1
|
Wang Q, Xu Y, Zhu S, Jiang L, Yao L, Yu X, Zhang Y, Jia S, Hong M, Zheng J. Mesenchymal stem cells improve depressive disorder via inhibiting the inflammatory polarization of microglia. J Psychiatr Res 2024; 179:105-116. [PMID: 39270422 DOI: 10.1016/j.jpsychires.2024.09.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/04/2024] [Revised: 08/11/2024] [Accepted: 09/05/2024] [Indexed: 09/15/2024]
Abstract
Depressive disorder (DD) ranks among the most prevalent, burdensome, and costly psychiatric conditions globally. It manifests through a range of emotional, cognitive, somatic, and behavioral symptoms. Mesenchymal Stem Cells (MSCs) have garnered significant attention due to their therapeutic potential via immunomodulation in neurological disorders. Our research indicates that MSCs treatment demonstrates a notable effect on a Chronic Unpredictable Mild Stress (CUMS)-induced DD model in mice, surpassing even Fluoxetine in its antidepressant efficacy. MSCs mitigate DD by inhibiting central nervous system inflammation and facilitating the conversion of microglial cells into an Arg1high anti-inflammatory state. The MSCs-derived TGF-β1 is crucial for this Arg1high microglial cell transformation in DD treatment.
Collapse
Affiliation(s)
- Qianqian Wang
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, Nanjing, 210023, China; Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Yifan Xu
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Sijie Zhu
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, Nanjing, 210023, China; Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Longwei Jiang
- Department of Oncology, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, 210002, China; Nanjing Advanced Institute for Life Sciences, School of Life Sciences, Nanjing University, Nanjing, 210008, China
| | - Lu Yao
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China; Department of Oncology, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, 210002, China
| | - Xuerui Yu
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Yuheng Zhang
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Shaochang Jia
- Department of Oncology, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, 210002, China
| | - Min Hong
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, Nanjing, 210023, China; Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China.
| | - Jie Zheng
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, Nanjing, 210023, China; Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China; Department of Pharmacology, School of Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China.
| |
Collapse
|
2
|
Dong L, Zhu Y, Zhang H, Gao L, Zhang Z, Xu X, Ying L, Zhang L, Li Y, Yun Z, Zhu D, Han C, Xu T, Yang H, Ju S, Chen X, Zhang H, Xie J. Open-Source Throttling of CD8 + T Cells in Brain with Low-Intensity Focused Ultrasound-Guided Sequential Delivery of CXCL10, IL-2, and aPD-L1 for Glioblastoma Immunotherapy. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2407235. [PMID: 39264011 DOI: 10.1002/adma.202407235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 08/14/2024] [Indexed: 09/13/2024]
Abstract
Improving clinical immunotherapy for glioblastoma (GBM) relies on addressing the immunosuppressive tumor microenvironment (TME). Enhancing CD8+ T cell infiltration and preventing its exhaustion holds promise for effective GBM immunotherapy. Here, a low-intensity focused ultrasound (LIFU)-guided sequential delivery strategy is developed to enhance CD8+ T cells infiltration and activity in the GBM region. The sequential delivery of CXC chemokine ligand 10 (CXCL10) to recruit CD8+ T cells and interleukin-2 (IL-2) to reduce their exhaustion is termed an "open-source throttling" strategy. Consequently, up to 3.39-fold of CD8+ T cells are observed with LIFU-guided sequential delivery of CXCL10, IL-2, and anti-programmed cell death 1 ligand 1 (aPD-L1), compared to the free aPD-L1 group. The immune checkpoint inhibitors (ICIs) therapeutic efficacy is substantially enhanced by the reversed immunosuppressive TME due to the expansion of CD8+ T cells, resulting in the elimination of tumor, prolonged survival time, and long-term immune memory establishment in orthotopic GBM mice. Overall, LIFU-guided sequential cytokine and ICIs delivery offers an "open-source throttling" strategy of CD8+ T cells, which may present a promising strategy for brain-tumor immunotherapy.
Collapse
Affiliation(s)
- Lei Dong
- Nurturing Center of Jiangsu Province for State Laboratory of AI Imaging & Interventional Radiology; Department of Oncology, Zhongda Hospital, Medical School, Southeast University, 87 Dingjiaqiao, Nanjing, 210009, China
| | - Yini Zhu
- Department of Microbiology and Immunology, Medical School of Southeast University, Nanjing, Jiangsu, 210009, China
| | - Haoge Zhang
- Nurturing Center of Jiangsu Province for State Laboratory of AI Imaging & Interventional Radiology, Basic Medicine Research and Innovation Center of Ministry of Education, State Key Laboratory of Digital Medical Engineering, Department of Radiology, Zhongda Hospital, Medical School of Southeast University, Nanjing, 210009, China
| | - Lin Gao
- Nurturing Center of Jiangsu Province for State Laboratory of AI Imaging & Interventional Radiology, Basic Medicine Research and Innovation Center of Ministry of Education, State Key Laboratory of Digital Medical Engineering, Department of Radiology, Zhongda Hospital, Medical School of Southeast University, Nanjing, 210009, China
| | - Zhiqi Zhang
- Nurturing Center of Jiangsu Province for State Laboratory of AI Imaging & Interventional Radiology, Basic Medicine Research and Innovation Center of Ministry of Education, State Key Laboratory of Digital Medical Engineering, Department of Radiology, Zhongda Hospital, Medical School of Southeast University, Nanjing, 210009, China
| | - Xiaoxuan Xu
- Nurturing Center of Jiangsu Province for State Laboratory of AI Imaging & Interventional Radiology, Basic Medicine Research and Innovation Center of Ministry of Education, State Key Laboratory of Digital Medical Engineering, Department of Radiology, Zhongda Hospital, Medical School of Southeast University, Nanjing, 210009, China
| | - Leqian Ying
- Nurturing Center of Jiangsu Province for State Laboratory of AI Imaging & Interventional Radiology; Department of Oncology, Zhongda Hospital, Medical School, Southeast University, 87 Dingjiaqiao, Nanjing, 210009, China
| | - Lu Zhang
- Nurturing Center of Jiangsu Province for State Laboratory of AI Imaging & Interventional Radiology; Department of Oncology, Zhongda Hospital, Medical School, Southeast University, 87 Dingjiaqiao, Nanjing, 210009, China
| | - Yue Li
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau SAR, 999078, China
| | - Zhengcheng Yun
- Nurturing Center of Jiangsu Province for State Laboratory of AI Imaging & Interventional Radiology; Department of Oncology, Zhongda Hospital, Medical School, Southeast University, 87 Dingjiaqiao, Nanjing, 210009, China
| | - Danqi Zhu
- Nurturing Center of Jiangsu Province for State Laboratory of AI Imaging & Interventional Radiology, Basic Medicine Research and Innovation Center of Ministry of Education, State Key Laboratory of Digital Medical Engineering, Department of Radiology, Zhongda Hospital, Medical School of Southeast University, Nanjing, 210009, China
| | - Chang Han
- Nurturing Center of Jiangsu Province for State Laboratory of AI Imaging & Interventional Radiology, Basic Medicine Research and Innovation Center of Ministry of Education, State Key Laboratory of Digital Medical Engineering, Department of Radiology, Zhongda Hospital, Medical School of Southeast University, Nanjing, 210009, China
| | - Tingting Xu
- Nurturing Center of Jiangsu Province for State Laboratory of AI Imaging & Interventional Radiology; Department of Oncology, Zhongda Hospital, Medical School, Southeast University, 87 Dingjiaqiao, Nanjing, 210009, China
| | - Hui Yang
- Department of Biochemistry and Molecular Biology, Medical School of Southeast University, Nanjing, China
| | - Shenghong Ju
- Nurturing Center of Jiangsu Province for State Laboratory of AI Imaging & Interventional Radiology, Basic Medicine Research and Innovation Center of Ministry of Education, State Key Laboratory of Digital Medical Engineering, Department of Radiology, Zhongda Hospital, Medical School of Southeast University, Nanjing, 210009, China
| | - Xiaoyuan Chen
- Nurturing Center of Jiangsu Province for State Laboratory of AI Imaging & Interventional Radiology, Basic Medicine Research and Innovation Center of Ministry of Education, State Key Laboratory of Digital Medical Engineering, Department of Radiology, Zhongda Hospital, Medical School of Southeast University, Nanjing, 210009, China
- Departments of Diagnostic Radiology, Surgery, Chemical and Biomolecular Engineering, and Biomedical Engineering, Yong Loo Lin School of Medicine and College of Design and Engineering, National University of Singapore, Singapore, 119074, Singapore
- Nanomedicine Translational Research Program, NUS Center for Nanomedicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117597, Singapore
- Clinical Imaging Research Centre, Centre for Translational Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117599, Singapore
- Institute of Molecular and Cell Biology, Agency for Science, Technology, and Research (A*STAR), 61 Biopolis Drive, Proteos, Singapore, 138673, Singapore
| | - Haijun Zhang
- Nurturing Center of Jiangsu Province for State Laboratory of AI Imaging & Interventional Radiology; Department of Oncology, Zhongda Hospital, Medical School, Southeast University, 87 Dingjiaqiao, Nanjing, 210009, China
| | - Jinbing Xie
- Nurturing Center of Jiangsu Province for State Laboratory of AI Imaging & Interventional Radiology, Basic Medicine Research and Innovation Center of Ministry of Education, State Key Laboratory of Digital Medical Engineering, Department of Radiology, Zhongda Hospital, Medical School of Southeast University, Nanjing, 210009, China
| |
Collapse
|
3
|
Kohon AI, Man K, Hessami A, Mathis K, Webb J, Fang J, Radfar P, Yang Y, Meckes B. Targeting nanoparticles to lung cancer-derived A549 cells based on changes on interstitial stiffness in biomimetic models. iScience 2024; 27:111015. [PMID: 39435151 PMCID: PMC11492096 DOI: 10.1016/j.isci.2024.111015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 08/27/2024] [Accepted: 09/19/2024] [Indexed: 10/23/2024] Open
Abstract
The mechanical properties and forces of the extracellular environment modulate alveolar epithelial cell behavior. To model cancer/fibrosis associated stiffening and dynamic stretch, a biomimetic device was developed that imitates the active forces in the alveolus, while allowing control over the interstitial matrix stiffness. Alveolar epithelial A549 cancer cells were cultured on the devices and their transcriptome was profiled with RNA sequencing. Pathway analysis showed soft materials upregulated the expression of proteoglycans associated with cancer. Consequently, liposomes were modified with peptides targeting heparan sulfate and chondroitin sulfates of the cell surface glycocalyx. Chondroitin sulfate A targeting improved uptake in cells seeded on stiff biomimetic devices, which is attributed to increased chondroitin sulfate proteoglycan localization on cell surfaces in comparison to cells grown on soft devices. These results demonstrate the critical role that mechanical stiffness and stretch play in the alveolus and the importance of including these properties in nanotherapeutic design.
Collapse
Affiliation(s)
- Afia Ibnat Kohon
- Department of Biomedical Engineering, University of North Texas, 3940 N Elm St., Denton, TX 76207, USA
- BioDiscovery Institute, University of North Texas, 1155 Union Circle, Denton, TX 76203-5017, USA
| | - Kun Man
- Department of Biomedical Engineering, University of North Texas, 3940 N Elm St., Denton, TX 76207, USA
| | - Ala Hessami
- Department of Biomedical Engineering, University of North Texas, 3940 N Elm St., Denton, TX 76207, USA
| | - Katelyn Mathis
- Department of Biomedical Engineering, University of North Texas, 3940 N Elm St., Denton, TX 76207, USA
- BioDiscovery Institute, University of North Texas, 1155 Union Circle, Denton, TX 76203-5017, USA
| | - Jade Webb
- Department of Biomedical Engineering, University of North Texas, 3940 N Elm St., Denton, TX 76207, USA
| | - Joanna Fang
- Department of Biomedical Engineering, University of North Texas, 3940 N Elm St., Denton, TX 76207, USA
| | - Parsa Radfar
- Department of Biomedical Engineering, University of North Texas, 3940 N Elm St., Denton, TX 76207, USA
| | - Yong Yang
- Department of Biomedical Engineering, University of North Texas, 3940 N Elm St., Denton, TX 76207, USA
| | - Brian Meckes
- Department of Biomedical Engineering, University of North Texas, 3940 N Elm St., Denton, TX 76207, USA
- BioDiscovery Institute, University of North Texas, 1155 Union Circle, Denton, TX 76203-5017, USA
| |
Collapse
|
4
|
Qiao L, Du X, Wang H, Wang Z, Gao S, Zhao CQ. Research Progress on the Strategies for Crossing the Blood-Brain Barrier. Mol Pharm 2024; 21:4786-4803. [PMID: 39231367 DOI: 10.1021/acs.molpharmaceut.4c00447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/06/2024]
Abstract
Recently, the incidence of brain diseases, such as central nervous system degenerative diseases, brain tumors, and cerebrovascular diseases, has increased. However, the blood-brain barrier (BBB) limits the effective delivery of drugs to brain disease areas. Therefore, the mainstream direction of new drug development for these diseases is to engineer drugs that can better cross the BBB to exert their effects in the brain. This paper reviews the research progress and application of the main trans-BBB drug delivery strategies (receptor/transporter-mediated BBB crossing, focused ultrasound to open the BBB, adenosine agonist reversible opening of the BBB, aromatic resuscitation, transnasal administration, cell-mediated trans-BBB crossing, and viral vector system-mediated brain drug delivery). Meanwhile, the potential applications, advantages, and disadvantages of these strategies for crossing the BBB are analyzed. Finally, the future development prospects of strategies for crossing the BBB are also discussed. These strategies have potential value for treating brain diseases.
Collapse
Affiliation(s)
- Li Qiao
- Experimental Centre, Shandong University of Traditional Chinese Medicine, Jinan 250355, P. R. China
| | - Xiuwei Du
- Experimental Centre, Shandong University of Traditional Chinese Medicine, Jinan 250355, P. R. China
| | - Hua Wang
- College of Intelligence and Information Engineering, Shandong University of Traditional Chinese Medicine, Jinan 250355, P. R. China
| | - Zhiyi Wang
- Experimental Centre, Shandong University of Traditional Chinese Medicine, Jinan 250355, P. R. China
| | - Shijie Gao
- Experimental Centre, Shandong University of Traditional Chinese Medicine, Jinan 250355, P. R. China
| | - Chun-Qin Zhao
- Innovative Institute of Chinese Medicine and Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, P. R. China
| |
Collapse
|
5
|
Das V, Miller JH, Alladi CG, Annadurai N, De Sanctis JB, Hrubá L, Hajdúch M. Antineoplastics for treating Alzheimer's disease and dementia: Evidence from preclinical and observational studies. Med Res Rev 2024; 44:2078-2111. [PMID: 38530106 DOI: 10.1002/med.22033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 02/15/2024] [Accepted: 03/04/2024] [Indexed: 03/27/2024]
Abstract
As the world population ages, there will be an increasing need for effective therapies for aging-associated neurodegenerative disorders, which remain untreatable. Dementia due to Alzheimer's disease (AD) is one of the leading neurological diseases in the aging population. Current therapeutic approaches to treat this disorder are solely symptomatic, making the need for new molecular entities acting on the causes of the disease extremely urgent. One of the potential solutions is to use compounds that are already in the market. The structures have known pharmacokinetics, pharmacodynamics, toxicity profiles, and patient data available in several countries. Several drugs have been used successfully to treat diseases different from their original purposes, such as autoimmunity and peripheral inflammation. Herein, we divulge the repurposing of drugs in the area of neurodegenerative diseases, focusing on the therapeutic potential of antineoplastics to treat dementia due to AD and dementia. We briefly touch upon the shared pathological mechanism between AD and cancer and drug repurposing strategies, with a focus on artificial intelligence. Next, we bring out the current status of research on the development of drugs, provide supporting evidence from retrospective, clinical, and preclinical studies on antineoplastic use, and bring in new areas, such as repurposing drugs for the prion-like spreading of pathologies in treating AD.
Collapse
Affiliation(s)
- Viswanath Das
- Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacký University and University Hospital Olomouc, Olomouc, Czech Republic
- Czech Advanced Technologies and Research Institute (CATRIN), Institute of Molecular and Translational Medicine, Palacký University Olomouc, Olomouc, Czech Republic
| | - John H Miller
- School of Biological Sciences and Centre for Biodiscovery, Victoria University of Wellington, Wellington, New Zealand
| | - Charanraj Goud Alladi
- Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacký University and University Hospital Olomouc, Olomouc, Czech Republic
| | - Narendran Annadurai
- Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacký University and University Hospital Olomouc, Olomouc, Czech Republic
| | - Juan Bautista De Sanctis
- Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacký University and University Hospital Olomouc, Olomouc, Czech Republic
- Czech Advanced Technologies and Research Institute (CATRIN), Institute of Molecular and Translational Medicine, Palacký University Olomouc, Olomouc, Czech Republic
| | - Lenka Hrubá
- Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacký University and University Hospital Olomouc, Olomouc, Czech Republic
- Czech Advanced Technologies and Research Institute (CATRIN), Institute of Molecular and Translational Medicine, Palacký University Olomouc, Olomouc, Czech Republic
| | - Marián Hajdúch
- Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacký University and University Hospital Olomouc, Olomouc, Czech Republic
- Czech Advanced Technologies and Research Institute (CATRIN), Institute of Molecular and Translational Medicine, Palacký University Olomouc, Olomouc, Czech Republic
| |
Collapse
|
6
|
Lin J, Yu Z, Gao X. Advanced Noninvasive Strategies for the Brain Delivery of Therapeutic Proteins and Peptides. ACS NANO 2024; 18:22752-22779. [PMID: 39133564 DOI: 10.1021/acsnano.4c06851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/28/2024]
Abstract
Recent years have witnessed rapid progress in the discovery of therapeutic proteins and peptides for the treatment of central nervous system (CNS) diseases. However, their clinical applications have been considerably hindered by challenges such as low biomembrane permeability, poor stability, short circulation time, and the formidable blood-brain barrier (BBB). Recently, substantial improvements have been made in understanding the dynamics of the BBB and developing efficient approaches for delivering proteins and peptides to the CNS, especially by using various nanoparticles. Herein, we present an overview of the up-to-date understanding of the BBB under physiological and pathological conditions, emphasizing their effects on brain drug delivery. We summarize advanced strategies and elucidate the underlying mechanisms for delivering proteins and peptides to the brain. We highlight the developments and applications of nanocarriers in treating CNS diseases via BBB crossing. We also provide critical opinions on the limitations and obstacles of the current strategies and put forward prospects for future research.
Collapse
Affiliation(s)
- Jiayuan Lin
- Department of Pharmacology and Chemical Biology, Collaborative Innovation Center for Clinical and Translational Science by Chinese Ministry of Education & Shanghai, Shanghai Key Laboratory of Emotions and Affective Disorders, Shanghai Jiao Tong University School of Medicine, 280 South Chongqing Road, Shanghai 200025, China
| | - Zhihua Yu
- Department of Pharmacology and Chemical Biology, Collaborative Innovation Center for Clinical and Translational Science by Chinese Ministry of Education & Shanghai, Shanghai Key Laboratory of Emotions and Affective Disorders, Shanghai Jiao Tong University School of Medicine, 280 South Chongqing Road, Shanghai 200025, China
| | - Xiaoling Gao
- Department of Pharmacology and Chemical Biology, Collaborative Innovation Center for Clinical and Translational Science by Chinese Ministry of Education & Shanghai, Shanghai Key Laboratory of Emotions and Affective Disorders, Shanghai Jiao Tong University School of Medicine, 280 South Chongqing Road, Shanghai 200025, China
| |
Collapse
|
7
|
Yang H, Liu Z, Liu F, Wu H, Huang X, Huang R, Saw PE, Cao M. TET1-Lipid Nanoparticle Encapsulating Morphine for Specific Targeting of Peripheral Nerve for Pain Alleviation. Int J Nanomedicine 2024; 19:4759-4777. [PMID: 38828199 PMCID: PMC11141738 DOI: 10.2147/ijn.s453608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Accepted: 05/07/2024] [Indexed: 06/05/2024] Open
Abstract
Background Opioids are irreplaceable analgesics owing to the lack of alternative analgesics that offer opioid-like pain relief. However, opioids have many undesirable central side effects. Restricting opioids to peripheral opioid receptors could reduce those effects while maintaining analgesia. Methods To achieve this goal, we developed Tet1-LNP (morphine), a neural-targeting lipid nanoparticle encapsulating morphine that could specifically activate the peripheral opioid receptor in the dorsal root ganglion (DRG) and significantly reduce the side effects caused by the activation of opioid receptors in the brain. Tet1-LNP (morphine) were successfully prepared using the thin-film hydration method. In vitro, Tet1-LNP (morphine) uptake was assessed in differentiated neuron-like PC-12 cells and dorsal root ganglion (DRG) primary cells. The uptake of Tet1-LNP (morphine) in the DRGs and the brain was assessed in vivo. Von Frey filament and Hargreaves tests were used to assess the antinociception of Tet1-LNP (morphine) in the chronic constriction injury (CCI) neuropathic pain model. Morphine concentration in blood and brain were evaluated using ELISA. Results Tet1-LNP (morphine) had an average size of 131 nm. Tet1-LNP (morphine) showed high cellular uptake and targeted DRG in vitro. CCI mice treated with Tet1-LNP (morphine) experienced prolonged analgesia for nearly 32 h compared with 3 h with free morphine (p < 0.0001). Notably, the brain morphine concentration in the Tet1-LNP (morphine) group was eight-fold lower than that in the morphine group (p < 0.0001). Conclusion Our study presents a targeted lipid nanoparticle system for peripheral neural delivery of morphine. We anticipate Tet1-LNP (morphine) will offer a safe formulation for chronic neuropathic pain treatment, and promise further development for clinical applications.
Collapse
Affiliation(s)
- Hongmei Yang
- Department of Anesthesiology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, People’s Republic of China
| | - Zhongqi Liu
- Department of Anesthesiology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, People’s Republic of China
| | - Fan Liu
- Department of Anesthesiology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, People’s Republic of China
- Department of Anesthesiology, Shenshan Medical Center, Sun Yat-Sen Memorial Hospital, Sun Yat-sen University, Shanwei, 516600, People’s Republic of China
| | - Haixuan Wu
- Department of Anesthesiology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, People’s Republic of China
| | - Xiaoyan Huang
- Department of Anesthesiology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, People’s Republic of China
| | - Rong Huang
- Department of Anesthesiology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, People’s Republic of China
| | - Phei Er Saw
- Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, People’s Republic of China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, People’s Republic of China
| | - Minghui Cao
- Department of Anesthesiology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, People’s Republic of China
- Department of Anesthesiology, Shenshan Medical Center, Sun Yat-Sen Memorial Hospital, Sun Yat-sen University, Shanwei, 516600, People’s Republic of China
| |
Collapse
|
8
|
Zhu P, Simon I, Kokalari I, Kohane DS, Rwei AY. Miniaturized therapeutic systems for ultrasound-modulated drug delivery to the central and peripheral nervous system. Adv Drug Deliv Rev 2024; 208:115275. [PMID: 38442747 PMCID: PMC11031353 DOI: 10.1016/j.addr.2024.115275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 02/19/2024] [Accepted: 03/01/2024] [Indexed: 03/07/2024]
Abstract
Ultrasound is a promising technology to address challenges in drug delivery, including limited drug penetration across physiological barriers and ineffective targeting. Here we provide an overview of the significant advances made in recent years in overcoming technical and pharmacological barriers using ultrasound-assisted drug delivery to the central and peripheral nervous system. We commence by exploring the fundamental principles of ultrasound physics and its interaction with tissue. The mechanisms of ultrasonic-enhanced drug delivery are examined, as well as the relevant tissue barriers. We highlight drug transport through such tissue barriers utilizing insonation alone, in combination with ultrasound contrast agents (e.g., microbubbles), and through innovative particulate drug delivery systems. Furthermore, we review advances in systems and devices for providing therapeutic ultrasound, as their practicality and accessibility are crucial for clinical application.
Collapse
Affiliation(s)
- Pancheng Zhu
- Department of Chemical Engineering, Delft University of Technology, 2629 HZ, Delft, the Netherlands; State Key Laboratory of Mechanics and Control of Aerospace Structures, Nanjing University of Aeronautics & Astronautics, 210016, Nanjing, China; Department of Biomedical Engineering, The Hong Kong Polytechnic University, Hong Kong, China
| | - Ignasi Simon
- Department of Chemical Engineering, Delft University of Technology, 2629 HZ, Delft, the Netherlands
| | - Ida Kokalari
- Department of Chemical Engineering, Delft University of Technology, 2629 HZ, Delft, the Netherlands
| | - Daniel S Kohane
- Laboratory for Biomaterials and Drug Delivery, Department of Anesthesiology, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA.
| | - Alina Y Rwei
- Department of Chemical Engineering, Delft University of Technology, 2629 HZ, Delft, the Netherlands.
| |
Collapse
|
9
|
Tehrani MHH, Moradi Kashkooli F, Soltani M. Spatiotemporal modeling of nano-delivered chemotherapeutics for synergistic microwave ablation cancer therapy. COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE 2024; 247:108102. [PMID: 38447317 DOI: 10.1016/j.cmpb.2024.108102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 02/25/2024] [Accepted: 02/25/2024] [Indexed: 03/08/2024]
Abstract
BACKGROUND AND OBJECTIVE The effectiveness of current microwave ablation (MWA) therapies is limited. Administration of thermosensitive liposomes (TSLs) which release drugs in response to heat has presented a significant potential for enhancing the efficacy of thermal ablation treatment, and the benefits of targeted drug delivery. However, a complete knowledge of the mechanobiological processes underlying the drug release process, especially the intravascular drug release mechanism and its distribution in response to MWA needs to be improved. Multiscale computational-based modeling frameworks, integrating different biophysical phenomena, have recently emerged as promising tools to decipher the mechanobiological events in combo therapies. The present study aims to develop a novel multiscale computational model of TSLs delivery following MWA implantation. METHODS Due to the complex interplay between the heating procedure and the drug concentration maps, a computational model is developed to determine the intravascular release of doxorubicin from TSL, its transvascular transport into the interstitium, transport in the interstitium, and cell uptake. Computational models can estimate the interplays among liposome and drug properties, tumor perfusion, and heating regimen to examine the impact of essential parameters and to optimize a targeted drug delivery platform. RESULTS Results indicated that the synergy of TSLs with MWA allows more localized drug delivery with lower side effects. The drug release rate and tumor permeability play crucial roles in the efficacy of TSLs during MWA treatment. The computational model predicted an unencapsulated drug lime around the ablated zone, which can destroy more cancer cells compared to MWA alone by 40%. Administration of TSLs with a high release rate capacity can improve the percentage of killed cancer cells by 24%. Since the heating duration in MWA is less than 15 min, the presented combination therapy showed better performance for highly permeable tumors. CONCLUSION This study highlights the potential of the proposed computational framework to address complex and realistic scenarios in cancer treatment, which can serve as the future research foundation, including advancements in nanomedicine and optimizing the pair of TSL and MWA for both preclinical and clinical studies. The present model could be as a valuable tool for patient-specific calibration of essential parameters.
Collapse
Affiliation(s)
- Masoud H H Tehrani
- Department of Mechanical Engineering, K. N. Toosi University of Technology, Tehran Iran
| | | | - M Soltani
- Department of Mechanical Engineering, K. N. Toosi University of Technology, Tehran Iran; Department of Electrical and Computer Engineering, University of Waterloo, Waterloo, Canada; Centre for Biotechnology and Bioengineering, University of Waterloo, Waterloo, ON, Canada.
| |
Collapse
|
10
|
Xu D, Song XJ, Chen X, Wang JW, Cui YL. Advances and future perspectives of intranasal drug delivery: A scientometric review. J Control Release 2024; 367:366-384. [PMID: 38286336 DOI: 10.1016/j.jconrel.2024.01.053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 01/23/2024] [Accepted: 01/24/2024] [Indexed: 01/31/2024]
Abstract
Intranasal drug delivery is as a noninvasive and efficient approach extensively utilized for treating the local, central nervous system, and systemic diseases. Despite numerous reviews delving into the application of intranasal drug delivery across biomedical fields, a comprehensive analysis of advancements and future perspectives remains elusive. This review elucidates the research progress of intranasal drug delivery through a scientometric analysis. It scrutinizes several challenges to bolster research in this domain, encompassing a thorough exploration of entry and elimination mechanisms specific to intranasal delivery, the identification of drugs compatible with the nasal cavity, the selection of dosage forms to surmount limited drug-loading capacity and poor solubility, and the identification of diseases amenable to the intranasal delivery strategy. Overall, this review furnishes a perspective aimed at galvanizing future research and development concerning intranasal drug delivery.
Collapse
Affiliation(s)
- Dong Xu
- Department of Pharmacy, Xijing Hospital, Fourth Military Medical University, Xi' an 710032, China
| | - Xu-Jiao Song
- State Key Laboratory of Component-based Chinese Medicine, Research Center of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, PR China; Haihe Laboratory of Modern Chinese Medicine, Tianjin 301617, PR China
| | - Xue Chen
- State Key Laboratory of Component-based Chinese Medicine, Research Center of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, PR China; Haihe Laboratory of Modern Chinese Medicine, Tianjin 301617, PR China
| | - Jing-Wen Wang
- Department of Pharmacy, Xijing Hospital, Fourth Military Medical University, Xi' an 710032, China
| | - Yuan-Lu Cui
- State Key Laboratory of Component-based Chinese Medicine, Research Center of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, PR China; Haihe Laboratory of Modern Chinese Medicine, Tianjin 301617, PR China.
| |
Collapse
|
11
|
Shakya G, Cattaneo M, Guerriero G, Prasanna A, Fiorini S, Supponen O. Ultrasound-responsive microbubbles and nanodroplets: A pathway to targeted drug delivery. Adv Drug Deliv Rev 2024; 206:115178. [PMID: 38199257 DOI: 10.1016/j.addr.2023.115178] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 12/21/2023] [Accepted: 12/31/2023] [Indexed: 01/12/2024]
Abstract
Ultrasound-responsive agents have shown great potential as targeted drug delivery agents, effectively augmenting cell permeability and facilitating drug absorption. This review focuses on two specific agents, microbubbles and nanodroplets, and provides a sequential overview of their drug delivery process. Particular emphasis is given to the mechanical response of the agents under ultrasound, and the subsequent physical and biological effects on the cells. Finally, the state-of-the-art in their pre-clinical and clinical implementation are discussed. Throughout the review, major challenges that need to be overcome in order to accelerate their clinical translation are highlighted.
Collapse
Affiliation(s)
- Gazendra Shakya
- Institute of Fluid Dynamics, D-MAVT, Sonneggstrasse 3, ETH Zurich, Zurich, 8092, Switzerland
| | - Marco Cattaneo
- Institute of Fluid Dynamics, D-MAVT, Sonneggstrasse 3, ETH Zurich, Zurich, 8092, Switzerland
| | - Giulia Guerriero
- Institute of Fluid Dynamics, D-MAVT, Sonneggstrasse 3, ETH Zurich, Zurich, 8092, Switzerland
| | - Anunay Prasanna
- Institute of Fluid Dynamics, D-MAVT, Sonneggstrasse 3, ETH Zurich, Zurich, 8092, Switzerland
| | - Samuele Fiorini
- Institute of Fluid Dynamics, D-MAVT, Sonneggstrasse 3, ETH Zurich, Zurich, 8092, Switzerland
| | - Outi Supponen
- Institute of Fluid Dynamics, D-MAVT, Sonneggstrasse 3, ETH Zurich, Zurich, 8092, Switzerland.
| |
Collapse
|
12
|
Martinez PJ, Green AL, Borden MA. Targeting diffuse midline gliomas: The promise of focused ultrasound-mediated blood-brain barrier opening. J Control Release 2024; 365:412-421. [PMID: 38000663 PMCID: PMC10842695 DOI: 10.1016/j.jconrel.2023.11.037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 11/13/2023] [Accepted: 11/18/2023] [Indexed: 11/26/2023]
Abstract
Diffuse midline gliomas (DMGs), including diffuse intrinsic pontine glioma, have among the highest mortality rates of all childhood cancers, despite recent advancements in cancer therapeutics. This is partly because, unlike some CNS tumors, the blood-brain barrier (BBB) of DMG tumor vessels remains intact. The BBB prevents the permeation of many molecular therapies into the brain parenchyma, where the cancer cells reside. Focused ultrasound (FUS) with microbubbles has recently emerged as an innovative and exciting technology that non-invasively permeabilizes the BBB in a small focal region with millimeter precision. In this review, current treatment methods and biological barriers to treating DMGs are discussed. State-of-the-art FUS-mediated BBB opening is then examined, with a focus on the effects of various ultrasound parameters and the treatment of DMGs.
Collapse
Affiliation(s)
- Payton J Martinez
- Biomedical Engineering Program, University of Colorado Boulder, Boulder, CO 80303, United States; Department of Mechanical Engineering, University of Colorado Boulder, Boulder, CO 80303, United States.
| | - Adam L Green
- Morgan Adams Foundation Pediatric Brain Tumor Research Program, Department of Pediatrics, University of Colorado School of Medicine, Aurora, CO 80045, United States
| | - Mark A Borden
- Biomedical Engineering Program, University of Colorado Boulder, Boulder, CO 80303, United States; Department of Mechanical Engineering, University of Colorado Boulder, Boulder, CO 80303, United States
| |
Collapse
|
13
|
Mondal S, Ghosh S. Liposome-Mediated Anti-Viral Drug Delivery Across Blood-Brain Barrier: Can Lipid Droplet Target Be Game Changers? Cell Mol Neurobiol 2023; 44:9. [PMID: 38123863 DOI: 10.1007/s10571-023-01443-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Accepted: 12/02/2023] [Indexed: 12/23/2023]
Abstract
Lipid droplets (LDs) are subcellular organelles secreted from the endoplasmic reticulum (ER) that play a major role in lipid homeostasis. Recent research elucidates additional roles of LDs in cellular bioenergetics and innate immunity. LDs activate signaling cascades for interferon response and secretion of pro-inflammatory cytokines. Since balanced lipid homeostasis is critical for neuronal health, LDs play a crucial role in neurodegenerative diseases. RNA viruses enhance the secretion of LDs to support various phases of their life cycle in neurons which further leads to neurodegeneration. Targeting the excess LD formation in the brain could give us a new arsenal of antiviral therapeutics against neuroviruses. Liposomes are a suitable drug delivery system that could be used for drug delivery in the brain by crossing the Blood-Brain Barrier. Utilizing this, various pharmacological inhibitors and non-coding RNAs can be delivered that could inhibit the biogenesis of LDs or reduce their sizes, reversing the excess lipid-related imbalance in neurons. Liposome-Mediated Antiviral Drug Delivery Across Blood-Brain Barrier. Developing effective antiviral drug is challenging and it doubles against neuroviruses that needs delivery across the Blood-Brain Barrier (BBB). Lipid Droplets (LDs) are interesting targets for developing antivirals, hence targeting LD formation by drugs delivered using Liposomes can be game changers.
Collapse
Affiliation(s)
- Sourav Mondal
- CSIR-Indian Institute of Chemical Biology, 4 Raja S.C. Mullick Road, Jadavpur, Kolkata, West Bengal, 700032, India
| | - Sourish Ghosh
- CSIR-Indian Institute of Chemical Biology, 4 Raja S.C. Mullick Road, Jadavpur, Kolkata, West Bengal, 700032, India.
| |
Collapse
|
14
|
Farooq M, Scalia G, Umana GE, Parekh UA, Naeem F, Abid SF, Khan MH, Zahra SG, Sarkar HP, Chaurasia B. A Systematic Review of Nanomedicine in Glioblastoma Treatment: Clinical Efficacy, Safety, and Future Directions. Brain Sci 2023; 13:1727. [PMID: 38137175 PMCID: PMC10742051 DOI: 10.3390/brainsci13121727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 12/13/2023] [Accepted: 12/17/2023] [Indexed: 12/24/2023] Open
Abstract
(1) Background: Glioblastoma (GBM) is categorized as a grade IV astrocytoma by the World Health Organization (WHO), representing the most aggressive and prevalent form of glioma. It presents a significant clinical challenge, with limited treatment options and poor prognosis. This systematic review evaluates the efficacy and safety of various nanotherapy approaches for GBM and explores future directions in tumor management. Nanomedicine, which involves nanoparticles in the 1-100 nm range, shows promise in improving drug delivery and targeting tumor cells. (2) Methods: Following PRISMA guidelines, a systematic search of databases including Google Scholar, NCBI PubMed, Cochrane Library, and ClinicalTrials.gov was conducted to identify clinical trials on GBM and nanomedicine. The primary outcome measures were median overall survival, progression-free survival, and quality of life assessed through Karnofsky performance scores. The safety profile was assessed by adverse events. (3) Results: The analysis included 225 GBM patients, divided into primary and recurrent sub-populations. Primary GBM patients had a median overall survival of 6.75 months, while recurrent GBM patients had a median overall survival of 9.7 months. The mean PFS period was 2.3 months and 3.92 months in primary GBM and recurrent GBM patients, respectively. Nanotherapy showed an improvement in quality of life, with KPS scores increasing after treatment in recurrent GBM patients. Adverse events were observed in 14.2% of patients. Notably, Bevacizumab therapy exhibited better survival outcomes but with a higher incidence of adverse events. (4) Conclusions: Nanotherapy offers a modest increase in survival with fewer severe side effects. It shows promise in improving the quality of life, especially in recurrent GBM patients. However, it falls short in terms of overall survival compared to Bevacizumab. The heterogeneous nature of treatment protocols and reporting methods highlights the need for standardized multicenter trials to further evaluate the potential of nanomedicine in GBM management.
Collapse
Affiliation(s)
- Minaam Farooq
- Department of Neurological Surgery, Weill Cornell Medicine, New York Presbyterian Hospital, New York, NY 10021, USA;
| | - Gianluca Scalia
- Neurosurgery Unit, Department of Head and Neck Surgery, Garibaldi Hospital, 95123 Catania, Italy
| | - Giuseppe E. Umana
- Department of Neurosurgery, Gamma Knife and Trauma Center, Cannizzaro Hospital, 95126 Catania, Italy;
| | - Urja A. Parekh
- German Cancer Research Center, 69120 Heidelberg, Germany;
| | - Faiza Naeem
- Department of Neurosurgery, King Edward Medical University, Lahore 54000, Pakistan; (F.N.); (S.F.A.); (M.H.K.); (S.G.Z.)
| | - Sayeda Fatima Abid
- Department of Neurosurgery, King Edward Medical University, Lahore 54000, Pakistan; (F.N.); (S.F.A.); (M.H.K.); (S.G.Z.)
| | - Muhammad Hammad Khan
- Department of Neurosurgery, King Edward Medical University, Lahore 54000, Pakistan; (F.N.); (S.F.A.); (M.H.K.); (S.G.Z.)
| | - Shah Gul Zahra
- Department of Neurosurgery, King Edward Medical University, Lahore 54000, Pakistan; (F.N.); (S.F.A.); (M.H.K.); (S.G.Z.)
| | - Hrishikesh P. Sarkar
- Department of Neurological Sciences, Kokilaben Dhirubhai Ambani Hospital, Mumbai 400053, India;
| | - Bipin Chaurasia
- Department of Neurosurgery, Neurosurgery Clinic, Birgunj 44300, Nepal;
| |
Collapse
|
15
|
Gawne PJ, Ferreira M, Papaluca M, Grimm J, Decuzzi P. New Opportunities and Old Challenges in the Clinical translation of Nanotheranostics. NATURE REVIEWS. MATERIALS 2023; 8:783-798. [PMID: 39022623 PMCID: PMC11251001 DOI: 10.1038/s41578-023-00581-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 06/27/2023] [Indexed: 07/20/2024]
Abstract
Nanoparticle-based systems imbued with both diagnostic and therapeutic functions, known as nanotheranostics, have enabled remarkable progress in guiding focal therapy, inducing active responses to endogenous and exogenous biophysical stimuli, and stratifying patients for optimal treatment. However, although in recent years more nanotechnological platforms and techniques have been implemented in the clinic, several important challenges remain that are specific to nanotheranostics. In this Review, we first discuss some of the many ways of 'constructing' nanotheranostics, focusing on the different imaging modalities and therapeutic strategies. We then outline nanotheranostics that are currently used in humans at different stages of clinical development, identifying specific advantages and opportunities. Finally, we define critical steps along the winding road of preclinical and clinical development and suggest actions to overcome technical, manufacturing, regulatory and economical challenges for the safe and effective clinical translation of nanotheranostics.
Collapse
Affiliation(s)
- Peter J. Gawne
- UCL Cancer Institute, University College London, London, UK
- Centre for Cancer Biomarkers and Biotherapeutics, Barts Cancer Institute, Queen Mary, University of London, London, UK
- School of Biomedical Engineering and Imaging Sciences, King’s College London, London, UK
| | - Miguel Ferreira
- Department of Radiology, Harvard Medical School, Massachusetts General Hospital, Boston, MA, USA
| | - Marisa Papaluca
- School of Public Health, Imperial College of London, South Kensington CampusLondon, UK
| | - Jan Grimm
- Molecular Pharmacology Program and Department of Radiology, Memorial Sloan-Kettering Cancer, Center, New York, NY, USA
| | - Paolo Decuzzi
- Laboratory of Nanotechnology for Precision Medicine, Fondazione Istituto Italiano di Tecnologia, Via, Morego 30, 16163, Genoa, IT
| |
Collapse
|
16
|
Calatayud DG, Lledos M, Casarsa F, Pascu SI. Functional Diversity in Radiolabeled Nanoceramics and Related Biomaterials for the Multimodal Imaging of Tumors. ACS BIO & MED CHEM AU 2023; 3:389-417. [PMID: 37876497 PMCID: PMC10591303 DOI: 10.1021/acsbiomedchemau.3c00021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 07/18/2023] [Accepted: 07/18/2023] [Indexed: 10/26/2023]
Abstract
Nanotechnology advances have the potential to assist toward the earlier detection of diseases, giving increased accuracy for diagnosis and helping to personalize treatments, especially in the case of noncommunicative diseases (NCDs) such as cancer. The main advantage of nanoparticles, the scaffolds underpinning nanomedicine, is their potential to present multifunctionality: synthetic nanoplatforms for nanomedicines can be tailored to support a range of biomedical imaging modalities of relevance for clinical practice, such as, for example, optical imaging, computed tomography (CT), magnetic resonance imaging (MRI), single photon emission computed tomography (SPECT), and positron emission tomography (PET). A single nanoparticle has the potential to incorporate myriads of contrast agent units or imaging tracers, encapsulate, and/or be conjugated to different combinations of imaging tags, thus providing the means for multimodality diagnostic methods. These arrangements have been shown to provide significant improvements to the signal-to-noise ratios that may be obtained by molecular imaging techniques, for example, in PET diagnostic imaging with nanomaterials versus the cases when molecular species are involved as radiotracers. We surveyed some of the main discoveries in the simultaneous incorporation of nanoparticulate materials and imaging agents within highly kinetically stable radio-nanomaterials as potential tracers with (pre)clinical potential. Diversity in function and new developments toward synthesis, radiolabeling, and microscopy investigations are explored, and preclinical applications in molecular imaging are highlighted. The emphasis is on the biocompatible materials at the forefront of the main preclinical developments, e.g., nanoceramics and liposome-based constructs, which have driven the evolution of diagnostic radio-nanomedicines over the past decade.
Collapse
Affiliation(s)
- David G. Calatayud
- Department
of Inorganic Chemistry, Universidad Autónoma
de Madrid, Madrid 28049, Spain
- Department
of Electroceramics, Instituto de Cerámica
y Vidrio, Madrid 28049, Spain
| | - Marina Lledos
- Department
of Chemistry, University of Bath, Bath BA2 7AY, United Kingdom
| | - Federico Casarsa
- Department
of Chemistry, University of Bath, Bath BA2 7AY, United Kingdom
| | - Sofia I. Pascu
- Department
of Chemistry, University of Bath, Bath BA2 7AY, United Kingdom
- Centre
of Therapeutic Innovations, University of
Bath, Bath BA2 7AY, United Kingdom
| |
Collapse
|
17
|
Liao M, Chen F, Chen L, Wu Z, Huang J, Pang H, Cheng C, Wu Z, Ma L, Lu Q. Synergistic Enzyme-Mimetic Catalysis-Based Non-Thermal Sonocavitation and Sonodynamic Therapy for Efficient Hypoxia Relief and Cancer Ablation. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2302744. [PMID: 37322373 DOI: 10.1002/smll.202302744] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Revised: 05/29/2023] [Indexed: 06/17/2023]
Abstract
Non-invasive cancer treatment strategies that enable local non-thermal ablation, hypoxia relief, and reactive oxygen species (ROS) production to achieve transiently destroying tumor tissue and long-term killing tumor cells would greatly facilitate their clinical applications. However, continuously generating oxygen cavitation nuclei, reducing the transient cavitation sound intensity threshold, relieving hypoxia, and improving its controllability in the ablation area still remains a significant challenge. Here, in this work, an Mn-coordinated polyphthalocyanine sonocavitation agent (Mn-SCA) with large d-π-conjugated network and atomic Mn-N sites is identified for the non-thermal sonocavitation and sonodynamic therapy in the liver cancer ablation. In the tumor microenvironment, the catalytical generation of oxygen assists cavitation formation and generates microjets to ablate liver cancer tissue and relieve hypoxia, this work reports for the first time to utilize the enzymatic properties of Mn-SCA to lower the cavitation threshold in situ. Moreover, under pHIFU irradiation, high reactive oxygen species (ROS) production can be achieved. The two merits in liver cancer ablation are demonstrated by cell destruction and high tumor inhibition efficiency. This work will help deepen the understanding of cavitation ablation and the sonodynamic mechanisms related to the nanostructures and guide the design of sonocavitation agents with high ROS production for solid tumor ablation.
Collapse
Affiliation(s)
- Min Liao
- Department of Medical Ultrasound, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Fan Chen
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China
| | - Lin Chen
- School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, 610054, China
| | - Zihe Wu
- School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, 610054, China
| | - Jianbo Huang
- Department of Medical Ultrasound, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Houqing Pang
- Department of Ultrasound, West China Second University Hospital, Sichuan University, Chengdu, 610041, China
| | - Chong Cheng
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China
| | - Zhe Wu
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China
| | - Lang Ma
- Department of Medical Ultrasound, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Qiang Lu
- Department of Medical Ultrasound, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, 610041, China
| |
Collapse
|
18
|
Bao Y, Lu W. Targeting cerebral diseases with enhanced delivery of therapeutic proteins across the blood-brain barrier. Expert Opin Drug Deliv 2023; 20:1681-1698. [PMID: 36945117 DOI: 10.1080/17425247.2023.2193390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Accepted: 03/16/2023] [Indexed: 03/23/2023]
Abstract
INTRODUCTION Cerebral diseases have been threatening public physical and psychological health in the recent years. With the existence of the blood-brain barrier (BBB), it is particularly hard for therapeutic proteins like peptides, enzymes, antibodies, etc. to enter the central nervous system (CNS) and function in diagnosis and treatment in cerebral diseases. Fortunately, the past decade has witnessed some emerging strategies of delivering macromolecular therapeutic proteins across the BBB. AREAS COVERED Based on the structure, functions, and substances transport mechanisms, various enhanced delivery strategies of therapeutic proteins were reviewed, categorized by molecule-mediated delivery strategies, carrier-mediated delivery strategies, and other delivery strategies. EXPERT OPINION As for molecule-mediated delivery strategies, development of genetic engineering technology, optimization of protein expression and purification techniques, and mature of quality control systems all help to realize large-scale production of recombinant antibodies, making it possible to apply to the clinical practice. In terms of carrier-mediated delivery strategies and others, although nano-carriers/adeno-associated virus (AAV) are also promising candidates for delivering therapeutic proteins or genes across the BBB, some issues still remain to be further investigated, including safety concerns related to applied materials, large-scale production costs, quality control standards, combination therapies with auxiliary delivery strategies like focused ultrasound, etc.
Collapse
Affiliation(s)
- Yanning Bao
- Department of Pharmaceutics, School of Pharmacy, Fudan University & Key Laboratory of Smart Drug Delivery (Fudan University), Ministry of Education, Shanghai, China
| | - Weiyue Lu
- Department of Pharmaceutics, School of Pharmacy, Fudan University & Key Laboratory of Smart Drug Delivery (Fudan University), Ministry of Education, Shanghai, China
- Shanghai Engineering Technology Research Center for Pharmaceutical Intelligent Equipment, and Shanghai Frontiers Science Center for Druggability of Cardiovascular non-coding RNA, Institute for Frontier Medical Technology, Shanghai University of Engineering Science, Shanghai, China
- Department of Research and Development, Shanghai Tayzen PharmLab Co., Ltd. Lingang of Shanghai, China
| |
Collapse
|
19
|
Hong Park J, Lee S, Jeon H, Hoon Kim J, Jung Kim D, Im M, Chul Lee B. A novel convex acoustic lens-attached ultrasound drug delivery system and its testing in a murine melanoma subcutaneous modelo. Int J Pharm 2023:123118. [PMID: 37302671 DOI: 10.1016/j.ijpharm.2023.123118] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 05/18/2023] [Accepted: 06/06/2023] [Indexed: 06/13/2023]
Abstract
Target-specific drug release is indispensable to improve chemotherapeutic efficacy as it enhances drug uptake and penetration into tumors. Sono-responsive drug-loaded nano-/micro-particles are a promising solution for achieving target specificity by exposing them to ultrasound near tumors. However, the complicated synthetic processes and limited ultrasound (US) exposure conditions, such as limited control of ultrasound focal depth and acoustic power, prevent the practical application of this approach in clinical practice. Here, we propose a convex acoustic lens-attached US (CALUS) as a simple, economic, and efficient alternative of focused US for drug delivery system (DDS) application. The CALUS was characterized both numerically and experimentally using a hydrophone. In vitro, microbubbles (MBs) inside microfluidic channels were destroyed using the CALUS with various acoustic parameters (acoustic pressure [P], pulse repetition frequency [PRF], and duty cycle) and flow velocity. In vivo, tumor inhibition was evaluated using melanoma-bearing mice by characterizing tumor growth rate, animal weight, and intratumoral drug concentration with/without CALUS DDS. US beams were measured to be efficiently converged by CALUS, which was consistent with our simulation results. The acoustic parameters were optimized through the CALUS-induced MB destruction test (P = 2.34 MPa, PRF = 100 kHz, and duty cycle = 9%); this optimal parameter combination successfully induced MB destruction inside the microfluidic channel with an average flow velocity of up to 9.6 cm/s. The CALUS also enhanced the therapeutic effects of an antitumor drug (doxorubicin) in vivo in a murine melanoma model. The combination of the doxorubicin and the CALUS inhibited tumor growth by ∼55% more than doxorubicin alone, clearly indicating synergistic antitumor efficacy. Our tumor growth inhibition performance was better than other methods based on drug carriers, even without a time-consuming and complicated chemical synthesis process. This result suggests that our novel, simple, economic, and efficient target-specific DDS may offer a transition from preclinical research to clinical trials and a potential treatment approach for patient-centered healthcare.
Collapse
Affiliation(s)
- Jun Hong Park
- Bionics Research Center, Korea Institute of Science and Technology (KIST), Seoul 02792, Republic of Korea
| | - Seunghyun Lee
- Department of Radiology, Seoul National University Hospital, Seoul 03080, Republic of Korea; Department of Radiology, Seoul National University College of Medicine, Seoul 03080, Republic of Korea; Institute of Radiation Medicine, Seoul National University Medical Research Center, Seoul 03080, Republic of Korea
| | - Hoyoon Jeon
- Bionics Research Center, Korea Institute of Science and Technology (KIST), Seoul 02792, Republic of Korea
| | - Jung Hoon Kim
- Department of Radiology, Seoul National University Hospital, Seoul 03080, Republic of Korea; Department of Radiology, Seoul National University College of Medicine, Seoul 03080, Republic of Korea; Institute of Radiation Medicine, Seoul National University Medical Research Center, Seoul 03080, Republic of Korea
| | - Da Jung Kim
- Metabolomics Core Facility, Department of Transdisciplinary Research and Collaboration, Biomedical Research Institute, Seoul National University Hospital, Seoul 03080, Republic of Korea
| | - Maesoon Im
- Brain Science Institute, KIST, Seoul 02792, Republic of Korea; Division of Bio-Medical Science & Technology, KIST School, University of Science & Technology (UST), Seoul 02792, Republic of Korea
| | - Byung Chul Lee
- Bionics Research Center, Korea Institute of Science and Technology (KIST), Seoul 02792, Republic of Korea; Division of Bio-Medical Science & Technology, KIST School, University of Science & Technology (UST), Seoul 02792, Republic of Korea; KHU-KIST Department of Converging Science and Technology, Kyung Hee University, Seoul 02447, Republic of Korea.
| |
Collapse
|
20
|
Silant'ev VE, Shmelev ME, Belousov AS, Patlay AA, Shatilov RA, Farniev VM, Kumeiko VV. How to Develop Drug Delivery System Based on Carbohydrate Nanoparticles Targeted to Brain Tumors. Polymers (Basel) 2023; 15:polym15112516. [PMID: 37299315 DOI: 10.3390/polym15112516] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Revised: 05/22/2023] [Accepted: 05/25/2023] [Indexed: 06/12/2023] Open
Abstract
Brain tumors are the most difficult to treat, not only because of the variety of their forms and the small number of effective chemotherapeutic agents capable of suppressing tumor cells, but also limited by poor drug transport across the blood-brain barrier (BBB). Nanoparticles are promising drug delivery solutions promoted by the expansion of nanotechnology, emerging in the creation and practical use of materials in the range from 1 to 500 nm. Carbohydrate-based nanoparticles is a unique platform for active molecular transport and targeted drug delivery, providing biocompatibility, biodegradability, and a reduction in toxic side effects. However, the design and fabrication of biopolymer colloidal nanomaterials have been and remain highly challenging to date. Our review is devoted to the description of carbohydrate nanoparticle synthesis and modification, with a brief overview of the biological and promising clinical outcomes. We also expect this manuscript to highlight the great potential of carbohydrate nanocarriers for drug delivery and targeted treatment of gliomas of various grades and glioblastomas, as the most aggressive of brain tumors.
Collapse
Affiliation(s)
- Vladimir E Silant'ev
- Institute of Life Sciences and Biomedicine, Far Eastern Federal University, 690922 Vladivostok, Russia
- Laboratory of Electrochemical Processes, Institute of Chemistry, FEB RAS, 690022 Vladivostok, Russia
| | - Mikhail E Shmelev
- Institute of Life Sciences and Biomedicine, Far Eastern Federal University, 690922 Vladivostok, Russia
| | - Andrei S Belousov
- Institute of Life Sciences and Biomedicine, Far Eastern Federal University, 690922 Vladivostok, Russia
| | - Aleksandra A Patlay
- Institute of Life Sciences and Biomedicine, Far Eastern Federal University, 690922 Vladivostok, Russia
| | - Roman A Shatilov
- Institute of Life Sciences and Biomedicine, Far Eastern Federal University, 690922 Vladivostok, Russia
| | - Vladislav M Farniev
- Institute of Life Sciences and Biomedicine, Far Eastern Federal University, 690922 Vladivostok, Russia
| | - Vadim V Kumeiko
- Institute of Life Sciences and Biomedicine, Far Eastern Federal University, 690922 Vladivostok, Russia
- A.V. Zhirmunsky National Scientific Center of Marine Biology, FEB RAS, 690041 Vladivostok, Russia
| |
Collapse
|
21
|
Khare P, Edgecomb SX, Hamadani CM, E L Tanner E, Manickam DS. Lipid nanoparticle-mediated drug delivery to the brain. Adv Drug Deliv Rev 2023; 197:114861. [PMID: 37150326 DOI: 10.1016/j.addr.2023.114861] [Citation(s) in RCA: 28] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 04/12/2023] [Accepted: 05/02/2023] [Indexed: 05/09/2023]
Abstract
Lipid nanoparticles (LNPs) have revolutionized the field of drug delivery through their applications in siRNA delivery to the liver (Onpattro) and their use in the Pfizer-BioNTech and Moderna COVID-19 mRNA vaccines. While LNPs have been extensively studied for the delivery of RNA drugs to muscle and liver targets, their potential to deliver drugs to challenging tissue targets such as the brain remains underexplored. Multiple brain disorders currently lack safe and effective therapies and therefore repurposing LNPs could potentially be a game changer for improving drug delivery to cellular targets both at and across the blood-brain barrier (BBB). In this review, we will discuss (1) the rationale and factors involved in optimizing LNPs for brain delivery, (2) ionic liquid-coated LNPs as a potential approach for increasing LNP accumulation in the brain tissue and (3) considerations, open questions and potential opportunities in the development of LNPs for delivery to the brain.
Collapse
Affiliation(s)
- Purva Khare
- Graduate School of Pharmaceutical Sciences, Duquesne University, Pittsburgh, PA
| | - Sara X Edgecomb
- Department of Chemistry and Biochemistry, The University of Mississippi, MS
| | | | - Eden E L Tanner
- Department of Chemistry and Biochemistry, The University of Mississippi, MS.
| | - Devika S Manickam
- Graduate School of Pharmaceutical Sciences, Duquesne University, Pittsburgh, PA.
| |
Collapse
|
22
|
Johansen PM, Hansen PY, Mohamed AA, Girshfeld SJ, Feldmann M, Lucke-Wold B. Focused ultrasound for treatment of peripheral brain tumors. EXPLORATION OF DRUG SCIENCE 2023; 1:107-125. [PMID: 37171968 PMCID: PMC10168685 DOI: 10.37349/eds.2023.00009] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Accepted: 04/13/2023] [Indexed: 05/14/2023]
Abstract
Malignant brain tumors are the leading cause of cancer-related death in children and remain a significant cause of morbidity and mortality throughout all demographics. Central nervous system (CNS) tumors are classically treated with surgical resection and radiotherapy in addition to adjuvant chemotherapy. However, the therapeutic efficacy of chemotherapeutic agents is limited due to the blood-brain barrier (BBB). Magnetic resonance guided focused ultrasound (MRgFUS) is a new and promising intervention for CNS tumors, which has shown success in preclinical trials. High-intensity focused ultrasound (HIFU) has the capacity to serve as a direct therapeutic agent in the form of thermoablation and mechanical destruction of the tumor. Low-intensity focused ultrasound (LIFU) has been shown to disrupt the BBB and enhance the uptake of therapeutic agents in the brain and CNS. The authors present a review of MRgFUS in the treatment of CNS tumors. This treatment method has shown promising results in preclinical trials including minimal adverse effects, increased infiltration of the therapeutic agents into the CNS, decreased tumor progression, and improved survival rates.
Collapse
Affiliation(s)
| | - Payton Yerke Hansen
- Charles E. Schmidt College of Medicine, Florida Atlantic University, Boca Raton, FL 33431, USA
| | - Ali A. Mohamed
- Charles E. Schmidt College of Medicine, Florida Atlantic University, Boca Raton, FL 33431, USA
| | - Sarah J. Girshfeld
- Charles E. Schmidt College of Medicine, Florida Atlantic University, Boca Raton, FL 33431, USA
| | - Marc Feldmann
- College of Medicine, University of Florida, Gainesville, FL 32611, USA
| | - Brandon Lucke-Wold
- Department of Neurosurgery, University of Florida, Gainesville, FL 32611, USA
| |
Collapse
|
23
|
Lim Kee Chang W, Chan TG, Raguseo F, Mishra A, Chattenton D, de Rosales RTM, Long NJ, Morse SV. Rapid short-pulses of focused ultrasound and microbubbles deliver a range of agent sizes to the brain. Sci Rep 2023; 13:6963. [PMID: 37117169 PMCID: PMC10147927 DOI: 10.1038/s41598-023-33671-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Accepted: 04/17/2023] [Indexed: 04/30/2023] Open
Abstract
Focused ultrasound and microbubbles can non-invasively and locally deliver therapeutics and imaging agents across the blood-brain barrier. Uniform treatment and minimal adverse bioeffects are critical to achieve reliable doses and enable safe routine use of this technique. Towards these aims, we have previously designed a rapid short-pulse ultrasound sequence and used it to deliver a 3 kDa model agent to mouse brains. We observed a homogeneous distribution in delivery and blood-brain barrier closing within 10 min. However, many therapeutics and imaging agents are larger than 3 kDa, such as antibody fragments and antisense oligonucleotides. Here, we evaluate the feasibility of using rapid short-pulses to deliver higher-molecular-weight model agents. 3, 10 and 70 kDa dextrans were successfully delivered to mouse brains, with decreasing doses and more heterogeneous distributions with increasing agent size. Minimal extravasation of endogenous albumin (66.5 kDa) was observed, while immunoglobulin (~ 150 kDa) and PEGylated liposomes (97.9 nm) were not detected. This study indicates that rapid short-pulses are versatile and, at an acoustic pressure of 0.35 MPa, can deliver therapeutics and imaging agents of sizes up to a hydrodynamic diameter between 8 nm (70 kDa dextran) and 11 nm (immunoglobulin). Increasing the acoustic pressure can extend the use of rapid short-pulses to deliver agents beyond this threshold, with little compromise on safety. This study demonstrates the potential for deliveries of higher-molecular-weight therapeutics and imaging agents using rapid short-pulses.
Collapse
Affiliation(s)
- William Lim Kee Chang
- Department of Bioengineering, Imperial College London, South Kensington, London, SW7 2BP, UK
- Department of Chemistry, Imperial College London, Molecular Sciences Research Hub, White City, London, W12 0BZ, UK
| | - Tiffany G Chan
- Department of Bioengineering, Imperial College London, South Kensington, London, SW7 2BP, UK
- Department of Chemistry, Imperial College London, Molecular Sciences Research Hub, White City, London, W12 0BZ, UK
| | - Federica Raguseo
- Department of Chemistry, Imperial College London, Molecular Sciences Research Hub, White City, London, W12 0BZ, UK
| | - Aishwarya Mishra
- School of Biomedical Engineering and Imaging Sciences, King's College London, St Thomas' Hospital, London, SW1 7EH, UK
| | - Dani Chattenton
- Department of Bioengineering, Imperial College London, South Kensington, London, SW7 2BP, UK
- Division of Radiotherapy and Imaging, The Institute of Cancer Research, Sutton, London, SM2 5NG, UK
| | - Rafael T M de Rosales
- School of Biomedical Engineering and Imaging Sciences, King's College London, St Thomas' Hospital, London, SW1 7EH, UK
| | - Nicholas J Long
- Department of Chemistry, Imperial College London, Molecular Sciences Research Hub, White City, London, W12 0BZ, UK
| | - Sophie V Morse
- Department of Bioengineering, Imperial College London, South Kensington, London, SW7 2BP, UK.
| |
Collapse
|
24
|
Farzanehpour M, Miri A, Ghorbani Alvanegh A, Esmaeili Gouvarchinghaleh H. Viral Vectors, Exosomes, and Vexosomes: Potential Armamentarium for Delivering CRISPR/Cas to Cancer Cells. Biochem Pharmacol 2023; 212:115555. [PMID: 37075815 DOI: 10.1016/j.bcp.2023.115555] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2023] [Revised: 04/10/2023] [Accepted: 04/11/2023] [Indexed: 04/21/2023]
Abstract
The underlying cause of cancer is genetic disruption, so gene editing technologies, particularly CRISPR/Cas systems can be used to go against cancer. The field of gene therapy has undergone many transitions over its 40-year history. Despite its many successes, it has also suffered many failures in the battle against malignancies, causing really adverse effects instead of therapeutic outcomes. At the tip of this double-edged sword are viral and non-viral-based vectors, which have profoundly transformed the way scientists and clinicians develop therapeutic platforms. Viruses such as lentivirus, adenovirus, and adeno-associated viruses are the most common viral vectors used for delivering the CRISPR/Cas system into human cells. In addition, among non-viral vectors, exosomes, especially tumor-derived exosomes (TDEs), have proven to be quite effective at delivering this gene editing tool. The combined use of viral vectors and exosomes, called vexosomes, seems to be a solution to overcoming the obstacles of both delivery systems.
Collapse
Affiliation(s)
- Mahdieh Farzanehpour
- Applied Virology Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Ali Miri
- Human Genetics Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | | | | |
Collapse
|
25
|
Chen Y, Gu Y, Hu H, Liu H, Li W, Huang C, Chen J, Liang L, Liu Y. Design, synthesis and biological evaluation of liposome entrapped iridium(III) complexes toward SGC-7901 cells. J Inorg Biochem 2023; 241:112134. [PMID: 36706490 DOI: 10.1016/j.jinorgbio.2023.112134] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2022] [Revised: 01/18/2023] [Accepted: 01/18/2023] [Indexed: 01/22/2023]
Abstract
In this study, two new iridium(III) polypyridyl complexes [Ir(bzq)2(DIPH)](PF6) (bzq = deprotonated benzo[h]quinoline, DIPH = 4-(2,5-dibromo-4-(1H-imidazo[4,5-f][1,10]phenanthrolim-2-yl)-4-hydroxybutan-2-one) (Ir1) and [Ir(piq)2(DIPH)](PF6) (piq = deprotonated 1-phenylisoquinoline) (Ir2) were synthesized and characterized by elemental analysis, HRMS, 1H and 13C NMR. The cytotoxic activity of Ir1, Ir2, Ir1lipo and Ir2lipo against cancer cells SGC-7901, HepG2, A549, HeLa, B16 and normal NIH3T3 cells in vitro was evaluated using 3-(4,5-dimethylthiazole-2-yl)-2,5-biphenyl tetrazolium bromide (MTT) method. Ir1 and Ir2 showed no cytotoxic activity, but their liposome-entrapped Ir1 (Ir1lipo) and Ir2 (Ir2lipo) showed significant cellular activity, especially sensitive to SGC-7901 with IC50 values of 4.7 ± 0.2 and 12.4 ± 0.5 μM, respectively. The cellular uptake, endoplasmic reticulum (ER) localization, autophagy, tubulin polymerization, glutathione (GSH), malondialdehyde (MDA) and release of cytochrome c were investigated to explore the mechanisms of apoptosis. The calreticulin (CRT), heat shock protein 70 (HSP70), high mobility group box 1 (HMGB1) were also explored. Western blotting showed that Ir1lipo and Ir2lipo inhibited PI3K (phosphoinositide-3 kinase), AKT (protein kinase B), p-AKT and activated Bcl-2 (B-cell lymphoma-2) protein and apoptosis-regulated factor caspase 3 (cysteinyl aspartate specific proteinase-3) and cleaving PARP (poly ADP-ribose polymerase). The results demonstrated that Ir1lipo and Ir2lipo induce cell apoptosis through targeting the endoplasmic reticulum (ER), cause oxidative stress damage, inhibiting PI3K/AKT signaling pathway, immunogenic cell death (ICD) and inhibit the cell growth at G2/M phase.
Collapse
Affiliation(s)
- Yichuan Chen
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, PR China
| | - Yiying Gu
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, PR China
| | - Huiyan Hu
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, PR China
| | - Haimei Liu
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, PR China
| | - Wenlong Li
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, PR China
| | - Chunxia Huang
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, PR China
| | - Jing Chen
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, PR China
| | - Lijuan Liang
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, PR China
| | - Yunjun Liu
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, PR China; Guangdong Provincial Key Laboratory of Advanced Drug Delivery, Guangdong Provincial Engineering Center of Topical Precise Drug Delivery System, Guangdong Pharmaceutical University, Guangzhou 510006, PR China.
| |
Collapse
|
26
|
Hu Y, Wei J, Shen Y, Chen S, Chen X. Barrier-breaking effects of ultrasonic cavitation for drug delivery and biomarker release. ULTRASONICS SONOCHEMISTRY 2023; 94:106346. [PMID: 36870921 PMCID: PMC10040969 DOI: 10.1016/j.ultsonch.2023.106346] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 02/15/2023] [Accepted: 02/23/2023] [Indexed: 05/27/2023]
Abstract
Recently, emerging evidence has demonstrated that cavitation actually creates important bidirectional channels on biological barriers for both intratumoral drug delivery and extratumoral biomarker release. To promote the barrier-breaking effects of cavitation for both therapy and diagnosis, we first reviewed recent technical advances of ultrasound and its contrast agents (microbubbles, nanodroplets, and gas-stabilizing nanoparticles) and then reported the newly-revealed cavitation physical details. In particular, we summarized five types of cellular responses of cavitation in breaking the plasma membrane (membrane retraction, sonoporation, endocytosis/exocytosis, blebbing and apoptosis) and compared the vascular cavitation effects of three different types of ultrasound contrast agents in breaking the blood-tumor barrier and tumor microenvironment. Moreover, we highlighted the current achievements of the barrier-breaking effects of cavitation in mediating drug delivery and biomarker release. We emphasized that the precise induction of a specific cavitation effect for barrier-breaking was still challenged by the complex combination of multiple acoustic and non-acoustic cavitation parameters. Therefore, we provided the cutting-edge in-situ cavitation imaging and feedback control methods and suggested the development of an international cavitation quantification standard for the clinical guidance of cavitation-mediated barrier-breaking effects.
Collapse
Affiliation(s)
- Yaxin Hu
- School of Biomedical Engineering, Medical School, Shenzhen University, Shenzhen, Guangdong, 518060, PR China; National-regional Key Technology Engineering Laboratory for Medical Ultrasound, Shenzhen University, Shenzhen, Guangdong, 518060, PR China
| | - Jianpeng Wei
- School of Biomedical Engineering, Medical School, Shenzhen University, Shenzhen, Guangdong, 518060, PR China; National-regional Key Technology Engineering Laboratory for Medical Ultrasound, Shenzhen University, Shenzhen, Guangdong, 518060, PR China
| | - Yuanyuan Shen
- School of Biomedical Engineering, Medical School, Shenzhen University, Shenzhen, Guangdong, 518060, PR China; National-regional Key Technology Engineering Laboratory for Medical Ultrasound, Shenzhen University, Shenzhen, Guangdong, 518060, PR China
| | - Siping Chen
- School of Biomedical Engineering, Medical School, Shenzhen University, Shenzhen, Guangdong, 518060, PR China; National-regional Key Technology Engineering Laboratory for Medical Ultrasound, Shenzhen University, Shenzhen, Guangdong, 518060, PR China
| | - Xin Chen
- School of Biomedical Engineering, Medical School, Shenzhen University, Shenzhen, Guangdong, 518060, PR China; National-regional Key Technology Engineering Laboratory for Medical Ultrasound, Shenzhen University, Shenzhen, Guangdong, 518060, PR China.
| |
Collapse
|
27
|
Dai J, Wu Y, Chen Z, Xiao L, Zhang W, Cao Y. Sonosensitive Phase-Changeable Nanoparticle Mediated Enhanced Chemotherapy in Prostate Cancer by Low-Intensity Focused Ultrasound. Int J Mol Sci 2023; 24:ijms24010825. [PMID: 36614265 PMCID: PMC9821565 DOI: 10.3390/ijms24010825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2022] [Revised: 12/26/2022] [Accepted: 12/29/2022] [Indexed: 01/05/2023] Open
Abstract
Prostate cancer (PCa) is one of the most common cancer types. Early detection of PC offers the best chance of successful treatment. A noninvasive, image-guided therapy mediated by targeted nanoparticles (NPs) has the potential to improve the efficacy and safety of cancer therapies. Herein, we report a sonosensitive nanoparticle modified with anti-PSMA (prostate-specific membrane antigen) antibodies to activate target prostate tumors. These nanoparticles (PFP@IR780@PTX@liposome NPs) were co-loaded with the chemotherapeutic agent docetaxel and the sonosensitizer IR780, as well as phase-changeable perfluorocarbon (PFC) liquids. The liquid-gas phase change could be induced by low-intensity focused ultrasound (LIFU) in vitro. We found that the PFP@IR780@PTX@liposome NPs can specifically accumulate in prostate tumors after LIFU irradiation, as monitored by ultrasound and photoacoustic imaging. Meanwhile, docetaxel was controllably released from the nanoparticles to achieve enhanced chemotherapeutic therapy in vivo. These sonosensitive phase-changeable NPs can visually treat prostate cancers effectively and have a clinical potential.
Collapse
Affiliation(s)
- Junyong Dai
- Chongqing Key Laboratory of Ultrasound Molecular Imaging, Institute of Ultrasound Imaging, Department of Urology Surgery, Second Affiliated Hospital, Chongqing Medical University, Chongqing 400010, China
- Chongqing University Cancer Hospital, Chongqing 400044, China
| | - Yunfang Wu
- Chongqing Key Laboratory of Ultrasound Molecular Imaging, Institute of Ultrasound Imaging, Department of Urology Surgery, Second Affiliated Hospital, Chongqing Medical University, Chongqing 400010, China
- Chongqing Wanzhou District Maternal and Child Health Hospital, Chongqing 404197, China
| | - Ziqun Chen
- Chongqing Key Laboratory of Ultrasound Molecular Imaging, Institute of Ultrasound Imaging, Department of Urology Surgery, Second Affiliated Hospital, Chongqing Medical University, Chongqing 400010, China
| | - Linkang Xiao
- Chongqing Key Laboratory of Ultrasound Molecular Imaging, Institute of Ultrasound Imaging, Department of Urology Surgery, Second Affiliated Hospital, Chongqing Medical University, Chongqing 400010, China
- Chongqing General Hospital, Chongqing 400013, China
| | - Weili Zhang
- Chongqing Key Laboratory of Ultrasound Molecular Imaging, Institute of Ultrasound Imaging, Department of Urology Surgery, Second Affiliated Hospital, Chongqing Medical University, Chongqing 400010, China
- Correspondence: (W.Z.); (Y.C.)
| | - Yang Cao
- Chongqing Key Laboratory of Ultrasound Molecular Imaging, Institute of Ultrasound Imaging, Department of Urology Surgery, Second Affiliated Hospital, Chongqing Medical University, Chongqing 400010, China
- Correspondence: (W.Z.); (Y.C.)
| |
Collapse
|
28
|
Liu Y, Wang X, Wu Q, Pei W, Teo MJ, Chen ZS, Huang C. Application of lignin and lignin-based composites in different tissue engineering fields. Int J Biol Macromol 2022; 222:994-1006. [DOI: 10.1016/j.ijbiomac.2022.09.267] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2022] [Revised: 09/17/2022] [Accepted: 09/28/2022] [Indexed: 12/17/2022]
|
29
|
Srivastava P, Kim KS. Membrane Vesicles Derived from Gut Microbiota and Probiotics: Cutting-Edge Therapeutic Approaches for Multidrug-Resistant Superbugs Linked to Neurological Anomalies. Pharmaceutics 2022; 14:2370. [PMID: 36365188 PMCID: PMC9692612 DOI: 10.3390/pharmaceutics14112370] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 11/01/2022] [Accepted: 11/02/2022] [Indexed: 11/06/2022] Open
Abstract
Multidrug-resistant (MDR) superbugs can breach the blood-brain barrier (BBB), leading to a continuous barrage of pro-inflammatory modulators and induction of severe infection-related pathologies, including meningitis and brain abscess. Both broad-spectrum or species-specific antibiotics (β-lactamase inhibitors, polymyxins, vancomycin, meropenem, plazomicin, and sarecycline) and biocompatible poly (lactic-co-glycolic acid) (PLGA) nanoparticles have been used to treat these infections. However, new therapeutic platforms with a broad impact that do not exert off-target deleterious effects are needed. Membrane vesicles or extracellular vesicles (EVs) are lipid bilayer-enclosed particles with therapeutic potential owing to their ability to circumvent BBB constraints. Bacteria-derived EVs (bEVs) from gut microbiota are efficient transporters that can penetrate the central nervous system. In fact, bEVs can be remodeled via surface modification and CRISPR/Cas editing and, thus, represent a novel platform for conferring protection against infections breaching the BBB. Here, we discuss the latest scientific research related to gut microbiota- and probiotic-derived bEVs, and their therapeutic modifications, in terms of regulating neurotransmitters and inhibiting quorum sensing, for the treatment of neurodegenerative diseases, such as Parkinson's and Alzheimer's diseases. We also emphasize the benefits of probiotic-derived bEVs to human health and propose a novel direction for the development of innovative heterologous expression systems to combat BBB-crossing pathogens.
Collapse
Affiliation(s)
| | - Kwang-sun Kim
- Department of Chemistry and Chemistry Institute of Functional Materials, Pusan National University, Busan 46241, Korea
| |
Collapse
|
30
|
Mitusova K, Peltek OO, Karpov TE, Muslimov AR, Zyuzin MV, Timin AS. Overcoming the blood-brain barrier for the therapy of malignant brain tumor: current status and prospects of drug delivery approaches. J Nanobiotechnology 2022; 20:412. [PMID: 36109754 PMCID: PMC9479308 DOI: 10.1186/s12951-022-01610-7] [Citation(s) in RCA: 57] [Impact Index Per Article: 28.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Accepted: 08/18/2022] [Indexed: 01/06/2023] Open
Abstract
Besides the broad development of nanotechnological approaches for cancer diagnosis and therapy, currently, there is no significant progress in the treatment of different types of brain tumors. Therapeutic molecules crossing the blood-brain barrier (BBB) and reaching an appropriate targeting ability remain the key challenges. Many invasive and non-invasive methods, and various types of nanocarriers and their hybrids have been widely explored for brain tumor treatment. However, unfortunately, no crucial clinical translations were observed to date. In particular, chemotherapy and surgery remain the main methods for the therapy of brain tumors. Exploring the mechanisms of the BBB penetration in detail and investigating advanced drug delivery platforms are the key factors that could bring us closer to understanding the development of effective therapy against brain tumors. In this review, we discuss the most relevant aspects of the BBB penetration mechanisms, observing both invasive and non-invasive methods of drug delivery. We also review the recent progress in the development of functional drug delivery platforms, from viruses to cell-based vehicles, for brain tumor therapy. The destructive potential of chemotherapeutic drugs delivered to the brain tumor is also considered. This review then summarizes the existing challenges and future prospects in the use of drug delivery platforms for the treatment of brain tumors.
Collapse
Affiliation(s)
- Ksenia Mitusova
- Peter The Great St. Petersburg Polytechnic University, Polytechnicheskaya 29, St. Petersburg, 195251, Russian Federation
| | - Oleksii O Peltek
- School of Physics and Engineering, ITMO University, Lomonosova 9, St. Petersburg, 191002, Russian Federation
| | - Timofey E Karpov
- Peter The Great St. Petersburg Polytechnic University, Polytechnicheskaya 29, St. Petersburg, 195251, Russian Federation
| | - Albert R Muslimov
- Peter The Great St. Petersburg Polytechnic University, Polytechnicheskaya 29, St. Petersburg, 195251, Russian Federation
- Sirius University of Science and Technology, Olympic Ave 1, Sirius, 354340, Russian Federation
| | - Mikhail V Zyuzin
- School of Physics and Engineering, ITMO University, Lomonosova 9, St. Petersburg, 191002, Russian Federation
| | - Alexander S Timin
- Peter The Great St. Petersburg Polytechnic University, Polytechnicheskaya 29, St. Petersburg, 195251, Russian Federation.
- School of Physics and Engineering, ITMO University, Lomonosova 9, St. Petersburg, 191002, Russian Federation.
| |
Collapse
|
31
|
Li W, Wu X, Liu H, Shi C, Yuan Y, Bai L, Liao X, Zhang Y, Liu Y. Enhanced in vitro cytotoxicity and antitumor activity in vivo of iridium(III) complexes liposomes targeting endoplasmic reticulum and mitochondria. J Inorg Biochem 2022; 233:111868. [DOI: 10.1016/j.jinorgbio.2022.111868] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2022] [Revised: 05/05/2022] [Accepted: 05/17/2022] [Indexed: 01/05/2023]
|
32
|
Gandhi K, Barzegar-Fallah A, Banstola A, Rizwan SB, Reynolds JNJ. Ultrasound-Mediated Blood-Brain Barrier Disruption for Drug Delivery: A Systematic Review of Protocols, Efficacy, and Safety Outcomes from Preclinical and Clinical Studies. Pharmaceutics 2022; 14:pharmaceutics14040833. [PMID: 35456667 PMCID: PMC9029131 DOI: 10.3390/pharmaceutics14040833] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2022] [Revised: 04/03/2022] [Accepted: 04/06/2022] [Indexed: 01/27/2023] Open
Abstract
Ultrasound-mediated blood-brain barrier (BBB) disruption has garnered focus as a method of delivering normally impenetrable drugs into the brain. Numerous studies have investigated this approach, and a diverse set of ultrasound parameters appear to influence the efficacy and safety of this approach. An understanding of these findings is essential for safe and reproducible BBB disruption, as well as in identifying the limitations and gaps for further advancement of this drug delivery approach. We aimed to collate and summarise protocols and parameters for achieving ultrasound-mediated BBB disruption in animal and clinical studies, as well as the efficacy and safety methods and outcomes associated with each. A systematic search of electronic databases helped in identifying relevant, included studies. Reference lists of included studies were further screened to identify supplemental studies for inclusion. In total, 107 articles were included in this review, and the following parameters were identified as influencing efficacy and safety outcomes: microbubbles, transducer frequency, peak-negative pressure, pulse characteristics, and the dosing of ultrasound applications. Current protocols and parameters achieving ultrasound-mediated BBB disruption, as well as their associated efficacy and safety outcomes, are identified and summarised. Greater standardisation of protocols and parameters in future preclinical and clinical studies is required to inform robust clinical translation.
Collapse
Affiliation(s)
- Kushan Gandhi
- Department of Anatomy, School of Biomedical Sciences, University of Otago, Dunedin 9016, New Zealand; (K.G.); (A.B.-F.); (A.B.)
- Brain Health Research Centre, University of Otago, Dunedin 9016, New Zealand;
| | - Anita Barzegar-Fallah
- Department of Anatomy, School of Biomedical Sciences, University of Otago, Dunedin 9016, New Zealand; (K.G.); (A.B.-F.); (A.B.)
- Brain Health Research Centre, University of Otago, Dunedin 9016, New Zealand;
| | - Ashik Banstola
- Department of Anatomy, School of Biomedical Sciences, University of Otago, Dunedin 9016, New Zealand; (K.G.); (A.B.-F.); (A.B.)
- Brain Health Research Centre, University of Otago, Dunedin 9016, New Zealand;
| | - Shakila B. Rizwan
- Brain Health Research Centre, University of Otago, Dunedin 9016, New Zealand;
- School of Pharmacy, University of Otago, Dunedin 9016, New Zealand
| | - John N. J. Reynolds
- Department of Anatomy, School of Biomedical Sciences, University of Otago, Dunedin 9016, New Zealand; (K.G.); (A.B.-F.); (A.B.)
- Brain Health Research Centre, University of Otago, Dunedin 9016, New Zealand;
- Correspondence: ; Tel.: +64-3479-5781; Fax: +64-3479-7254
| |
Collapse
|
33
|
Lechpammer M, Rao R, Shah S, Mirheydari M, Bhattacharya D, Koehler A, Toukam DK, Haworth KJ, Pomeranz Krummel D, Sengupta S. Advances in Immunotherapy for the Treatment of Adult Glioblastoma: Overcoming Chemical and Physical Barriers. Cancers (Basel) 2022; 14:1627. [PMID: 35406398 PMCID: PMC8997081 DOI: 10.3390/cancers14071627] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 03/18/2022] [Accepted: 03/22/2022] [Indexed: 02/07/2023] Open
Abstract
Glioblastoma, or glioblastoma multiforme (GBM, WHO Grade IV), is a highly aggressive adult glioma. Despite extensive efforts to improve treatment, the current standard-of-care (SOC) regimen, which consists of maximal resection, radiotherapy, and temozolomide (TMZ), achieves only a 12-15 month survival. The clinical improvements achieved through immunotherapy in several extracranial solid tumors, including non-small-cell lung cancer, melanoma, and non-Hodgkin lymphoma, inspired investigations to pursue various immunotherapeutic interventions in adult glioblastoma patients. Despite some encouraging reports from preclinical and early-stage clinical trials, none of the tested agents have been convincing in Phase III clinical trials. One, but not the only, factor that is accountable for the slow progress is the blood-brain barrier, which prevents most antitumor drugs from reaching the target in appreciable amounts. Herein, we review the current state of immunotherapy in glioblastoma and discuss the significant challenges that prevent advancement. We also provide thoughts on steps that may be taken to remediate these challenges, including the application of ultrasound technologies.
Collapse
Affiliation(s)
- Mirna Lechpammer
- Foundation Medicine, Inc., Cambridge, MA 02141, USA;
- Department of Biochemistry and Molecular Pharmacology, New York University Grossman School of Medicine, New York, NY 10016, USA
| | - Rohan Rao
- Department of Neurology and Rehabilitation Medicine, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA; (R.R.); (D.B.); (A.K.); (D.K.T.)
| | - Sanjit Shah
- Department of Neurosurgery, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA;
| | - Mona Mirheydari
- Department of Internal Medicine, Division of Cardiovascular Health and Disease, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA; (M.M.); (K.J.H.)
| | - Debanjan Bhattacharya
- Department of Neurology and Rehabilitation Medicine, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA; (R.R.); (D.B.); (A.K.); (D.K.T.)
| | - Abigail Koehler
- Department of Neurology and Rehabilitation Medicine, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA; (R.R.); (D.B.); (A.K.); (D.K.T.)
| | - Donatien Kamdem Toukam
- Department of Neurology and Rehabilitation Medicine, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA; (R.R.); (D.B.); (A.K.); (D.K.T.)
| | - Kevin J. Haworth
- Department of Internal Medicine, Division of Cardiovascular Health and Disease, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA; (M.M.); (K.J.H.)
| | - Daniel Pomeranz Krummel
- Department of Neurology and Rehabilitation Medicine, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA; (R.R.); (D.B.); (A.K.); (D.K.T.)
| | - Soma Sengupta
- Department of Neurology and Rehabilitation Medicine, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA; (R.R.); (D.B.); (A.K.); (D.K.T.)
| |
Collapse
|
34
|
Ingram N, McVeigh LE, Abou-Saleh RH, Batchelor DVB, Loadman PM, McLaughlan JR, Markham AF, Evans SD, Coletta PL. A Single Short 'Tone Burst' Results in Optimal Drug Delivery to Tumours Using Ultrasound-Triggered Therapeutic Microbubbles. Pharmaceutics 2022; 14:pharmaceutics14030622. [PMID: 35335995 PMCID: PMC8953493 DOI: 10.3390/pharmaceutics14030622] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 03/04/2022] [Accepted: 03/09/2022] [Indexed: 12/10/2022] Open
Abstract
Advanced drug delivery systems, such as ultrasound-mediated drug delivery, show great promise for increasing the therapeutic index. Improvements in delivery by altering the ultrasound parameters have been studied heavily in vitro but relatively little in vivo. Here, the same therapeutic microbubble and tumour type are used to determine whether altering ultrasound parameters can improve drug delivery. Liposomes were loaded with SN38 and attached via avidin: biotin linkages to microbubbles. The whole structure was targeted to the tumour vasculature by the addition of anti-vascular endothelial growth factor receptor 2 antibodies. Tumour drug delivery and metabolism were quantified in SW480 xenografts after application of an ultrasound trigger to the tumour region. Increasing the trigger duration from 5 s to 2 min or increasing the number of 5 s triggers did not improve drug delivery, nor did changing to a chirp trigger designed to stimulate a greater proportion of the microbubble population, although this did show that the short tone trigger resulted in greater release of free SN38. Examination of ultrasound triggers in vivo to improve drug delivery is justified as there are multiple mechanisms at play that may not allow direct translation from in vitro findings. In this setting, a short tone burst gives the best ultrasound parameters for tumoural drug delivery.
Collapse
Affiliation(s)
- Nicola Ingram
- Leeds Institute of Medical Research, Faculty of Medicine and Health, St James’s University Hospital, Beckett Street, Leeds LS9 7TF, UK; (L.E.M.); (J.R.M.); (A.F.M.)
- Correspondence: (N.I.); (P.L.C.)
| | - Laura E. McVeigh
- Leeds Institute of Medical Research, Faculty of Medicine and Health, St James’s University Hospital, Beckett Street, Leeds LS9 7TF, UK; (L.E.M.); (J.R.M.); (A.F.M.)
| | - Radwa H. Abou-Saleh
- School of Physics and Astronomy, University of Leeds, Leeds LS2 9JT, UK; (R.H.A.-S.); (D.V.B.B.); (S.D.E.)
- Nanoscience and Technology Group, Faculty of Science, Galala University, Galala 43711, Egypt
- Department of Physics, Mansoura University, Mansoura 35516, Egypt
| | - Damien V. B. Batchelor
- School of Physics and Astronomy, University of Leeds, Leeds LS2 9JT, UK; (R.H.A.-S.); (D.V.B.B.); (S.D.E.)
| | - Paul M. Loadman
- Institute of Cancer Therapeutics, University of Bradford, Bradford BD7 1DP, UK;
| | - James R. McLaughlan
- Leeds Institute of Medical Research, Faculty of Medicine and Health, St James’s University Hospital, Beckett Street, Leeds LS9 7TF, UK; (L.E.M.); (J.R.M.); (A.F.M.)
- School of Electronic and Electrical Engineering, University of Leeds, Leeds LS2 9JT, UK
| | - Alexander F. Markham
- Leeds Institute of Medical Research, Faculty of Medicine and Health, St James’s University Hospital, Beckett Street, Leeds LS9 7TF, UK; (L.E.M.); (J.R.M.); (A.F.M.)
| | - Stephen D. Evans
- School of Physics and Astronomy, University of Leeds, Leeds LS2 9JT, UK; (R.H.A.-S.); (D.V.B.B.); (S.D.E.)
| | - P. Louise Coletta
- Leeds Institute of Medical Research, Faculty of Medicine and Health, St James’s University Hospital, Beckett Street, Leeds LS9 7TF, UK; (L.E.M.); (J.R.M.); (A.F.M.)
- Correspondence: (N.I.); (P.L.C.)
| |
Collapse
|