Department of Internal Medicine at Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology (HUST), Wuhan, China
| | - Jiaxuan Li
- Division of Gastroenterology, Department of Internal Medicine at Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology (HUST), Wuhan, China
| | - Min Chen
- Division of Gastroenterology, Department of Internal Medicine at Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology (HUST), Wuhan, China
| | - Ying Zhao
- Division of Gastroenterology, Department of Internal Medicine at Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology (HUST), Wuhan, China
| | - Bixiang Zhang
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology (HUST), Wuhan, China; Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Wuhan, China
| | - Xiaoping Chen
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology (HUST), Wuhan, China; Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Wuhan, China
| | - Jianping Zhao
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology (HUST), Wuhan, China; Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Wuhan, China.
| | - Huifang Liang
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology (HUST), Wuhan, China; Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Wuhan, China.
| | - Qian Chen
- Division of Gastroenterology, Department of Internal Medicine at Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology (HUST), Wuhan, China.
| |
Collapse
|
3
|
An HY, Lee TJ, Shin MR, Choi JW, Kim MJ, Jeong IH, Jung J, Roh SS. Efficacy Evaluation of Gardenia Fructus and Uncaria rhynchophylla Mixture in Liver-Fibrosis Models. JOURNAL OF THE KOREAN SOCIETY OF FOOD SCIENCE AND NUTRITION 2024; 53:992-1006. [DOI: 10.3746/jkfn.2024.53.10.992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 09/03/2024] [Accepted: 09/12/2024] [Indexed: 01/05/2025]
Affiliation(s)
- Hui Yeon An
- Department of Herbology, College of Korean Medicine, Daegu Haany University
| | - Tae Jong Lee
- Department of Herbology, College of Korean Medicine, Daegu Haany University
| | - Mi-Rae Shin
- Department of Herbology, College of Korean Medicine, Daegu Haany University
| | - Jeong Won Choi
- Department of Forest Science, Andong National University
| | - Min Ju Kim
- Department of Herbology, College of Korean Medicine, Daegu Haany University
- Research Center for Herbal Convergence on Liver Disease, Daegu Haany University
| | - Il-Ha Jeong
- Department of Herbology, College of Korean Medicine, Daegu Haany University
| | - JiWon Jung
- Department of Herbology, College of Korean Medicine, Daegu Haany University
- Department of Microbiology and Molecular Biology, College of Bioscience and Biotechnology, Chungnam National University
| | - Seong-Soo Roh
- Department of Herbology, College of Korean Medicine, Daegu Haany University
| |
Collapse
|
4
|
Dong Z, Wang Y, Jin W. Liver cirrhosis: molecular mechanisms and therapeutic interventions. MedComm (Beijing) 2024; 5:e721. [PMID: 39290252 PMCID: PMC11406049 DOI: 10.1002/mco2.721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 08/19/2024] [Accepted: 08/19/2024] [Indexed: 09/19/2024] Open
Abstract
Liver cirrhosis is the end-stage of chronic liver disease, characterized by inflammation, necrosis, advanced fibrosis, and regenerative nodule formation. Long-term inflammation can cause continuous damage to liver tissues and hepatocytes, along with increased vascular tone and portal hypertension. Among them, fibrosis is the necessary stage and essential feature of liver cirrhosis, and effective antifibrosis strategies are commonly considered the key to treating liver cirrhosis. Although different therapeutic strategies aimed at reversing or preventing fibrosis have been developed, the effects have not be more satisfactory. In this review, we discussed abnormal changes in the liver microenvironment that contribute to the progression of liver cirrhosis and highlighted the importance of recent therapeutic strategies, including lifestyle improvement, small molecular agents, traditional Chinese medicine, stem cells, extracellular vesicles, and gut remediation, that regulate liver fibrosis and liver cirrhosis. Meanwhile, therapeutic strategies for nanoparticles are discussed, as are their possible underlying broad application and prospects for ameliorating liver cirrhosis. Finally, we also reviewed the major challenges and opportunities of nanomedicine‒biological environment interactions. We hope this review will provide insights into the pathogenesis and molecular mechanisms of liver cirrhosis, thus facilitating new methods, drug discovery, and better treatment of liver cirrhosis.
Collapse
Affiliation(s)
- Zihe Dong
- The First School of Clinical Medicine Lanzhou University Lanzhou People's Republic of China
- Institute of Cancer Neuroscience Medical Frontier Innovation Research Center The First Hospital of Lanzhou University Lanzhou People's Republic of China
| | - Yeying Wang
- The First School of Clinical Medicine Lanzhou University Lanzhou People's Republic of China
- Institute of Cancer Neuroscience Medical Frontier Innovation Research Center The First Hospital of Lanzhou University Lanzhou People's Republic of China
| | - Weilin Jin
- The First School of Clinical Medicine Lanzhou University Lanzhou People's Republic of China
- Institute of Cancer Neuroscience Medical Frontier Innovation Research Center The First Hospital of Lanzhou University Lanzhou People's Republic of China
| |
Collapse
|
5
|
ten Hove M, Smyris A, Booijink R, Wachsmuth L, Hansen U, Alic L, Faber C, Hӧltke C, Bansal R. Engineered SPIONs functionalized with endothelin a receptor antagonist ameliorate liver fibrosis by inhibiting hepatic stellate cell activation. Bioact Mater 2024; 39:406-426. [PMID: 38855059 PMCID: PMC11157122 DOI: 10.1016/j.bioactmat.2024.05.034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 05/16/2024] [Accepted: 05/17/2024] [Indexed: 06/11/2024] Open
Abstract
Endothelin-1/endothelin A receptor (ET-1/ETAR) pathway plays an important role in the progression of liver fibrosis by activating hepatic stellate cells (HSCs) - a key cell type involved in the pathogenesis of liver fibrosis. Inactivating HSCs by blocking the ET-1/ETAR pathway using a selective ETAR antagonist (ERA) represents a promising therapeutic approach for liver fibrosis. Unfortunately, small-molecule ERAs possess limited clinical potential due to poor bioavailability, short half-life, and rapid renal clearance. To improve the clinical applicability, we conjugated ERA to superparamagnetic iron-oxide nanoparticles (SPIONs) and investigated the therapeutic efficacy of ERA and ERA-SPIONs in vitro and in vivo and analyzed liver uptake by in vivo and ex vivo magnetic resonance imaging (MRI), HSCs-specific localization, and ET-1/ETAR-pathway antagonism in vivo. In murine and human liver fibrosis/cirrhosis, we observed overexpression of ET-1 and ETAR that correlated with HSC activation, and HSC-specific localization of ETAR. ERA and successfully synthesized ERA-SPIONs demonstrated significant attenuation in TGFβ-induced HSC activation, ECM production, migration, and contractility. In an acute CCl4-induced liver fibrosis mouse model, ERA-SPIONs exhibited higher liver uptake, HSC-specific localization, and ET-1/ETAR pathway antagonism. This resulted in significantly reduced liver-to-body weight ratio, plasma ALT levels, and α-SMA and collagen-I expression, indicating attenuation of liver fibrosis. In conclusion, our study demonstrates that the delivery of ERA using SPIONs enhances the therapeutic efficacy of ERA in vivo. This approach holds promise as a theranostic strategy for the MRI-based diagnosis and treatment of liver fibrosis.
Collapse
Affiliation(s)
- Marit ten Hove
- Personalized Diagnostics and Therapeutics, Department of Bioengineering Technologies, Technical Medical Centre, Faculty of Science and Technology, University of Twente, Enschede, the Netherlands
| | - Andreas Smyris
- Personalized Diagnostics and Therapeutics, Department of Bioengineering Technologies, Technical Medical Centre, Faculty of Science and Technology, University of Twente, Enschede, the Netherlands
| | - Richell Booijink
- Personalized Diagnostics and Therapeutics, Department of Bioengineering Technologies, Technical Medical Centre, Faculty of Science and Technology, University of Twente, Enschede, the Netherlands
| | - Lydia Wachsmuth
- Clinic of Radiology, University Hospital Muenster, Muenster, Germany
| | - Uwe Hansen
- Institute for Musculoskeletal Medicine, University Hospital Muenster, Muenster, Germany
| | - Lejla Alic
- Department of Magnetic Detection and Imaging, Technical Medical Centre, Faculty of Science and Technology, University of Twente, Enschede, the Netherlands
| | - Cornelius Faber
- Clinic of Radiology, University Hospital Muenster, Muenster, Germany
| | - Carsten Hӧltke
- Clinic of Radiology, University Hospital Muenster, Muenster, Germany
| | - Ruchi Bansal
- Personalized Diagnostics and Therapeutics, Department of Bioengineering Technologies, Technical Medical Centre, Faculty of Science and Technology, University of Twente, Enschede, the Netherlands
| |
Collapse
|
6
|
Setyawati DR, Sekaringtyas FC, Pratiwi RD, Rosyidah A, Azhar R, Gustini N, Syahputra G, Rosidah I, Mardliyati E, Tarwadi, El Muttaqien S. Recent updates in applications of nanomedicine for the treatment of hepatic fibrosis. BEILSTEIN JOURNAL OF NANOTECHNOLOGY 2024; 15:1105-1116. [PMID: 39188757 PMCID: PMC11346304 DOI: 10.3762/bjnano.15.89] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Accepted: 08/07/2024] [Indexed: 08/28/2024]
Abstract
Over recent decades, nanomedicine has played an important role in the enhancement of therapeutic outcomes compared to those of conventional therapy. At the same time, nanoparticle drug delivery systems offer a significant reduction in side effects of treatments by lowering the off-target biodistribution of the active pharmaceutical ingredients. Cancer nanomedicine represents the most extensively studied nanotechnology application in the field of pharmaceutics and pharmacology since the first nanodrug for cancer treatment, liposomal doxorubicin (Doxil®), has been approved by the FDA. The advancement of cancer nanomedicine and its enormous technological success also included various other target diseases, including hepatic fibrosis. This confirms the versatility of nanomedicine for improving therapeutic activity. In this review, we summarize recent updates of nanomedicine platforms for improving therapeutic efficacy regarding liver fibrosis. We first emphasize the challenges of conventional drugs for penetrating the biological barriers of the liver. After that, we highlight design principles of nanocarriers for achieving improved drug delivery of antifibrosis drugs through passive and active targeting strategies.
Collapse
Affiliation(s)
- Damai Ria Setyawati
- Research Center for Vaccine and Drugs, National Research and Innovation Agency (BRIN), LAPTIAB 1, PUSPIPTEK, Tangerang Selatan 15314, Indonesia
| | - Fransiska Christydira Sekaringtyas
- Research Center for Vaccine and Drugs, National Research and Innovation Agency (BRIN), LAPTIAB 1, PUSPIPTEK, Tangerang Selatan 15314, Indonesia
| | - Riyona Desvy Pratiwi
- Research Center for Vaccine and Drugs, National Research and Innovation Agency (BRIN), LAPTIAB 1, PUSPIPTEK, Tangerang Selatan 15314, Indonesia
| | - A’liyatur Rosyidah
- Research Center for Vaccine and Drugs, National Research and Innovation Agency (BRIN), LAPTIAB 1, PUSPIPTEK, Tangerang Selatan 15314, Indonesia
| | - Rohimmahtunnissa Azhar
- Research Center for Pharmaceutical Ingredients and Traditional Medicine, National Research and Innovation Agency (BRIN), LAPTIAB 1, PUSPIPTEK, Tangerang Selatan 15314, Indonesia
| | - Nunik Gustini
- Research Center for Vaccine and Drugs, National Research and Innovation Agency (BRIN), LAPTIAB 1, PUSPIPTEK, Tangerang Selatan 15314, Indonesia
| | - Gita Syahputra
- Research Center for Vaccine and Drugs, National Research and Innovation Agency (BRIN), LAPTIAB 1, PUSPIPTEK, Tangerang Selatan 15314, Indonesia
| | - Idah Rosidah
- Research Center for Pharmaceutical Ingredients and Traditional Medicine, National Research and Innovation Agency (BRIN), LAPTIAB 1, PUSPIPTEK, Tangerang Selatan 15314, Indonesia
| | - Etik Mardliyati
- Research Center for Vaccine and Drugs, National Research and Innovation Agency (BRIN), LAPTIAB 1, PUSPIPTEK, Tangerang Selatan 15314, Indonesia
| | - Tarwadi
- Research Center for Vaccine and Drugs, National Research and Innovation Agency (BRIN), LAPTIAB 1, PUSPIPTEK, Tangerang Selatan 15314, Indonesia
| | - Sjaikhurrizal El Muttaqien
- Research Center for Vaccine and Drugs, National Research and Innovation Agency (BRIN), LAPTIAB 1, PUSPIPTEK, Tangerang Selatan 15314, Indonesia
| |
Collapse
|
7
|
Wang L, Zhou J, Wang J, Wang X, Dong H, Zhao L, Wu J, Peng J. Hepatic Stellate Cell-Targeting Micelle Nanomedicine for Early Diagnosis and Treatment of Liver Fibrosis. Adv Healthc Mater 2024; 13:e2303710. [PMID: 38293743 DOI: 10.1002/adhm.202303710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 01/23/2024] [Indexed: 02/01/2024]
Abstract
Diagnosing and treating liver fibrosis is a challenging yet crucial endeavor due to its complex pathogenesis and risk of deteriorating into cirrhosis, liver failure, and even hepatic cancer. Herein, a silica cross-linked micelles (SCLMs) based nano-system is developed for both diagnosing and treating liver fibrosis. The SCLMs are first modified with peptide CTCE9908 (CT-SCLMs) and can actively target CXCR4, which is overexpressed in activated hepatic stellate cells (HSCs). To enable diagnosis, an ONOO--responded near-infrared fluorescent probe NOF2 is loaded into the CT-SCLMs. This nano-system can target the aHSCs and diagnose the liver fibrosis particularly in CCl4-induced liver damage, by monitoring the reactive nitrogen species. Furthermore, a step is taken toward treatment by co-encapsulating two anti-fibrosis drugs, silibinin and sorafenib, within the CT-SCLMs. This combined approach results in a significant alleviation of liver injury. Symptoms associated with liver fibrosis, such as deposition of collagen, expression of hydroxyproline, and raised serological indicators show notable improvement. In summary, the CXCR4-targeted nano-system can serve as a promising theragnostic system of early warning and diagnosis for liver fibrosis, offering hope against progression of this serious liver condition.
Collapse
Affiliation(s)
- Lei Wang
- State Key Laboratory of Natural Medicines, School of Basic Medical Sciences and Clinical Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu, 211198, China
| | - Jieying Zhou
- Department of Chemistry and Biochemistry, Florida International University, Miami, FL, 33199, USA
| | - Jian Wang
- State Key Laboratory of Natural Medicines, School of Basic Medical Sciences and Clinical Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu, 211198, China
| | - Xiaotang Wang
- Department of Chemistry and Biochemistry, Florida International University, Miami, FL, 33199, USA
| | - Haijuan Dong
- The Public Laboratory Platform, China Pharmaceutical University, Nanjing, 211198, China
| | - Lingzhi Zhao
- State Key Laboratory of Natural Medicines, School of Basic Medical Sciences and Clinical Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu, 211198, China
| | - Junchen Wu
- Institute of Innovative Drug Discovery and Development, China Pharmaceutical University, Nanjing, Jiangsu, 211198, China
| | - Juanjuan Peng
- State Key Laboratory of Natural Medicines, School of Basic Medical Sciences and Clinical Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu, 211198, China
| |
Collapse
|
8
|
Sun S, Zhao B, Li J, Zhang X, Yao S, Bao Z, Cai J, Yang J, Chen Y, Wu X. Regulation of Hair Follicle Growth and Development by Different Alternative Spliceosomes of FGF5 in Rabbits. Genes (Basel) 2024; 15:409. [PMID: 38674344 PMCID: PMC11049220 DOI: 10.3390/genes15040409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 03/23/2024] [Accepted: 03/24/2024] [Indexed: 04/28/2024] Open
Abstract
This study investigated the regulatory effect of alternative spliceosomes of the fibroblast growth factor 5 (FGF5) gene on hair follicle (HF) growth and development in rabbits. The FGF5 alternative spliceosomes (called FGF5-X1, FGF5-X2, FGF5-X3) were cloned. The overexpression vector and siRNA of spliceosomes were transfected into dermal papilla cells (DPCs) to analyze the regulatory effect on DPCs. The results revealed that FGF5-X2 and FGF5-X3 overexpression significantly decreased LEF1 mRNA expression (p < 0.01). FGF5-X1 overexpression significantly reduced CCND1 expression (p < 0.01). FGF5-X1 and FGF5-X2 possibly downregulated the expression level of FGF2 mRNA (p < 0.05), and FGF5-X3 significantly downregulated the expression level of FGF2 mRNA (p < 0.01). The FGF5 alternative spliceosomes significantly downregulated the BCL2 mRNA expression level in both cases (p < 0.01). FGF5-X1 and FGF5-X2 significantly increased TGFβ mRNA expression (p < 0.01). All three FGF5 alternative spliceosomes inhibited DPC proliferation. In conclusion, the expression profile of HF growth and development-related genes can be regulated by FGF5 alternative spliceosomes, inhibiting the proliferation of DPCs and has an influence on the regulation of HF growth in rabbits. This study provides insights to further investigate the mechanism of HF development in rabbits via FGF5 regulation.
Collapse
Affiliation(s)
- Shaoning Sun
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China; (S.S.); (B.Z.); (J.L.); (X.Z.); (S.Y.); (Z.B.); (J.C.); (J.Y.); (Y.C.)
| | - Bohao Zhao
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China; (S.S.); (B.Z.); (J.L.); (X.Z.); (S.Y.); (Z.B.); (J.C.); (J.Y.); (Y.C.)
| | - Jiali Li
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China; (S.S.); (B.Z.); (J.L.); (X.Z.); (S.Y.); (Z.B.); (J.C.); (J.Y.); (Y.C.)
| | - Xiyu Zhang
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China; (S.S.); (B.Z.); (J.L.); (X.Z.); (S.Y.); (Z.B.); (J.C.); (J.Y.); (Y.C.)
| | - Shuyu Yao
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China; (S.S.); (B.Z.); (J.L.); (X.Z.); (S.Y.); (Z.B.); (J.C.); (J.Y.); (Y.C.)
| | - Zhiyuan Bao
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China; (S.S.); (B.Z.); (J.L.); (X.Z.); (S.Y.); (Z.B.); (J.C.); (J.Y.); (Y.C.)
| | - Jiawei Cai
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China; (S.S.); (B.Z.); (J.L.); (X.Z.); (S.Y.); (Z.B.); (J.C.); (J.Y.); (Y.C.)
| | - Jie Yang
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China; (S.S.); (B.Z.); (J.L.); (X.Z.); (S.Y.); (Z.B.); (J.C.); (J.Y.); (Y.C.)
| | - Yang Chen
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China; (S.S.); (B.Z.); (J.L.); (X.Z.); (S.Y.); (Z.B.); (J.C.); (J.Y.); (Y.C.)
| | - Xinsheng Wu
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China; (S.S.); (B.Z.); (J.L.); (X.Z.); (S.Y.); (Z.B.); (J.C.); (J.Y.); (Y.C.)
- Joint International Research Laboratory of Agriculture & Agri-Product Safety, Yangzhou University, Yangzhou 225009, China
| |
Collapse
|
9
|
Shinn J, Park S, Lee S, Park N, Kim S, Hwang S, Moon JJ, Kwon Y, Lee Y. Antioxidative Hyaluronic Acid-Bilirubin Nanomedicine Targeting Activated Hepatic Stellate Cells for Anti-Hepatic-Fibrosis Therapy. ACS NANO 2024; 18:4704-4716. [PMID: 38288705 DOI: 10.1021/acsnano.3c06107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/15/2024]
Abstract
Liver fibrosis is a life-threatening and irreversible disease. The fibrosis process is largely driven by hepatic stellate cells (HSCs), which undergo transdifferentiation from an inactivated state to an activated one during persistent liver damage. This activated state is responsible for collagen deposition in liver tissue and is accompanied by increased CD44 expression on the surfaces of HSCs and amplified intracellular oxidative stress, which contributes to the fibrosis process. To address this problem, we have developed a strategy that combines CD44-targeting of activated HSCs with an antioxidative approach. We developed hyaluronic acid-bilirubin nanoparticles (HABNs), composed of endogenous bilirubin, an antioxidant and anti-inflammatory bile acid, and hyaluronic acid, an endogenous CD44-targeting glycosaminoglycan biopolymer. Our findings demonstrate that intravenously administered HABNs effectively targeted the liver, particularly activated HSCs, in fibrotic mice with choline-deficient l-amino acid-defined high-fat diet (CD-HFD)-induced nonalcoholic steatohepatitis (NASH). HABNs were able to inhibit HSC activation and proliferation and collagen production. Furthermore, in a murine CD-HFD-induced NASH fibrosis model, intravenously administered HABNs showed potent fibrotic modulation activity. Our study suggests that HABNs have the potential to serve as a targeted anti-hepatic-fibrosis therapy by modulating activated HSCs via CD44-targeting and antioxidant strategies. This strategy could also be applied to various ROS-related diseases in which CD44-overexpressing cells play a pivotal role.
Collapse
Affiliation(s)
- Jongyoon Shinn
- Department of Pharmacy, College of Pharmacy, Ewha Womans University, Seoul 03760, South Korea
| | - Seojeong Park
- Department of Pharmacy, College of Pharmacy, Ewha Womans University, Seoul 03760, South Korea
| | - Seonju Lee
- Department of Pharmacy, College of Pharmacy, Ewha Womans University, Seoul 03760, South Korea
| | - Nayoon Park
- Department of Pharmacy, College of Pharmacy, Ewha Womans University, Seoul 03760, South Korea
| | - Seojeong Kim
- Department of Pharmacy, College of Pharmacy, Ewha Womans University, Seoul 03760, South Korea
| | - Seohui Hwang
- Department of Pharmacy, College of Pharmacy, Ewha Womans University, Seoul 03760, South Korea
| | - James J Moon
- Department of Pharmaceutical Sciences, University of Michigan, Ann Arbor, Michigan 48109, United States
- Biointerfaces Institute, University of Michigan, Ann Arbor, Michigan 48109, United States
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, Michigan 48109, United States
- Department of Chemical Engineering, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Youngjoo Kwon
- Department of Pharmacy, College of Pharmacy, Ewha Womans University, Seoul 03760, South Korea
| | - Yonghyun Lee
- Department of Pharmacy, College of Pharmacy, Ewha Womans University, Seoul 03760, South Korea
| |
Collapse
|
10
|
Chen L, Guo W, Mao C, Shen J, Wan M. Liver fibrosis: pathological features, clinical treatment and application of therapeutic nanoagents. J Mater Chem B 2024; 12:1446-1466. [PMID: 38265305 DOI: 10.1039/d3tb02790b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2024]
Abstract
Liver fibrosis is a reversible damage-repair response, the pathological features of which mainly include damage to hepatocytes, sinusoid capillarization, hepatic stellate cells activation, excessive accumulation of extracellular matrix and inflammatory response. Although some treatments (including drugs and stem cell therapy) for these pathological features have been shown to be effective, more clinical trials are needed to confirm their effectiveness. In recent years, nanomaterials-based therapies have emerged as an innovative and promising alternative to traditional drugs, being explored for the treatment of liver fibrosis diseases. Natural nanomaterials (including extracellular vesicles) and synthetic nanomaterials (including inorganic nanomaterials and organic nanomaterials) are developed to facilitate drug targeting delivery and combination therapy. In this review, the pathological features of liver fibrosis and the current anti-fibrosis drugs in clinical trials are briefly introduced, followed by a detailed introduction of the therapeutic nanoagents for the precise delivery of anti-fibrosis drugs. Finally, the future development trend in this field is discussed.
Collapse
Affiliation(s)
- Lin Chen
- National and Local Joint Engineering Research Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China.
| | - Wenyan Guo
- National and Local Joint Engineering Research Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China.
| | - Chun Mao
- National and Local Joint Engineering Research Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China.
| | - Jian Shen
- National and Local Joint Engineering Research Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China.
| | - Mimi Wan
- National and Local Joint Engineering Research Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China.
| |
Collapse
|
11
|
Kumar V, Kaushik NK, Tiwari SK, Singh D, Singh B. Green synthesis of iron nanoparticles: Sources and multifarious biotechnological applications. Int J Biol Macromol 2023; 253:127017. [PMID: 37742902 DOI: 10.1016/j.ijbiomac.2023.127017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 09/18/2023] [Accepted: 09/20/2023] [Indexed: 09/26/2023]
Abstract
Green synthesis of iron nanoparticles is a highly fascinating research area and has gained importance due to reliable, sustainable and ecofriendly protocol for synthesizing nanoparticles, along with the easy availability of plant materials and their pharmacological significance. As an alternate to physical and chemical synthesis, the biological materials, like microorganisms and plants are considered to be less costly and environment-friendly. Iron nanoparticles with diverse morphology and size have been synthesized using biological extracts. Microbial (bacteria, fungi, algae etc.) and plant extracts have been employed in green synthesis of iron nanoparticles due to the presence of various metabolites and biomolecules. Physical and biochemical properties of biologically synthesized iron nanoparticles are superior to that are synthesized using physical and chemical agents. Iron nanoparticles have magnetic property with thermal and electrical conductivity. Iron nanoparticles below a certain size (generally 10-20 nm), can exhibit a unique form of magnetism called superparamagnetism. They are non-toxic and highly dispersible with targeted delivery, which are suitable for efficient drug delivery to the target. Green synthesized iron nanoparticles have been explored for multifarious biotechnological applications. These iron nanoparticles exhibited antimicrobial and anticancerous properties. Iron nanoparticles adversely affect the cell viability, division and metabolic activity. Iron nanoparticles have been used in the purification and immobilization of various enzymes/proteins. Iron nanoparticles have shown potential in bioremediation of various organic and inorganic pollutants. This review describes various biological sources used in the green synthesis of iron nanoparticles and their potential applications in biotechnology, diagnostics and mitigation of environmental pollutants.
Collapse
Affiliation(s)
- Vinod Kumar
- Department of Biotechnology, Central University of Haryana, Jant-Pali, Mahendergarh 123031, Haryana, India
| | - Naveen Kumar Kaushik
- Amity Institute of Virology and Immunology, Amity University Uttar Pradesh, Sector 125, Noida, Uttar Pradesh 201313, India
| | - S K Tiwari
- Department of Genetics, Maharshi Dayanand University, Rohtak 124001, Haryana, India
| | - Davender Singh
- Department of Physics, RPS Degree College, Balana, Satnali Road, Mahendragarh 123029, Haryana, India
| | - Bijender Singh
- Department of Biotechnology, Central University of Haryana, Jant-Pali, Mahendergarh 123031, Haryana, India; Laboratory of Bioprocess Technology, Department of Microbiology, Maharshi Dayanand University, Rohtak 124001, Haryana, India.
| |
Collapse
|
12
|
Xu S, Zhu Y, Wang P, Qi S, Shu B. Derazantinib Inhibits the Bioactivity of Keloid Fibroblasts via FGFR Signaling. Biomedicines 2023; 11:3220. [PMID: 38137441 PMCID: PMC10741236 DOI: 10.3390/biomedicines11123220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 11/28/2023] [Accepted: 12/02/2023] [Indexed: 12/24/2023] Open
Abstract
Keloids are common benign cutaneous pathological fibrous proliferation diseases, which are difficult to cure and easily recur. Studies have shown that fibroblast growth factor receptor-1 (FGFR1) was enhanced in pathological fibrous proliferation diseases, such as cirrhosis and idiopathic pulmonary fibrosis (IPF), suggesting the FGFR1 pathway has potential for keloid treatment. Derazantinib is a selective FGFR inhibitor with antiproliferative activity in in vitro and in vivo models. The present study determined the effects of derazantinib on human keloid fibroblasts (KFs). Cell viability assay, migration assay, invasion assay, immunofluorescence staining, quantitative polymerase chain reaction, Western blot analysis, HE staining, Masson staining, and immunohistochemical analysis were used to analyze the KFs and keloid xenografts. In this study, we found that derazantinib inhibited the proliferation, migration, invasion, and collagen production of KFs in vitro. The transcription and expression of plasminogen activator inhibitor-1 (PAI-1), which is closely related to collagen deposition and tissue fibrosis, was significantly inhibited. Also, derazantinib inhibited the expression of FGFR1 and PAI-1 and reduced the weight of the implanted keloid from the xenograft mice model. These findings suggest that derazantinib may be a potent therapy for keloids via FGFR signaling.
Collapse
Affiliation(s)
- Shuqia Xu
- Department of Plastic Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou 510080, China;
| | - Yongkang Zhu
- Department of Burn Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou 510080, China; (Y.Z.); (P.W.)
- Department of Burn and Plastic Surgery, Shenzhen Institute of Translational Medicine, The First Affiliated Hospital of Shenzhen University, Shenzhen 518025, China
| | - Peng Wang
- Department of Burn Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou 510080, China; (Y.Z.); (P.W.)
| | - Shaohai Qi
- Department of Burn Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou 510080, China; (Y.Z.); (P.W.)
| | - Bin Shu
- Department of Burn Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou 510080, China; (Y.Z.); (P.W.)
| |
Collapse
|
13
|
Geervliet E, Terstappen LWMM, Bansal R. Hepatocyte survival and proliferation by fibroblast growth factor 7 attenuates liver inflammation, and fibrogenesis during acute liver injury via paracrine mechanisms. Biomed Pharmacother 2023; 167:115612. [PMID: 37797460 DOI: 10.1016/j.biopha.2023.115612] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 09/18/2023] [Accepted: 09/27/2023] [Indexed: 10/07/2023] Open
Abstract
Hepatocyte damage during liver injury instigates activation of macrophages and hepatic stellate cells (HSCs) resulting in liver inflammation and fibrosis respectively. Improving hepatocyte survival and proliferation thereby ameliorating inflammation and fibrosis represents a promising approach for the treatment of liver injury. In the liver, fibroblast growth factors (FGFs) play a crucial role in promoting hepatocyte proliferation and tissue regeneration. Among 22 FGFs, FGF7 induces hepatocyte survival and liver regeneration as shown previously in mouse models of cholestatic liver injury and partial hepatectomy. We hypothesized that FGF7 promotes hepatocyte survival and proliferation by interacting with FGFR2b, expressed on hepatocytes, and ameliorates liver injury (inflammation and early fibrogenesis) via paracrine mechanisms. To prove this hypothesis and to study the effect of FGF7 on hepatocytes and liver injury, we administered FGF7 exogenously to mice with acute carbon tetrachloride (CCl4)-induced liver injury. We thereafter studied the underlying mechanisms and the effect of exogenous FGF7 on hepatocyte survival and proliferation, and the consequent paracrine effects on macrophage-induced inflammation, and HSCs activation in vitro and in vivo. We observed that the expression of FGF7 as well as FGFR2 is upregulated during acute liver injury. Co-immunostaining of FGF7 and collagen-I confirmed that FGF7 is expressed by HSCs and is possibly captured by the secreted ECM. Immunohistochemical analysis of liver sections showed increased hepatocyte proliferation upon exogenous FGF7 treatment as determined by Ki67 expression. Mechanistically, exogenous FGF7 improved hepatocyte survival (and increased drug detoxification) via AKT and ERK pathways while maintaining hepatocyte quiescence restricting hepatocarcinogenesis via P27 pathways. Flow cytometry analysis revealed that improved hepatocyte survival and proliferation leads to a decrease in infiltrated monocytes-derived macrophages, as a result of reduced CCL2 (and CXCL8) expression by hepatocytes. Moreover, conditioned medium studies showed reduced collagen-I secretion by HSCs (indicative of HSCs activation) upon treatment with FGF7-treated hepatocytes conditioned medium. Altogether, we show that exogenous administration of FGF7 induces hepatocyte survival and proliferation and leads to amelioration of inflammatory response and fibrosis in acute liver injury via paracrine mechanisms. Our study further demonstrates that FGF7, FGF7 derivatives, or nano-engineered FGF7 may benefit patients with hepatic dysfunction.
Collapse
Affiliation(s)
- Eline Geervliet
- Translational Liver Research, Department of Medical Cell BioPhysics, Technical Medical Centre, Faculty of Science and Technology, University of Twente, the Netherlands; Institute of Molecular Pathobiochemistry, Experimental Gene Therapy and Clinical Chemistry, RWTH University Hospital Aachen, Germany
| | - Leon W M M Terstappen
- Department of Medical Cell BioPhysics, Technical Medical Centre, Faculty of Science and Technology, University of Twente, the Netherlands
| | - Ruchi Bansal
- Translational Liver Research, Department of Medical Cell BioPhysics, Technical Medical Centre, Faculty of Science and Technology, University of Twente, the Netherlands.
| |
Collapse
|
14
|
Zhang CY, Liu S, Yang M. Treatment of liver fibrosis: Past, current, and future. World J Hepatol 2023; 15:755-774. [PMID: 37397931 PMCID: PMC10308286 DOI: 10.4254/wjh.v15.i6.755] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/12/2023] [Revised: 04/01/2023] [Accepted: 04/18/2023] [Indexed: 06/25/2023] Open
Abstract
Liver fibrosis accompanies the progression of chronic liver diseases independent of etiologies, such as hepatitis viral infection, alcohol consumption, and metabolic-associated fatty liver disease. It is commonly associated with liver injury, inflammation, and cell death. Liver fibrosis is characterized by abnormal accumulation of extracellular matrix components that are expressed by liver myofibroblasts such as collagens and alpha-smooth actin proteins. Activated hepatic stellate cells contribute to the major population of myofibroblasts. Many treatments for liver fibrosis have been investigated in clinical trials, including dietary supplementation (e.g., vitamin C), biological treatment (e.g., simtuzumab), drug (e.g., pegbelfermin and natural herbs), genetic regulation (e.g., non-coding RNAs), and transplantation of stem cells (e.g., hematopoietic stem cells). However, none of these treatments has been approved by Food and Drug Administration. The treatment efficacy can be evaluated by histological staining methods, imaging methods, and serum biomarkers, as well as fibrosis scoring systems, such as fibrosis-4 index, aspartate aminotransferase to platelet ratio, and non-alcoholic fatty liver disease fibrosis score. Furthermore, the reverse of liver fibrosis is slowly and frequently impossible for advanced fibrosis or cirrhosis. To avoid the life-threatening stage of liver fibrosis, anti-fibrotic treatments, especially for combined behavior prevention, biological treatment, drugs or herb medicines, and dietary regulation are needed. This review summarizes the past studies and current and future treatments for liver fibrosis.
Collapse
Affiliation(s)
- Chun-Ye Zhang
- Bond Life Sciences Center, University of Missouri, Columbia, MO 65211, United States
| | - Shuai Liu
- Department of Radiology,The First Affiliated Hospital, Zhejiang University, Hangzhou 310006, Zhejiang Province, China
| | - Ming Yang
- Department of Surgery, University of Missouri, Columbia, MO 65211, United States
| |
Collapse
|
15
|
Hosseini SP, Farivar S, Rezaei R, Tokhanbigli S, Hatami B, Zali MR, Baghaei K. Fibroblast growth factor 2 reduces endoplasmic reticulum stress and apoptosis in in-vitro Non-Alcoholic Fatty Liver Disease model. Daru 2023; 31:29-37. [PMID: 37156902 PMCID: PMC10238349 DOI: 10.1007/s40199-023-00459-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2022] [Accepted: 04/08/2023] [Indexed: 05/10/2023] Open
Abstract
PURPOSE Non-Alcoholic fatty liver disease is characterized by the accumulation of excess fat in the liver, chronic inflammation, and cell death, ranging from simple steatosis to fibrosis, and finally leads to cirrhosis and hepatocellular carcinoma. The effect of Fibroblast growth factor 2 on apoptosis and ER stress inhibition has been investigated in many studies. In this study, we aimed to investigate the effect of FGF2 on the NAFLD in-vitro model in the HepG2 cell line. METHODS The in-vitro NAFLD model was first induced on the HepG2 cell line using oleic acid and palmitic acid for 24 h and evaluated by ORO staining and Real-time PCR. The cell line was then treated with various concentrations of fibroblast growth factor 2 for 24 h, total RNA was extracted and cDNA was consequently synthesized. Real-time PCR and flow cytometry was applied to evaluate gene expression and apoptosis rate, respectively. RESULTS It was shown that fibroblast growth factor 2 ameliorated apoptosis in the NAFLD in-vitro model by reducing the expression of genes involved in the intrinsic apoptosis pathway, including caspase 3 and 9. Moreover, endoplasmic reticulum stress was decreased following upregulating the protective ER-stress genes, including SOD1 and PPARα. CONCLUSIONS FGF2 significantly reduced ER stress and intrinsic apoptosis pathway. Our data suggest that FGF2 treatment could be a potential therapeutic strategy for NAFLD.
Collapse
Affiliation(s)
- Seyedeh Parisa Hosseini
- Department of Molecular and Cell Biology, Faculty of Life Sciences and Biotechnology, Shahid Beheshti University, Tehran, Iran
| | - Shirin Farivar
- Department of Molecular and Cell Biology, Faculty of Life Sciences and Biotechnology, Shahid Beheshti University, Tehran, Iran
| | - Ramazan Rezaei
- Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Samaneh Tokhanbigli
- Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Behzad Hatami
- Gastroenterology and Liver Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad Reza Zali
- Gastroenterology and Liver Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Kaveh Baghaei
- Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
- Gastroenterology and Liver Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
16
|
Hao Y, Song K, Tan X, Zhang Y, Wang L, Zheng W. Reply to "Comment on 'Reactive Oxygen Species-Responsive Polypeptide Drug Delivery System Targeted Activated Hepatic Stellate Cells to Ameliorate Liver Fibrosis'". ACS NANO 2023; 17:4096-4097. [PMID: 36916180 DOI: 10.1021/acsnano.3c00848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Affiliation(s)
- Yumei Hao
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines & Beijing Key Laboratory of Drug Delivery Technology and Novel Formulation, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Kaichao Song
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines & Beijing Key Laboratory of Drug Delivery Technology and Novel Formulation, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Science and Peking Union Medical College, Beijing 100050, China
| | - Xiaochuan Tan
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines & Beijing Key Laboratory of Drug Delivery Technology and Novel Formulation, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Yujia Zhang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines & Beijing Key Laboratory of Drug Delivery Technology and Novel Formulation, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Lulu Wang
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Science and Peking Union Medical College, Beijing 100050, China
| | - Wensheng Zheng
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines & Beijing Key Laboratory of Drug Delivery Technology and Novel Formulation, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| |
Collapse
|
17
|
Rahimi S, Angaji SA, Majd A, Hatami B, Baghaei K. Evaluating the effect of basic fibroblast growth factor on the progression of NASH disease by inhibiting ceramide synthesis and ER stress-related pathways. Eur J Pharmacol 2023; 942:175536. [PMID: 36693552 DOI: 10.1016/j.ejphar.2023.175536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 01/05/2023] [Accepted: 01/20/2023] [Indexed: 01/22/2023]
Abstract
Non-alcoholic steatohepatitis (NASH) is associated with intrahepatic lipid accumulation, inflammation, and hepatocyte death. Several studies have indicated that high-fat diets increase ceramide synthases-6 (CerS-6) expression and a concomitant elevation of C16-ceramides, which can modulate endoplasmic reticulum (ER) stress and further contribute to the progression of NASH. Ceramide levels have reportedly been impacted by basic fibroblast growth factor (bFGF) in various diseases. This study looked into the role of bFGF on CerS6/C16-ceramide and ER stress-related pathways in a mouse model of NASH. Male C57BL/6J mice were fed a western diet (WD) combined with carbon tetrachloride (CCl4) for eight weeks. Next, bFGF was injected into the NASH mice for seven days of continuous treatment. The effects of bFGF on NASH endpoints (including steatosis, inflammation, ballooning, and fibrosis), ceramide levels and ER-stress-induced inflammation, reactive oxygen species (ROS) production, and apoptosis were evaluated. Treatment with bFGF significantly reduced CerS-6/C16-ceramide. Further, the inflammatory condition was alleviated with reduction of nuclear factor-kappa B (NF-κB), tumor necrosis factor-alpha (TNF-α), and interleukin 6 (IL-6) gene expression. ROS level was also reduced. ER stress-related cell death diminished by reducing C/EBP homologous protein (CHOP) mRNA expression and caspase 3 activity. Furthermore, activation of the hepatic stellate cells was inhibited in the bFGF-treated mice by lowering the amount of alpha-smooth muscle actin (α-SMA) at the mRNA and protein level. According to our findings, CerS-6/C16-ceramide alteration impacts ER stress-mediated inflammation, oxidative stress, and apoptosis. The bFGF treatment effectively attenuated the development of NASH by downregulating CerS-6/C16-ceramide and subsequent ER stress-related pathways.
Collapse
Affiliation(s)
- Shahrzad Rahimi
- Department of Genetic, North Tehran Branch, Islamic Azad University, Tehran, 1651153311, Iran
| | - Seyyed Abdolhamid Angaji
- Department of Genetic, North Tehran Branch, Islamic Azad University, Tehran, 1651153311, Iran; Department of Cell and Molecular Biology, Faculty of Biological Science, Kharazmi University, Tehran, 1571914911, Iran
| | - Ahmad Majd
- Department of Biology, North Tehran Branch, Islamic Azad University, Tehran, 1651153311, Iran
| | - Behzad Hatami
- Gastroenterology and Liver Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, 1985717413, Iran
| | - Kaveh Baghaei
- Gastroenterology and Liver Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, 1985717413, Iran; Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, 1985717413, Iran.
| |
Collapse
|
18
|
Vyas K, Patel MM. Insights on drug and gene delivery systems in liver fibrosis. Asian J Pharm Sci 2023; 18:100779. [PMID: 36845840 PMCID: PMC9950450 DOI: 10.1016/j.ajps.2023.100779] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2022] [Revised: 01/12/2023] [Accepted: 01/12/2023] [Indexed: 01/30/2023] Open
Abstract
Complications of the liver are amongst the world's worst diseases. Liver fibrosis is the first stage of liver problems, while cirrhosis is the last stage, which can lead to death. The creation of effective anti-fibrotic drug delivery methods appears critical due to the liver's metabolic capacity for drugs and the presence of insurmountable physiological impediments in the way of targeting. Recent breakthroughs in anti-fibrotic agents have substantially assisted in fibrosis; nevertheless, the working mechanism of anti-fibrotic medications is not fully understood, and there is a need to design delivery systems that are well-understood and can aid in cirrhosis. Nanotechnology-based delivery systems are regarded to be effective but they have not been adequately researched for liver delivery. As a result, the capability of nanoparticles in hepatic delivery was explored. Another approach is targeted drug delivery, which can considerably improve efficacy if delivery systems are designed to target hepatic stellate cells (HSCs). We have addressed numerous delivery strategies that target HSCs, which can eventually aid in fibrosis. Recently genetics have proved to be useful, and methods for delivering genetic material to the target place have also been investigated where different techniques are depicted. To summarize, this review paper sheds light on the most recent breakthroughs in drug and gene-based nano and targeted delivery systems that have lately shown useful for the treatment of liver fibrosis and cirrhosis.
Collapse
Affiliation(s)
- Kunj Vyas
- Department of Pharmaceutics, Institute of Pharmacy, Nirma University SG Highway, Gujarat 382481, India
| | - Mayur M Patel
- Department of Pharmaceutics, Institute of Pharmacy, Nirma University SG Highway, Gujarat 382481, India
| |
Collapse
|
19
|
Xue T, Yue L, Zhu G, Tan Z, Liu H, Gan C, Fan C, Su X, Xie Y, Ye T. An oral phenylacrylic acid derivative suppressed hepatic stellate cell activation and ameliorated liver fibrosis by blocking TGF-β1 signalling. Liver Int 2023; 43:718-732. [PMID: 36448910 DOI: 10.1111/liv.15488] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 11/02/2022] [Accepted: 11/25/2022] [Indexed: 12/02/2022]
Abstract
BACKGROUND AND AIMS Liver fibrosis is an excessive wound-healing response governed by activated hepatic stellate cells (HSCs). To date, there is no drug available for liver fibrosis. Although ferulic acid (FA) has multiple pharmacological functions, its anti-hepatic fibrosis activity is weak. Based on the activity modification of the FA structure, we synthesized a series of phenylacrylic derivatives and found a superior compound, FA11. In this study, we investigated its antifibrotic effect and mechanism. METHODS Activated HSC and CCl4 -induced mouse liver fibrosis were established and followed by FA11 treatment. Cell viability was measured by CCK-8 assay. Apoptosis and cell cycle analysis were conducted by flow cytometry. Western blot and Real-time qPCR were used to examine the expression of fibrotic and M1/M2-type macrophages markers. Degree of liver fibrosis was shown by histological staining. RESULTS In vitro, FA11 inhibited TGF-β1-induced LX-2 proliferation and led to apoptosis and cycle arrest. Furthermore, elevation of fibrotic markers in TGF-β1-induced LX-2 and primary activated HSC was reversed by FA11. In vivo, FA11 administration alleviated collagen deposition and blocked HSC activation and epithelial-mesenchymal transition (EMT). Additionally, FA11 reduced macrophage infiltration in fibrotic liver and prevented macrophage polarization to a profibrotic phenotype. Meanwhile, the systemic toxicity of CCl4 was also ameliorated by FA11. Mechanistically, FA11 reversed the phosphorylation of canonical and noncanonical TGF-β1 signalling, as well as FGFR1 signalling. CONCLUSIONS We reported an oral phenylacrylic acid derivative, FA11, which showed excellent antifibrotic activity and was expected to be an anti-hepatic fibrosis candidate.
Collapse
Affiliation(s)
- Taixiong Xue
- Sichuan University-University of Oxford Huaxi Joint Centre for Gastrointestinal Cancer, Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Lin Yue
- Sichuan University-University of Oxford Huaxi Joint Centre for Gastrointestinal Cancer, Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Guonian Zhu
- Institute of Respiratory Health, West China Hospital, Sichuan University, Chengdu, China
| | - Zui Tan
- Sichuan University-University of Oxford Huaxi Joint Centre for Gastrointestinal Cancer, Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Hongyao Liu
- Sichuan University-University of Oxford Huaxi Joint Centre for Gastrointestinal Cancer, Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Cailing Gan
- Sichuan University-University of Oxford Huaxi Joint Centre for Gastrointestinal Cancer, Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Chen Fan
- Sichuan University-University of Oxford Huaxi Joint Centre for Gastrointestinal Cancer, Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China.,Hospital of Chengdu Office of People's Government of Tibetan Autonomous Region (Hospital.C.T.), Chengdu, China
| | - Xingping Su
- Sichuan University-University of Oxford Huaxi Joint Centre for Gastrointestinal Cancer, Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Yuting Xie
- Sichuan University-University of Oxford Huaxi Joint Centre for Gastrointestinal Cancer, Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Tinghong Ye
- Sichuan University-University of Oxford Huaxi Joint Centre for Gastrointestinal Cancer, Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
20
|
Bansal R, Poelstra K. Hepatic Stellate Cell Targeting Using Peptide-Modified Biologicals. Methods Mol Biol 2023; 2669:269-284. [PMID: 37247067 DOI: 10.1007/978-1-0716-3207-9_17] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
Liver diseases are a leading cause of death worldwide and are rising exponentially due to increasing prevalence of metabolic disorders. Hepatic stellate cells (HSCs) are recognized as a key therapeutic target in liver diseases as these cells, upon activation during liver damage and ongoing liver inflammation, secrete excessive amounts of extracellular matrix that leads to liver tissue scarring (fibrosis) responsible for liver dysfunction (end-stage liver disease) and desmoplasia in hepatocellular carcinoma. Targeting of HSCs to reverse fibrosis progression has been realized by several experts in the field, including us. We have developed strategies to target activated HSCs by utilizing the receptors overexpressed on the surface of activated HSCs. One well-known receptor is platelet derived growth factor receptor-beta (PDGFR-β). Using PDGFR-β recognizing peptides (cyclic PPB or bicyclic PPB), we can deliver biologicals, e.g., interferon gamma (IFNγ) or IFNγ activity domain (mimetic IFNγ), to the activated HSCs that can inhibit their activation and reverse liver fibrosis. In this chapter, we provide the detailed methods and the principles involved in the synthesis of these targeted (mimetic) IFNγ constructs. These methods can be adapted for synthesizing constructs for targeted/cell-specific delivery of peptides/proteins, drugs, and imaging agents useful for various applications including diagnosis and treatment of inflammatory and fibrotic diseases and cancer.
Collapse
Affiliation(s)
- Ruchi Bansal
- Translational Liver Research, Department of Medical Cell BioPhysics, Technical Medical Centre, Faculty of Science and Technology, University of Twente, Enschede, The Netherlands.
| | - Klaas Poelstra
- Department of Nanomedicine and Drug Targeting, Groningen Research Institute of Pharmacy, University of Groningen, Groningen, The Netherlands.
| |
Collapse
|
21
|
Anwar I, Ashfaq UA. Impact of Nanotechnology on Differentiation and Augmentation of Stem Cells for Liver Therapy. Crit Rev Ther Drug Carrier Syst 2023; 40:89-116. [PMID: 37585310 DOI: 10.1615/critrevtherdrugcarriersyst.2023042400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/18/2023]
Abstract
The liver is one of the crucial organs of the body that performs hundreds of chemical reactions needed by the body to survive. It is also the largest gland of the body. The liver has multiple functions, including the synthesis of chemicals, metabolism of nutrients, and removal of toxins. It also acts as a storage unit. The liver has a unique ability to regenerate itself, but it can lead to permanent damage if the injury is beyond recovery. The only possible treatment of severe liver damage is liver transplant which is a costly procedure and has several other drawbacks. Therefore, attention has been shifted towards the use of stem cells that have shown the ability to differentiate into hepatocytes. Among the numerous kinds of stem cells (SCs), the mesenchymal stem cells (MSCs) are the most famous. Various studies suggest that an MSC transplant can repair liver function, improve the signs and symptoms, and increase the chances of survival. This review discusses the impact of combining stem cell therapy with nanotechnology. By integrating stem cell science and nanotechnology, the information about stem cell differentiation and regulation will increase, resulting in a better comprehension of stem cell-based treatment strategies. The augmentation of SCs with nanoparticles has been shown to boost the effect of stem cell-based therapy. Also, the function of green nanoparticles in liver therapies is discussed.
Collapse
Affiliation(s)
- Ifrah Anwar
- Department of Bioinformatics and Biotechnology, Government College University Faisalabad, Faisalabad, Pakistan
| | - Usman Ali Ashfaq
- Department of Bioinformatics and Biotechnology, Government College University Faisalabad, Faisalabad, Pakistan
| |
Collapse
|
22
|
Azarmi M, Maleki H, Nikkam N, Malekinejad H. Novel neurolisteriosis therapy using SPION as a drivable nanocarrier in gallic acid delivery to CNS. J Control Release 2023; 353:507-517. [PMID: 36493947 DOI: 10.1016/j.jconrel.2022.12.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 11/18/2022] [Accepted: 12/03/2022] [Indexed: 12/14/2022]
Abstract
Neurolisteriosis is an infectious disease of the central nervous system (CNS) with a high mortality rate caused by Listeria monocytogenes. The CNS disorders suffer from inadequacy of drugs accessibility. An experimental in vivo model of neurolisteriosis was developed by oral administration of the bacteria in Wistar rats. It's speculated the capability of magnetite nanoparticles (MNPs) in ferrying gallic acid (GA), as a natural antimicrobial agent, through the blood-brain barrier (BBB) with the assistance of an external magnetic field (EMF). The capability of the formulated nanodrug in traversing through the BBB was approved by detecting blue spots in the Perls' Prussian staining of the brain tissue sections and by an increased iron content of the brain determined by the inductively coupled plasma spectroscopy. The GA release pattern and the nanodrug toxicity assay were promising. Anti-listeriosis effect of the formulated nanodrug was evaluated by molecular quantification of the relative abundance of survived bacteria in brain tissue samples. Besides, the relative expression of the listeriolysin O-encoding hly gene, the prominent virulence factor of L. monocytogenes, was determined using the rplD gene as a reference gene. The nanodrug-received rats showed a significantly less viable bacteria (13.2 ± 7.6%) and a 4.4-fold reduction in the relative expression of the hly gene in comparison to the sham group. Magnetite nanoparticles (MNPs) were synthesized by co-precipitation method, functionalized with GA, and finally coated with Tween 80. The physicochemical properties of the bare and surface modified materials were investigated using different techniques including X-ray diffraction (XRD) and Fourier transform infrared (FTIR) spectroscopies, transmission electron microscopy (TEM), field-emission scanning electron microscopy (FESEM), dynamic light scattering (DLS) and Zeta Potential analyses, and vibrating sample magnetometry. In conclusion, MNPs displayed a considerable potential for drug delivery intentions to various target sites such as the CNS. Gallic acid exhibited a binary anti-listerial effect, the destruction of L. monocytogenes bacteria in addition to reducing the expression of the hly gene, which in turn causes reduced survivability of the bacteria in the CNS.
Collapse
Affiliation(s)
- Mehrdad Azarmi
- Faculty of Life Sciences and Biotechnology, Shahid Beheshti University, Tehran, Iran
| | - Hadi Maleki
- Faculty of Life Sciences and Biotechnology, Shahid Beheshti University, Tehran, Iran.
| | - Nader Nikkam
- Faculty of Life Sciences and Biotechnology, Shahid Beheshti University, Tehran, Iran
| | | |
Collapse
|
23
|
Magnetic Nanoparticles: Current Advances in Nanomedicine, Drug Delivery and MRI. CHEMISTRY 2022. [DOI: 10.3390/chemistry4030063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Magnetic nanoparticles (MNPs) have evolved tremendously during recent years, in part due to the rapid expansion of nanotechnology and to their active magnetic core with a high surface-to-volume ratio, while their surface functionalization opened the door to a plethora of drug, gene and bioactive molecule immobilization. Taming the high reactivity of the magnetic core was achieved by various functionalization techniques, producing MNPs tailored for the diagnosis and treatment of cardiovascular or neurological disease, tumors and cancer. Superparamagnetic iron oxide nanoparticles (SPIONs) are established at the core of drug-delivery systems and could act as efficient agents for MFH (magnetic fluid hyperthermia). Depending on the functionalization molecule and intrinsic morphological features, MNPs now cover a broad scope which the current review aims to overview. Considering the exponential expansion of the field, the current review will be limited to roughly the past three years.
Collapse
|
24
|
Shi Q, Wei S, Li ZC, Xu J, Li Y, Guo C, Wu X, Shi C, Di G. Collagen-binding fibroblast growth factor ameliorates liver fibrosis in murine bile duct ligation injury. J Biomater Appl 2022; 37:918-929. [PMID: 35969638 DOI: 10.1177/08853282221121861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Cholestatic liver injury, characterized by liver fibrosis, has increasingly become a global health problem, with no effective treatment available. Hepatic stellate cells (HSCs) differentiate into myofibroblasts, leading to excessive deposition of the extracellular matrix (ECM), which is a feature of liver fibrosis. Basic fibroblast growth factor (bFGF) has proven antifibrotic effects in chronic liver disease; however, the lack of an effective delivery system to the injury site reduces its therapeutic efficacy. The aim of this study was to assess the therapeutic effect of collagen-binding bFGF (CBD-bFGF) for the treatment of liver fibrosis in a murine bile duct ligation (BDL) model. We found that CBD-bFGF treatment significantly alleviated liver injury in the early phase of BDL injury, and was associated with decreased necroptotic cell death and inflammatory response. Moreover, CBD-bFGF had enhanced therapeutic effects for liver fibrosis on day 7 after surgery compared to those obtained with native bFGF treatment. In vitro, CBD-bFGF treatment notably inhibited TGF-β1-induced LX-2 cell activation, migration, and contraction compared with native bFGF. In conclusion, CBD-bFGF may be a promising treatment for hepatic fibrosis.
Collapse
Affiliation(s)
- Qiangqiang Shi
- School of Basic Medicine, Medical College, 12593Qingdao University, Qingdao, China
| | - Susu Wei
- School of Basic Medicine, Medical College, 12593Qingdao University, Qingdao, China
| | - Zhi Chao Li
- Department of Gynaecology and Obstetrics, Qingdao Municipal Hospital, 12593Qingdao University, Qingdao, China
| | - Jing Xu
- School of Basic Medicine, Medical College, 12593Qingdao University, Qingdao, China
| | - Yaxin Li
- School of Basic Medicine, Medical College, 12593Qingdao University, Qingdao, China
| | - Chuanlong Guo
- College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao, China
| | - Xianggen Wu
- College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao, China
| | - Chunying Shi
- School of Basic Medicine, Medical College, 12593Qingdao University, Qingdao, China
| | - Guohu Di
- School of Basic Medicine, Medical College, 12593Qingdao University, Qingdao, China
| |
Collapse
|
25
|
Peng W, Zhang S, Zhou W, Zhao X, Wang K, Yue C, Wei X, Pang S, Dong W, Chen S, Chen C, Yang Q, Wang W. Layered Double Hydroxides-Loaded Sorafenib Inhibit Hepatic Stellate Cells Proliferation and Activation In Vitro and Reduce Fibrosis In Vivo. Front Bioeng Biotechnol 2022; 10:873971. [PMID: 35711641 PMCID: PMC9196193 DOI: 10.3389/fbioe.2022.873971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Accepted: 05/10/2022] [Indexed: 11/13/2022] Open
Abstract
A core feature of liver fibrosis is the activation of hepatic stellate cells (HSCs), which are transformed into myofibroblasts and lead to the accumulation of extracellular matrix (ECM) proteins. In this study, we combined in vitro cellular efficacy with in vivo antifibrosis performance to evaluate the outcome of sorafenib (SRF) loaded layered double hydroxide (LDH) nanocomposite (LDH-SRF) on HSCs. The cellular uptake test has revealed that sorafenib encapsulated LDH nanoparticles were efficiently internalized by the HSC-T6 cells, synergistically inducing apoptosis of hepatic stellate cells. Moreover, the apoptosis rate and the migration inhibition rate induced by LDHs-SRF were 2.5 and 1.7 times that of SRF. Western Blot showed that the TGF-β1/Smad/EMT and AKT signaling pathway was significantly inhibited in HSC-T6 cells treated with LDHs-SRF. For the in vivo experiment, LDHs-SRF were administered to rat models of CCl4-induced liver fibrosis. H&E, masson and sirius red staining showed that LDHs-SRF could significantly reduce inflammatory infiltrate and collagen fiber deposition and immunohistochemical results found that LDHs-SRF treatment significantly inhibited the protein expressions of α-SMA in the liver, these results suggesting that LDHs-SRF exhibited better anti-fibrotic effect than SRF alone and significantly inhibited the proliferation and activation of rat hepatic stellate cells and collagen fiber synthesis.
Collapse
Affiliation(s)
- Wei Peng
- Anhui Province Key Laboratory of Translational Cancer Research, Department of Biotechnology, Bengbu Medical College, Anhui, China
| | - Shiwen Zhang
- Anhui Province Key Laboratory of Translational Cancer Research, Department of Biotechnology, Bengbu Medical College, Anhui, China
| | - Wei Zhou
- Anhui Province Key Laboratory of Translational Cancer Research, Department of Biotechnology, Bengbu Medical College, Anhui, China
| | - Xinchen Zhao
- Anhui Province Key Laboratory of Translational Cancer Research, Department of Biotechnology, Bengbu Medical College, Anhui, China
| | - Kexue Wang
- Anhui Province Key Laboratory of Translational Cancer Research, Department of Biotechnology, Bengbu Medical College, Anhui, China
| | - Chengxu Yue
- Department of Biochemistry, School of Laboratory Medicine, Bengbu Medical College, Anhui, China
| | - Xinyu Wei
- Department of Biochemistry, School of Laboratory Medicine, Bengbu Medical College, Anhui, China
| | - Siyan Pang
- Anhui Province Key Laboratory of Translational Cancer Research, Department of Biotechnology, Bengbu Medical College, Anhui, China
| | - Wei Dong
- The Third Department of Hepatic Surgery, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai, China
| | - Sulian Chen
- Department of Biochemistry, School of Laboratory Medicine, Bengbu Medical College, Anhui, China
| | - Changjie Chen
- Department of Biochemistry, School of Laboratory Medicine, Bengbu Medical College, Anhui, China
| | - Qingling Yang
- Department of Biochemistry, School of Laboratory Medicine, Bengbu Medical College, Anhui, China
| | - Wenrui Wang
- Anhui Province Key Laboratory of Translational Cancer Research, Department of Biotechnology, Bengbu Medical College, Anhui, China
| |
Collapse
|
26
|
Dolivo DM. Anti-fibrotic effects of pharmacologic FGF-2: a review of recent literature. J Mol Med (Berl) 2022; 100:847-860. [PMID: 35484303 DOI: 10.1007/s00109-022-02194-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Revised: 03/09/2022] [Accepted: 03/28/2022] [Indexed: 02/06/2023]
Abstract
Fibrosis is a process of pathological tissue repair that replaces damaged, formerly functional tissue with a non-functional, collagen-rich scar. Complications of fibrotic pathologies, which can arise in numerous organs and from numerous conditions, result in nearly half of deaths in the developed world. Despite this, therapies that target fibrosis at its mechanistic roots are still notably lacking. The ubiquity of the occurrence of fibrosis in myriad organs emphasizes the fact that there are shared mechanisms underlying fibrotic conditions, which may serve as common therapeutic targets for multiple fibrotic diseases of varied organs. Thus, study of the basic science of fibrosis and of anti-fibrotic modalities is critical to therapeutic development and may have potential to translate across organs and disease states. Fibroblast growth factor 2 (FGF-2) is a broadly studied member of the fibroblast growth factors, a family of multipotent cytokines implicated in diverse cellular and tissue processes, which has previously been recognized for its anti-fibrotic potential. However, the mechanisms underlying this potential are not fully understood, nor is the potential for its use to ameliorate fibrosis in diverse pathologies and tissues. Presented here is a review of recent literature that sheds further light on these questions, with the hopes of inspiring further research into the mechanisms underlying the anti-fibrotic activities of FGF-2, as well as the disease conditions for which pharmacologic FGF-2 might be a useful option in the future.
Collapse
|
27
|
Tong G, Chen X, Lee J, Fan J, Li S, Zhu K, Hu Z, Mei L, Sui Y, Dong Y, Chen R, Jin Z, Zhou B, Li X, Wang X, Cong W, Huang P, Jin L. Fibroblast growth factor 18 attenuates liver fibrosis and HSCs activation via the SMO-LATS1-YAP pathway. Pharmacol Res 2022; 178:106139. [DOI: 10.1016/j.phrs.2022.106139] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Revised: 02/08/2022] [Accepted: 02/18/2022] [Indexed: 12/28/2022]
|
28
|
Wei H, Hu Y, Wang J, Gao X, Qian X, Tang M. Superparamagnetic Iron Oxide Nanoparticles: Cytotoxicity, Metabolism, and Cellular Behavior in Biomedicine Applications. Int J Nanomedicine 2021; 16:6097-6113. [PMID: 34511908 PMCID: PMC8418330 DOI: 10.2147/ijn.s321984] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Accepted: 07/30/2021] [Indexed: 12/15/2022] Open
Abstract
Superparamagnetic iron oxide nanoparticles (SPIONs) have been widely investigated and applied in the field of biomedicine due to their excellent superparamagnetic properties and reliable traceability. However, with the optimization of core composition, shell types and transfection agents, the cytotoxicity and metabolism of different SPIONs have great differences, and the labeled cells also show different cellular behaviors. Therefore, a holistic review of the construction and application of SPIONs is desired. This review focuses the advances of SPIONs in the field of biomedicine in recent years. After summarizing the toxicity of different SPIONs, the uptake, distribution and metabolism of SPIONs in vitro were discussed. Then, the regulation of labeled-cells behavior is outlined. Furthermore, the major challenges in the optimization process of SPIONs and insights on its future developments are proposed.
Collapse
Affiliation(s)
- Hao Wei
- Department of Otolaryngology Head and Neck Surgery, Affiliated Drum Tower Hospital of Nanjing University Medical School, Jiangsu Provincial Key Medical Discipline, Nanjing, 210008, People's Republic of China
| | - Yangnan Hu
- State Key Laboratory of Bioelectronics, School of Life Sciences and Technology, Jiangsu Province High-Tech Key Laboratory for Bio-Medical Research, Southeast University, Nanjing, 210096, People's Republic of China.,Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, 226001, People's Republic of China
| | - Junguo Wang
- Department of Otolaryngology Head and Neck Surgery, Affiliated Drum Tower Hospital of Nanjing University Medical School, Jiangsu Provincial Key Medical Discipline, Nanjing, 210008, People's Republic of China
| | - Xia Gao
- Department of Otolaryngology Head and Neck Surgery, Affiliated Drum Tower Hospital of Nanjing University Medical School, Jiangsu Provincial Key Medical Discipline, Nanjing, 210008, People's Republic of China
| | - Xiaoyun Qian
- Department of Otolaryngology Head and Neck Surgery, Affiliated Drum Tower Hospital of Nanjing University Medical School, Jiangsu Provincial Key Medical Discipline, Nanjing, 210008, People's Republic of China
| | - Mingliang Tang
- State Key Laboratory of Bioelectronics, School of Life Sciences and Technology, Jiangsu Province High-Tech Key Laboratory for Bio-Medical Research, Southeast University, Nanjing, 210096, People's Republic of China.,Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, 226001, People's Republic of China.,Department of Cardiovascular Surgery of the First Affiliated Hospital & Institute for Cardiovascular Science, Medical College, Soochow University, Suzhou, 215000, People's Republic of China
| |
Collapse
|
29
|
Friedrich RP, Cicha I, Alexiou C. Iron Oxide Nanoparticles in Regenerative Medicine and Tissue Engineering. NANOMATERIALS 2021; 11:nano11092337. [PMID: 34578651 PMCID: PMC8466586 DOI: 10.3390/nano11092337] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 09/03/2021] [Accepted: 09/06/2021] [Indexed: 12/13/2022]
Abstract
In recent years, many promising nanotechnological approaches to biomedical research have been developed in order to increase implementation of regenerative medicine and tissue engineering in clinical practice. In the meantime, the use of nanomaterials for the regeneration of diseased or injured tissues is considered advantageous in most areas of medicine. In particular, for the treatment of cardiovascular, osteochondral and neurological defects, but also for the recovery of functions of other organs such as kidney, liver, pancreas, bladder, urethra and for wound healing, nanomaterials are increasingly being developed that serve as scaffolds, mimic the extracellular matrix and promote adhesion or differentiation of cells. This review focuses on the latest developments in regenerative medicine, in which iron oxide nanoparticles (IONPs) play a crucial role for tissue engineering and cell therapy. IONPs are not only enabling the use of non-invasive observation methods to monitor the therapy, but can also accelerate and enhance regeneration, either thanks to their inherent magnetic properties or by functionalization with bioactive or therapeutic compounds, such as drugs, enzymes and growth factors. In addition, the presence of magnetic fields can direct IONP-labeled cells specifically to the site of action or induce cell differentiation into a specific cell type through mechanotransduction.
Collapse
|
30
|
Sofias AM, De Lorenzi F, Peña Q, Azadkhah Shalmani A, Vucur M, Wang JW, Kiessling F, Shi Y, Consolino L, Storm G, Lammers T. Therapeutic and diagnostic targeting of fibrosis in metabolic, proliferative and viral disorders. Adv Drug Deliv Rev 2021; 175:113831. [PMID: 34139255 PMCID: PMC7611899 DOI: 10.1016/j.addr.2021.113831] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 05/30/2021] [Accepted: 06/10/2021] [Indexed: 02/07/2023]
Abstract
Fibrosis is a common denominator in many pathologies and crucially affects disease progression, drug delivery efficiency and therapy outcome. We here summarize therapeutic and diagnostic strategies for fibrosis targeting in atherosclerosis and cardiac disease, cancer, diabetes, liver diseases and viral infections. We address various anti-fibrotic targets, ranging from cells and genes to metabolites and proteins, primarily focusing on fibrosis-promoting features that are conserved among the different diseases. We discuss how anti-fibrotic therapies have progressed over the years, and how nanomedicine formulations can potentiate anti-fibrotic treatment efficacy. From a diagnostic point of view, we discuss how medical imaging can be employed to facilitate the diagnosis, staging and treatment monitoring of fibrotic disorders. Altogether, this comprehensive overview serves as a basis for developing individualized and improved treatment strategies for patients suffering from fibrosis-associated pathologies.
Collapse
Affiliation(s)
- Alexandros Marios Sofias
- Department of Nanomedicine and Theranostics, Institute for Experimental Molecular Imaging, Faculty of Medicine, RWTH Aachen University, Aachen, Germany; Mildred Scheel School of Oncology (MSSO), Center for Integrated Oncology Aachen Bonn Cologne Duesseldorf (CIO(ABCD)), University Hospital Aachen, Aachen, Germany; Department of Circulation and Medical Imaging, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology (NTNU), Trondheim, Norway.
| | - Federica De Lorenzi
- Department of Nanomedicine and Theranostics, Institute for Experimental Molecular Imaging, Faculty of Medicine, RWTH Aachen University, Aachen, Germany
| | - Quim Peña
- Department of Nanomedicine and Theranostics, Institute for Experimental Molecular Imaging, Faculty of Medicine, RWTH Aachen University, Aachen, Germany
| | - Armin Azadkhah Shalmani
- Department of Nanomedicine and Theranostics, Institute for Experimental Molecular Imaging, Faculty of Medicine, RWTH Aachen University, Aachen, Germany
| | - Mihael Vucur
- Department of Gastroenterology, Hepatology and Infectious Diseases, University Hospital Duesseldorf, Medical Faculty at Heinrich-Heine-University, Duesseldorf, Germany
| | - Jiong-Wei Wang
- Department of Surgery, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore; Cardiovascular Research Institute, National University Heart Centre Singapore, Singapore, Singapore; Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore; Nanomedicine Translational Research Programme, Centre for NanoMedicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Fabian Kiessling
- Department of Nanomedicine and Theranostics, Institute for Experimental Molecular Imaging, Faculty of Medicine, RWTH Aachen University, Aachen, Germany
| | - Yang Shi
- Department of Nanomedicine and Theranostics, Institute for Experimental Molecular Imaging, Faculty of Medicine, RWTH Aachen University, Aachen, Germany
| | - Lorena Consolino
- Department of Nanomedicine and Theranostics, Institute for Experimental Molecular Imaging, Faculty of Medicine, RWTH Aachen University, Aachen, Germany.
| | - Gert Storm
- Department of Surgery, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore; Nanomedicine Translational Research Programme, Centre for NanoMedicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore; Department of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, the Netherlands; Department of Targeted Therapeutics, University of Twente, Enschede, the Netherlands.
| | - Twan Lammers
- Department of Nanomedicine and Theranostics, Institute for Experimental Molecular Imaging, Faculty of Medicine, RWTH Aachen University, Aachen, Germany; Department of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, the Netherlands; Department of Targeted Therapeutics, University of Twente, Enschede, the Netherlands.
| |
Collapse
|
31
|
Seitz T, Hellerbrand C. Role of fibroblast growth factor signalling in hepatic fibrosis. Liver Int 2021; 41:1201-1215. [PMID: 33655624 DOI: 10.1111/liv.14863] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 02/22/2021] [Accepted: 02/25/2021] [Indexed: 12/11/2022]
Abstract
Fibrotic remodelling is a highly conserved protective response to tissue injury and it is essential for the maintenance of structural and functional tissue integrity. Also hepatic fibrosis can be considered as a wound-healing response to liver injury, reflecting a balance between liver repair and scar formation. In contrast, pathological fibrosis corresponds to impaired wound healing. Usually, the liver regenerates after acute injury. However, if the damaging mechanisms persist, the liver reacts with progressive and uncontrolled accumulation of extracellular matrix proteins. Eventually, excessive fibrosis can lead to cirrhosis and hepatic failure. Furthermore, cirrhosis is the major risk factor for the development of hepatocellular cancer (HCC). Therefore, hepatic fibrosis is the most critical pathological factor that determines the morbidity and mortality of patients with chronic liver disease. Still, no effective anti-fibrogenic therapies exist, despite the very high medical need. The regulation of fibroblast growth factor (FGF) signalling is a prerequisite for adequate wound healing, repair and homeostasis in various tissues and organs. The FGF family comprises 22 proteins that can be classified into paracrine, intracrine and endocrine factors. Most FGFs signal through transmembrane tyrosine kinase FGF receptors (FGFRs). Although FGFRs are promising targets for the treatment of HCC, the expression and function of FGFR-ligands in hepatic fibrosis is still poorly understood. This review summarizes the latest advances in our understanding of FGF signalling in hepatic fibrosis. Furthermore, the potential of FGFs as targets for the treatment of hepatic fibrosis and remaining challenges for the field are discussed.
Collapse
Affiliation(s)
- Tatjana Seitz
- Institute of Biochemistry, Friedrich-Alexander-University Erlangen-Nürnberg, Erlangen, Germany
| | - Claus Hellerbrand
- Institute of Biochemistry, Friedrich-Alexander-University Erlangen-Nürnberg, Erlangen, Germany
| |
Collapse
|
32
|
Eftekhari A, Arjmand A, Asheghvatan A, Švajdlenková H, Šauša O, Abiyev H, Ahmadian E, Smutok O, Khalilov R, Kavetskyy T, Cucchiarini M. The Potential Application of Magnetic Nanoparticles for Liver Fibrosis Theranostics. Front Chem 2021; 9:674786. [PMID: 34055744 PMCID: PMC8161198 DOI: 10.3389/fchem.2021.674786] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Accepted: 05/03/2021] [Indexed: 12/11/2022] Open
Abstract
Liver fibrosis is a major cause of morbidity and mortality worldwide due to chronic liver damage and leading to cirrhosis, liver cancer, and liver failure. To date, there is no effective and specific therapy for patients with hepatic fibrosis. As a result of their various advantages such as biocompatibility, imaging contrast ability, improved tissue penetration, and superparamagnetic properties, magnetic nanoparticles have a great potential for diagnosis and therapy in various liver diseases including fibrosis. In this review, we focus on the molecular mechanisms and important factors for hepatic fibrosis and on potential magnetic nanoparticles-based therapeutics. New strategies for the diagnosis of liver fibrosis are also discussed, with a summary of the challenges and perspectives in the translational application of magnetic nanoparticles from bench to bedside.
Collapse
Affiliation(s)
- Aziz Eftekhari
- Maragheh University of Medical Sciences, Maragheh, Iran
- Polymer Institute, Slovak Academy of Sciences, Bratislava, Slovakia
- Russian Institute for Advanced Study, Moscow State Pedagogical University, Moscow, Russian Federation
- Department of Surface Engineering, The John Paul II Catholic University of Lublin, Lublin, Poland
| | | | | | | | - Ondrej Šauša
- Institute of Physics, Slovak Academy of Sciences, Bratislava, Slovakia
- Department of Nuclear Chemistry, Faculty of Natural Sciences, Comenius University in Bratislava, Bratislava, Slovakia
| | - Huseyn Abiyev
- Department of Biochemistry, Azerbaijan Medical University, Baku, Azerbaijan
| | - Elham Ahmadian
- Kidney Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Oleh Smutok
- Department of Chemistry and Biomolecular Science, Clarkson University, Potsdam, NY, United States
- Institute of Cell Biology, National Academy of Sciences of Ukraine, Lviv, Ukraine
| | - Rovshan Khalilov
- Russian Institute for Advanced Study, Moscow State Pedagogical University, Moscow, Russian Federation
- Department of Biophysics and Biochemistry, Baku State University, Baku, Azerbaijan
- Institute of Radiation Problems, National Academy of Sciences of Azerbaijan, Baku, Azerbaijan
| | - Taras Kavetskyy
- Department of Surface Engineering, The John Paul II Catholic University of Lublin, Lublin, Poland
- Institute of Physics, Slovak Academy of Sciences, Bratislava, Slovakia
- Department of Biology and Chemistry, Drohobych Ivan Franko State Pedagogical University, Drohobych, Ukraine
| | - Magali Cucchiarini
- Center of Experimental Orthopaedics, Saarland University Medical Center, Homburg, Germany
| |
Collapse
|
33
|
Geervliet E, Moreno S, Baiamonte L, Booijink R, Boye S, Wang P, Voit B, Lederer A, Appelhans D, Bansal R. Matrix metalloproteinase-1 decorated polymersomes, a surface-active extracellular matrix therapeutic, potentiates collagen degradation and attenuates early liver fibrosis. J Control Release 2021; 332:594-607. [PMID: 33737203 DOI: 10.1016/j.jconrel.2021.03.016] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Revised: 03/08/2021] [Accepted: 03/12/2021] [Indexed: 02/07/2023]
Abstract
Liver fibrosis affects millions of people worldwide and is rising vastly over the past decades. With no viable therapies available, liver transplantation is the only curative treatment for advanced diseased patients. Excessive accumulation of aberrant extracellular matrix (ECM) proteins, mostly collagens, produced by activated hepatic stellate cells (HSCs), is a hallmark of liver fibrosis. Several studies have suggested an inverse correlation between collagen-I degrading matrix metalloproteinase-1 (MMP-1) serum levels and liver fibrosis progression highlighting reduced MMP-1 levels are associated with poor disease prognosis in patients with liver fibrosis. We hypothesized that delivery of MMP-1 might potentiate collagen degradation and attenuate fibrosis development. In this study, we report a novel approach for the delivery of MMP-1 using MMP-1 decorated polymersomes (MMPsomes), as a surface-active vesicle-based ECM therapeutic, for the treatment of liver fibrosis. The storage-stable and enzymatically active MMPsomes were fabricated by a post-loading of Psomes with MMP-1. MMPsomes were extensively characterized for the physicochemical properties, MMP-1 surface localization, stability, enzymatic activity, and biological effects. Dose-dependent effects of MMP-1, and effects of MMPsomes versus MMP-1, empty polymersomes (Psomes) and MMP-1 + Psomes on gene and protein expression of collagen-I, MMP-1/TIMP-1 ratio, migration and cell viability were examined in TGFβ-activated human HSCs. Finally, the therapeutic effects of MMPsomes, compared to MMP-1, were evaluated in vivo in carbon-tetrachloride (CCl4)-induced early liver fibrosis mouse model. MMPsomes exhibited favorable physicochemical properties, MMP-1 surface localization and improved therapeutic efficacy in TGFβ-activated human HSCs in vitro. In CCl4-induced early liver fibrosis mouse model, MMPsomes inhibited intra-hepatic collagen-I (ECM marker, indicating early liver fibrosis) and F4/80 (marker for macrophages, indicating liver inflammation) expression. In conclusion, our results demonstrate an innovative approach of MMP-1 delivery, using surface-decorated MMPsomes, for alleviating liver fibrosis.
Collapse
Affiliation(s)
- Eline Geervliet
- Translational Liver Research, Department of Medical Cell Biophysics, Technical Medical Centre, Faculty of Science and Technology, University of Twente, Drienerlolaan 5, 7522 NB Enschede, the Netherlands
| | - Silvia Moreno
- Leibniz-Institut für Polymerforschung Dresden e.V., Hohe Straße 6, 01069 Dresden, Germany
| | - Luca Baiamonte
- Leibniz-Institut für Polymerforschung Dresden e.V., Hohe Straße 6, 01069 Dresden, Germany
| | - Richell Booijink
- Translational Liver Research, Department of Medical Cell Biophysics, Technical Medical Centre, Faculty of Science and Technology, University of Twente, Drienerlolaan 5, 7522 NB Enschede, the Netherlands
| | - Susanne Boye
- Leibniz-Institut für Polymerforschung Dresden e.V., Hohe Straße 6, 01069 Dresden, Germany
| | - Peng Wang
- Leibniz-Institut für Polymerforschung Dresden e.V., Hohe Straße 6, 01069 Dresden, Germany; Technische Universität Dresden, Organic Chemistry of Polymers, 01062 Dresden, Germany
| | - Brigitte Voit
- Leibniz-Institut für Polymerforschung Dresden e.V., Hohe Straße 6, 01069 Dresden, Germany; Technische Universität Dresden, Organic Chemistry of Polymers, 01062 Dresden, Germany
| | - Albena Lederer
- Leibniz-Institut für Polymerforschung Dresden e.V., Hohe Straße 6, 01069 Dresden, Germany; Department of Chemistry and Polymer Science, Stellenbosch University, Matieland 7602, South Africa.
| | - Dietmar Appelhans
- Leibniz-Institut für Polymerforschung Dresden e.V., Hohe Straße 6, 01069 Dresden, Germany.
| | - Ruchi Bansal
- Translational Liver Research, Department of Medical Cell Biophysics, Technical Medical Centre, Faculty of Science and Technology, University of Twente, Drienerlolaan 5, 7522 NB Enschede, the Netherlands.
| |
Collapse
|
34
|
Huang K, Wen S, Wang W, Zhou JE, Huang J, Wang F, Pang L, Wang Y, Sun X. Erythrocyte membrane coated nanoparticle-based control releasing hydrogen sulfide system protects ischemic myocardium. Nanomedicine (Lond) 2021; 16:465-480. [PMID: 33599532 DOI: 10.2217/nnm-2020-0404] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Aim: To construct a long circulatory and sustained releasing H2S system and explore its protective effects on myocardial ischemia and reperfusion (I/R) injury. Materials & methods: Red blood cell (RBC) membrane-coated, diallyl trisulfide (DATS)-carrying mesoporous iron oxide nanoparticles (MIONs) (RBC-DATS-MIONs) were prepared and characterized. Cytotoxicity and cellular uptake were studied in vitro, followed by in vivo assessment of safety, distribution and effect on cardiac function following I/R injury. Results: RBC-DATS-MIONs exhibited excellent biocompatibility, extended circulatory time and controlled-release of H2S in plasma and myocardium. They exhibited superior therapeutic effects on in vitro hypoxia/reoxygenation models and in vivo myocardial I/R models, which involved various mechanisms, including anti-apoptosis, anti-inflammatory and antioxidant activities. Conclusion: This work provides a new potential platform for best utilizing the protective effects of H2S by prolonging its releasing process.
Collapse
Affiliation(s)
- Kai Huang
- Department of Cardiothoracic Surgery, Huashan Hospital of Fudan University, Shanghai, China
| | - Shuyan Wen
- Department of Cardiothoracic Surgery, Huashan Hospital of Fudan University, Shanghai, China
| | - Wenshuo Wang
- Department of Cardic Surgery, Zhongshan Hospital of Fudan University, Shanghai, China
| | - Jing-E Zhou
- Institute of Biomedical Engineering, Technology, Shanghai Engineering Research Center of Molecular Therapeutics, New Drug Development, School of Chemistry, Molecular Engineering, East China Normal University, Shanghai, China
| | - Jiechun Huang
- Department of Cardiothoracic Surgery, Huashan Hospital of Fudan University, Shanghai, China
| | - Fangrui Wang
- Department of Cardiothoracic Surgery, Huashan Hospital of Fudan University, Shanghai, China
| | - Liewen Pang
- Department of Cardiothoracic Surgery, Huashan Hospital of Fudan University, Shanghai, China
| | - Yiqing Wang
- Department of Cardiothoracic Surgery, Huashan Hospital of Fudan University, Shanghai, China
| | - Xiaotian Sun
- Department of Cardiothoracic Surgery, Huashan Hospital of Fudan University, Shanghai, China
| |
Collapse
|
35
|
Sedlář A, Trávníčková M, Matějka R, Pražák Š, Mészáros Z, Bojarová P, Bačáková L, Křen V, Slámová K. Growth Factors VEGF-A 165 and FGF-2 as Multifunctional Biomolecules Governing Cell Adhesion and Proliferation. Int J Mol Sci 2021; 22:1843. [PMID: 33673317 PMCID: PMC7917819 DOI: 10.3390/ijms22041843] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Revised: 02/09/2021] [Accepted: 02/10/2021] [Indexed: 12/11/2022] Open
Abstract
Vascular endothelial growth factor-A165 (VEGF-A165) and fibroblast growth factor-2 (FGF-2) are currently used for the functionalization of biomaterials designed for tissue engineering. We have developed a new simple method for heterologous expression and purification of VEGF-A165 and FGF-2 in the yeast expression system of Pichia pastoris. The biological activity of the growth factors was assessed in cultures of human and porcine adipose tissue-derived stem cells (ADSCs) and human umbilical vein endothelial cells (HUVECs). When added into the culture medium, VEGF-A165 stimulated proliferation only in HUVECs, while FGF-2 stimulated the proliferation of both cell types. A similar effect was achieved when the growth factors were pre-adsorbed to polystyrene wells. The effect of our recombinant growth factors was slightly lower than that of commercially available factors, which was attributed to the presence of some impurities. The stimulatory effect of the VEGF-A165 on cell adhesion was rather weak, especially in ADSCs. FGF-2 was a potent stimulator of the adhesion of ADSCs but had no to negative effect on the adhesion of HUVECs. In sum, FGF-2 and VEGF-A165 have diverse effects on the behavior of different cell types, which maybe utilized in tissue engineering.
Collapse
Affiliation(s)
- Antonín Sedlář
- Laboratory of Biomaterials and Tissue Engineering, Institute of Physiology of the Czech Academy of Sciences, Vídeňská 1083, CZ 14220 Praha 4, Czech Republic; (A.S.); (M.T.); or or (Š.P.)
- Department of Physiology, Faculty of Science, Charles University, Viničná 7, CZ 12844 Praha 2, Czech Republic
| | - Martina Trávníčková
- Laboratory of Biomaterials and Tissue Engineering, Institute of Physiology of the Czech Academy of Sciences, Vídeňská 1083, CZ 14220 Praha 4, Czech Republic; (A.S.); (M.T.); or or (Š.P.)
| | - Roman Matějka
- Laboratory of Biomaterials and Tissue Engineering, Institute of Physiology of the Czech Academy of Sciences, Vídeňská 1083, CZ 14220 Praha 4, Czech Republic; (A.S.); (M.T.); or or (Š.P.)
- Faculty of Biomedical Engineering, Czech Technical University in Prague, CZ 27201 Kladno, Czech Republic;
| | - Šimon Pražák
- Laboratory of Biomaterials and Tissue Engineering, Institute of Physiology of the Czech Academy of Sciences, Vídeňská 1083, CZ 14220 Praha 4, Czech Republic; (A.S.); (M.T.); or or (Š.P.)
- Faculty of Biomedical Engineering, Czech Technical University in Prague, CZ 27201 Kladno, Czech Republic;
| | - Zuzana Mészáros
- Laboratory of Biotransformation, Institute of Microbiology of the Czech Academy of Sciences, Vídeňská 1083, CZ 14220 Praha 4, Czech Republic; (Z.M.); (V.K.)
- Department of Biochemistry, University of Chemistry and Technology Prague, Technická 6, CZ 16628 Praha 6, Czech Republic
| | - Pavla Bojarová
- Faculty of Biomedical Engineering, Czech Technical University in Prague, CZ 27201 Kladno, Czech Republic;
- Laboratory of Biotransformation, Institute of Microbiology of the Czech Academy of Sciences, Vídeňská 1083, CZ 14220 Praha 4, Czech Republic; (Z.M.); (V.K.)
| | - Lucie Bačáková
- Laboratory of Biomaterials and Tissue Engineering, Institute of Physiology of the Czech Academy of Sciences, Vídeňská 1083, CZ 14220 Praha 4, Czech Republic; (A.S.); (M.T.); or or (Š.P.)
| | - Vladimír Křen
- Laboratory of Biotransformation, Institute of Microbiology of the Czech Academy of Sciences, Vídeňská 1083, CZ 14220 Praha 4, Czech Republic; (Z.M.); (V.K.)
| | - Kristýna Slámová
- Laboratory of Biotransformation, Institute of Microbiology of the Czech Academy of Sciences, Vídeňská 1083, CZ 14220 Praha 4, Czech Republic; (Z.M.); (V.K.)
| |
Collapse
|