1
|
Liu Q, Yang Y, Pan M, Shi K, Mo D, Li Y, Wang M, Guo L, Qian Z. Camptothecin multifunctional nanoparticles effectively achieve a balance between the efficacy of breast cancer treatment and the preservation of intestinal homeostasis. Bioact Mater 2024; 41:413-426. [PMID: 39184827 PMCID: PMC11342206 DOI: 10.1016/j.bioactmat.2024.07.032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 07/27/2024] [Accepted: 07/27/2024] [Indexed: 08/27/2024] Open
Abstract
Camptothecin (CPT) exhibits potent antitumor activity; however, its clinical application is limited by significant gastrointestinal adverse effects (GAEs). Although the severity of GAEs associated with CPT derivatives has decreased, the incidence rate of these adverse effects has remained high. CPT multifunctional nanoparticles (PCRHNs) have the potential to increase the efficacy of CPT while reducing side effects in major target organs; however, the impact of PCRHNs on the GAEs from CPT remains uncertain. Here, we investigated the therapeutic effects of PCRHNs and different doses of CPT and examined their impacts on the intestinal barrier and the intestinal microbiota. We found that the therapeutic efficacy of PCRHNs + Laser treatment was superior to that of high-dose CPT, and PCRHNs + Laser treatment also provided greater benefits by helping maintain intestinal barrier integrity, intestinal microbiota diversity, and intestinal microbiota abundance. In summary, compared to high-dose CPT treatment, PCRHNs + Laser treatment can effectively balance therapeutic effects and GAEs. A high dose of CPT promotes the enrichment of the pathogenic bacteria Escherichia-Shigella, which may be attributed to diarrhea caused by CPT, thus leading to a reduction in microbial burden; additionally, Escherichia-Shigella rapidly grows and occupies niches previously occupied by other bacteria that are lost due to diarrhea. PCRHNs + Laser treatment increased the abundance of Lactobacillus (probiotics), possibly due to the photothermal effect of the PCRHNs. This effect increased catalase activity, thus facilitating the conversion of hydrogen peroxide into oxygen within tumors and increasing oxygen levels in the body, which is conducive to the growth of facultative anaerobic bacteria.
Collapse
Affiliation(s)
- Qingya Liu
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Yun Yang
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Meng Pan
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Kun Shi
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Dong Mo
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Yicong Li
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Meng Wang
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Linfeng Guo
- Department of Plastic and Burn Surgery, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Zhiyong Qian
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| |
Collapse
|
2
|
Xia Y, Li X, Liu F. Targeted redox-responsive peptide for arterial chemoembolization therapy of orthotropic hepatocellular carcinoma. Abdom Radiol (NY) 2024; 49:3925-3934. [PMID: 38990300 PMCID: PMC11519146 DOI: 10.1007/s00261-024-04481-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2024] [Revised: 06/27/2024] [Accepted: 06/30/2024] [Indexed: 07/12/2024]
Abstract
OBJECTIVE Transcatheter Arterial Chemoembolization (TACE) is the first choice for the treatment of advanced-stage hepatocellular carcinoma (HCC). However, TACE suffers from a lack of specificity and rapid drug release. Herein, a targeted redox-responsive peptide (TRRP) was synthesized and used as a carrier of doxorubicin (DOX) to enhance the efficacy of TACE through tumor cells targeting and controlled drug release. METHODS TRRP has a high loading capacity of DOX and a sensitive drug release behavior at high glutathione (GSH) concentration. Moreover, TRRP could bind to the transferrin receptor on the surface of tumor cells, which enhanced the efficacy of TACE and reduced side effects of TACE. TACE with TRRP@DOX dispersed in lipiodol shows an enhanced therapeutic outcome compared to the treatment with DOX + lipiodol emulsion in orthotopic rat HCC models. RESULTS TRRP has a high loading capacity of DOX and a sensitive drug release behavior at GSH concentration. Moreover, TRRP could bind to the transferrin receptor on the surface of tumor cells, which enhanced the efficacy of TACE and reduced side effects of TACE. TACE with TRRP@DOX dispersed in lipiodol shows an enhanced therapeutic outcome compared to the treatment with DOX + lipiodol emulsion in orthotopic rat HCC models. CONCLUSIONS This study demonstrated that TRRP was a promising therapeutic agent for enhancing TACE therapy for HCC treatment.
Collapse
Affiliation(s)
- Yimao Xia
- Chinese PLA Medical School, Beijing, 100853, China
| | - Xin Li
- Department of Interventional Radiology, The Fifth Medical Center of PLA General Hospital, Beijing, 100039, China
| | - Fengyong Liu
- Chinese PLA Medical School, Beijing, 100853, China.
- Department of Interventional Radiology, The Fifth Medical Center of PLA General Hospital, Beijing, 100039, China.
| |
Collapse
|
3
|
Ding H, Zhou C, Li T. Nanomedicines with Versatile GSH-Responsive Linkers for Cancer Theranostics. ACS Biomater Sci Eng 2024; 10:5977-5994. [PMID: 39298132 DOI: 10.1021/acsbiomaterials.4c00897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2024]
Abstract
Glutathione (GSH)-responsive nanomedicines have generated significant interest in biochemistry, oncology, and material sciences due to their diverse applications, including chemical and biological sensors, diagnostics, and drug delivery systems. The effectiveness of these smart GSH-responsive nanomedicines depends critically on the choice of GSH-responsive linkers. Despite their crucial role, comprehensive reviews of GSH-responsive linkers are scarce, revealing a gap in the current literature. This review addresses this gap by systematically summarizing various GSH-responsive linkers and exploring their potential applications in cancer treatment. We provide an overview of the mechanisms of action of these linkers and their bioapplications, evaluating their advantages and limitations. The insights presented aim to guide the development of advanced GSH-responsive agents for cancer diagnosis and therapy.
Collapse
Affiliation(s)
- Huamin Ding
- Department of Pharmacy, Punan Hospital, Pudong New District, Shanghai 200125, China
| | - Can Zhou
- School of Medicine, Shanghai University, Shanghai 200444, China
| | - Tiejun Li
- Department of Pharmacy, Punan Hospital, Pudong New District, Shanghai 200125, China
| |
Collapse
|
4
|
Han S, Zou J, Xiao F, Xian J, Liu Z, Li M, Luo W, Feng C, Kong N. Nanobiotechnology boosts ferroptosis: opportunities and challenges. J Nanobiotechnology 2024; 22:606. [PMID: 39379969 PMCID: PMC11460037 DOI: 10.1186/s12951-024-02842-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Accepted: 09/07/2024] [Indexed: 10/10/2024] Open
Abstract
Ferroptosis, distinct from apoptosis, necrosis, and autophagy, is a unique type of cell death driven by iron-dependent phospholipid peroxidation. Since ferroptosis was defined in 2012, it has received widespread attention from researchers worldwide. From a biochemical perspective, the regulation of ferroptosis is strongly associated with cellular metabolism, primarily including iron metabolism, lipid metabolism, and redox metabolism. The distinctive regulatory mechanism of ferroptosis holds great potential for overcoming drug resistance-a major challenge in treating cancer. The considerable role of nanobiotechnology in disease treatment has been widely reported, but further and more systematic discussion on how nanobiotechnology enhances the therapeutic efficacy on ferroptosis-associated diseases still needs to be improved. Moreover, while the exciting therapeutic potential of ferroptosis in cancer has been relatively well summarized, its applications in other diseases, such as neurodegenerative diseases, cardiovascular and cerebrovascular diseases, and kidney disease, remain underreported. Consequently, it is necessary to fill these gaps to further complete the applications of nanobiotechnology in ferroptosis. In this review, we provide an extensive introduction to the background of ferroptosis and elaborate its regulatory network. Subsequently, we discuss the various advantages of combining nanobiotechnology with ferroptosis to enhance therapeutic efficacy and reduce the side effects of ferroptosis-associated diseases. Finally, we analyze and discuss the feasibility of nanobiotechnology and ferroptosis in improving clinical treatment outcomes based on clinical needs, as well as the current limitations and future directions of nanobiotechnology in the applications of ferroptosis, which will not only provide significant guidance for the clinical applications of ferroptosis and nanobiotechnology but also accelerate their clinical translations.
Collapse
Affiliation(s)
- Shiqi Han
- College of Pharmacy, Hangzhou Normal University, Hangzhou, 311121, Zhejiang, China
- Liangzhu Laboratory, Zhejiang University, Hangzhou, 311121, Zhejiang, China
| | - Jianhua Zou
- Liangzhu Laboratory, Zhejiang University, Hangzhou, 311121, Zhejiang, China
| | - Fan Xiao
- Liangzhu Laboratory, Zhejiang University, Hangzhou, 311121, Zhejiang, China
- Department of Respiratory Medicine, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, 310016, China
| | - Jing Xian
- College of Pharmacy, Hangzhou Normal University, Hangzhou, 311121, Zhejiang, China
- Liangzhu Laboratory, Zhejiang University, Hangzhou, 311121, Zhejiang, China
| | - Ziwei Liu
- Liangzhu Laboratory, Zhejiang University, Hangzhou, 311121, Zhejiang, China
| | - Meng Li
- College of Pharmacy, Hangzhou Normal University, Hangzhou, 311121, Zhejiang, China
| | - Wei Luo
- College of Pharmacy, Hangzhou Normal University, Hangzhou, 311121, Zhejiang, China
| | - Chan Feng
- Liangzhu Laboratory, Zhejiang University, Hangzhou, 311121, Zhejiang, China.
- Department of Respiratory Medicine, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, 310016, China.
| | - Na Kong
- Liangzhu Laboratory, Zhejiang University, Hangzhou, 311121, Zhejiang, China.
| |
Collapse
|
5
|
Li J, Zheng K, Lin L, Zhang M, Zhang Z, Chen J, Li S, Yao H, Liu A, Lin X, Liu G, Chen B. Reprogramming the Tumor Immune Microenvironment Through Activatable Photothermal Therapy and GSH depletion Using Liposomal Gold Nanocages to Potentiate Anti-Metastatic Immunotherapy. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024:e2407388. [PMID: 39359043 DOI: 10.1002/smll.202407388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 09/22/2024] [Indexed: 10/04/2024]
Abstract
Cancer immunotherapy offers significant clinical benefits for patients with advanced or metastatic tumors. However, immunotherapeutic efficacy is often hindered by the tumor microenvironment's high redox levels, leading to variable patient outcomes. Herein, a therapeutic liposomal gold nanocage (MGL) is innovatively developed based on photo-triggered hyperthermia and a releasable strategy by combining a glutathione (GSH) depletion to remodel the tumor immune microenvironment, fostering a more robust anti-tumor immune response. MGL comprises a thermosensitive liposome shell and a gold nanocage core loaded with maleimide. The flexible shell promotes efficient uptake by cancer cells, enabling targeted destruction through photothermal therapy while triggering immunogenic cell death and the maturation of antigen-presenting cells. The photoactivated release of maleimide depletes intracellular GSH, increasing tumor cell sensitivity to oxidative stress and thermal damage. Conversely, GSH reduction also diminishes immunosuppressive cell activity, enhances antigen presentation, and activates T cells. Moreover, photothermal immunotherapy decreases elevated levels of heat shock proteins in tumor cells, further increasing their sensitivity to hyperthermia. In summary, MGL elicited a robust systemic antitumor immune response through GSH depletion, facilitating an effective photothermal immunotherapeutic strategy that reprograms the tumor microenvironment and significantly inhibits primary and metastatic tumors. This approach demonstrates considerable translational potential and clinical applicability.
Collapse
Affiliation(s)
- Jiayi Li
- Key Laboratory of Nanomedical Technology (Education Department of Fujian Province), Department of Pharmaceutical Analysis, School of Pharmacy, Fujian Medical University, Fuzhou, Fujian, 350122, P. R. China
| | - Kaifan Zheng
- Key Laboratory of Nanomedical Technology (Education Department of Fujian Province), Department of Pharmaceutical Analysis, School of Pharmacy, Fujian Medical University, Fuzhou, Fujian, 350122, P. R. China
| | - Luping Lin
- Key Laboratory of Nanomedical Technology (Education Department of Fujian Province), Department of Pharmaceutical Analysis, School of Pharmacy, Fujian Medical University, Fuzhou, Fujian, 350122, P. R. China
| | - Mengdi Zhang
- Key Laboratory of Nanomedical Technology (Education Department of Fujian Province), Department of Pharmaceutical Analysis, School of Pharmacy, Fujian Medical University, Fuzhou, Fujian, 350122, P. R. China
| | - Ziqi Zhang
- Key Laboratory of Nanomedical Technology (Education Department of Fujian Province), Department of Pharmaceutical Analysis, School of Pharmacy, Fujian Medical University, Fuzhou, Fujian, 350122, P. R. China
| | - Junyu Chen
- Key Laboratory of Nanomedical Technology (Education Department of Fujian Province), Department of Pharmaceutical Analysis, School of Pharmacy, Fujian Medical University, Fuzhou, Fujian, 350122, P. R. China
| | - Shaoguang Li
- Key Laboratory of Nanomedical Technology (Education Department of Fujian Province), Department of Pharmaceutical Analysis, School of Pharmacy, Fujian Medical University, Fuzhou, Fujian, 350122, P. R. China
| | - Hong Yao
- Key Laboratory of Nanomedical Technology (Education Department of Fujian Province), Department of Pharmaceutical Analysis, School of Pharmacy, Fujian Medical University, Fuzhou, Fujian, 350122, P. R. China
| | - Ailin Liu
- Key Laboratory of Nanomedical Technology (Education Department of Fujian Province), Department of Pharmaceutical Analysis, School of Pharmacy, Fujian Medical University, Fuzhou, Fujian, 350122, P. R. China
| | - Xinhua Lin
- Key Laboratory of Nanomedical Technology (Education Department of Fujian Province), Department of Pharmaceutical Analysis, School of Pharmacy, Fujian Medical University, Fuzhou, Fujian, 350122, P. R. China
| | - Gang Liu
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics & Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen, 361102, China
| | - Bing Chen
- Key Laboratory of Nanomedical Technology (Education Department of Fujian Province), Department of Pharmaceutical Analysis, School of Pharmacy, Fujian Medical University, Fuzhou, Fujian, 350122, P. R. China
| |
Collapse
|
6
|
Bernal-Martínez AM, Bedrina B, Angulo-Pachón CA, Galindo F, Miravet JF, Castelletto V, Hamley IW. pH-Induced conversion of bolaamphiphilic vesicles to reduction-responsive nanogels for enhanced Nile Red and Rose Bengal delivery. Colloids Surf B Biointerfaces 2024; 242:114072. [PMID: 39024718 DOI: 10.1016/j.colsurfb.2024.114072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Accepted: 07/02/2024] [Indexed: 07/20/2024]
Abstract
This study details the preparation and investigation of molecular nanogels formed by the self-assembly of bolaamphiphilic dipeptide derivatives containing a reduction-sensitive disulfide unit. The described bolaamphiphiles, featuring amino acid terminal groups, generate cationic vesicles at pH 4, which evolve into gel-like nanoparticles at pH 7. The critical aggregation concentration has been determined, and the nanogels' size and morphology have been characterized through Dynamic Light Scattering (DLS) and Transmission Electron Microscopy (TEM). Circular Dichroism (CD) spectroscopy reveals substantial molecular reconfigurations accompanying the pH shift. These nanogels enhance the in vitro cellular uptake of the lipophilic dye Nile Red and the ionic photosensitizer Rose Bengal into Human colon adenocarcinoma (HT-29) cells, eliminating the need for organic co-solvents in the former case. Fluorescence measurements with Nile Red as a probe indicate the reduction-sensitive disassembly of the nanogels. In photodynamic therapy (PDT) applications, Rose Bengal-loaded nanogels demonstrate notable improvements, with flow cytometry analysis evidencing increased apoptotic activity in the study with HT-29 cells.
Collapse
Affiliation(s)
- Ana M Bernal-Martínez
- Department of Inorganic and Organic Chemistry, Universitat Jaume I, Avda. Sos Baynat s/n, Castelló 12071, Spain
| | - Begoña Bedrina
- Department of Inorganic and Organic Chemistry, Universitat Jaume I, Avda. Sos Baynat s/n, Castelló 12071, Spain
| | - César A Angulo-Pachón
- Department of Inorganic and Organic Chemistry, Universitat Jaume I, Avda. Sos Baynat s/n, Castelló 12071, Spain; Departamento de Química Orgánica y Bio-orgánica, Facultad de Ciencias, Universidad Nacional de Educación a Distancia, UNED, Las Rozas, Madrid 28232, Spain
| | - Francisco Galindo
- Department of Inorganic and Organic Chemistry, Universitat Jaume I, Avda. Sos Baynat s/n, Castelló 12071, Spain
| | - Juan F Miravet
- Department of Inorganic and Organic Chemistry, Universitat Jaume I, Avda. Sos Baynat s/n, Castelló 12071, Spain.
| | - Valeria Castelletto
- School of Chemistry, Pharmacy and Food Biosciences, University of Reading, Reading RG6 6AD, UK
| | - Ian W Hamley
- School of Chemistry, Pharmacy and Food Biosciences, University of Reading, Reading RG6 6AD, UK
| |
Collapse
|
7
|
Meng X, Shen Y, Zhao H, Lu X, Wang Z, Zhao Y. Redox-manipulating nanocarriers for anticancer drug delivery: a systematic review. J Nanobiotechnology 2024; 22:587. [PMID: 39342211 PMCID: PMC11438196 DOI: 10.1186/s12951-024-02859-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Accepted: 09/14/2024] [Indexed: 10/01/2024] Open
Abstract
Spatiotemporally controlled cargo release is a key advantage of nanocarriers in anti-tumor therapy. Various external or internal stimuli-responsive nanomedicines have been reported for their ability to increase drug levels at the diseased site and enhance therapeutic efficacy through a triggered release mechanism. Redox-manipulating nanocarriers, by exploiting the redox imbalances in tumor tissues, can achieve precise drug release, enhancing therapeutic efficacy while minimizing damage to healthy cells. As a typical redox-sensitive bond, the disulfide bond is considered a promising tool for designing tumor-specific, stimulus-responsive drug delivery systems (DDS). The intracellular redox imbalance caused by tumor microenvironment (TME) regulation has emerged as an appealing therapeutic target for cancer treatment. Sustained glutathione (GSH) depletion in the TME by redox-manipulating nanocarriers can exacerbate oxidative stress through the exchange of disulfide-thiol bonds, thereby enhancing the efficacy of ROS-based cancer therapy. Intriguingly, GSH depletion is simultaneously associated with glutathione peroxidase 4 (GPX4) inhibition and dihydrolipoamide S-acetyltransferase (DLAT) oligomerization, triggering mechanisms such as ferroptosis and cuproptosis, which increase the sensitivity of tumor cells. Hence, in this review, we present a comprehensive summary of the advances in disulfide based redox-manipulating nanocarriers for anticancer drug delivery and provide an overview of some representative achievements for combinational therapy and theragnostic. The high concentration of GSH in the TME enables the engineering of redox-responsive nanocarriers for GSH-triggered on-demand drug delivery, which relies on the thiol-disulfide exchange reaction between GSH and disulfide-containing vehicles. Conversely, redox-manipulating nanocarriers can deplete GSH, thereby enhancing the efficacy of ROS-based treatment nanoplatforms. In brief, we summarize the up-to-date developments of the redox-manipulating nanocarriers for cancer therapy based on DDS and provide viewpoints for the establishment of more stringent anti-tumor nanoplatform.
Collapse
Affiliation(s)
- Xuan Meng
- College of Biotechnology, Tianjin Key Laboratory of Industrial Microbiology, Tianjin University of Science & Technology, No.29 of 13th Street, TEDA, Tianjin, 300457, P.R. China.
| | - Yongli Shen
- College of Biotechnology, Tianjin Key Laboratory of Industrial Microbiology, Tianjin University of Science & Technology, No.29 of 13th Street, TEDA, Tianjin, 300457, P.R. China
| | - Huanyu Zhao
- College of Biotechnology, Tianjin Key Laboratory of Industrial Microbiology, Tianjin University of Science & Technology, No.29 of 13th Street, TEDA, Tianjin, 300457, P.R. China
| | - Xinlei Lu
- College of Biotechnology, Tianjin Key Laboratory of Industrial Microbiology, Tianjin University of Science & Technology, No.29 of 13th Street, TEDA, Tianjin, 300457, P.R. China
| | - Zheng Wang
- School of Pharmaceutical Science & Technology, Tianjin Key Laboratory for Modern Drug Delivery & High Efficiency, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin University, 92 Weijin Road, Nankai District, Tianjin, 300072, China
| | - Yanjun Zhao
- School of Pharmaceutical Science & Technology, Tianjin Key Laboratory for Modern Drug Delivery & High Efficiency, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin University, 92 Weijin Road, Nankai District, Tianjin, 300072, China.
| |
Collapse
|
8
|
Zhang X, Li M, Tang YL, Zheng M, Liang XH. Advances in H 2O 2-supplying materials for tumor therapy: synthesis, classification, mechanisms, and applications. Biomater Sci 2024; 12:4083-4102. [PMID: 39010783 DOI: 10.1039/d4bm00366g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/17/2024]
Abstract
Hydrogen peroxide (H2O2) as a reactive oxygen species produced by cellular metabolism can be used in antitumor therapy. However, the concentration of intracellular H2O2 limits its application. Some materials could enhance the concentration of intracellular H2O2 to strengthen antitumor therapy. In this review, the recent advances in H2O2-supplying materials in terms of promoting intracellular H2O2 production and exogenous H2O2 supply are summarized. Then the mechanism of H2O2-supplying materials for tumor therapy is discussed from three aspects: reconstruction of the tumor hypoxia microenvironment, enhancement of oxidative stress, and the intrinsic anti-tumor ability of H2O2-supplying materials. In addition, the application of H2O2-supplying materials for tumor therapy is discussed. Finally, the future of H2O2-supplying materials is presented. This review aims to provide a novel idea for the application of H2O2-supplying materials in tumor therapy.
Collapse
Affiliation(s)
- Xu Zhang
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, No. 14, Sec. 3, Renminnan Road, Chengdu, Sichuan 610041, People's Republic of China.
| | - Mao Li
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & Department of Oral Pathology, West China Hospital of Stomatology, Sichuan University, No.14, Sec. 3, Renminnan Road, Chengdu, Sichuan 610041, People's Republic of China
| | - Ya-Ling Tang
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & Department of Oral Pathology, West China Hospital of Stomatology, Sichuan University, No.14, Sec. 3, Renminnan Road, Chengdu, Sichuan 610041, People's Republic of China
| | - Min Zheng
- Department of Stomatology, Zhoushan Hospital, Wenzhou Medical University, Zhoushan, Zhejiang, China.
| | - Xin-Hua Liang
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, No. 14, Sec. 3, Renminnan Road, Chengdu, Sichuan 610041, People's Republic of China.
| |
Collapse
|
9
|
Jiang Y, Lu H, Lei L, Yuan X, Scherman D, Liu Y. MOF-derived cobalt-iron containing nanocomposite with cascade-catalytic activities for multimodal synergistic tumor therapy. Colloids Surf B Biointerfaces 2024; 240:113981. [PMID: 38815310 DOI: 10.1016/j.colsurfb.2024.113981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 05/14/2024] [Accepted: 05/19/2024] [Indexed: 06/01/2024]
Abstract
Reactive oxygen species (ROS)-driven chemodynamic therapy has emerged as a promising anti-tumor strategy. However, the insufficient hydrogen peroxide (H2O2) supply in tumor microenvironment results in a low Fenton reaction rate and subsequently poor ROS production and therapeutic efficacy. Herein, we report on a new nanocomposite MIL-53@ZIF-67/S loaded with doxorubicin and glucose oxidase, which is decomposed under the acidic tumor microenvironment to release Fe3+, Co3+, glucose oxidase, and doxorubicin. The released content leads to synergistic anti-tumor effect through the following manners: 1) doxorubicin is directly used for chemotherapy; 2) Fe3+and Co3+ result in glutathione depletion and Fenton reaction activation through Fe2+ and Co2+ generation to achieve chemodynamic therapy; 3) glucose oxidase continuously catalyzes glucose consumption to induce starvation of the cancer cells, and 4) at the same time the produced gluconic acid and H2O2 significantly promote Fenton reaction and further boost chemodynamic therapy. This work not only demonstrates the high anti-tumor effect of the new nanocomposite, but also provides an innovative strategy for the development of a multi-in-one nanoplatform for cancer therapy.
Collapse
Affiliation(s)
- Ying Jiang
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, School of Materials and Energy, Southwest University, Chongqing 400715, China; Department of Mechanics and Engineering Science, Beijing Innovation Centre for Engineering Science and Advanced Technology, College of Engineering, Peking University, Beijing 100871, China
| | - Hao Lu
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, School of Materials and Energy, Southwest University, Chongqing 400715, China
| | - Lingli Lei
- College of Pharmacy, Chengdu Medical College, Chengdu, Sichuan 610500, China
| | - Xiangyang Yuan
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, School of Materials and Energy, Southwest University, Chongqing 400715, China
| | - Daniel Scherman
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, School of Materials and Energy, Southwest University, Chongqing 400715, China; Université Paris Cité, CNRS, INSERM, UTCBS, Unité de Technologies Chimiques et Biologiques pour la Santé, Paris F-75006, France.
| | - Yingshuai Liu
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, School of Materials and Energy, Southwest University, Chongqing 400715, China.
| |
Collapse
|
10
|
Fathi-Karkan S, Sargazi S, Shojaei S, Farasati Far B, Mirinejad S, Cordani M, Khosravi A, Zarrabi A, Ghavami S. Biotin-functionalized nanoparticles: an overview of recent trends in cancer detection. NANOSCALE 2024; 16:12750-12792. [PMID: 38899396 DOI: 10.1039/d4nr00634h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/21/2024]
Abstract
Electrochemical bio-sensing is a potent and efficient method for converting various biological recognition events into voltage, current, and impedance electrical signals. Biochemical sensors are now a common part of medical applications, such as detecting blood glucose levels, detecting food pathogens, and detecting specific cancers. As an exciting feature, bio-affinity couples, such as proteins with aptamers, ligands, paired nucleotides, and antibodies with antigens, are commonly used as bio-sensitive elements in electrochemical biosensors. Biotin-avidin interactions have been utilized for various purposes in recent years, such as targeting drugs, diagnosing clinically, labeling immunologically, biotechnology, biomedical engineering, and separating or purifying biomolecular compounds. The interaction between biotin and avidin is widely regarded as one of the most robust and reliable noncovalent interactions due to its high bi-affinity and ability to remain selective and accurate under various reaction conditions and bio-molecular attachments. More recently, there have been numerous attempts to develop electrochemical sensors to sense circulating cancer cells and the measurement of intracellular levels of protein thiols, formaldehyde, vitamin-targeted polymers, huwentoxin-I, anti-human antibodies, and a variety of tumor markers (including alpha-fetoprotein, epidermal growth factor receptor, prostate-specific Ag, carcinoembryonic Ag, cancer antigen 125, cancer antigen 15-3, etc.). Still, the non-specific binding of biotin to endogenous biotin-binding proteins present in biological samples can result in false-positive signals and hinder the accurate detection of cancer biomarkers. This review summarizes various categories of biotin-functional nanoparticles designed to detect such biomarkers and highlights some challenges in using them as diagnostic tools.
Collapse
Affiliation(s)
- Sonia Fathi-Karkan
- Natural Products and Medicinal Plants Research Center, North Khorasan University of Medical Sciences, Bojnurd, 94531-55166 Iran.
- Department of Advanced Sciences and Technologies in Medicine, School of Medicine, North Khorasan University of Medical Sciences, Bojnurd 9414974877, Iran.
| | - Saman Sargazi
- Cellular and Molecular Research Center, Research Institute of Cellular and Molecular Sciences in Infectious Diseases, Zahedan University of Medical Sciences, Zahedan, Iran.
- Department of Clinical Biochemistry, School of Medicine, Zahedan University of Medical Sciences, Zahedan, Iran.
| | - Shirin Shojaei
- Nano Drug Delivery Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran.
| | - Bahareh Farasati Far
- Department of Chemistry, Iran University of Science and Technology, Tehran, Iran.
| | - Shekoufeh Mirinejad
- Cellular and Molecular Research Center, Research Institute of Cellular and Molecular Sciences in Infectious Diseases, Zahedan University of Medical Sciences, Zahedan, Iran.
| | - Marco Cordani
- Department of Biochemistry and Molecular Biology, Faculty of Biology, Complutense University, 28040 Madrid, Spain
- Instituto de Investigaciones Sanitarias San Carlos (IdISSC), 28040 Madrid, Spain
| | - Arezoo Khosravi
- Department of Genetics and Bioengineering, Faculty of Engineering and Natural Sciences, Istanbul Okan University, Istanbul 34959, Turkiye.
| | - Ali Zarrabi
- Department of Biomedical Engineering, Faculty of Engineering and Natural Sciences, Istinye University, Istanbul 34396, Turkiye.
- Department of Research Analytics, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai - 600 077, India
- Graduate School of Biotechnology and Bioengineering, Yuan Ze University, Taoyuan 320315, Taiwan
| | - Saeid Ghavami
- Department of Human Anatomy and Cell Science, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB R3T 2N2, Canada.
- Faculty of Medicine in Zabrze, University of Technology in Katowice, 41-800 Zabrze, Poland
- Research Institute of Oncology and Hematology, Cancer Care Manitoba, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
| |
Collapse
|
11
|
Zheng S, Li M, Xu W, Zhang J, Li G, Xiao H, Liu X, Shi J, Xia F, Tian C, Kamei KI. Dual-targeted nanoparticulate drug delivery systems for enhancing triple-negative breast cancer treatment. J Control Release 2024; 371:371-385. [PMID: 38849089 DOI: 10.1016/j.jconrel.2024.06.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 05/22/2024] [Accepted: 06/03/2024] [Indexed: 06/09/2024]
Abstract
The efficacy of DNA-damaging agents, such as the topoisomerase I inhibitor SN38, is often compromised by the robust DNA repair mechanisms in tumor cells, notably homologous recombination (HR) repair. Addressing this challenge, we introduce a novel nano-strategy utilizing binary tumor-killing mechanisms to enhance the therapeutic impact of DNA damage and mitochondrial dysfunction in cancer treatment. Our approach employs a synergistic drug pair comprising SN38 and the BET inhibitor JQ-1. We synthesized two prodrugs by conjugating linoleic acid (LA) to SN38 and JQ-1 via a cinnamaldehyde thioacetal (CT) bond, facilitating co-delivery. These prodrugs co-assemble into a nanostructure, referred to as SJNP, in an optimal synergistic ratio. SJNP was validated for its efficacy at both the cellular and tissue levels, where it primarily disrupts the transcription factor protein BRD4. This disruption leads to downregulation of BRCA1 and RAD51, impairing the HR process and exacerbating DNA damage. Additionally, SJNP releases cinnamaldehyde (CA) upon CT linkage cleavage, elevating intracellular ROS levels in a self-amplifying manner and inducing ROS-mediated mitochondrial dysfunction. Our results indicate that SJNP effectively targets murine triple-negative breast cancer (TNBC) with minimal adverse toxicity, showcasing its potential as a formidable opponent in the fight against cancer.
Collapse
Affiliation(s)
- Shunzhe Zheng
- Department of Pharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Meng Li
- Department of Pharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Wenqian Xu
- Department of Pharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Jiaxin Zhang
- Department of Pharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Guanting Li
- Department of Pharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Hongying Xiao
- Department of Pharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Xinying Liu
- Department of Pharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Jianbin Shi
- Department of Pharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Fengli Xia
- Department of Pharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Chutong Tian
- Department of Pharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, China; Joint International Research Laboratory of Intelligent Drug Delivery Systems, Ministry of Education, Shenyang 110016, China; Key Laboratory of Advanced Drug Delivery Systems of Zhejiang Province, Hangzhou 310058, China.
| | - Ken-Ichiro Kamei
- Department of Pharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, China; Joint International Research Laboratory of Intelligent Drug Delivery Systems, Ministry of Education, Shenyang 110016, China; Institute for Integrated Cell-Material Sciences (WPI-iCeMS), Kyoto University, Kyoto 606-8501, Japan; Program of Biology, Division of Science, New York University Abu Dhabi, Abu Dhabi, The United Arab Emirates; Program of Bioengineering, Division of Engineering, New York University Abu Dhabi, Abu Dhabi, The United Arab Emirates; Department of Biomedical Engineering, Tandon School of Engineering, New York University, MetroTech, Brooklyn, NY 11201, United States of America.
| |
Collapse
|
12
|
Chen X, Li J, Roy S, Ullah Z, Gu J, Huang H, Yu C, Wang X, Wang H, Zhang Y, Guo B. Development of Polymethine Dyes for NIR-II Fluorescence Imaging and Therapy. Adv Healthc Mater 2024; 13:e2304506. [PMID: 38441392 DOI: 10.1002/adhm.202304506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 02/29/2024] [Indexed: 03/16/2024]
Abstract
Fluorescence imaging in the second near-infrared window (NIR-II) is burgeoning because of its higher imaging fidelity in monitoring physiological and pathological processes than clinical visible/the second near-infrared window fluorescence imaging. Notably, the imaging fidelity is heavily dependent on fluorescence agents. So far, indocyanine green, one of the polymethine dyes, with good biocompatibility and renal clearance is the only dye approved by the Food and Drug Administration, but it shows relatively low NIR-II brightness. Importantly, tremendous efforts are devoted to synthesizing polymethine dyes for imaging preclinically and clinically. They have shown feasibility in the customization of structure and properties to fulfill various needs in imaging and therapy. Herein, a timely update on NIR-II polymethine dyes, with a special focus on molecular design strategies for fluorescent, photoacoustic, and multimodal imaging, is offered. Furthermore, the progress of polymethine dyes in sensing pathological biomarkers and even reporting drug release is illustrated. Moreover, the NIR-II fluorescence imaging-guided therapies with polymethine dyes are summarized regarding chemo-, photothermal, photodynamic, and multimodal approaches. In addition, artificial intelligence is pointed out for its potential to expedite dye development. This comprehensive review will inspire interest among a wide audience and offer a handbook for people with an interest in NIR-II polymethine dyes.
Collapse
Affiliation(s)
- Xin Chen
- School of Science, Shenzhen Key Laboratory of Flexible Printed Electronics Technology, Shenzhen Key Laboratory of Advanced Functional Carbon Materials Research and Comprehensive Application, Harbin Institute of Technology, Shenzhen, 518055, China
| | - Jieyan Li
- School of Science, Shenzhen Key Laboratory of Flexible Printed Electronics Technology, Shenzhen Key Laboratory of Advanced Functional Carbon Materials Research and Comprehensive Application, Harbin Institute of Technology, Shenzhen, 518055, China
| | - Shubham Roy
- School of Science, Shenzhen Key Laboratory of Flexible Printed Electronics Technology, Shenzhen Key Laboratory of Advanced Functional Carbon Materials Research and Comprehensive Application, Harbin Institute of Technology, Shenzhen, 518055, China
| | - Zia Ullah
- School of Science, Shenzhen Key Laboratory of Flexible Printed Electronics Technology, Shenzhen Key Laboratory of Advanced Functional Carbon Materials Research and Comprehensive Application, Harbin Institute of Technology, Shenzhen, 518055, China
| | - Jingsi Gu
- Education Center and Experiments and Innovations, Harbin Institute of Technology, Shenzhen, 518055, China
| | - Haiyan Huang
- School of Science, Shenzhen Key Laboratory of Flexible Printed Electronics Technology, Shenzhen Key Laboratory of Advanced Functional Carbon Materials Research and Comprehensive Application, Harbin Institute of Technology, Shenzhen, 518055, China
| | - Chen Yu
- School of Science, Shenzhen Key Laboratory of Flexible Printed Electronics Technology, Shenzhen Key Laboratory of Advanced Functional Carbon Materials Research and Comprehensive Application, Harbin Institute of Technology, Shenzhen, 518055, China
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Xuejin Wang
- School of Science, Shenzhen Key Laboratory of Flexible Printed Electronics Technology, Shenzhen Key Laboratory of Advanced Functional Carbon Materials Research and Comprehensive Application, Harbin Institute of Technology, Shenzhen, 518055, China
| | - Han Wang
- School of Science, Shenzhen Key Laboratory of Flexible Printed Electronics Technology, Shenzhen Key Laboratory of Advanced Functional Carbon Materials Research and Comprehensive Application, Harbin Institute of Technology, Shenzhen, 518055, China
| | - Yinghe Zhang
- School of Science, Shenzhen Key Laboratory of Flexible Printed Electronics Technology, Shenzhen Key Laboratory of Advanced Functional Carbon Materials Research and Comprehensive Application, Harbin Institute of Technology, Shenzhen, 518055, China
| | - Bing Guo
- School of Science, Shenzhen Key Laboratory of Flexible Printed Electronics Technology, Shenzhen Key Laboratory of Advanced Functional Carbon Materials Research and Comprehensive Application, Harbin Institute of Technology, Shenzhen, 518055, China
| |
Collapse
|
13
|
Wang C, Zhang Y, Chen W, Wu Y, Xing D. New-generation advanced PROTACs as potential therapeutic agents in cancer therapy. Mol Cancer 2024; 23:110. [PMID: 38773495 PMCID: PMC11107062 DOI: 10.1186/s12943-024-02024-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Accepted: 05/10/2024] [Indexed: 05/23/2024] Open
Abstract
Proteolysis-targeting chimeras (PROTACs) technology has garnered significant attention over the last 10 years, representing a burgeoning therapeutic approach with the potential to address pathogenic proteins that have historically posed challenges for traditional small-molecule inhibitors. PROTACs exploit the endogenous E3 ubiquitin ligases to facilitate degradation of the proteins of interest (POIs) through the ubiquitin-proteasome system (UPS) in a cyclic catalytic manner. Despite recent endeavors to advance the utilization of PROTACs in clinical settings, the majority of PROTACs fail to progress beyond the preclinical phase of drug development. There are multiple factors impeding the market entry of PROTACs, with the insufficiently precise degradation of favorable POIs standing out as one of the most formidable obstacles. Recently, there has been exploration of new-generation advanced PROTACs, including small-molecule PROTAC prodrugs, biomacromolecule-PROTAC conjugates, and nano-PROTACs, to improve the in vivo efficacy of PROTACs. These improved PROTACs possess the capability to mitigate undesirable physicochemical characteristics inherent in traditional PROTACs, thereby enhancing their targetability and reducing off-target side effects. The new-generation of advanced PROTACs will mark a pivotal turning point in the realm of targeted protein degradation. In this comprehensive review, we have meticulously summarized the state-of-the-art advancements achieved by these cutting-edge PROTACs, elucidated their underlying design principles, deliberated upon the prevailing challenges encountered, and provided an insightful outlook on future prospects within this burgeoning field.
Collapse
Affiliation(s)
- Chao Wang
- Cancer Institute, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, 266071, Shandong, China
| | - Yujing Zhang
- The Affiliated Cardiovascular Hospital of Qingdao University, Qingdao University, Qingdao, 266071, Shandong, China.
| | - Wujun Chen
- Cancer Institute, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, 266071, Shandong, China
| | - Yudong Wu
- Cancer Institute, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, 266071, Shandong, China.
| | - Dongming Xing
- Cancer Institute, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, 266071, Shandong, China.
- School of Life Sciences, Tsinghua University, Beijing, 100084, China.
| |
Collapse
|
14
|
Cao Y, Li Y, Ren C, Yang C, Hao R, Mu T. Manganese-based nanomaterials promote synergistic photo-immunotherapy: green synthesis, underlying mechanisms, and multiple applications. J Mater Chem B 2024; 12:4097-4117. [PMID: 38587869 DOI: 10.1039/d3tb02844e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/09/2024]
Abstract
Single phototherapy and immunotherapy have individually made great achievements in tumor treatment. However, monotherapy has difficulty in balancing accuracy and efficiency. Combining phototherapy with immunotherapy can realize the growth inhibition of distal metastatic tumors and enable the remote monitoring of tumor treatment. The development of nanomaterials with photo-responsiveness and anti-tumor immunity activation ability is crucial for achieving photo-immunotherapy. As immune adjuvants, photosensitizers and photothermal agents, manganese-based nanoparticles (Mn-based NPs) have become a research hotspot owing to their multiple ways of anti-tumor immunity regulation, photothermal conversion and multimodal imaging. However, systematic studies on the synergistic photo-immunotherapy applications of Mn-based NPs are still limited; especially, the green synthesis and mechanism of Mn-based NPs applied in immunotherapy are rarely comprehensively discussed. In this review, the synthesis strategies and function of Mn-based NPs in immunotherapy are first introduced. Next, the different mechanisms and leading applications of Mn-based NPs in immunotherapy are reviewed. In addition, the advantages of Mn-based NPs in synergistic photo-immunotherapy are highlighted. Finally, the challenges and research focus of Mn-based NPs in combination therapy are discussed, which might provide guidance for future personalized cancer therapy.
Collapse
Affiliation(s)
- Yuanyuan Cao
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing 100069, P. R. China.
- Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, P. R. China
| | - Yilin Li
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing 100069, P. R. China.
- Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, P. R. China
| | - Caixia Ren
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing 100069, P. R. China.
- Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, P. R. China
| | - Chengkai Yang
- School of Basic Medical Sciences, Capital Medical University, Beijing 100069, P. R. China
| | - Rongzhang Hao
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing 100069, P. R. China.
- Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, P. R. China
| | - Tiancheng Mu
- Department of Chemistry, Renmin University of China, Beijing 100872, P. R. China.
| |
Collapse
|
15
|
Wu X, Li Y, Wen M, Xie Y, Zeng K, Liu YN, Chen W, Zhao Y. Nanocatalysts for modulating antitumor immunity: fabrication, mechanisms and applications. Chem Soc Rev 2024; 53:2643-2692. [PMID: 38314836 DOI: 10.1039/d3cs00673e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2024]
Abstract
Immunotherapy harnesses the inherent immune system in the body to generate systemic antitumor immunity, offering a promising modality for defending against cancer. However, tumor immunosuppression and evasion seriously restrict the immune response rates in clinical settings. Catalytic nanomedicines can transform tumoral substances/metabolites into therapeutic products in situ, offering unique advantages in antitumor immunotherapy. Through catalytic reactions, both tumor eradication and immune regulation can be simultaneously achieved, favoring the development of systemic antitumor immunity. In recent years, with advancements in catalytic chemistry and nanotechnology, catalytic nanomedicines based on nanozymes, photocatalysts, sonocatalysts, Fenton catalysts, electrocatalysts, piezocatalysts, thermocatalysts and radiocatalysts have been rapidly developed with vast applications in cancer immunotherapy. This review provides an introduction to the fabrication of catalytic nanomedicines with an emphasis on their structures and engineering strategies. Furthermore, the catalytic substrates and state-of-the-art applications of nanocatalysts in cancer immunotherapy have also been outlined and discussed. The relationships between nanostructures and immune regulating performance of catalytic nanomedicines are highlighted to provide a deep understanding of their working mechanisms in the tumor microenvironment. Finally, the challenges and development trends are revealed, aiming to provide new insights for the future development of nanocatalysts in catalytic immunotherapy.
Collapse
Affiliation(s)
- Xianbo Wu
- Hunan Provincial Key Laboratory of Micro & Nano Materials Interface Science, College of Chemistry and Chemical Engineering, Central South University, Changsha, Hunan 410083, China.
| | - Yuqing Li
- Hunan Provincial Key Laboratory of Micro & Nano Materials Interface Science, College of Chemistry and Chemical Engineering, Central South University, Changsha, Hunan 410083, China.
| | - Mei Wen
- Hunan Provincial Key Laboratory of Micro & Nano Materials Interface Science, College of Chemistry and Chemical Engineering, Central South University, Changsha, Hunan 410083, China.
| | - Yongting Xie
- Hunan Provincial Key Laboratory of Micro & Nano Materials Interface Science, College of Chemistry and Chemical Engineering, Central South University, Changsha, Hunan 410083, China.
| | - Ke Zeng
- Hunan Provincial Key Laboratory of Micro & Nano Materials Interface Science, College of Chemistry and Chemical Engineering, Central South University, Changsha, Hunan 410083, China.
| | - You-Nian Liu
- Hunan Provincial Key Laboratory of Micro & Nano Materials Interface Science, College of Chemistry and Chemical Engineering, Central South University, Changsha, Hunan 410083, China.
| | - Wansong Chen
- Hunan Provincial Key Laboratory of Micro & Nano Materials Interface Science, College of Chemistry and Chemical Engineering, Central South University, Changsha, Hunan 410083, China.
| | - Yanli Zhao
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 21 Nanyang Link, Singapore 637371, Singapore.
| |
Collapse
|
16
|
Hu R, Lan J, Zhang D, Shen W. Nanotherapeutics for prostate cancer treatment: A comprehensive review. Biomaterials 2024; 305:122469. [PMID: 38244344 DOI: 10.1016/j.biomaterials.2024.122469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 01/07/2024] [Accepted: 01/09/2024] [Indexed: 01/22/2024]
Abstract
Prostate cancer (PCa) is the most prevalent solid organ malignancy and seriously affects male health. The adverse effects of prostate cancer therapeutics can cause secondary damage to patients. Nanotherapeutics, which have special targeting abilities and controlled therapeutic release profiles, may serve as alternative agents for PCa treatment. At present, many nanotherapeutics have been developed to treat PCa and have shown better treatment effects in animals than traditional therapeutics. Although PCa nanotherapeutics are highly attractive, few successful cases have been reported in clinical practice. To help researchers design valuable nanotherapeutics for PCa treatment and avoid useless efforts, herein, we first reviewed the strategies and challenges involved in prostate cancer treatment. Subsequently, we presented a comprehensive review of nanotherapeutics for PCa treatment, including their targeting methods, controlled release strategies, therapeutic approaches and mechanisms. Finally, we proposed the future prospects of nanotherapeutics for PCa treatment.
Collapse
Affiliation(s)
- Ruimin Hu
- Department of Urology, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, 400038, China; Department of Chemistry, College of Basic Medicine, Army Medical University (Third Military Medical University), Chongqing, 400038, China; Department of Pharmaceutics, College of Pharmacy, Third Military Medical University (Army Medical University), Chongqing, 400038, China
| | - Jin Lan
- Department of Ultrasound, Second Affiliated Hospital, Army Medical University (Third Military Medical University), Chongqing, 400037, China
| | - Dinglin Zhang
- Department of Urology, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, 400038, China; Department of Chemistry, College of Basic Medicine, Army Medical University (Third Military Medical University), Chongqing, 400038, China.
| | - Wenhao Shen
- Department of Urology, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, 400038, China.
| |
Collapse
|
17
|
Li Y, Mu X, Feng W, Gao M, Wang Z, Bai X, Ren X, Lu Y, Zhou X. Supramolecular prodrug-like nanotheranostics with dynamic and activatable nature for synergistic photothermal immunotherapy of metastatic cancer. J Control Release 2024; 367:354-365. [PMID: 38286337 DOI: 10.1016/j.jconrel.2024.01.052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Revised: 01/22/2024] [Accepted: 01/24/2024] [Indexed: 01/31/2024]
Abstract
Synergistic photothermal immunotherapy has attracted widespread attention due to the mutually reinforcing therapeutic effects on primary and metastatic tumors. However, the lack of clinical approval nanomedicines for spatial, temporal, and dosage control of drug co-administration underscores the challenges facing this field. Here, a photothermal agent (Cy7-TCF) and an immune checkpoint blocker (NLG919) are conjugated via disulfide bond to construct a tumor-specific small molecule prodrug (Cy7-TCF-SS-NLG), which self-assembles into prodrug-like nano-assemblies (PNAs) that are self-delivering and self-formulating. In tumor cells, over-produced GSH cleaves disulfide bonds to release Cy7-TCF-OH, which re-assembles into nanoparticles to enhance photothermal conversion while generate reactive oxygen species (ROSs) upon laser irradiation, and then binds to endogenous albumin to activate near-infrared fluorescence, enabling multimodal imaging-guided phototherapy for primary tumor ablation and subsequent release of tumor-associated antigens (TAAs). These TAAs, in combination with the co-released NLG919, effectively activated effector T cells and suppressed Tregs, thereby boosting antitumor immunity to prevent tumor metastasis. This work provides a simple yet effective strategy that integrates the supramolecular dynamics and reversibility with stimuli-responsive covalent bonding to design a simple small molecule with synergistic multimodal imaging-guided phototherapy and immunotherapy cascades for cancer treatment with high clinical value.
Collapse
Affiliation(s)
- Yajie Li
- College of Polymer Science and Engineering, Qingdao University of Science and Technology, Qingdao 266042, PR China
| | - Xueluer Mu
- College of Polymer Science and Engineering, Qingdao University of Science and Technology, Qingdao 266042, PR China
| | - Wenbi Feng
- College of Polymer Science and Engineering, Qingdao University of Science and Technology, Qingdao 266042, PR China
| | - Min Gao
- College of Polymer Science and Engineering, Qingdao University of Science and Technology, Qingdao 266042, PR China
| | - Zigeng Wang
- College of Polymer Science and Engineering, Qingdao University of Science and Technology, Qingdao 266042, PR China
| | - Xue Bai
- College of Polymer Science and Engineering, Qingdao University of Science and Technology, Qingdao 266042, PR China
| | - Xiangru Ren
- College of Polymer Science and Engineering, Qingdao University of Science and Technology, Qingdao 266042, PR China
| | - Yingxi Lu
- College of Material Science and Engineering, Qingdao University of Science and Technology, Qingdao 266042, PR China.
| | - Xianfeng Zhou
- College of Material Science and Engineering, Qingdao University of Science and Technology, Qingdao 266042, PR China; College of Polymer Science and Engineering, Qingdao University of Science and Technology, Qingdao 266042, PR China.
| |
Collapse
|
18
|
Dirersa WB, Kan TC, Getachew G, Wibrianto A, Ochirbat S, Rasal A, Chang J, Chang JY. Preclinical Assessment of Enhanced Chemodynamic Therapy by an FeMnO x-Based Nanocarrier: Tumor-Microenvironment-Mediated Fenton Reaction and ROS-Induced Chemotherapeutic for Boosted Antitumor Activity. ACS APPLIED MATERIALS & INTERFACES 2023; 15:55258-55275. [PMID: 38013418 DOI: 10.1021/acsami.3c10733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2023]
Abstract
In recent studies, iron-containing Fenton nanocatalysts have demonstrated significant promise for clinical use due to their effective antitumor activity and low cytotoxicity. A new approach was reported in this work utilizing cation exchange synthesis to fabricate FeMnOx nanoparticles (NPs) that boost Fenton reactions and responses to the tumor microenvironment (TME) for chemodynamic therapy (CDT) and chemotherapy (CT). Within the TME, the redox metal pair of Fe2+/Mn2+ helps break down endogenous hydrogen peroxide (H2O2) into very harmful hydroxyl radicals (•OH) while simultaneously deactivating glutathione (GSH) to boost CDT performance. To further enhance the therapeutic potential, FeMnOx NPs were encapsulated with thioketal-linked camptothecin (CPT-TK-COOH), a reactive oxygen species (ROS)-responsive prodrug, achieving a high CPT-loading capacity of up to 51.1%. Upon ROS generation through the Fenton reaction, the prodrug TK linkage was disrupted, releasing 80% of the CPT payload within 48 h. Notably, FeMnOx@CPT exhibited excellent dual-modal imaging capabilities, enabling magnetic resonance and fluorescence imaging for image-guided therapy. In vitro studies showed the cytocompatibility of FeMnOx NPs using MDA-Mb-231 and 4T1 cells, but in the presence of H2O2, they induced significant cytotoxicity, resulting in 80% cell death through CDT and CT effects. Upon intravenous administration, FeMnOx@CPT displayed remarkable tumor accumulation, which enhanced tumor suppression in xenografts through improved CDT and CT effects. Moreover, no significant adverse effects were observed in the FeMnOx NP-treated animals. In the current study, the FeMnOx@CPT anticancer platform, with its boosted •OH-producing capability and ROS-cleavable drug release, has been validated utilizing in vitro and animal studies, suggesting its capacity as a viable strategy for clinical trials.
Collapse
Affiliation(s)
- Worku Batu Dirersa
- Department of Chemical Engineering, National Taiwan University of Science and Technology, Taipei 106335, Taiwan, Republic of China
| | - Tzu-Chun Kan
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan
| | - Girum Getachew
- Department of Chemical Engineering, National Taiwan University of Science and Technology, Taipei 106335, Taiwan, Republic of China
| | - Aswandi Wibrianto
- Department of Chemical Engineering, National Taiwan University of Science and Technology, Taipei 106335, Taiwan, Republic of China
| | - Sonjid Ochirbat
- International Master/Ph.D. Program in Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan
| | - Akash Rasal
- Department of Chemical Engineering, National Taiwan University of Science and Technology, Taipei 106335, Taiwan, Republic of China
| | - Jungshan Chang
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan
- International Master/Ph.D. Program in Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan
- International Ph.D. Program for Cell Therapy and Regeneration Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan
| | - Jia-Yaw Chang
- Department of Chemical Engineering, National Taiwan University of Science and Technology, Taipei 106335, Taiwan, Republic of China
| |
Collapse
|
19
|
Marchenko IV, Trushina DB. Local Drug Delivery in Bladder Cancer: Advances of Nano/Micro/Macro-Scale Drug Delivery Systems. Pharmaceutics 2023; 15:2724. [PMID: 38140065 PMCID: PMC10747982 DOI: 10.3390/pharmaceutics15122724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 11/30/2023] [Accepted: 12/01/2023] [Indexed: 12/24/2023] Open
Abstract
Treatment of bladder cancer remains a critical unmet need and requires advanced approaches, particularly the development of local drug delivery systems. The physiology of the urinary bladder causes the main difficulties in the local treatment of bladder cancer: regular voiding prevents the maintenance of optimal concentration of the instilled drugs, while poor permeability of the urothelium limits the penetration of the drugs into the bladder wall. Therefore, great research efforts have been spent to overcome these hurdles, thereby improving the efficacy of available therapies. The explosive development of nanotechnology, polymer science, and related fields has contributed to the emergence of a number of nanostructured vehicles (nano- and micro-scale) applicable for intravesical drug delivery. Moreover, the engineering approach has facilitated the design of several macro-sized depot systems (centimeter scale) capable of remaining in the bladder for weeks and months. In this article, the main rationales and strategies for improved intravesical delivery are reviewed. Here, we focused on analysis of colloidal nano- and micro-sized drug carriers and indwelling macro-scale devices, which were evaluated for applicability in local therapy for bladder cancer in vivo.
Collapse
Affiliation(s)
- Irina V. Marchenko
- Federal Scientific Research Center “Crystallography and Photonics”, Russian Academy of Sciences, 119333 Moscow, Russia;
| | - Daria B. Trushina
- Federal Scientific Research Center “Crystallography and Photonics”, Russian Academy of Sciences, 119333 Moscow, Russia;
- Institute of Molecular Theranostics, Sechenov First Moscow State Medical University, 119991 Moscow, Russia
| |
Collapse
|
20
|
Liu M, Xu H, Zhou F, Gong X, Tan S, He Y. A tetrasulfide bond-bridged mesoporous organosilica-based nanoplatform for triple-enhanced chemodynamic therapy combined with chemotherapy and H 2S therapy. J Mater Chem B 2023; 11:10822-10835. [PMID: 37920970 DOI: 10.1039/d3tb02147e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2023]
Abstract
The high glutathione (GSH) concentration and insufficient H2O2 content in tumor cells strongly constrict the efficacy of Fenton reaction-based chemodynamic therapy (CDT). Despite numerous efforts, it still remains a formidable challenge for achieving satisfactory efficacy using CDT alone. Herein, an intelligent tetrasulfide bond-bridged mesoporous organosilica-based nanoplatform that integrates GSH-depletion, H2S generation, self-supplied H2O2, co-delivery of doxorubicin (DOX) and Fenton reagent Fe2+ is presented for synergistic triple-enhanced CDT/chemotherapy/H2S therapy. Because the tetrasulfide bond is sensitive to GSH, the nanoplatform can effectively consume GSH, leading to ROS accumulation and H2S generation in the GSH-overexpressed tumor microenvironment. Meanwhile, tetrasulfide bond-induced GSH-depletion triggers the degradation of nanoparticles and the release of DOX and Fe2+. Immediately, Fe2+ catalyzes endogenous H2O2 to highly toxic hydroxyl radicals (˙OH) for CDT, and H2S induces mitochondria injury and causes energy deficiency. Of note, H2S can also decrease the decomposition of H2O2 to augment CDT by downregulating catalase. DOX elicits chemotherapy and promotes H2O2 production to provide a sufficient substrate for enhanced CDT. Importantly, the GSH depletion significantly weakens the scavenging effect on the produced ˙OH, guaranteeing the enhanced and highly efficient CDT. Based on the synergistic effect of triple-augmented CDT, H2S therapy and DOX-mediated chemotherapy, the treatment with this nanoplatform gives rise to a superior antitumor outcome.
Collapse
Affiliation(s)
- Mingzhe Liu
- School of Materials Science and Engineering, Central South University, Changsha, Hunan 410083, China.
| | - Hui Xu
- Institute of Super-Microstructure and Ultrafast Process in Advanced Materials, School of Physics and Electronics, Central South University, Changsha, Hunan 410083, China
| | - FangFang Zhou
- Department of Neurology, The Second Xiangya Hospital of Central South University, Changsha, Hunan 410011, China
| | - Xiyu Gong
- Department of Neurology, The Second Xiangya Hospital of Central South University, Changsha, Hunan 410011, China
| | - Songwen Tan
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, Hunan 410013, China
| | - Yongju He
- School of Materials Science and Engineering, Central South University, Changsha, Hunan 410083, China.
| |
Collapse
|
21
|
Liu Q, Zou J, Chen Z, He W, Wu W. Current research trends of nanomedicines. Acta Pharm Sin B 2023; 13:4391-4416. [PMID: 37969727 PMCID: PMC10638504 DOI: 10.1016/j.apsb.2023.05.018] [Citation(s) in RCA: 17] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 04/25/2023] [Accepted: 05/05/2023] [Indexed: 11/17/2023] Open
Abstract
Owing to the inherent shortcomings of traditional therapeutic drugs in terms of inadequate therapeutic efficacy and toxicity in clinical treatment, nanomedicine designs have received widespread attention with significantly improved efficacy and reduced non-target side effects. Nanomedicines hold tremendous theranostic potential for treating, monitoring, diagnosing, and controlling various diseases and are attracting an unfathomable amount of input of research resources. Against the backdrop of an exponentially growing number of publications, it is imperative to help the audience get a panorama image of the research activities in the field of nanomedicines. Herein, this review elaborates on the development trends of nanomedicines, emerging nanocarriers, in vivo fate and safety of nanomedicines, and their extensive applications. Moreover, the potential challenges and the obstacles hindering the clinical translation of nanomedicines are also discussed. The elaboration on various aspects of the research trends of nanomedicines may help enlighten the readers and set the route for future endeavors.
Collapse
Affiliation(s)
- Qiuyue Liu
- Shanghai Skin Disease Hospital, Tongji University School of Medicine, Shanghai 200443, China
- Key Laboratory of Smart Drug Delivery of MOE, School of Pharmacy, Fudan University, Shanghai 201203, China
| | - Jiahui Zou
- School of Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| | - Zhongjian Chen
- Shanghai Skin Disease Hospital, Tongji University School of Medicine, Shanghai 200443, China
| | - Wei He
- Shanghai Skin Disease Hospital, Tongji University School of Medicine, Shanghai 200443, China
- School of Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| | - Wei Wu
- Shanghai Skin Disease Hospital, Tongji University School of Medicine, Shanghai 200443, China
- Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai 201399, China
- Key Laboratory of Smart Drug Delivery of MOE, School of Pharmacy, Fudan University, Shanghai 201203, China
- Fudan Zhangjiang Institute, Shanghai 201203, China
| |
Collapse
|
22
|
Bernal-Martínez AM, Angulo-Pachón CA, Galindo F, Miravet JF. Reduction-Responsive Cationic Vesicles from Bolaamphiphiles with Ionizable Amino Acid or Dipeptide Polar Heads. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:13841-13849. [PMID: 37729523 PMCID: PMC10552552 DOI: 10.1021/acs.langmuir.3c01294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 08/31/2023] [Indexed: 09/22/2023]
Abstract
This paper presents a study of the aggregation of cationic bolaamphiphilic molecules into vesicles. These molecules are based on a cystamine core with protonated terminal dipeptide groups. The study found that vesicles can be formed at pH 4 for all of the dipeptide-terminated bolaamphiphiles containing different combinations of l-valine, l-phenylalanine, and l-tryptophan. The concentration for aggregation onset was determined by using pyrene as a fluorescent probe or light dispersion for compounds with tryptophan. Dynamic light scattering (DLS) studies and transmission electron microscopy (TEM) reveal that the vesicles have diameters ranging from 140 to 500 nm and show the capability of loading hydrophobic cargos, such as Nile red, and their liberation in reductive environments. Furthermore, the bolaamphiphiles are only fully protonated and prone to vesicle formation at acidic pH, making them a promising alternative for gastrointestinal delivery.
Collapse
Affiliation(s)
- Ana M. Bernal-Martínez
- Department of Inorganic and
Organic Chemistry, Universitat Jaume I, 12071 Castelló
de la Plana, Spain
| | - César A. Angulo-Pachón
- Department of Inorganic and
Organic Chemistry, Universitat Jaume I, 12071 Castelló
de la Plana, Spain
| | - Francisco Galindo
- Department of Inorganic and
Organic Chemistry, Universitat Jaume I, 12071 Castelló
de la Plana, Spain
| | - Juan F. Miravet
- Department of Inorganic and
Organic Chemistry, Universitat Jaume I, 12071 Castelló
de la Plana, Spain
| |
Collapse
|
23
|
Ouyang X, Jia N, Luo J, Li L, Xue J, Bu H, Xie G, Wan Y. DNA Nanoribbon-Assisted Intracellular Biosynthesis of Fluorescent Gold Nanoclusters for Cancer Cell Imaging. JACS AU 2023; 3:2566-2577. [PMID: 37772173 PMCID: PMC10523492 DOI: 10.1021/jacsau.3c00365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Revised: 08/02/2023] [Accepted: 08/07/2023] [Indexed: 09/30/2023]
Abstract
Metal nanoclusters (NCs) have emerged as a promising class of fluorescent probes for cellular imaging due to their high resistance to photobleaching and low toxicity. Nevertheless, their widespread use in clinical diagnosis is limited by their unstable intracellular fluorescence. In this study, we develop an intracellularly biosynthesized fluorescent probe, DNA nanoribbon-gold NCs (DNR/AuNCs), for long-term cellular tracking. Our results show that DNR/AuNCs exhibit a 4-fold enhancement of intracellular fluorescence intensity compared to free AuNCs. We also investigated the mechanism underlying the fluorescence enhancement of AuNCs by DNRs. Our findings suggest that the higher synthesis efficiency and stability of AuNCs in the lysosome may contribute to their fluorescence enhancement, which enables long-term (up to 15 days) fluorescence imaging of cancer cells (enhancement of ∼60 times compared to free AuNCs). Furthermore, we observe similar results with other metal NCs, confirming the generality of the DNR-assisted biosynthesis approach for preparing highly bright and stable fluorescent metal NCs for cancer cell imaging.
Collapse
Affiliation(s)
- Xiangyuan Ouyang
- Xi’an
Key Laboratory of Functional Supramolecular Structure and Materials,
Key Laboratory of Synthetic and Natural Functional Molecule of Ministry
of Education, College of Chemistry & Materials Science, Northwest University, Xi’an, Shaanxi 710127, P. R. China
| | - Nan Jia
- Xi’an
Key Laboratory of Functional Supramolecular Structure and Materials,
Key Laboratory of Synthetic and Natural Functional Molecule of Ministry
of Education, College of Chemistry & Materials Science, Northwest University, Xi’an, Shaanxi 710127, P. R. China
| | - Jing Luo
- Key
Laboratory of Resource Biology and Biotechnology in Western China
(Ministry of Education), College of Life Sciences, Northwest University, Xi’an, Shaanxi 710069, PR China
| | - Le Li
- Xi’an
Key Laboratory of Functional Supramolecular Structure and Materials,
Key Laboratory of Synthetic and Natural Functional Molecule of Ministry
of Education, College of Chemistry & Materials Science, Northwest University, Xi’an, Shaanxi 710127, P. R. China
| | - Jiangshan Xue
- Key
Laboratory of Resource Biology and Biotechnology in Western China
(Ministry of Education), College of Life Sciences, Northwest University, Xi’an, Shaanxi 710069, PR China
| | - Huaiyu Bu
- Key
Laboratory of Resource Biology and Biotechnology in Western China
(Ministry of Education), College of Life Sciences, Northwest University, Xi’an, Shaanxi 710069, PR China
| | - Gang Xie
- Xi’an
Key Laboratory of Functional Supramolecular Structure and Materials,
Key Laboratory of Synthetic and Natural Functional Molecule of Ministry
of Education, College of Chemistry & Materials Science, Northwest University, Xi’an, Shaanxi 710127, P. R. China
| | - Ying Wan
- School
of Mechanical Engineering, Nanjing University
of Science and Technology, Nanjing 210094, China
| |
Collapse
|
24
|
Wu J, Shang J, An J, Chen W, Hong G, Hou H, Zheng WH, Song F, Peng X. Jointly Depleting Glutathione Based on Self-Assembled Nanomicelles for Enhancing Photodynamic Therapy. Chembiochem 2023; 24:e202300323. [PMID: 37169724 DOI: 10.1002/cbic.202300323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 05/09/2023] [Accepted: 05/11/2023] [Indexed: 05/13/2023]
Abstract
Photodynamic therapy (PDT) is one common ROS-generating therapeutic method with high tumor selectivity and low side effects. But the GSH-upregulation often alleviates its therapeutic efficiency. Here, we proposed a new strategy of jointly depleting GSH to enhance the therapeutic effect of PDT by preparing a nanomicelle by self-assembly method from GSH-activated photosensitizer DMT, curcumin, and amphiphilic polymer TPGS.
Collapse
Affiliation(s)
- Jingxi Wu
- State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials Oriented Chemical Engineering, Dalian University of Technology, Dalian, 116024, China
| | - Jingjing Shang
- State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials Oriented Chemical Engineering, Dalian University of Technology, Dalian, 116024, China
| | - Jing An
- State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials Oriented Chemical Engineering, Dalian University of Technology, Dalian, 116024, China
| | - Wenlong Chen
- State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials Oriented Chemical Engineering, Dalian University of Technology, Dalian, 116024, China
| | - Gaobo Hong
- State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials Oriented Chemical Engineering, Dalian University of Technology, Dalian, 116024, China
| | - Haoran Hou
- State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials Oriented Chemical Engineering, Dalian University of Technology, Dalian, 116024, China
| | - Wen-Heng Zheng
- Department of Interventional Therapy, Cancer Hospital of, Dalian University of Technology, Liaoning Cancer Hospital and Institute, Shenyang, 110042, China
| | - Fengling Song
- State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials Oriented Chemical Engineering, Dalian University of Technology, Dalian, 116024, China
- Institute of Molecular Sciences and Engineering, Institute of Frontier and Interdisciplinary Science, Shandong University, Qingdao, 266237, China
| | - Xiaojun Peng
- State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials Oriented Chemical Engineering, Dalian University of Technology, Dalian, 116024, China
| |
Collapse
|
25
|
Zhang Z, Ding C, Sun T, Wang L, Chen C. Tumor Therapy Strategies Based on Microenvironment-Specific Responsive Nanomaterials. Adv Healthc Mater 2023; 12:e2300153. [PMID: 36933000 DOI: 10.1002/adhm.202300153] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 03/10/2023] [Indexed: 03/19/2023]
Abstract
The tumor microenvironment (TME) is a complex and variable region characterized by hypoxia, low pH, high redox status, overexpression of enzymes, and high-adenosine triphosphate concentrations. In recent years, with the continuous in-depth study of nanomaterials, more and more TME-specific response nanomaterials are used for tumor treatment. However, the complexity of the TME causes different types of responses with various strategies and mechanisms of action. Aiming to systematically demonstrate the recent advances in research on TME-responsive nanomaterials, this work summarizes the characteristics of TME and outlines the strategies of different TME responses. Representative reaction types are illustrated and their merits and demerits are analyzed. Finally, forward-looking views on TME-response strategies for nanomaterials are presented. It is envisaged that such emerging strategies for the treatment of cancer are expected to exhibit dramatic trans-clinical capabilities, demonstrating the extensive potential for the diagnosis and therapy of cancer.
Collapse
Affiliation(s)
- Zhaocong Zhang
- Key Laboratory of Forest Plant Ecology, Ministry of Education, College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin, 150040, China
| | - Chengwen Ding
- Key Laboratory of Forest Plant Ecology, Ministry of Education, College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin, 150040, China
| | - Tiedong Sun
- Key Laboratory of Forest Plant Ecology, Ministry of Education, College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin, 150040, China
| | - Lei Wang
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001, China
| | - Chunxia Chen
- Key Laboratory of Forest Plant Ecology, Ministry of Education, College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin, 150040, China
| |
Collapse
|
26
|
Fu D, Wang Y, Lin K, Huang L, Xu J, Wu H. Engineering of a GSH activatable photosensitizer for enhanced photodynamic therapy through disrupting redox homeostasis. RSC Adv 2023; 13:22367-22374. [PMID: 37497090 PMCID: PMC10366568 DOI: 10.1039/d3ra04074g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Accepted: 07/19/2023] [Indexed: 07/28/2023] Open
Abstract
Although disrupted redox homeostasis has emerged as a promising approach for tumor therapy, most existing photosensitizers are not able to simultaneously improve the reactive oxygen species level and reduce the glutathione (GSH) level. Therefore, designing photosensitizers that can achieve these two aspects of this goal is still urgent and challenging. In this work, an organic activatable near-infrared (NIR) photosensitizer, CyI-S-diCF3, is developed for GSH depletion-assisted enhanced photodynamic therapy. CyI-S-diCF3, composed of an iodinated heptamethine cyanine skeleton linked with a recognition unit of 3,5-bis(trifluoromethyl)benzenethiol, can specifically react with GSH by nucleophilic substitution, resulting in intracellular GSH depletion and redox imbalance. Moreover, the activated photosensitizer can produce abundant singlet oxygen (1O2) under NIR light irradiation, further heightening the cellular oxidative stress. By this unique nature, CyI-S-diCF3 exhibits excellent toxicity to cancer cells, followed by inducing earlier apoptosis. Thus, our study may propose a new strategy to design an activatable photosensitizer for breaking the redox homeostasis in tumor cells.
Collapse
Affiliation(s)
- Datian Fu
- Department of Pharmacy, Hainan Women and Children's Medical Center Haikou Hainan 570100 China
| | - Yan Wang
- Department of Pharmacy, Hainan Women and Children's Medical Center Haikou Hainan 570100 China
| | - Kaiwen Lin
- Department of Pharmacy, Hainan Women and Children's Medical Center Haikou Hainan 570100 China
| | - Liangjiu Huang
- Department of Clinical Pharmacy, Hainan Cancer Hospital Haikou Hainan 570100 China
| | - Jin Xu
- Pharmaceutical and Bioengineering School, Hunan Chemical Vocational Technology College Zhuzhou 412006 China
| | - Haimei Wu
- Department of Clinical Pharmacy, Hainan Cancer Hospital Haikou Hainan 570100 China
| |
Collapse
|
27
|
Luo S, Lv Z, Yang Q, Chang R, Wu J. Research Progress on Stimulus-Responsive Polymer Nanocarriers for Cancer Treatment. Pharmaceutics 2023; 15:1928. [PMID: 37514114 PMCID: PMC10386740 DOI: 10.3390/pharmaceutics15071928] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 06/28/2023] [Accepted: 07/07/2023] [Indexed: 07/30/2023] Open
Abstract
As drug carriers for cancer treatment, stimulus-responsive polymer nanomaterials are a major research focus. These nanocarriers respond to specific stimulus signals (e.g., pH, redox, hypoxia, enzymes, temperature, and light) to precisely control drug release, thereby improving drug uptake rates in cancer cells and reducing drug damage to normal cells. Therefore, we reviewed the research progress in the past 6 years and the mechanisms underpinning single and multiple stimulus-responsive polymer nanocarriers in tumour therapy. The advantages and disadvantages of various stimulus-responsive polymeric nanomaterials are summarised, and the future outlook is provided to provide a scientific and theoretical rationale for further research, development, and utilisation of stimulus-responsive nanocarriers.
Collapse
Affiliation(s)
- Shicui Luo
- Yunnan Key Laboratory of Integrated Traditional Chinese and Western Medicine for Chronic Disease in Prevention and Treatment, Yunnan University of Chinese Medicine, Kunming 650500, China
- Key Laboratory of Microcosmic Syndrome Differentiation, Yunnan University of Chinese Medicine, Kunming 650500, China
| | - Zhuo Lv
- Yunnan Key Laboratory of Integrated Traditional Chinese and Western Medicine for Chronic Disease in Prevention and Treatment, Yunnan University of Chinese Medicine, Kunming 650500, China
- Key Laboratory of Microcosmic Syndrome Differentiation, Yunnan University of Chinese Medicine, Kunming 650500, China
| | - Qiuqiong Yang
- Yunnan Key Laboratory of Integrated Traditional Chinese and Western Medicine for Chronic Disease in Prevention and Treatment, Yunnan University of Chinese Medicine, Kunming 650500, China
| | - Renjie Chang
- Center of Digestive Endoscopy, The First Affiliated Hospital of Yunnan University of Chinese Medicine, Kunming 650021, China
| | - Junzi Wu
- Yunnan Key Laboratory of Integrated Traditional Chinese and Western Medicine for Chronic Disease in Prevention and Treatment, Yunnan University of Chinese Medicine, Kunming 650500, China
- Key Laboratory of Microcosmic Syndrome Differentiation, Yunnan University of Chinese Medicine, Kunming 650500, China
| |
Collapse
|
28
|
Tumor microenvironment-triggered intratumoral in-situ biosynthesis of inorganic nanomaterials for precise tumor diagnostics. Coord Chem Rev 2023. [DOI: 10.1016/j.ccr.2023.215115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/18/2023]
|
29
|
Wang D, Li L, Xu H, Sun Y, Li W, Liu T, Li Y, Shi X, He Z, Zhai Y, Sun B, Sun J. Rational Engineering Docetaxel Prodrug Nanoassemblies: Response Modules Guiding Efficacy Enhancement and Toxicity Reduction. NANO LETTERS 2023; 23:3549-3557. [PMID: 37053460 DOI: 10.1021/acs.nanolett.3c00704] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Prodrug-based nanoassemblies have been developed to solve the bottlenecks of chemotherapeutic drugs. The fabricated prodrugs usually consist of active drug modules, response modules, and modification modules. Among three modules, the response modules play a vital role in controlling the intelligent drug release at tumor sites. Herein, various locations of disulfide bond linkages were selected as response modules to construct three Docetaxel (DTX) prodrugs. Interestingly, the small structural difference caused by the length of response modules endowed corresponding prodrug nanoassemblies with unique characteristic. α-DTX-OD nanoparticles (NPs) possessed the advantages of high redox-responsiveness due to their shortest linkages. However, they were too sensitive to retain the intact structure in the blood circulation, leading to severe systematic toxicity. β-DTX-OD NPs significantly improved the pharmacokinetics of DTX but may induce damage to the liver. In comparison, γ-DTX-OD NPs with the longest linkages greatly ameliorated the delivery efficiency of DTX as well as improved DTX's tolerance dose.
Collapse
Affiliation(s)
- Danping Wang
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Lingxiao Li
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Hezhen Xu
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Yixin Sun
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Wenxiao Li
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Tian Liu
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Yan Li
- Yantai Key Laboratory of Nanomedicine & Advanced Preparations, Yantai Institute of Materia Medica, Shandong 264000, China
| | - Xianbao Shi
- Department of Pharmacy, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou 121001, China
| | - Zhonggui He
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Yinglei Zhai
- School of Medical Devices, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Bingjun Sun
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Jin Sun
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, China
| |
Collapse
|
30
|
Shen P, Zhang X, Ding N, Zhou Y, Wu C, Xing C, Zeng L, Du L, Yuan J, Kang Y. Glutathione and Esterase Dual-Responsive Smart Nano-drug Delivery System Capable of Breaking the Redox Balance for Enhanced Tumor Therapy. ACS APPLIED MATERIALS & INTERFACES 2023; 15:20697-20711. [PMID: 37083309 DOI: 10.1021/acsami.3c01155] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Conventional chemotherapy usually fails to achieve its intended effect because of the poor water solubility, poor tumor selectivity, and low tumor accumulation of chemotherapy drugs. The systemic toxicity of chemotherapy agents is also a problem that cannot be ignored. It is expected that smart nano-drug delivery systems that are able to respond to tumor microenvironments will provide better therapeutic outcomes with decreased side effects of chemotherapeutics. Nano-drug delivery systems capable of breaking the redox balance can also increase the sensitivity of tumor cells to chemotherapeutics. In this study, using polymer-containing disulfide bonds, ester bonds, and d-α-tocopherol polyethylene glycol succinate (TPGS), which can amplify reactive oxygen species (ROS) in tumor cells, we have successfully prepared a smart glutathione (GSH) and esterase dual-responsive nano-drug delivery system (DTX@PAMBE-SS-TPGS NPs) with the ability to deplete GSH as well as amplify ROS and effectively release an encapsulated chemotherapy drug (DTX) in tumor cells. The potential of DTX@PAMBE-SS-TPGS NPs for enhanced antitumor effects was thoroughly evaluated using in vitro as well as in vivo experiments. Our research offers a promising strategy for maximizing the efficacy of tumor therapy.
Collapse
Affiliation(s)
- Ping Shen
- Scientific Research Center, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen 518107, China
- Department of Radiology, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen 518107, China
| | - Xinyi Zhang
- Scientific Research Center, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen 518107, China
| | - Ni Ding
- Scientific Research Center, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen 518107, China
| | - Yinhua Zhou
- Scientific Research Center, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen 518107, China
| | - Changquan Wu
- Department of Radiology, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen 518107, China
| | - Chengyuan Xing
- Scientific Research Center, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen 518107, China
| | - Ling Zeng
- Scientific Research Center, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen 518107, China
| | - Lixin Du
- Department of Medical Imaging, Shenzhen Longhua District Central Hospital, Key Laboratory of Neuroimaging, Longhua District, Shenzhen 518107, China
| | - Jianpeng Yuan
- Department of Radiology, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen 518107, China
| | - Yang Kang
- Scientific Research Center, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen 518107, China
| |
Collapse
|
31
|
Liu J, Zhu H, Lin L, Zhao W, Zhu X, Pang DW, Liu AA. Redox Imbalance Triggered Intratumoral Cascade Reaction for Tumor "turn on" Imaging and Synergistic Therapy. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2206272. [PMID: 36683231 DOI: 10.1002/smll.202206272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 12/19/2022] [Indexed: 06/17/2023]
Abstract
The redox homeostasis in tumors enhances their antioxidant defense ability, limiting reactive oxygen species mediated tumor therapy efficacy. The development of strategies for specific and continuous disruption of the redox homeostasis in tumor cells facilitates the improvement of the cancer therapeutic effect by promoting the apoptosis of tumor cells. Herein, a responsively biodegradable targeting multifunctional integrated nanosphere (HDMn-QDs/PEG-FA) is designed to enhance the anti-tumor efficacy by triggering intratumoral cascade reactions to effectively disrupt intracellular redox homeostasis. Once HDMn-QDs/PEG-FA enters tumor cells, manganese dioxide (MnO2 ) shell on the surface of nanosphere consumes glutathione (GSH) to produce Mn2+ , enabling enhanced chemodynamic therapy (CDT) via a Fenton-like reaction and T1 -weighted magnetic resonance imaging. Meanwhile, the degradation of MnO2 can also cause the fluorescence recovery of quantum dots conjugated on the surface of the shell, realizing "turn-on" fluorescence imaging. In addition, the doxorubicin is released because of the cleavage of the embedded SS bond in the hybrid core framework by GSH. A superior synergistic therapeutic efficiency combined CDT and chemotherapy is shown by HDMn-QDs/PEG-FA in vivo. The tumor-inhibition rate reaches to 94.8% and does not cause normal tissue damage due to the good targeting and tumor microenvironment-specific response.
Collapse
Affiliation(s)
- Juanzu Liu
- State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Frontiers Science Center for New Organic Matter, Research Center for Analytical Sciences, College of Chemistry, Frontiers Science Center for Cell Responses, Haihe Laboratory of Sustainable Chemical Transformations, Nankai University, Tianjin, 300071, P. R. China
| | - Han Zhu
- State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Frontiers Science Center for New Organic Matter, Research Center for Analytical Sciences, College of Chemistry, Frontiers Science Center for Cell Responses, Haihe Laboratory of Sustainable Chemical Transformations, Nankai University, Tianjin, 300071, P. R. China
| | - Leping Lin
- State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Frontiers Science Center for New Organic Matter, Research Center for Analytical Sciences, College of Chemistry, Frontiers Science Center for Cell Responses, Haihe Laboratory of Sustainable Chemical Transformations, Nankai University, Tianjin, 300071, P. R. China
- Cannano Jiayuan (Guangzhou) Science & Technology Co., Ltd, Guangzhou, 510700, P. R. China
| | - Wei Zhao
- State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Frontiers Science Center for New Organic Matter, Research Center for Analytical Sciences, College of Chemistry, Frontiers Science Center for Cell Responses, Haihe Laboratory of Sustainable Chemical Transformations, Nankai University, Tianjin, 300071, P. R. China
| | - Xiaobo Zhu
- Cannano Jiayuan (Guangzhou) Science & Technology Co., Ltd, Guangzhou, 510700, P. R. China
| | - Dai-Wen Pang
- State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Frontiers Science Center for New Organic Matter, Research Center for Analytical Sciences, College of Chemistry, Frontiers Science Center for Cell Responses, Haihe Laboratory of Sustainable Chemical Transformations, Nankai University, Tianjin, 300071, P. R. China
| | - An-An Liu
- State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Frontiers Science Center for New Organic Matter, Research Center for Analytical Sciences, College of Chemistry, Frontiers Science Center for Cell Responses, Haihe Laboratory of Sustainable Chemical Transformations, Nankai University, Tianjin, 300071, P. R. China
| |
Collapse
|
32
|
Morajkar R, Fatrekar AP, Vernekar A. A Single-Atom Nanozyme Cascade for Selective Tumor-Microenvironment-Responsive Nanocatalytic Therapy. ChemMedChem 2023; 18:e202200585. [PMID: 36807875 DOI: 10.1002/cmdc.202200585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 01/02/2023] [Indexed: 02/22/2023]
Abstract
The evolution of cancers to resist existing therapeutic strategies has constantly led researchers to design next-generation therapeutics. Research on nanomedicine holds significant potential in developing newer cancer therapeutics. Nanozymes bearing the properties of enzymes can be promising anticancer agents due to their tunable enzyme-like properties. In one such approach, a biocompatible cobalt-single-atom nanozyme (Co-SAs@NC) bearing catalase and oxidase-like activities that function in cascade at the tumor microenvironment has been reported recently. The current highlight discusses this investigation to unveil Co-SAs@NC's mechanism in tumor cell apoptosis through in vivo studies.
Collapse
Affiliation(s)
- Rasmi Morajkar
- Inorganic and Physical Chemistry Laboratory, CSIR-Central Leather Research Institute, Chennai, 600020, Tamil Nadu, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Adarsh P Fatrekar
- Inorganic and Physical Chemistry Laboratory, CSIR-Central Leather Research Institute, Chennai, 600020, Tamil Nadu, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Amit Vernekar
- Inorganic and Physical Chemistry Laboratory, CSIR-Central Leather Research Institute, Chennai, 600020, Tamil Nadu, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| |
Collapse
|
33
|
Zhang J, Sun B, Zhang M, Su Y, Xu W, Sun Y, Jiang H, Zhou N, Shen J, Wu F. Modulating the local coordination environment of cobalt single-atomic nanozymes for enhanced catalytic therapy against bacteria. Acta Biomater 2023; 164:563-576. [PMID: 37004783 DOI: 10.1016/j.actbio.2023.03.040] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 03/22/2023] [Accepted: 03/26/2023] [Indexed: 04/03/2023]
Abstract
Single-atomic nanozymes (SANZs) characterized by atomically dispersed single metal atoms have recently contributed to breakthroughs in biomedicine due to their satisfactory catalytic activity and superior selectivity compared to their nanoscale counterparts. The catalytic performance of SANZs can be improved by modulating their coordination structure. Therefore, adjusting the coordination number of the metal atoms in the active center is a potential method for enhancing the catalytic therapy effect. In this study, we synthesized various atomically dispersed Co nanozymes with different nitrogen coordination numbers for peroxidase (POD)-mimicking single-atomic catalytic antibacterial therapy. Among the single-atomic Co nanozymes with nitrogen coordination numbers of 3 (SACNZs-N3-C) and 4 (SACNZs-N4-C), single-atomic Co nanozymes with a coordination number of 2 (SACNZs-N2-C) had the highest POD-like catalytic activity. Kinetic assays and Density functional theory (DFT) calculations indicated that reducing the coordination number can lower the reaction energy barrier of single-atomic Co nanozymes (SACNZs-Nx-C), thereby increasing their catalytic performance. In vitro and in vivo antibacterial assays demonstrated that SACNZs-N2-C had the best antibacterial effect. This study provides proof of concept for enhancing single-atomic catalytic therapy by regulating the coordination number for various biomedical applications, such as tumor therapy and wound disinfection. STATEMENT OF SIGNIFICANCE: The use of nanozymes that contain single-atomic catalytic sites has been shown to effectively promote the healing of bacteria-infected wounds by exhibiting peroxidase-like activity. The homogeneous coordination environment of the catalytic site has been associated with high antimicrobial activity, which provides insight into designing new active structures and understanding their mechanisms of action. In this study, we designed a series of cobalt single-atomic nanozymes (PSACNZs-Nx-C) with different coordination environments by shearing the Co-N bond and modifying polyvinylpyrrolidone (PVP). The synthesized PSACNZs-Nx-C demonstrated enhanced antibacterial activity against both Gram-positive and Gram-negative bacterial strains, and showed good biocompatibility in both in vivo and in vitro experiments.
Collapse
|
34
|
Lei X, Hu Q, Ge H, Zhang X, Ru X, Chen Y, Hu R, Feng H, Deng J, Huang Y, Li W. A redox-reactive delivery system via neural stem cell nanoencapsulation enhances white matter regeneration in intracerebral hemorrhage mice. Bioeng Transl Med 2023; 8:e10451. [PMID: 36925711 PMCID: PMC10013746 DOI: 10.1002/btm2.10451] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 09/25/2022] [Accepted: 11/09/2022] [Indexed: 11/18/2022] Open
Abstract
Intracerebral hemorrhage (ICH) poses a great threat to human health because of its high mortality and morbidity. Neural stem cell (NSC) transplantation is promising for treating white matter injury following ICH to promote functional recovery. However, reactive oxygen species (ROS)-induced NSC apoptosis and uncontrolled differentiation hindered the effectiveness of the therapy. Herein, we developed a single-cell nanogel system by layer-by-layer (LbL) hydrogen bonding of gelatin and tannic acid (TA), which was modified with a boronic ester-based compound linking triiodothyronine (T3). In vitro, NSCs in nanogel were protected from ROS-induced apoptosis, with apoptotic signaling pathways downregulated. This process of ROS elimination by material shell synergistically triggered T3 release to induce NSC differentiation into oligodendrocytes. Furthermore, in animal studies, ICH mice receiving nanogels performed better in behavioral evaluation, neurological scaling, and open field tests. These animals exhibited enhanced differentiation of NSCs into oligodendrocytes and promoted white matter tract regeneration on Day 21 through activation of the αvβ3/PI3K/THRA pathway. Consequently, transplantation of LbL(T3) nanogels largely resolved two obstacles in NSC therapy synergistically: low survival and uncontrolled differentiation, enhancing white matter regeneration and behavioral performance of ICH mice. As expected, nanoencapsulation with synergistic effects would efficiently provide hosts with various biological benefits and minimize the difficulty in material fabrication, inspiring next-generation material design for tackling complicated pathological conditions.
Collapse
Affiliation(s)
- Xuejiao Lei
- Department of NeurosurgerySouthwest Hospital, Third Military Medical University (Army Medical University)ChongqingChina
| | - Quan Hu
- Department of EmergencyAffiliated Hospital, Zunyi Medical UniversityZunyiGuizhouChina
| | - Hongfei Ge
- Department of NeurosurgerySouthwest Hospital, Third Military Medical University (Army Medical University)ChongqingChina
| | - Xuyang Zhang
- Department of NeurosurgerySouthwest Hospital, Third Military Medical University (Army Medical University)ChongqingChina
| | - Xufang Ru
- Department of NeurosurgerySouthwest Hospital, Third Military Medical University (Army Medical University)ChongqingChina
| | - Yujie Chen
- Department of NeurosurgerySouthwest Hospital, Third Military Medical University (Army Medical University)ChongqingChina
| | - Rong Hu
- Department of NeurosurgerySouthwest Hospital, Third Military Medical University (Army Medical University)ChongqingChina
| | - Hua Feng
- Department of NeurosurgerySouthwest Hospital, Third Military Medical University (Army Medical University)ChongqingChina
| | - Jun Deng
- Institute of Burn Research, State Key Lab of Trauma, Burn, and Combined Injury, Chongqing Key Laboratory for Disease ProteomicsSouthwest Hospital, Third Military Medical University (Army Medical University)ChongqingChina
| | - Yan Huang
- Institute of Materia Medica and Department of PharmaceuticsCollege of Pharmacy, Third Military Medical University (Army Medical University)ChongqingChina
| | - Wenyan Li
- Department of NeurosurgerySouthwest Hospital, Third Military Medical University (Army Medical University)ChongqingChina
| |
Collapse
|
35
|
Han S, Chi Y, Yang Z, Ma J, Wang L. Tumor Microenvironment Regulation and Cancer Targeting Therapy Based on Nanoparticles. J Funct Biomater 2023; 14:136. [PMID: 36976060 PMCID: PMC10053410 DOI: 10.3390/jfb14030136] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Revised: 02/24/2023] [Accepted: 02/25/2023] [Indexed: 03/04/2023] Open
Abstract
Although we have made remarkable achievements in cancer awareness and medical technology, there are still tremendous increases in cancer incidence and mortality. However, most anti-tumor strategies, including immunotherapy, show low efficiency in clinical application. More and more evidence suggest that this low efficacy may be closely related to the immunosuppression of the tumor microenvironment (TME). The TME plays a significant role in tumorigenesis, development, and metastasis. Therefore, it is necessary to regulate the TME during antitumor therapy. Several strategies are developing to regulate the TME as inhibiting tumor angiogenesis, reversing tumor associated macrophage (TAM) phenotype, removing T cell immunosuppression, and so on. Among them, nanotechnology shows great potential for delivering regulators into TME, which further enhance the antitumor therapy efficacy. Properly designed nanomaterials can carry regulators and/or therapeutic agents to eligible locations or cells to trigger specific immune response and further kill tumor cells. Specifically, the designed nanoparticles could not only directly reverse the primary TME immunosuppression, but also induce effective systemic immune response, which would prevent niche formation before metastasis and inhibit tumor recurrence. In this review, we summarized the development of nanoparticles (NPs) for anti-cancer therapy, TME regulation, and tumor metastasis inhibition. We also discussed the prospect and potential of nanocarriers for cancer therapy.
Collapse
Affiliation(s)
- Shulan Han
- School of Pharmaceutical Sciences, Jilin University, Changchun 130021, China
| | - Yongjie Chi
- Key Laboratory of Green Process and Engineering, State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhu Yang
- Key Laboratory of Green Process and Engineering, State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Juan Ma
- Department of Clinical Laboratory Medicine, Beijing Shijitan Hospital, Capital Medical University, Beijing 100038, China
| | - Lianyan Wang
- Key Laboratory of Green Process and Engineering, State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
36
|
Wu S, Zhang J, Pan J, Bai S, Wang Z, Chen Y, Xu D, An Y, Liu C, Chu C, Dai Q, Jiang L, Lu Z, Liu G. Integrated Nanorod-Mediated PD-L1 Downregulation in Combination with Oxidative-Stress Immunogene Therapy against Cancer. Adv Healthc Mater 2023:e2300110. [PMID: 36773310 DOI: 10.1002/adhm.202300110] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 02/07/2023] [Indexed: 02/13/2023]
Abstract
It is an engaging program for tumor treatment that rationalizes the specific microenvironments, activation of suppressed immune system (immune resistance/escape reversion), and synergistic target therapy. Herein, a biomimetic nanoplatform that combines oxidative stress with genetic immunotherapy to strengthen the therapeutic efficacy is developed. Ru-TePt nanorods, small interfering RNA (PD-L1 siRNA), and biomimetic cellular membrane vesicles with the targeting ability to design a multifunctional Ru-TePt@siRNA-MVs system are rationally integrated. Notably, the Fenton-like activity significantly enhances Ru-TePt nanorods sonosensitization, thus provoking stronger oxidative stress to kill cells directly. Meanwhile, immunogenic cell death is triggered to secrete numerous cytokines and activate T cells. The effective catalase characteristics of Ru-TePt enable the in situ oxygen-producing pump to improve tumor oxygen level and coordinately strengthen the therapeutic effect of SDT followed. More importantly, anti-PD-L1-siRNA mediated immune checkpoint silence of the PD-L1 gene creates an environment conducive to activating cytotoxic T lymphocytes, synergistic with boosted reactive oxygen species-triggered antitumor immune response. The experimental results in vitro and in vivo reveal that the Ru-TePt@siRNA-MVs nanosystems can effectively activate the oxidative stress-triggered immune response and inhibit PD-1/PD-L1 axis-mediated immune resistance. Consequently, this orchestrated treatment paradigm provides valuable insights for developing potential oxidative stress and genetic immunotherapy.
Collapse
Affiliation(s)
- Shuaiying Wu
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics & Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen, 361102, China
| | - Jianzhong Zhang
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics & Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen, 361102, China
| | - Jie Pan
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics & Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen, 361102, China
| | - Shuang Bai
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics & Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen, 361102, China
| | - Ziying Wang
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Biology, School of Life Sciences, Xiamen University, Xiamen, 361102, China
| | - Yulun Chen
- School of Medicine, Xiamen University, Xiamen, 361102, China
| | - Dazhuang Xu
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics & Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen, 361102, China
| | - Yibo An
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics & Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen, 361102, China
| | - Chao Liu
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics & Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen, 361102, China
| | - Chengchao Chu
- School of Medicine, Xiamen University, Xiamen, 361102, China
| | - Qixuan Dai
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics & Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen, 361102, China
| | - Lai Jiang
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics & Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen, 361102, China
| | - Zhixiang Lu
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics & Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen, 361102, China
| | - Gang Liu
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics & Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen, 361102, China.,State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Biology, School of Life Sciences, Xiamen University, Xiamen, 361102, China
| |
Collapse
|
37
|
Shi X, Tian Y, Zhai S, Liu Y, Chu S, Xiong Z. The progress of research on the application of redox nanomaterials in disease therapy. Front Chem 2023; 11:1115440. [PMID: 36814542 PMCID: PMC9939781 DOI: 10.3389/fchem.2023.1115440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Accepted: 01/23/2023] [Indexed: 02/08/2023] Open
Abstract
Redox imbalance can trigger cell dysfunction and damage and plays a vital role in the origin and progression of many diseases. Maintaining the balance between oxidants and antioxidants in vivo is a complicated and arduous task, leading to ongoing research into the construction of redox nanomaterials. Nanodrug platforms with redox characteristics can not only reduce the adverse effects of oxidative stress on tissues by removing excess oxidants from the body but also have multienzyme-like activity, which can play a cytotoxic role in tumor tissues through the catalytic oxidation of their substrates to produce harmful reactive oxygen species such as hydroxyl radicals. In this review, various redox nanomaterials currently used in disease therapy are discussed, emphasizing the treatment methods and their applications in tumors and other human tissues. Finally, the limitations of the current clinical application of redox nanomaterials are considered.
Collapse
Affiliation(s)
- Xiaolu Shi
- Department of Implantology, Hospital of Stomatology, Jilin University, Changchun, China
| | - Ye Tian
- Department of Implantology, Hospital of Stomatology, Jilin University, Changchun, China
| | - Shaobo Zhai
- Department of Implantology, Hospital of Stomatology, Jilin University, Changchun, China
| | - Yang Liu
- Department of Implantology, Hospital of Stomatology, Jilin University, Changchun, China
| | - Shunli Chu
- Department of Implantology, Hospital of Stomatology, Jilin University, Changchun, China,*Correspondence: Shunli Chu, ; Zhengrong Xiong,
| | - Zhengrong Xiong
- Polymer Composites Engineering Laboratory, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences (CAS), Changchun, China,Department of Applied Chemistry, University of Science and Technology of China, Hefei, China,*Correspondence: Shunli Chu, ; Zhengrong Xiong,
| |
Collapse
|
38
|
RGD peptide modified platinum nanozyme Co-loaded glutathione-responsive prodrug nanoparticles for enhanced chemo-photodynamic bladder cancer therapy. Biomaterials 2023; 293:121975. [PMID: 36580720 DOI: 10.1016/j.biomaterials.2022.121975] [Citation(s) in RCA: 29] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2022] [Revised: 11/21/2022] [Accepted: 12/18/2022] [Indexed: 12/24/2022]
Abstract
Bladder cancer is one of the most common malignant tumors in the urinary system worldwide. The poor permeability and uncontrollable release of drug and hypoxia of tumor tissues were the main reasons leading to poor therapeutic effect of chemo-photodynamic therapy for bladder cancer. To solve the above problems, a tumor-targeting peptide Arg-Gly-Asp (RGD) modified platinum nanozyme (PtNP) co-loaded glutathione (GSH)-responsive prodrug nanoparticles (PTX-SS-HPPH/Pt@RGD-NP) was constructed. Firstly, a GSH-responsive prodrug (PTX-SS-HPPH) was prepared by introducing a disulfide bond between paclitaxel (PTX) and photosensitizer 2-(1-hexyloxyethyl)-2-devinyl pyropheophorbide-a (HPPH), which could realize the GSH-responsive release of the drug at the tumor sites. Also, the distearoylphosphoethanolamine-poly (ethylene glycol)-RGD peptide (DSPE-PEG-RGD) modified the prodrug to enhance the targeting and permeability ability to bladder cancer cells. Besides, to alleviate the hypoxia of tumor tissues, PtNP was introduced to produce oxygen (O2) and improve photodynamic therapy efficiency. The results showed that the PTX-SS-HPPH/Pt@RGD-NP could achieve GSH-responsive drug release in tumor microenvironment, enhance the drug accumulation time and permeability at tumor sites in T24 subcutaneous tumor model and T24 orthotopic bladder tumor model, and alleviate hypoxia in tumor tissues, thus realizing enhanced chemo-photodynamic therapy for bladder cancer, and providing new strategies and methods for clinical treatment of bladder cancer.
Collapse
|
39
|
Su Y, Jin G, Zhou H, Yang Z, Wang L, Mei Z, Jin Q, Lv S, Chen X. Development of stimuli responsive polymeric nanomedicines modulating tumor microenvironment for improved cancer therapy. MEDICAL REVIEW (2021) 2023; 3:4-30. [PMID: 37724108 PMCID: PMC10471091 DOI: 10.1515/mr-2022-0048] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/25/2022] [Accepted: 02/16/2023] [Indexed: 09/20/2023]
Abstract
The complexity of the tumor microenvironment (TME) severely hinders the therapeutic effects of various cancer treatment modalities. The TME differs from normal tissues owing to the presence of hypoxia, low pH, and immune-suppressive characteristics. Modulation of the TME to reverse tumor growth equilibrium is considered an effective way to treat tumors. Recently, polymeric nanomedicines have been widely used in cancer therapy, because their synthesis can be controlled and they are highly modifiable, and have demonstrated great potential to remodel the TME. In this review, we outline the application of various stimuli responsive polymeric nanomedicines to modulate the TME, aiming to provide insights for the design of the next generation of polymeric nanomedicines and promote the development of polymeric nanomedicines for cancer therapy.
Collapse
Affiliation(s)
- Yuanzhen Su
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, China
- School of Materials Science and Engineering, Peking University, Beijing, China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, Anhui Province, China
| | - Guanyu Jin
- School of Materials Science and Engineering, Peking University, Beijing, China
- Department of Chemistry, Capital Normal University, Beijing, China
| | - Huicong Zhou
- School of Materials Science and Engineering, Peking University, Beijing, China
| | - Zhaofan Yang
- School of Materials Science and Engineering, Peking University, Beijing, China
| | - Lanqing Wang
- School of Materials Science and Engineering, Peking University, Beijing, China
| | - Zi Mei
- School of Materials Science and Engineering, Peking University, Beijing, China
| | - Qionghua Jin
- Department of Chemistry, Capital Normal University, Beijing, China
| | - Shixian Lv
- School of Materials Science and Engineering, Peking University, Beijing, China
| | - Xuesi Chen
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, China
- School of Materials Science and Engineering, Peking University, Beijing, China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, Anhui Province, China
| |
Collapse
|
40
|
Sun Y, Wang S, Li Y, Wang D, Zhang Y, Zhang H, Lei H, Liu X, Sun J, Sun B, He Z. Precise engineering of disulfide bond-bridged prodrug nanoassemblies to balance antitumor efficacy and safety. Acta Biomater 2023; 157:417-427. [PMID: 36513247 DOI: 10.1016/j.actbio.2022.12.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 11/30/2022] [Accepted: 12/05/2022] [Indexed: 12/14/2022]
Abstract
Prodrug-based nanoassemblies, which combine the merits of prodrug technology and nanocarriers, are regarded as promising platforms for cancer treatment. Notably, the chemical structure of prodrugs is closely associated with antitumor efficacy and safety, and the intrinsic relationships among them need further exploration. Herein, paclitaxel was conjugated with 2-octyldodecan-1-ol through different positions of disulfide bond to construct the prodrug nanoassemblies. Interestingly, the minor differences in chemical structure not only dominated the assembly performance and drug release of nanoassemblies, but also significantly impacted the pharmacokinetics, antitumor efficacy, and safety. It was worth noting that prodrug nanoassemblies with one carbon atom between disulfide bond and ester bond had faster drug release and better antitumor effect, while prodrug nanoassemblies with three carbon atoms between disulfide bond and ester bond possessed moderate antitumor effect and better safety. Our findings illustrated the structure-function relationships of self-assembled prodrugs and provided a promising paradigm for the precise engineering of advanced prodrug nanoplatforms. STATEMENT OF SIGNIFICANCE: 1. The major effects of minor differences in prodrug chemical structure on pharmacodynamics and safety were explored, which had important clinical reference significance and value. 2. The in-depth exploration of structure-function relationships to balance efficacy and safety had important guiding significance for the design of prodrug nanoassemblies.
Collapse
Affiliation(s)
- Yixin Sun
- Department of Pharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Simeng Wang
- Department of Pharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Yaqi Li
- Department of Pharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Danping Wang
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Yu Zhang
- Department of Pharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Haotian Zhang
- School of Life Science and Biopharmaceutics, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Hongrui Lei
- School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Xiaohong Liu
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Jin Sun
- Department of Pharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, China.
| | - Bingjun Sun
- Department of Pharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, China.
| | - Zhonggui He
- Department of Pharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, China.
| |
Collapse
|
41
|
Liu Q, Zhao Y, Zhou H, Chen C. Ferroptosis: challenges and opportunities for nanomaterials in cancer therapy. Regen Biomater 2023; 10:rbad004. [PMID: 36817975 PMCID: PMC9926950 DOI: 10.1093/rb/rbad004] [Citation(s) in RCA: 21] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2022] [Revised: 12/11/2022] [Accepted: 12/31/2022] [Indexed: 01/22/2023] Open
Abstract
Ferroptosis, a completely new form of regulated cell death, is mainly caused by an imbalance between oxidative damage and reductive protection and has shown great anti-cancer potential. However, existing small-molecule ferroptosis inducers have various limitations, such as poor water solubility, drug resistance and low targeting ability, hindering their clinical applications. Nanotechnology provides new opportunities for ferroptosis-driven tumor therapy. Especially, stimuli-responsive nanomaterials stand out among others and have been widely researched because of their unique spatiotemporal control advantages. Therefore, it's necessary to summarize the application of those stimuli-responsive nanomaterials in ferroptosis. Here, we describe the physiological feature of ferroptosis and illustrate the current challenges to induce ferroptosis for cancer therapy. Then, nanomaterials that induce ferroptosis are classified and elaborated according to the external and internal stimuli. Finally, the future perspectives in the field are proposed. We hope this review facilitates paving the way for the design of intelligent nano-ferroptosis inducers.
Collapse
Affiliation(s)
- Qiaolin Liu
- Henan Institutes of Advanced Technology, Zhengzhou University, Zhengzhou 450052, China
- CAS Key Laboratory for Biomedical Effects of Nanoparticles and Nanosafety & CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, China
| | - Yuliang Zhao
- CAS Key Laboratory for Biomedical Effects of Nanoparticles and Nanosafety & CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- Research Unit of Nanoscience and Technology, Chinese Academy of Medical Sciences, Beijing 100039, China
- The GBA National Institute for Nanotechnology Innovation, Guangzhou 510700, Guangdong, China
| | - Huige Zhou
- CAS Key Laboratory for Biomedical Effects of Nanoparticles and Nanosafety & CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- Research Unit of Nanoscience and Technology, Chinese Academy of Medical Sciences, Beijing 100039, China
| | - Chunying Chen
- CAS Key Laboratory for Biomedical Effects of Nanoparticles and Nanosafety & CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- Research Unit of Nanoscience and Technology, Chinese Academy of Medical Sciences, Beijing 100039, China
- The GBA National Institute for Nanotechnology Innovation, Guangzhou 510700, Guangdong, China
| |
Collapse
|
42
|
Mai Z, Zhong J, Zhang J, Chen G, Tang Y, Ma W, Li G, Feng Z, Li F, Liang XJ, Yang Y, Yu Z. Carrier-Free Immunotherapeutic Nano-Booster with Dual Synergistic Effects Based on Glutaminase Inhibition Combined with Photodynamic Therapy. ACS NANO 2023; 17:1583-1596. [PMID: 36595443 DOI: 10.1021/acsnano.2c11037] [Citation(s) in RCA: 22] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
The immunotherapeutic effect elicited by photodynamic therapy (PDT) is attenuated by tumor defense mechanisms associated with glutamine metabolism, including the metabolic regulation of redox homeostasis and the limitation of the immunosuppressive tumor microenvironment (ITM). Herein, a carrier-free immunotherapeutic nanobooster C9SN with dual synergistic effects was constructed by the self-assembly of glutaminase (GLS) inhibitor compound 968 (C968) and photosensitizer Chlorin e6. C968-mediated GSH deprivation through inhibiting glutamine metabolism prevented PDT-generated reactive oxygen species from being annihilated by GSH, amplifying intracellular oxidative stress, which caused severe cell death and also enhanced the immunogenic cell death (ICD) effect. In addition, genome-wide analysis was carried out using RNA-sequencing to evaluate the changes in cell transcriptome induced by amplifying oxidative stress. Thereafter, neoantigens generated by the enhanced ICD effect promoted the maturation of dendritic cells, thereby recruiting and activating cytotoxic T lymphocytes (CTLs). Meanwhile, C9SN remodeled the ITM by blocking glutamine metabolism to polarize M2-type tumor-associated macrophages (TAMs) into M1-type TAMs, which further recruited and activated the CTLs. Ultimately, this immunotherapeutic nanobooster suppressed primary and distant tumors. This "kill two birds with one stone" strategy would shed light on enhancing tumor immunogenicity and alleviating tumor immunosuppression to improve the immunotherapeutic effect of PDT.
Collapse
Affiliation(s)
- Ziyi Mai
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
- Department of Laboratory Medicine, Dongguan Institute of Clinical Cancer Research, Affiliated Dongguan Hospital, Southern Medical University, Dongguan 523018, China
| | - Jing Zhong
- Dermatology Hospital, Southern Medical University, Guangzhou 510091, China
| | - Jiasi Zhang
- Department of Laboratory Medicine, Dongguan Institute of Clinical Cancer Research, Affiliated Dongguan Hospital, Southern Medical University, Dongguan 523018, China
- Department of Galactophore, Affiliated Dongguan Hospital, Southern Medical University, Dongguan, Guangdong 523059, China
| | - Guimei Chen
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
- Department of Laboratory Medicine, Dongguan Institute of Clinical Cancer Research, Affiliated Dongguan Hospital, Southern Medical University, Dongguan 523018, China
| | - Yan Tang
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
- Department of Laboratory Medicine, Dongguan Institute of Clinical Cancer Research, Affiliated Dongguan Hospital, Southern Medical University, Dongguan 523018, China
| | - Wen Ma
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
- Department of Laboratory Medicine, Dongguan Institute of Clinical Cancer Research, Affiliated Dongguan Hospital, Southern Medical University, Dongguan 523018, China
| | - Guang Li
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Zhenzhen Feng
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
- Department of Laboratory Medicine, Dongguan Institute of Clinical Cancer Research, Affiliated Dongguan Hospital, Southern Medical University, Dongguan 523018, China
| | - Fangzhou Li
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing 100190, China
| | - Xing-Jie Liang
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yuanyuan Yang
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
- Department of Laboratory Medicine, Dongguan Institute of Clinical Cancer Research, Affiliated Dongguan Hospital, Southern Medical University, Dongguan 523018, China
| | - Zhiqiang Yu
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
- Department of Laboratory Medicine, Dongguan Institute of Clinical Cancer Research, Affiliated Dongguan Hospital, Southern Medical University, Dongguan 523018, China
| |
Collapse
|
43
|
Lou L, Zhou S, Tan S, Xiang M, Wang W, Yuan C, Gao L, Xiao Q. Amplifying the efficacy of ALA-based prodrugs for photodynamic therapy using nanotechnology. Front Pharmacol 2023; 14:1137707. [PMID: 36923350 PMCID: PMC10008889 DOI: 10.3389/fphar.2023.1137707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Accepted: 02/16/2023] [Indexed: 03/01/2023] Open
Abstract
5-aminolevulinic acid (ALA) is a clinically approved prodrug involved in intracellular Heme biosynthesis to produce the natural photosensitizer (PS) Protoporphyrin IX (PpIX). ALA based photodynamic therapy (PDT) has been used to treat various malignant and non-malignant diseases. However, natural ALA has disadvantages such as weak lipophilicity, low stability and poor bioavailability, greatly reducing its clinical performance. The emerging nanotechnology is expected to address these limitations and thus improve the therapeutic outcomes. Herein, we summarized important recent advances in the design of ALA-based prodrugs using nanotechnology to improve the efficacy of PDT. The potential limitations and future perspectives of ALA-based nanomedicines are also briefly presented and discussed.
Collapse
Affiliation(s)
- Liang Lou
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University and Shenzhen Campus of Sun Yat-sen University, Shenzhen, China
| | - Shizhe Zhou
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University and Shenzhen Campus of Sun Yat-sen University, Shenzhen, China
| | - Sijia Tan
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University and Shenzhen Campus of Sun Yat-sen University, Shenzhen, China
| | - Menghua Xiang
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University and Shenzhen Campus of Sun Yat-sen University, Shenzhen, China
| | - Wei Wang
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University and Shenzhen Campus of Sun Yat-sen University, Shenzhen, China
| | - Chuang Yuan
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, China.,Department of Hematology, Xiangya Hospital, Central South University, Changsha, China
| | - Liqian Gao
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University and Shenzhen Campus of Sun Yat-sen University, Shenzhen, China
| | - Qicai Xiao
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University and Shenzhen Campus of Sun Yat-sen University, Shenzhen, China
| |
Collapse
|
44
|
Redox-responsive MXene-SS-PEG nanomaterials for delivery of doxorubicin. INORG CHEM COMMUN 2022. [DOI: 10.1016/j.inoche.2022.110227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
45
|
Wang S, Song Y, Ma J, Chen X, Guan Y, Peng H, Yan G, Tang R. Dynamic crosslinked polymeric nano-prodrugs for highly selective synergistic chemotherapy. Asian J Pharm Sci 2022; 17:880-891. [PMID: 36600901 PMCID: PMC9800956 DOI: 10.1016/j.ajps.2022.09.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2022] [Revised: 09/12/2022] [Accepted: 09/27/2022] [Indexed: 01/07/2023] Open
Abstract
To achieve highly selective synergistic chemotherapy attractive for clinical translation, the precise polymeric nano-prodrugs (PPD-NPs) were successfully constructed via the facile crosslinking reaction between pH-sensitive poly(ortho ester)s and reduction-sensitive small molecule synergistic prodrug (Pt(IV)-1). PPD-NPs endowed the defined structure and high drug loading of cisplatin and demethylcantharidin (DMC). Moreover, PPD-NPs exhibited steady long-term storage and circulation via the crosslinked structure, suitable negative potentials and low critical micelle concentration (CMC), improved selective tumour accumulation and cellular internalization via dynamic size transition and surficial amino protonation at tumoural extracellular pH, promoted efficient disintegration and drug release at tumoural intracellular pH/glutathione, and enhanced cytotoxicity via the synergistic effect between cisplatin and DMC with the feed ratio of 1:2, achieving significant tumour suppression while decreasing the side effects. Thus, the dynamic crosslinked polymeric nano-prodrugs exhibit tremendous potential for clinically targeted synergistic cancer therapy.
Collapse
Affiliation(s)
- Shi Wang
- Engineering Research Center for Biomedical Materials, Anhui Key Laboratory of Modern Biomanufacturing, School of Life Sciences, Anhui University, Hefei 230601, China
| | - Yining Song
- Anhui Engineering Technology Research Center of Biochemical Pharmaceutical, Bengbu Medical College, Bengbu 233030, China
| | - Jingge Ma
- Engineering Research Center for Biomedical Materials, Anhui Key Laboratory of Modern Biomanufacturing, School of Life Sciences, Anhui University, Hefei 230601, China
| | - Xinyang Chen
- Engineering Research Center for Biomedical Materials, Anhui Key Laboratory of Modern Biomanufacturing, School of Life Sciences, Anhui University, Hefei 230601, China
| | - Yuanhui Guan
- Engineering Research Center for Biomedical Materials, Anhui Key Laboratory of Modern Biomanufacturing, School of Life Sciences, Anhui University, Hefei 230601, China
| | - Hui Peng
- Engineering Research Center for Biomedical Materials, Anhui Key Laboratory of Modern Biomanufacturing, School of Life Sciences, Anhui University, Hefei 230601, China
| | - Guoqing Yan
- Engineering Research Center for Biomedical Materials, Anhui Key Laboratory of Modern Biomanufacturing, School of Life Sciences, Anhui University, Hefei 230601, China,Corresponding authors.
| | - Rupei Tang
- Engineering Research Center for Biomedical Materials, Anhui Key Laboratory of Modern Biomanufacturing, School of Life Sciences, Anhui University, Hefei 230601, China,Corresponding authors.
| |
Collapse
|
46
|
Guo Y, Fan Y, Wang Z, Li G, Zhan M, Gong J, Majoral JP, Shi X, Shen M. Chemotherapy Mediated by Biomimetic Polymeric Nanoparticles Potentiates Enhanced Tumor Immunotherapy via Amplification of Endoplasmic Reticulum Stress and Mitochondrial Dysfunction. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2206861. [PMID: 36125843 DOI: 10.1002/adma.202206861] [Citation(s) in RCA: 47] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 09/11/2022] [Indexed: 06/15/2023]
Abstract
Construction of multifunctional nanoplatforms to elevate chemotherapeutic efficacy and induce long-term antitumor immunity still remains to be an extreme challenge. Herein, the design of an advanced redox-responsive nanomedicine formulation based on phosphorus dendrimer-copper(II) complexes (1G3 -Cu)- and toyocamycin (Toy)-loaded polymeric nanoparticles (GCT NPs) coated with cancer cell membranes (CM) are reported. The designed GCT@CM NPs with a size of 210 nm are stable under physiological conditions but are rapidly dissociated in the reductive tumor microenvironment to deplete glutathione and release drugs. The co-loading of 1G3 -Cu and Toy within the NPs causes significant tumor cell apoptosis and immunogenic cell death through 1G3 -Cu-induced mitochondrial dysfunction and Toy-mediated amplification of endoplasmic reticulum stress, respectively, thus effectively suppressing tumor growth, promoting dendritic cell maturation, and increasing tumor-infiltrating cytotoxic T lymphocytes. Likewise, the coated CM and the loaded 1G3 -Cu render the GCT@CM NPs with homotypic targeting and T1 -weighted magnetic resonance imaging of tumors, respectively. With the assistance of programmed cell death ligand 1 antibody, the GCT@CM NP-mediated chemotherapy can significantly potentiate tumor immunotherapy for effective inhibition of tumor recurrence and metastasis. The developed GCT@CM NPs hold a great potential for chemotherapy-potentiated immunotherapy of different tumor types through different mechanisms or synergies.
Collapse
Affiliation(s)
- Yunqi Guo
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, College of Biological Science and Medical Engineering, Donghua University, Shanghai, 201620, P. R. China
| | - Yu Fan
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, College of Biological Science and Medical Engineering, Donghua University, Shanghai, 201620, P. R. China
| | - Zhiqiang Wang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, College of Biological Science and Medical Engineering, Donghua University, Shanghai, 201620, P. R. China
| | - Gaoming Li
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, College of Biological Science and Medical Engineering, Donghua University, Shanghai, 201620, P. R. China
| | - Mengsi Zhan
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, College of Biological Science and Medical Engineering, Donghua University, Shanghai, 201620, P. R. China
| | - Junli Gong
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, College of Biological Science and Medical Engineering, Donghua University, Shanghai, 201620, P. R. China
| | | | - Xiangyang Shi
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, College of Biological Science and Medical Engineering, Donghua University, Shanghai, 201620, P. R. China
| | - Mingwu Shen
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, College of Biological Science and Medical Engineering, Donghua University, Shanghai, 201620, P. R. China
| |
Collapse
|
47
|
Zhou W, Jia Y, Liu Y, Chen Y, Zhao P. Tumor Microenvironment-Based Stimuli-Responsive Nanoparticles for Controlled Release of Drugs in Cancer Therapy. Pharmaceutics 2022; 14:2346. [PMID: 36365164 PMCID: PMC9694300 DOI: 10.3390/pharmaceutics14112346] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 10/22/2022] [Accepted: 10/28/2022] [Indexed: 07/22/2023] Open
Abstract
With the development of nanomedicine technology, stimuli-responsive nanocarriers play an increasingly important role in antitumor therapy. Compared with the normal physiological environment, the tumor microenvironment (TME) possesses several unique properties, including acidity, high glutathione (GSH) concentration, hypoxia, over-expressed enzymes and excessive reactive oxygen species (ROS), which are closely related to the occurrence and development of tumors. However, on the other hand, these properties could also be harnessed for smart drug delivery systems to release drugs specifically in tumor tissues. Stimuli-responsive nanoparticles (srNPs) can maintain stability at physiological conditions, while they could be triggered rapidly to release drugs by specific stimuli to prolong blood circulation and enhance cancer cellular uptake, thus achieving excellent therapeutic performance and improved biosafety. This review focuses on the design of srNPs based on several stimuli in the TME for the delivery of antitumor drugs. In addition, the challenges and prospects for the development of srNPs are discussed, which can possibly inspire researchers to develop srNPs for clinical applications in the future.
Collapse
Affiliation(s)
- Weixin Zhou
- Department of Medical Ultrasound, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
- School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Yujie Jia
- Institute of Biomedical Engineering and Technology, Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200065, China
| | - Yani Liu
- Department of Medical Ultrasound, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Yan Chen
- School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Pengxuan Zhao
- Department of Medical Ultrasound, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| |
Collapse
|
48
|
Wang Z, Guo X, Hao L, Zhang X, Lin Q, Sheng R. Charge-Convertible and Reduction-Sensitive Cholesterol-Containing Amphiphilic Copolymers for Improved Doxorubicin Delivery. MATERIALS (BASEL, SWITZERLAND) 2022; 15:6476. [PMID: 36143789 PMCID: PMC9504105 DOI: 10.3390/ma15186476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 09/06/2022] [Accepted: 09/15/2022] [Indexed: 06/16/2023]
Abstract
For achieving successful chemotherapy against cancer, designing biocompatible drug delivery systems (DDSs) with long circulation times, high cellular endocytosis efficiency, and targeted drug release is of upmost importance. Herein, a well-defined PEG-b-P(MASSChol-co-MANBoc) block copolymer bearing redox-sensitive cholesteryl-side group was prepared via reversible addition-fragmentation chain transfer (RAFT) polymerization (with non-redox PEG-b-P(MACCChol-co-MAN-DCA) as the reference), and 1,2-dicarboxylic-cyclohexene acid (DCA) was then grafted onto the hydrophobic block to endow it with charge-convertible characteristics under a tumor microenvironment. The amphiphilic copolymer could be assembled into polymeric spherical micelles (SSMCs) with polyethylene glycol (PEG) as the corona/shell, and anti-cancer drug doxorubicin (DOX) was successfully encapsulated into the micellar core via strong hydrophobic and electrostatic interactions. This nanocarrier showed high stability in the physiological environment and demonstrated "smart" surface charge conversion from negative to positive in the slightly acidic environment of tumor tissues (pH 6.5~6.8), as determined by dynamic light scattering (DLS). Moreover, the cleavage of a disulfide bond linking the cholesterol grafts under an intracellular redox environment (10 mM GSH) resulted in micellar dissociation and accelerated drug release, with the non-redox-responsive micelles (CCMCs) as the control. Additionally, a cellular endocytosis and tumor proliferation inhibition study against MCF-7 tumor cells demonstrated the enhanced endocytosis and tumor cell inhibitory efficiency of dual-responsive SSMCs/DOX nanomedicines, revealing potentials as multifunctional nanoplatforms for effective oncology treatment.
Collapse
Affiliation(s)
- Zhao Wang
- School of Material Engineering, Jinling Institute of Technology, Nanjing 211169, China
- Nanjing Key Laboratory of Optometric Materials and Technology, Nanjing 211169, China
| | - Xinyu Guo
- School of Material Engineering, Jinling Institute of Technology, Nanjing 211169, China
- Nanjing Key Laboratory of Optometric Materials and Technology, Nanjing 211169, China
| | - Lingyun Hao
- School of Material Engineering, Jinling Institute of Technology, Nanjing 211169, China
- Nanjing Key Laboratory of Optometric Materials and Technology, Nanjing 211169, China
| | - Xiaojuan Zhang
- School of Material Engineering, Jinling Institute of Technology, Nanjing 211169, China
- Nanjing Key Laboratory of Optometric Materials and Technology, Nanjing 211169, China
| | - Qing Lin
- School of Material Engineering, Jinling Institute of Technology, Nanjing 211169, China
- Nanjing Key Laboratory of Optometric Materials and Technology, Nanjing 211169, China
| | - Ruilong Sheng
- CQM-Centro de Quimica da Madeira, Campus da Penteada, Universidade da Madeira, 9000390 Funchal, Madeira, Portugal
| |
Collapse
|
49
|
Sequentially sustained release of anticarcinogens for postsurgical chemoimmunotherapy. J Control Release 2022; 350:803-814. [PMID: 36087802 DOI: 10.1016/j.jconrel.2022.09.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 08/15/2022] [Accepted: 09/03/2022] [Indexed: 12/14/2022]
Abstract
Postsurgical treatment is of great importance to combat tumor recurrence and metastasis. Anti-CD47 antibodies (aCD47) can block the CD47-signal regulatory protein-alpha (CD47-SIRPα) pathway to restore immunity. Here, an in-situ gel implantation was engineered by crosslinking chitosan (CS) and pullulan (Pul) for postsurgical treatment. A highly selected chemotherapeutic, cyclopamine (Cyc), encapsulated in liposomes (Cyc-Lip) was co-loaded with aCD47 in gels for chemoimmunotherapy. Importantly, a sequential drug release kinetics can be achieved. Nanotherapeutics were confirmed to be released prior to aCD47 in a burst-release manner, which was benefit for immediately killing residual tumor cells followed by releasing tumor antigens. Meanwhile, aCD47 was released in a sustained-release manner to restore macrophage functions and exert anti-tumor immune responses. Afterwards, the efficacy of in-situ chemoimmunotherapy was confirmed on 4T1 mouse breast cancer models, which could not only efficiently augment anti-tumor effect to inhibit tumor recurrence but also establish a long-term immune memory to combat tumor metastasis.
Collapse
|
50
|
Cai S, Liu J, Ding J, Fu Z, Li H, Xiong Y, Lian Z, Yang R, Chen C. Tumor‐Microenvironment‐Responsive Cascade Reactions by a Cobalt‐Single‐Atom Nanozyme for Synergistic Nanocatalytic Chemotherapy. Angew Chem Int Ed Engl 2022; 61:e202204502. [DOI: 10.1002/anie.202204502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Indexed: 11/09/2022]
Affiliation(s)
- Shuangfei Cai
- CAS Key Lab for Biomedical Effects of Nanomaterials and Nanosafety Center of Materials Science and Optoelectronics Engineering CAS center for Excellence in Nanoscience National Center for Nanoscience and Technology University of Chinese Academy of Sciences Beijing 100190 China
| | - Jiaming Liu
- CAS Key Lab for Biomedical Effects of Nanomaterials and Nanosafety Center of Materials Science and Optoelectronics Engineering CAS center for Excellence in Nanoscience National Center for Nanoscience and Technology University of Chinese Academy of Sciences Beijing 100190 China
- Joint Department of Biomedical Engineering University of North Carolina at Chapel Hill and North Carolina State University Raleigh NC 27607 USA
| | - Jianwei Ding
- CAS Key Lab for Biomedical Effects of Nanomaterials and Nanosafety Center of Materials Science and Optoelectronics Engineering CAS center for Excellence in Nanoscience National Center for Nanoscience and Technology University of Chinese Academy of Sciences Beijing 100190 China
| | - Zhao Fu
- CAS Key Lab for Biomedical Effects of Nanomaterials and Nanosafety Center of Materials Science and Optoelectronics Engineering CAS center for Excellence in Nanoscience National Center for Nanoscience and Technology University of Chinese Academy of Sciences Beijing 100190 China
| | - Haolin Li
- CAS Key Lab for Biomedical Effects of Nanomaterials and Nanosafety Center of Materials Science and Optoelectronics Engineering CAS center for Excellence in Nanoscience National Center for Nanoscience and Technology University of Chinese Academy of Sciences Beijing 100190 China
- Sino-Danish College Sino-Danish Center for Education and Research University of Chinese Academy of Sciences Beijing 100049 China
| | - Youlin Xiong
- CAS Key Lab for Biomedical Effects of Nanomaterials and Nanosafety Center of Materials Science and Optoelectronics Engineering CAS center for Excellence in Nanoscience National Center for Nanoscience and Technology University of Chinese Academy of Sciences Beijing 100190 China
| | - Zheng Lian
- CAS Key Lab for Biomedical Effects of Nanomaterials and Nanosafety Center of Materials Science and Optoelectronics Engineering CAS center for Excellence in Nanoscience National Center for Nanoscience and Technology University of Chinese Academy of Sciences Beijing 100190 China
| | - Rong Yang
- CAS Key Lab for Biomedical Effects of Nanomaterials and Nanosafety Center of Materials Science and Optoelectronics Engineering CAS center for Excellence in Nanoscience National Center for Nanoscience and Technology University of Chinese Academy of Sciences Beijing 100190 China
- Sino-Danish College Sino-Danish Center for Education and Research University of Chinese Academy of Sciences Beijing 100049 China
| | - Chunying Chen
- CAS Key Lab for Biomedical Effects of Nanomaterials and Nanosafety Center of Materials Science and Optoelectronics Engineering CAS center for Excellence in Nanoscience National Center for Nanoscience and Technology University of Chinese Academy of Sciences Beijing 100190 China
- GBA National Institute for Nanotechnology Innovation Guangzhou 510700, Guangdong China
| |
Collapse
|