1
|
Li S, Chen Q, Zhang Y, Wang D, Hu H, Li J, Zhang C, Zhang J. Hyaluronic acid dissolving microneedle patch-assisted acupoint transdermal delivery of triptolide for effective rheumatoid arthritis treatment. Sci Rep 2024; 14:25256. [PMID: 39448702 PMCID: PMC11502756 DOI: 10.1038/s41598-024-76341-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Accepted: 10/14/2024] [Indexed: 10/26/2024] Open
Abstract
Triptolide (TP), a major active component of the herb Tripterygium wilfordii Hook F, has been shown excellent pharmacological effects on rheumatoid arthritis. However, TP is prone to causing severe organ toxicity, which limits its clinical application. In recent years, microneedle technology has provided a new option for the treatment of arthritis due to its advantages of efficient local transdermal drug delivery. In this study, we constructed a microneedle platform to deliver TP locally to the joints, thereby enhancing TP penetration and reducing systemic toxicity. Additionally, we investigated whether acupoint drug delivery can produce a synergistic effect of needles and drugs. First, TP was loaded into microneedles using polyvinylpyrrolidone and hyaluronic acid as matrix materials. Next, we established a rat adjuvant-induced arthritis (AIA) model to evaluate the therapeutic effect of TP-loaded microneedles. The experiments showed that TP-loaded microneedles alleviated the AIA rats' inflammatory response, joint swelling, and bone erosion. However, there was no significant difference in the therapeutic effect observed in the acupoint and non-acupoint administration groups. In conclusion, TP-loaded microneedles have the advantages of safety, convenience, and high efficacy over conventional administration routes, laying a foundation for the transdermal drug delivery system-based treatment of rheumatoid arthritis.
Collapse
Affiliation(s)
- Siyao Li
- State Key Laboratory of Southwestern Chinese Medicine Resources, College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Quanlong Chen
- State Key Laboratory of Southwestern Chinese Medicine Resources, College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Yanglin Zhang
- State Key Laboratory of Southwestern Chinese Medicine Resources, College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Di Wang
- State Key Laboratory of Southwestern Chinese Medicine Resources, College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Huiling Hu
- State Key Laboratory of Southwestern Chinese Medicine Resources, College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Jingjing Li
- Department of Rehabilitation Sciences, Faculty of Health and Social Sciences, Hong Kong Polytechnic University, Kowloon, Hong Kong SAR, China.
| | - Chen Zhang
- State Key Laboratory of Southwestern Chinese Medicine Resources, College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China.
| | - Jinming Zhang
- State Key Laboratory of Southwestern Chinese Medicine Resources, College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China.
| |
Collapse
|
2
|
Yang B, Jiang Z, Feng X, Yang J, Lu C, Wu C, Pan X, Peng T. Development of Minodronic Acid-Loaded Dissolving Microneedles for Enhanced Osteoporosis Therapy: Influence of Drug Loading on the Bioavailability of Minodronic Acid. AAPS PharmSciTech 2024; 25:252. [PMID: 39443354 DOI: 10.1208/s12249-024-02963-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Accepted: 09/29/2024] [Indexed: 10/25/2024] Open
Abstract
Osteoporosis is a metabolic bone disorder with impaired bone microstructure and increased bone fractures, seriously affecting the quality of life of patients. Among various bisphosphonates prescribed for managing osteoporosis, minodronic acid (MA) is the most potent inhibitor of bone context resorption. However, oral MA tablet is the only commercialized dosage form that has extremely low bioavailability, severe adverse reactions, and poor patient compliance. To tackle these issues, we developed MA-loaded dissolving microneedles (MA-MNs) with significantly improved bioavailability for osteoporosis therapy. We investigated the influence of drug loading on the physicochemical properties, transdermal permeation behavior, and pharmacokinetics of MA-MNs. The drug loading of MA-MNs exerted almost no effect on their morphology, mechanical property, and skin insertion ability, but it compromised the transdermal permeability and bioavailability of MA-MNs. Compared with oral MA, MA-MNs with the lowest drug loading (224.9 μg/patch) showed a 9-fold and 25.8-fold increase in peak concentration and bioavailability, respectively. This may be ascribed to the reason that the increased drug loading can generate higher burst release, higher drug residual rate, and drug supersaturation effect in skin tissues, eventually limiting drug absorption into the systemic circulation. Moreover, MA-MNs prolonged the half-life of MA and provided more steady plasma drug concentrations than intravenously injected MA, which helps to reduce dosing frequency and side effects. Therefore, dissolving MNs with optimized drug loading provides a promising alternative for bisphosphonate drug delivery.
Collapse
Affiliation(s)
- Beibei Yang
- School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, 510006, China
| | - Zeshi Jiang
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, College of Pharmacy, Jinan University, Guangzhou, 511436, China
| | - Xiaoqian Feng
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, College of Pharmacy, Jinan University, Guangzhou, 511436, China
| | - Jingxin Yang
- Xinji Pharmaceutical Technology Co., Ltd, Guangzhou, 5111400, China
| | - Chao Lu
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, College of Pharmacy, Jinan University, Guangzhou, 511436, China
| | - Chuanbin Wu
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, College of Pharmacy, Jinan University, Guangzhou, 511436, China
| | - Xin Pan
- School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, 510006, China.
| | - Tingting Peng
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, College of Pharmacy, Jinan University, Guangzhou, 511436, China.
| |
Collapse
|
3
|
Ali M, Namjoshi S, Phan K, Wu X, Prasadam I, Benson HAE, Kumeria T, Mohammed Y. 3D Printed Microneedles for the Transdermal Delivery of NAD + Precursor: Toward Personalization of Skin Delivery. ACS Biomater Sci Eng 2024. [PMID: 39312410 DOI: 10.1021/acsbiomaterials.4c00905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/25/2024]
Abstract
3D printing of microneedles (μNDs) for transdermal therapy has the potential to enable patient personalization based on the target disease, site of application, and dosage requirements. To convert this concept to reality, it is necessary that the 3D printing technology can deliver high resolution, an affordable cost, and large print volumes. With the introduction of benchtop 4K and 8K 3D printers, it is now possible to manufacture medical devices like μNDs at sufficient resolution and low cost. In this research, we systematically optimized the 3D printing design parameters such as resin viscosity, print angle, layer height, and curing time to generate customizable μNDs. We have also developed an innovative 3D coating microtank device to optimize the coating method. We have applied this to the development of novel μNDs to deliver an established NAD+ precursor molecule, nicotinamide mononucleotide (NMN). A methacrylate-based polymer photoresin (eSun resin) was diluted with methanol to adjust the resin viscosity. The 3D print layer height of 25 μm yielded a smooth surface, thus reducing edge-ridge mismatches. Printing μNDs at 90° to the print platform yielded 84.28 ± 2.158% (n = 5) of the input height thus increasing the tip sharpness (48.52 ± 10.43 μm, n = 5). The formulation containing fluorescein (model molecule), sucrose (viscosity modifier), and Tween-20 (surface tension modifier) was coated on the μNDs using the custom designed microtank setup, and the amount deposited was determined fluorescently. The dye-coated μND arrays inserted into human skin (in vitro) showed a fluorescence signal at a depth of 150 μm (n = 3) into the skin. After optimization of the 3D printing parameters and coating protocol using fluorescein, NMN was coated onto the μNDs, and its diffusion was assessed in full-thickness human skin in vitro using a Franz diffusion setup. Approximately 189 ± 34.5 μg (5× dipped coated μNDs) of NMN permeated through the skin and 41.2 ± 7.53 μg was left in the skin after 24 h. Multiphoton microscopy imaging of NMN-coated μND treated mouse ear skin ex vivo demonstrated significantly (p < 0.05) increased free-unbound NADPH and reduced fluorescence lifetime of NADPH, both of which are indicative of cellular metabolic rates. Our study demonstrates that low-cost benchtop 3D printers can be used to print high-fidelity μNDs with the ability to rapidly coat and release NMN which consequently caused changes in intracellular NAD+ levels.
Collapse
Affiliation(s)
- Masood Ali
- Frazer Institute, Faculty of Medicine, The University of Queensland, Brisbane, QLD 4102, Australia
| | - Sarika Namjoshi
- Frazer Institute, Faculty of Medicine, The University of Queensland, Brisbane, QLD 4102, Australia
| | - Khanh Phan
- School of Agriculture and Food Sciences, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Xiaoxin Wu
- Centre for Biomedical Technologies, School of Mechanical, Medical and Process Engineering, Queensland University of Technology, Brisbane, QLD 4059, Australia
| | - Indira Prasadam
- Centre for Biomedical Technologies, School of Mechanical, Medical and Process Engineering, Queensland University of Technology, Brisbane, QLD 4059, Australia
| | | | - Tushar Kumeria
- School of Materials Science and Engineering, The University of New South Wales, Sydney, NSW 2052, Australia
- Australian Centre for Nanomedicine, The University of New South Wales, Sydney, NSW 2052, Australia
| | - Yousuf Mohammed
- Frazer Institute, Faculty of Medicine, The University of Queensland, Brisbane, QLD 4102, Australia
- School of Pharmacy, The University of Queensland, Brisbane, QLD 4102, Australia
| |
Collapse
|
4
|
Miranda-Muñoz K, Midkiff K, Woessner A, Afshar-Mohajer M, Zou M, Pollock E, Gonzalez-Nino D, Prinz G, Hutchinson L, Li R, Kompalage K, Culbertson CT, Tucker RJ, Coetzee H, Tsai T, Powell J, Almodovar J. A Multicomponent Microneedle Patch for the Delivery of Meloxicam for Veterinary Applications. ACS NANO 2024; 18:25716-25739. [PMID: 39225687 DOI: 10.1021/acsnano.4c08072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
This study evaluates the use of poly(vinyl alcohol), collagen, and chitosan blends for developing a microneedle patch for the delivery of meloxicam (MEL). Results confirm successful MEL encapsulation, structural integrity, and chemical stability even after ethylene oxide sterilization. Mechanical testing indicates the patch has the required properties for effective skin penetration and drug delivery, as demonstrated by load-displacement curves showing successful penetration of pig ear surfaces at 3N of normal load. In vitro imaging confirms the microneedle patch penetrates the pig's ear cadaver skin effectively and uniformly, with histological evaluation revealing the sustained presence and gradual degradation of microneedles within the skin. Additionally, in vitro drug diffusion experiments utilizing ballistic gel suggest that microneedles commence dissolution almost immediately upon insertion into the gel, steadily releasing the drug over 24 h. Furthermore, the microneedle patch demonstrates ideal drug release capabilities, achieving nearly 100% release of meloxicam content from a single patch within 18 h. Finally, in vivo studies using pigs demonstrate the successful dissolution and transdermal drug delivery efficacy of biodegradable microneedle patches delivering meloxicam in a porcine model, with over 70% of microneedles undergoing dissolution after 3 days. While low detectable meloxicam concentrations were observed in the bloodstream, high levels were detected in the ear tissue, confirming the release and diffusion of the drug from microneedles. This work highlights the potential of microneedle patches for controlled drug release in veterinary applications.
Collapse
Affiliation(s)
- Katherine Miranda-Muñoz
- Department of Biomedical Engineering, College of Engineering, University of Arkansas, Fayetteville, Arkansas 72701, United States
| | - Kirsten Midkiff
- Department of Animal Sciences, University of Arkansas, B110 Agriculture, Food and Life Sciences Building, Fayetteville, Arkansas 72701, United States
| | - Alan Woessner
- Department of Biomedical Engineering, College of Engineering, University of Arkansas, Fayetteville, Arkansas 72701, United States
- Arkansas Integrative Metabolic Research Center, University of Arkansas, Fayetteville, Arkansas 72701, United States
| | - Mahyar Afshar-Mohajer
- Department of Mechanical Engineering, University of Arkansas, 204 Mechanical Engineering Building, Fayetteville, Arkansas 72701, United States
| | - Min Zou
- Department of Mechanical Engineering, University of Arkansas, 204 Mechanical Engineering Building, Fayetteville, Arkansas 72701, United States
| | - Erik Pollock
- Department of Biological Sciences, University of Arkansas, Fayetteville, Science Engineering Building, Fayetteville, Arkansas 72701, United States
| | - David Gonzalez-Nino
- Department of Civil Engineering, University of Arkansas, 4190 Bell Engineering Center, Fayetteville, Arkansas 72701, United States
| | - Gary Prinz
- Department of Civil Engineering, University of Arkansas, 4190 Bell Engineering Center, Fayetteville, Arkansas 72701, United States
| | - Lillian Hutchinson
- Ralph E. Martin Department of Chemical Engineering, University of Arkansas, 3202 Bell Engineering Center, Fayetteville, Arkansas 72701, United States
| | - Ruohan Li
- Ralph E. Martin Department of Chemical Engineering, University of Arkansas, 3202 Bell Engineering Center, Fayetteville, Arkansas 72701, United States
| | - Kushan Kompalage
- Department of Anatomy and Physiology, College of Veterinary Medicine, Kansas State University, 213 CBC Building, 1212 Mid-Campus Dr North, Manhattan, Kansas 66506, United States
| | - Christopher T Culbertson
- Department of Chemistry, Kansas State University, 228 Coles Hall, 1710 Denison Ave, Manhattan, Kansas 66506, United States
| | - Ryan Jared Tucker
- Department of Anatomy and Physiology, College of Veterinary Medicine, Kansas State University, 213 CBC Building, 1212 Mid-Campus Dr North, Manhattan, Kansas 66506, United States
| | - Hans Coetzee
- Department of Anatomy and Physiology, College of Veterinary Medicine, Kansas State University, 213 CBC Building, 1212 Mid-Campus Dr North, Manhattan, Kansas 66506, United States
| | - Tsung Tsai
- Department of Animal Sciences, University of Arkansas, B110 Agriculture, Food and Life Sciences Building, Fayetteville, Arkansas 72701, United States
| | - Jeremy Powell
- Department of Animal Sciences, University of Arkansas, B110 Agriculture, Food and Life Sciences Building, Fayetteville, Arkansas 72701, United States
| | - Jorge Almodovar
- Department of Biomedical Engineering, College of Engineering, University of Arkansas, Fayetteville, Arkansas 72701, United States
- Ralph E. Martin Department of Chemical Engineering, University of Arkansas, 3202 Bell Engineering Center, Fayetteville, Arkansas 72701, United States
| |
Collapse
|
5
|
Phoka T, Wanichwecharungruang N, Dueanphen N, Thanuthanakhun N, Kietdumrongwong P, Leelahavanichkul A, Wanichwecharungruang S. Converting Short-Acting Insulin into Thermo-Stable Longer-Acting Insulin Using Multi-Layer Detachable Microneedles. J Pharm Sci 2024; 113:2734-2743. [PMID: 38857645 DOI: 10.1016/j.xphs.2024.06.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 06/05/2024] [Accepted: 06/05/2024] [Indexed: 06/12/2024]
Abstract
The detachable dissolving microneedles (DDMNs) feature an array of needles capable of being separated from the base sheet during administration. Here they were fabricated to address delivery efficiency and storage stability of insulin. The constructed insulin-DDMN is multi-layered, with 1) a hard tip cover layer; 2) a layer of regular short-acting insulin (RI) mixed with hyaluronic acid (HA) and sorbitol (Sor) which occupies the taper tip region of the needles; 3) a barrier layer situated above the RI layer; and 4) a fast-dissolving layer connecting the barrier layer to the base sheet. RI entrapped in DDMNs exhibited enhanced thermal stability; it could be stored at 40 °C for 35 days without losing significant biological activity. Differential scanning calorimetric analysis revealed that the HA-Sor matrix could improve the denaturation temperature of the RI from lower than room temperature to 186 °C. Tests in ex vivo porcine skin demonstrated RI delivery efficiency of 91±1.59 %. Experiments with diabetic rats revealed sustained release of RI, i.e., when compared to subcutaneous injection with the same RI dose, RI-DDMNs produced slower absorption of insulin into blood circulation, delayed onset of hypoglycemic effect, longer serum insulin half-life, and longer hypoglycemic duration.
Collapse
Affiliation(s)
- Theerapat Phoka
- Center of Excellence in Materials and Bio-Interfaces, Department of Chemistry, Faculty of Science, Chulalongkorn University, Bangkok, Thailand
| | | | - Narintorn Dueanphen
- Center of Excellence in Materials and Bio-Interfaces, Department of Chemistry, Faculty of Science, Chulalongkorn University, Bangkok, Thailand
| | | | | | - Asada Leelahavanichkul
- Department of Microbiology, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand; Center of Excellence on Translational Research in Inflammation and Immunology (CETRII), Department of Microbiology, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Supason Wanichwecharungruang
- Center of Excellence in Materials and Bio-Interfaces, Department of Chemistry, Faculty of Science, Chulalongkorn University, Bangkok, Thailand.
| |
Collapse
|
6
|
Yang Z, Li H, Yang B, Liu Y. Albumin-Based Microneedles for Spatiotemporal Delivery of Temozolomide and Niclosamide to Resistant Glioblastoma. ACS APPLIED MATERIALS & INTERFACES 2024; 16:44518-44527. [PMID: 39145481 DOI: 10.1021/acsami.4c09394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/16/2024]
Abstract
Glioblastoma (GBM) is the most common and aggressive malignant brain tumor. Standard therapy includes maximal surgical resection, radiotherapy, and adjuvant temozolomide (TMZ) administration. However, the rapid development of TMZ resistance and the impermeability of the blood-brain barrier (BBB) significantly hinder the therapeutic efficacy. Herein, we developed spatiotemporally controlled microneedle patches (BMNs) loaded with TMZ and niclosamide (NIC) to overcome GBM resistance. We found that hyaluronic acid (HA) increased the viscosity of bovine serum albumin (BSA) and evidenced that concentrations of BSA/HA exert an impact degradation rates exposure to high-temperature treatment, showing that the higher BSA/HA concentrations result in slower drug release. To optimize drug release rates and ensure synergistic antitumor effects, a 15% BSA/HA solution constituting the bottoms of BMNs was chosen to load TMZ, showing sustained drug release for over 28 days, guaranteeing long-term DNA damage in TMZ-resistant cells (U251-TR). Needle tips made from 10% BSA/HA solution loaded with NIC released the drug within 14 days, enhancing TMZ's efficacy by inhibiting the activity of O6-methylguanine-DNA methyltransferase (MGMT). BMNs exhibit superior mechanical properties, bypass the BBB, and gradually release the drug into the tumor periphery, thus significantly inhibiting tumor proliferation and expanding median survival in mice. The on-demand delivery of BMNs patches shows a strong translational potential for clinical applications, particularly in synergistic GBM treatment.
Collapse
Affiliation(s)
- Zhipeng Yang
- Institute of Biomedical Engineering and Technology, Academy for Engineering & Technology, Fudan University, Shanghai 200433, China
| | - Haoyuan Li
- Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, New York 10029, United States
| | - Biao Yang
- Shanghai Medical College, Fudan University, Shanghai 200040, China
| | - Yanjie Liu
- Henan University of Chinese Medicine, Zhengzhou, Henan 450046, China
| |
Collapse
|
7
|
Bao Q, Zhang X, Hao Z, Li Q, Wu F, Wang K, Li Y, Li W, Gao H. Advances in Polysaccharide-Based Microneedle Systems for the Treatment of Ocular Diseases. NANO-MICRO LETTERS 2024; 16:268. [PMID: 39136800 PMCID: PMC11322514 DOI: 10.1007/s40820-024-01477-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Accepted: 07/06/2024] [Indexed: 08/16/2024]
Abstract
The eye, a complex organ isolated from the systemic circulation, presents significant drug delivery challenges owing to its protective mechanisms, such as the blood-retinal barrier and corneal impermeability. Conventional drug administration methods often fail to sustain therapeutic levels and may compromise patient safety and compliance. Polysaccharide-based microneedles (PSMNs) have emerged as a transformative solution for ophthalmic drug delivery. However, a comprehensive review of PSMNs in ophthalmology has not been published to date. In this review, we critically examine the synergy between polysaccharide chemistry and microneedle technology for enhancing ocular drug delivery. We provide a thorough analysis of PSMNs, summarizing the design principles, fabrication processes, and challenges addressed during fabrication, including improving patient comfort and compliance. We also describe recent advances and the performance of various PSMNs in both research and clinical scenarios. Finally, we review the current regulatory frameworks and market barriers that are relevant to the clinical and commercial advancement of PSMNs and provide a final perspective on this research area.
Collapse
Affiliation(s)
- Qingdong Bao
- State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Eye Institute of Shandong First Medical University, Qingdao, 266071, People's Republic of China
- Eye Hospital of Shandong First Medical University, Jinan, 250021, People's Republic of China
- College of Ophthalmology, Shandong First Medical University, Jinan, 250000, People's Republic of China
| | - Xiaoting Zhang
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, 350002, People's Republic of China
| | - Zhankun Hao
- College of Ophthalmology, Shandong First Medical University, Jinan, 250000, People's Republic of China
| | - Qinghua Li
- State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Eye Institute of Shandong First Medical University, Qingdao, 266071, People's Republic of China
- Eye Hospital of Shandong First Medical University, Jinan, 250021, People's Republic of China
- College of Ophthalmology, Shandong First Medical University, Jinan, 250000, People's Republic of China
| | - Fan Wu
- College of Ophthalmology, Shandong First Medical University, Jinan, 250000, People's Republic of China
| | - Kaiyuan Wang
- Departments of Diagnostic Radiology, Surgery, Chemical and Biomolecular Engineering, and Biomedical Engineering, Yong Loo Lin School of Medicine and College of Design and Engineering, National University of Singapore, Singapore, 119074, Singapore
| | - Yang Li
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, 350002, People's Republic of China.
| | - Wenlong Li
- State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Eye Institute of Shandong First Medical University, Qingdao, 266071, People's Republic of China.
- Eye Hospital of Shandong First Medical University, Jinan, 250021, People's Republic of China.
- College of Ophthalmology, Shandong First Medical University, Jinan, 250000, People's Republic of China.
| | - Hua Gao
- State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Eye Institute of Shandong First Medical University, Qingdao, 266071, People's Republic of China.
- Eye Hospital of Shandong First Medical University, Jinan, 250021, People's Republic of China.
- College of Ophthalmology, Shandong First Medical University, Jinan, 250000, People's Republic of China.
| |
Collapse
|
8
|
Li H, Shi Y, Ding X, Zhen C, Lin G, Wang F, Tang B, Li X. Recent advances in transdermal insulin delivery technology: A review. Int J Biol Macromol 2024; 274:133452. [PMID: 38942414 DOI: 10.1016/j.ijbiomac.2024.133452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Revised: 06/23/2024] [Accepted: 06/24/2024] [Indexed: 06/30/2024]
Abstract
Transdermal drug delivery refers to the administration of drugs through the skin, after which the drugs can directly act on or circulate through the body to the target organs or cells and avoid the first-pass metabolism in the liver and kidneys experienced by oral drugs, reducing the risk of drug poisoning. From the initial singular approach to transdermal drug delivery, there has been a shift toward combining multiple methods to enhance drug permeation efficiency and address the limitations of individual approaches. Technological advancements have also improved the accuracy of drug delivery. Optimizing insulin itself also enables its long-term release via needle-free injectors. In this review, the diverse transdermal delivery methods employed in insulin therapy and their respective advantages and limitations are discussed. By considering factors such as the principles of transdermal penetration, drug delivery efficiency, research progress, synergistic innovations among different methods, patient compliance, skin damage, and posttreatment skin recovery, a comprehensive evaluation is presented, along with prospects for potential novel combinatorial approaches. Furthermore, as insulin is a macromolecular drug, insights gained from its transdermal delivery may also serve as a valuable reference for the use of other macromolecular drugs for treatment.
Collapse
Affiliation(s)
- Heng Li
- School of Mechanical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China; Shandong Institute of Mechanical Design and Research, Jinan 250031, China
| | - Yanbin Shi
- School of Mechanical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China; Shandong Institute of Mechanical Design and Research, Jinan 250031, China; School of Arts and Design, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China.
| | - Xinbing Ding
- School of Mechanical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China; Shandong Institute of Mechanical Design and Research, Jinan 250031, China.
| | - Chengdong Zhen
- School of Mechanical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China; Shandong Institute of Mechanical Design and Research, Jinan 250031, China
| | - Guimei Lin
- School of Pharmaceutical Science, Shandong University, Jinan 250012, China.
| | - Fei Wang
- School of Mechanical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China; Shandong Institute of Mechanical Design and Research, Jinan 250031, China.
| | - Bingtao Tang
- School of Mechanical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China; Shandong Institute of Mechanical Design and Research, Jinan 250031, China
| | - Xuelin Li
- School of Arts and Design, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China
| |
Collapse
|
9
|
Qureshi S, Alavi SE, Mohammed Y. Microsponges: Development, Characterization, and Key Physicochemical Properties. Assay Drug Dev Technol 2024; 22:229-245. [PMID: 38661260 DOI: 10.1089/adt.2023.052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/26/2024] Open
Abstract
Microsponges are promising drug delivery carriers with versatile characteristics and controlled release properties for the delivery of a wide range of drugs. The microsponges will provide an optimized therapeutic effect, when delivered at the site of action without rupturing, then releasing the cargo at the predetermined time and area. The ability of the microsponges to effectively deliver the drug in a controlled manner depends on the material composition. This comprehensive review entails knowledge on the design parameters of an optimized microsponge drug delivery system and the controlled release properties of microsponges that reduces the side effects of drugs. Furthermore, the review delves into the fabrication techniques of microsponges, the mechanism of drug release from the microsponges, and the regulatory requirements of the U.S. Food and Drug Administration (FDA) for the successful marketing of microsponge formulation. The review also examines the patented formulations of microsponges. The prospects of these sophisticated drug delivery systems for improved clinical outcomes are highlighted.
Collapse
Affiliation(s)
- Sundus Qureshi
- Department of Pharmacy, The University of Lahore, Lahore, Pakistan
| | - Seyed Ebrahim Alavi
- Frazer Institute, Faculty of Medicine, University of Queensland, Brisbane, Australia
| | - Yousuf Mohammed
- Frazer Institute, Faculty of Medicine, University of Queensland, Brisbane, Australia
- School of Pharmacy, The University of Queensland, Brisbane, Australia
| |
Collapse
|
10
|
Cong J, Zheng Z, Fu Y, Chang Z, Chen C, Wu C, Pan X, Huang Z, Quan G. Spatiotemporal fate of nanocarriers-embedded dissolving microneedles: the impact of needle dissolving rate. Expert Opin Drug Deliv 2024; 21:965-974. [PMID: 38962819 DOI: 10.1080/17425247.2024.2375385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Accepted: 06/13/2024] [Indexed: 07/05/2024]
Abstract
OBJECTIVE Dissolving microneedles (DMNs) have shown great potential for transdermal drug delivery due to their excellent skin-penetrating ability and combination with nanocarriers (NCs) can realize targeted drug delivery. The objective of this study was to investigate the impact of microneedle dissolving rate on the in vivo fate of NC-loaded DMNs, which would facilitate the clinical translation of such systems. METHODS Solid lipid nanoparticles (SLNs) were selected as the model NC for loading in DMNs, which were labeled by P4 probes with aggregation-quenching properties. Sodium hyaluronate acid (HA) and chitosan (CS), with different aqueous dissolving rates, were chosen as model tip materials. The effects of needle dissolving rate on the in vivo fate of NC-loaded DMNs was investigated by tracking the distribution of fluorescence signals after transdermal exposure. RESULTS P4 SLNs achieved a deeper diffusion depth of 180 μm in DMN-HA with a faster dissolution rate, while the diffusion depth in DMN-CS with a slower dissolution rate was lower (140 μm). The in vivo experiments demonstrated that P4 SLNs had a T1/2 value of 12.14 h in DMN-HA, whilst a longer retention time was found in DMN-CS, with a T1/2 of 13.12 h. CONCLUSIONS This study confirmed that the in vivo diffusion rate of NC-loaded DMNs was determined by the dissolving rate of DMNs materials and provided valuable guidance for the design and development of NC-loaded DMNs in the future.
Collapse
Affiliation(s)
- Jinghang Cong
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Jinan University, Guangzhou, China
- College of Pharmacy, Jinan University, Guangzhou, China
| | - Ziyang Zheng
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Jinan University, Guangzhou, China
| | - Yanping Fu
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Jinan University, Guangzhou, China
- College of Pharmacy, Jinan University, Guangzhou, China
| | - Ziyao Chang
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China
| | - Chuangxin Chen
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Jinan University, Guangzhou, China
- College of Pharmacy, Jinan University, Guangzhou, China
| | - Chuanbin Wu
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Jinan University, Guangzhou, China
- College of Pharmacy, Jinan University, Guangzhou, China
| | - Xin Pan
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China
| | - Zhengwei Huang
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Jinan University, Guangzhou, China
- College of Pharmacy, Jinan University, Guangzhou, China
| | - Guilan Quan
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Jinan University, Guangzhou, China
- College of Pharmacy, Jinan University, Guangzhou, China
| |
Collapse
|
11
|
Khairnar P, Phatale V, Shukla S, Tijani AO, Hedaoo A, Strauss J, Verana G, Vambhurkar G, Puri A, Srivastava S. Nanocarrier-Integrated Microneedles: Divulging the Potential of Novel Frontiers for Fostering the Management of Skin Ailments. Mol Pharm 2024; 21:2118-2147. [PMID: 38660711 DOI: 10.1021/acs.molpharmaceut.4c00144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/26/2024]
Abstract
The various kinds of nanocarriers (NCs) have been explored for the delivery of therapeutics designed for the management of skin manifestations. The NCs are considered as one of the promising approaches for the skin delivery of therapeutics attributable to sustained release and enhanced skin penetration. Despite the extensive applications of the NCs, the challenges in their delivery via skin barrier (majorly stratum corneum) have persisted. To overcome all the challenges associated with the delivery of NCs, the microneedle (MN) technology has emerged as a beacon of hope. Programmable drug release, being painless, and its minimally invasive nature make it an intriguing strategy to circumvent the multiple challenges associated with the various drug delivery systems. The integration of positive traits of NCs and MNs boosts therapeutic effectiveness by evading stratum corneum, facilitating the delivery of NCs through the skin and enhancing their targeted delivery. This review discusses the barrier function of skin, the importance of MNs, the types of MNs, and the superiority of NC-loaded MNs. We highlighted the applications of NC-integrated MNs for the management of various skin ailments, combinational drug delivery, active targeting, in vivo imaging, and as theranostics. The clinical trials, patent portfolio, and marketed products of drug/NC-integrated MNs are covered. Finally, regulatory hurdles toward benchtop-to-bedside translation, along with promising prospects needed to scale up NC-integrated MN technology, have been deliberated. The current review is anticipated to deliver thoughtful visions to researchers, clinicians, and formulation scientists for the successful development of the MN-technology-based product by carefully optimizing all the formulation variables.
Collapse
Affiliation(s)
- Pooja Khairnar
- Pharmaceutical Innovation and Translational Research Lab (PITRL), Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, Telangana 500037, India
| | - Vivek Phatale
- Pharmaceutical Innovation and Translational Research Lab (PITRL), Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, Telangana 500037, India
| | - Shalini Shukla
- Pharmaceutical Innovation and Translational Research Lab (PITRL), Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, Telangana 500037, India
| | - Akeemat O Tijani
- Department of Pharmaceutical Sciences, Bill Gatton College of Pharmacy, East Tennessee State University, Johnson City, Tennessee 37614, United States
| | - Aachal Hedaoo
- Pharmaceutical Innovation and Translational Research Lab (PITRL), Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, Telangana 500037, India
| | - Jordan Strauss
- Department of Pharmaceutical Sciences, Bill Gatton College of Pharmacy, East Tennessee State University, Johnson City, Tennessee 37614, United States
| | - Gabrielle Verana
- Department of Pharmaceutical Sciences, Bill Gatton College of Pharmacy, East Tennessee State University, Johnson City, Tennessee 37614, United States
| | - Ganesh Vambhurkar
- Pharmaceutical Innovation and Translational Research Lab (PITRL), Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, Telangana 500037, India
| | - Ashana Puri
- Department of Pharmaceutical Sciences, Bill Gatton College of Pharmacy, East Tennessee State University, Johnson City, Tennessee 37614, United States
| | - Saurabh Srivastava
- Pharmaceutical Innovation and Translational Research Lab (PITRL), Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, Telangana 500037, India
| |
Collapse
|
12
|
Liu H, Zhou X, Nail A, Yu H, Yu Z, Sun Y, Wang K, Bao N, Meng D, Zhu L, Li H. Multi-material 3D printed eutectogel microneedle patches integrated with fast customization and tunable drug delivery. J Control Release 2024; 368:115-130. [PMID: 38367865 DOI: 10.1016/j.jconrel.2024.02.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 01/21/2024] [Accepted: 02/14/2024] [Indexed: 02/19/2024]
Abstract
Microneedle patches are emerging multifunctional platforms for transdermal diagnostics and drug delivery. However, it still remains challenging to develop smart microneedles integrated with customization, sensing, detection and drug delivery by 3D printing strategy. Here, we present an innovative but facile strategy to rationally design and fabricate multifunctional eutectogel microneedle (EMN) patches via multi-material 3D printing. Polymerizable deep eutectic solvents (PDES) were selected as printing inks for rapid one-step fabrication of 3D printing functional EMN patches due to fast photopolymerization rate and ultrahigh drug solubility. Moreover, stretchable EMN patches incorporating rigid needles and flexible backing layers were easily realized by changing PDES compositions of multi-material 3D printing. Meanwhile, we developed multifunctional smart multi-material EMN patches capable of performing wireless monitoring of body movements, painless colorimetric glucose detection, and controlled transdermal drug delivery. Thus, such multi-material EMN system could provide an effective platform for the painless diagnosis, detection, and therapy of a variety of diseases.
Collapse
Affiliation(s)
- Huan Liu
- Key Laboratory of Cluster Science of Ministry of Education, Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering of Ministry of Industry and Information Technology, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Xinmeng Zhou
- Key Laboratory of Cluster Science of Ministry of Education, Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering of Ministry of Industry and Information Technology, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Aminov Nail
- Key Laboratory of Cluster Science of Ministry of Education, Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering of Ministry of Industry and Information Technology, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Hao Yu
- Key Laboratory of Cluster Science of Ministry of Education, Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering of Ministry of Industry and Information Technology, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Zilian Yu
- Key Laboratory of Cluster Science of Ministry of Education, Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering of Ministry of Industry and Information Technology, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Yue Sun
- Key Laboratory of Cluster Science of Ministry of Education, Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering of Ministry of Industry and Information Technology, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Kun Wang
- Key Laboratory of Cluster Science of Ministry of Education, Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering of Ministry of Industry and Information Technology, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Nanbin Bao
- Key Laboratory of Cluster Science of Ministry of Education, Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering of Ministry of Industry and Information Technology, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Decheng Meng
- Key Laboratory of Cluster Science of Ministry of Education, Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering of Ministry of Industry and Information Technology, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Liran Zhu
- Key Laboratory of Cluster Science of Ministry of Education, Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering of Ministry of Industry and Information Technology, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Huanjun Li
- Key Laboratory of Cluster Science of Ministry of Education, Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering of Ministry of Industry and Information Technology, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, China.
| |
Collapse
|
13
|
Zhao P, Li Z, Ling Z, Zheng Y, Chang H. Efficient Loading and Sustained Delivery of Methotrexate Using a Tip-Swellable Microneedle Array Patch for Psoriasis Treatment. ACS Biomater Sci Eng 2024; 10:921-931. [PMID: 38288701 DOI: 10.1021/acsbiomaterials.3c01810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/13/2024]
Abstract
Methotrexate (MTX), a primary treatment for moderate to severe psoriasis, is limited in clinical use due to suboptimal results and severe side effects from subcutaneous (SC) injection and oral administration. Microneedles offer a promising alternative for direct MTX delivery to targeted skin lesions, but issues such as drug wastage, dosage inaccuracy, and limited drug residence time in the lesions remain. This study introduces a tip-swellable microneedle array patch (TSMAP) using photo-cross-linked methacrylated hyaluronic acid (MeHA) and biocompatible resin for effective MTX loading and sustained delivery. A two-cast micromolding with vacuum drying is employed to concentrate cross-linked MeHA in about 30% of the needle's height at the tip, thereby ensuring that only the TSMAP tip swells. Efficient MTX loading into TSMAP tips is achieved through a 30 s drug solution immersion and 10 min drying, potentially minimizing drug waste from incomplete skin insertion due to skin elasticity. The MTX-loaded TSMAP effectively penetrates both porcine and psoriasis-like mouse skin with its tips detaching from the resin substrate and embedding deeply into the skin tissue, thereby functioning as a drug release reservoir. TSMAP significantly prolongs drug retention in skin compared with SC injection and dissolvable microneedles. The in vivo study demonstrates that TSMAP-mediated MTX delivery substantially enhances therapeutic outcomes in alleviating psoriasis symptoms and downregulating psoriasis-associated cytokines, outperforming oral administration, SC injection, and dissolvable microneedles. Thus, TSMAP could offer an efficient and user-friendly alternative for drug administration in the treatment of various skin diseases.
Collapse
Affiliation(s)
- Puxuan Zhao
- College of Materials Science and Engineering, Zhejiang University of Technology, Zhejiang, Hangzhou 310014, China
- Hangzhou Institute of Medicine, Chinese Academy of Sciences, Zhejiang, Hangzhou 310022, China
| | - Zhiming Li
- Hangzhou Institute of Medicine, Chinese Academy of Sciences, Zhejiang, Hangzhou 310022, China
| | - Zhixin Ling
- Hangzhou Institute of Medicine, Chinese Academy of Sciences, Zhejiang, Hangzhou 310022, China
| | - Yanting Zheng
- Hangzhou Institute of Medicine, Chinese Academy of Sciences, Zhejiang, Hangzhou 310022, China
- College of Pharmaceutical Sciences, Zhejiang University of Technology, Zhejiang, Hangzhou 310014, China
| | - Hao Chang
- Hangzhou Institute of Medicine, Chinese Academy of Sciences, Zhejiang, Hangzhou 310022, China
| |
Collapse
|
14
|
Xu P, Xiao W, Xu K, He Y, Miao X, Dong Y, Sun L. Potential strategy of microneedle-based transdermal drug delivery system for effective management of skin-related immune disorders. Eur J Pharm Biopharm 2024; 195:114148. [PMID: 37995878 DOI: 10.1016/j.ejpb.2023.11.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 11/03/2023] [Accepted: 11/16/2023] [Indexed: 11/25/2023]
Abstract
Skin-related immune disorders are a category of diseases that lead to the dysregulation of the body's immune response due to imbalanced immune regulation. These disorders exhibit diverse clinical manifestations and complicated pathogenesis. The long-term use of corticosteroids, anti-inflammatory drugs, and immunosuppressants as traditional treatment methods for skin-related immune disorders frequently leads to adverse reactions in patients. In addition, the effect of external preparations is not ideal in some cases due to the compacted barrier function of the stratum corneum (SC). Microneedles (MNs) are novel transdermal drug delivery systems that have theapparent advantages ofpenetrating the skin barrier, such as long-term and controlled drug delivery, less systemic exposure, and painless and minimally invasive targeted delivery. These advantages make it a good candidate formulation for the treatment of skin-related immune disorders and a hotspot for research in this field. This paper updates the classification, preparation, evaluation strategies, materials, and related applications of five types of MNs. Specific information, including the mechanical properties, dimensions, stability, and in vitro and in vivo evaluations of MNs in the treatment of skin-related immune disorders, is also discussed. This review provides an overview of the advances and applications of MNs in the effective treatment of skin-related immune disorders and their emerging trends.
Collapse
Affiliation(s)
- Peng Xu
- Department of Zhuhai Campus of Zunyi Medical University, Zhuhai 519041, China
| | - Wei Xiao
- Department of Zhuhai Campus of Zunyi Medical University, Zhuhai 519041, China
| | - Kun Xu
- Department of Zhuhai Campus of Zunyi Medical University, Zhuhai 519041, China
| | - Yuan He
- Department of Pharmacy, Xuzhou Medical University, Xuzhou 221004, China
| | - Xiaoqing Miao
- Marine College, Shandong University, Weihai 264209, China
| | - Yan Dong
- Department of Zhuhai Campus of Zunyi Medical University, Zhuhai 519041, China
| | - Lin Sun
- Department of Zhuhai Campus of Zunyi Medical University, Zhuhai 519041, China.
| |
Collapse
|
15
|
Tay JH, Lim YH, Zheng M, Zhao Y, Tan WS, Xu C, Ramamurty U, Song J. Development of hyaluronic acid-silica composites via in situ precipitation for improved penetration efficiency in fast-dissolving microneedle systems. Acta Biomater 2023; 172:175-187. [PMID: 37865280 DOI: 10.1016/j.actbio.2023.10.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 09/13/2023] [Accepted: 10/11/2023] [Indexed: 10/23/2023]
Abstract
Fast-dissolving microneedles (DMNs) hold significant promise for transdermal drug delivery, offering improved patient compliance, biocompatibility, and functional adaptability for various therapeutic purposes. However, the mechanical strength of the biodegradable polymers used in DMNs often proves insufficient for effective penetration into human skin, especially under high humidity conditions. While many composite strategies have been developed to reinforce polymer-based DMNs, simple mixing of the reinforcements with polymers often results in ineffective penetration due to inhomogeneous dispersion of the reinforcements and the formation of undesired micropores. In response to this challenge, this study aimed to enhance the mechanical performance of hyaluronic acid (HA)-based microneedles (MNs), one of the most commonly used DMN systems. We introduced in situ precipitation of silica nanoparticles (Si) into the HA matrix in conjunction with conventional micromolding. The precipitated silica nanoparticles were uniformly distributed, forming an interconnected network within the HA matrix. Experimental results demonstrated that the mechanical properties of the HA-Si composite MNs with up to 20 vol% Si significantly improved, leading to higher penetration efficiency compared to pure HA MNs, while maintaining structural integrity without any critical defects. The composite MNs also showed reduced degradation rates and preserved their drug delivery capabilities and biocompatibility. Thus, the developed HA-Si composite MNs present a promising solution for efficient transdermal drug delivery and address the mechanical limitations inherent in DMN systems. STATEMENT OF SIGNIFICANCE: HA-Si composite dissolving microneedle (DMN) systems were successfully fabricated through in situ precipitation and conventional micromolding processes. The precipitated silica nanoparticles formed an interconnected network within the HA matrix, ranging in size from 25 to 230 nm. The optimal silica content for HA-Si composite MN systems should be up to 20 % by volume to maintain structural integrity and mechanical properties. HA-Si composite MNs with up to 20 % Si showed improved penetration efficiency and reduced degradation rates compared to pure HA MNs, thereby expanding the operational window. The HA-Si composite MNs retained good drug delivery capabilities and biocompatibility.
Collapse
Affiliation(s)
- Jie Hao Tay
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 639798, Singapore
| | - Yu Han Lim
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 639798, Singapore
| | - Mengjia Zheng
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong SAR, China
| | - Yakai Zhao
- Institute of Materials Research and Engineering, Agency for Science, Technology and Research, 138634, Singapore
| | - Wen See Tan
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 639798, Singapore; Singapore Centre for 3D Printing, Nanyang Technological University, Singapore, 639798, Singapore
| | - Chenjie Xu
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong SAR, China
| | - Upadrasta Ramamurty
- Institute of Materials Research and Engineering, Agency for Science, Technology and Research, 138634, Singapore; Singapore Centre for 3D Printing, Nanyang Technological University, Singapore, 639798, Singapore; School of Mechanical and Aerospace Engineering, Nanyang Technological University, 639798, Singapore
| | - Juha Song
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 639798, Singapore; Singapore Centre for 3D Printing, Nanyang Technological University, Singapore, 639798, Singapore.
| |
Collapse
|
16
|
Peng X, Li X, Xie B, Lai Y, Sosnik A, Boucetta H, Chen Z, He W. Gout therapeutics and drug delivery. J Control Release 2023; 362:728-754. [PMID: 37690697 DOI: 10.1016/j.jconrel.2023.09.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Revised: 09/02/2023] [Accepted: 09/04/2023] [Indexed: 09/12/2023]
Abstract
Gout is a common inflammatory arthritis caused by persistently elevated uric acid levels. With the improvement of people's living standards, the consumption of processed food and the widespread use of drugs that induce elevated uric acid, gout rates are increasing, seriously affecting the human quality of life, and becoming a burden to health systems worldwide. Since the pathological mechanism of gout has been elucidated, there are relatively effective drug treatments in clinical practice. However, due to (bio)pharmaceutical shortcomings of these drugs, such as poor chemical stability and limited ability to target the pathophysiological pathways, traditional drug treatment strategies show low efficacy and safety. In this scenario, drug delivery systems (DDS) design that overcome these drawbacks is urgently called for. In this review, we initially describe the pathological features, the therapeutic targets, and the drugs currently in clinical use and under investigation to treat gout. We also comprehensively summarize recent research efforts utilizing lipid, polymeric and inorganic carriers to develop advanced DDS for improved gout management and therapy.
Collapse
Affiliation(s)
- Xiuju Peng
- Department of Pharmaceutics, School of Pharmacy, China Pharmaceutical University, Nanjing 2111198, PR China
| | - Xiaotong Li
- Department of Pharmaceutics, School of Pharmacy, China Pharmaceutical University, Nanjing 2111198, PR China
| | - Bing Xie
- Department of Pharmaceutics, School of Pharmacy, China Pharmaceutical University, Nanjing 2111198, PR China
| | - Yaoyao Lai
- Department of Pharmaceutics, School of Pharmacy, China Pharmaceutical University, Nanjing 2111198, PR China
| | - Alejandro Sosnik
- Department of Materials Science and Engineering, Technion - Israel Institute of Technology, Technion City, Haifa 3200003, Israel
| | - Hamza Boucetta
- Department of Pharmaceutics, School of Pharmacy, China Pharmaceutical University, Nanjing 2111198, PR China
| | - Zhongjian Chen
- Shanghai Skin Disease Hospital, Tongji University School of Medicine, Shanghai 200443, China.
| | - Wei He
- Department of Pharmaceutics, School of Pharmacy, China Pharmaceutical University, Nanjing 2111198, PR China; Shanghai Skin Disease Hospital, Tongji University School of Medicine, Shanghai 200443, China.
| |
Collapse
|
17
|
Wang H, Xu J, Xiang L. Microneedle-Mediated Transcutaneous Immunization: Potential in Nucleic Acid Vaccination. Adv Healthc Mater 2023; 12:e2300339. [PMID: 37115817 DOI: 10.1002/adhm.202300339] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 04/07/2023] [Indexed: 04/29/2023]
Abstract
Efforts aimed at exploring economical and efficient vaccination have taken center stage to combat frequent epidemics worldwide. Various vaccines have been developed for infectious diseases, among which nucleic acid vaccines have attracted much attention from researchers due to their design flexibility and wide application. However, the lack of an efficient delivery system considerably limits the clinical translation of nucleic acid vaccines. As mass vaccinations via syringes are limited by low patient compliance and high costs, microneedles (MNs), which can achieve painless, cost-effective, and efficient drug delivery, can provide an ideal vaccination strategy. The MNs can break through the stratum corneum barrier in the skin and deliver vaccines to the immune cell-rich epidermis and dermis. In addition, the feasibility of MN-mediated vaccination is demonstrated in both preclinical and clinical studies and has tremendous potential for the delivery of nucleic acid vaccines. In this work, the current status of research on MN vaccines is reviewed. Moreover, the improvements of MN-mediated nucleic acid vaccination are summarized and the challenges of its clinical translation in the future are discussed.
Collapse
Affiliation(s)
- Haochen Wang
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
| | - Junhua Xu
- Biopharmaceutical Research Institute, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Lin Xiang
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
- Department of Oral Implantology, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
| |
Collapse
|
18
|
Dul M, Alali M, Ameri M, Burke MD, Craig CM, Creelman BP, Dick L, Donnelly RF, Eakins MN, Frivold C, Forster AH, Gilbert PA, Henke S, Henry S, Hunt D, Lewis H, Maibach HI, Mistilis JJ, Park JH, Prausnitz MR, Robinson DK, Hernandez CAR, Ross C, Shin J, Speaker TJ, Taylor KM, Zehrung D, Birchall JC, Jarrahian C, Coulman SA. Assessing the risk of a clinically significant infection from a Microneedle Array Patch (MAP) product. J Control Release 2023; 361:236-245. [PMID: 37437849 DOI: 10.1016/j.jconrel.2023.07.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 06/28/2023] [Accepted: 07/01/2023] [Indexed: 07/14/2023]
Abstract
Microneedle Array Patches (MAPs) are an emerging dosage form that creates transient micron-sized disruptions in the outermost physical skin barrier, the stratum corneum, to facilitate delivery of active pharmaceutical ingredients to the underlying tissue. Numerous MAP products are proposed and there is significant clinical potential in priority areas such as vaccination. However, since their inception scientists have hypothesized about the risk of a clinically significant MAP-induced infection. Safety data from two major Phase 3 clinical trials involving hundreds of participants, who in total received tens of thousands of MAP applications, does not identify any clinically significant infections. However, the incumbent data set is not extensive enough to make definitive generalizable conclusions. A comprehensive assessment of the infection risk is therefore advised for MAP products, and this should be informed by clinical and pre-clinical data, theoretical analysis and informed opinions. In this article, a group of key stakeholders identify some of the key product- and patient-specific factors that may contribute to the risk of infection from a MAP product and provide expert opinions in the context of guidance from regulatory authorities. Considerations that are particularly pertinent to the MAP dosage form include the specifications of the finished product (e.g. microbial specification), it's design features, the setting for administration, the skill of the administrator, the anatomical application site, the target population and the clinical context. These factors, and others discussed in this article, provide a platform for the development of MAP risk assessments and a stimulus for early and open dialogue between developers, regulatory authorities and other key stakeholders, to expedite and promote development of safe and effective MAP products.
Collapse
Affiliation(s)
- Maria Dul
- Cardiff School of Pharmacy and Pharmaceutical Sciences, Cardiff University, Cardiff, UK
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | - Howard I Maibach
- Department of Dermatology, University of California San Francisco, San Francisco, CA, USA
| | | | - Jung-Hwan Park
- Department of Bionano Technology, Gachon University, Seongnam, Republic of Korea
| | - Mark R Prausnitz
- School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, Atlanta, GA, USA
| | | | | | | | | | | | - Kevin Michael Taylor
- University College London School of Pharmacy, British Pharmacopoeia Commission, UK
| | | | - James C Birchall
- Cardiff School of Pharmacy and Pharmaceutical Sciences, Cardiff University, Cardiff, UK
| | | | - Sion A Coulman
- Cardiff School of Pharmacy and Pharmaceutical Sciences, Cardiff University, Cardiff, UK.
| |
Collapse
|
19
|
Wang Y, Wu Y, Lei Y. Microneedle-based glucose monitoring: a review from sampling methods to wearable biosensors. Biomater Sci 2023; 11:5727-5757. [PMID: 37431216 DOI: 10.1039/d3bm00409k] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/12/2023]
Abstract
Blood glucose (BG) monitoring is critical for diabetes management. In recent years, microneedle (MN)-based technology has attracted emerging attention in glucose sensing and detection. In this review, we summarized MN-based sampling for glucose collection and glucose analysis in detail. First, different principles of MN-based biofluid extraction were elaborated, including external negative pressure, capillary force, swelling force and iontophoresis, which would guide the shape design and material optimization of MNs. Second, MNs coupled with different analysis approaches, including Raman methods, colorimetry, fluorescence, and electrochemical sensing, were emphasized to exhibit the trend towards highly integrated wearable sensors. Finally, the future development prospects of MN-based devices were discussed.
Collapse
Affiliation(s)
- Yan Wang
- School of Power and Mechanical Engineering & The Institute of Technological Science, Wuhan University, Wuhan 430072, China.
| | - You Wu
- School of Power and Mechanical Engineering & The Institute of Technological Science, Wuhan University, Wuhan 430072, China.
| | - Yifeng Lei
- School of Power and Mechanical Engineering & The Institute of Technological Science, Wuhan University, Wuhan 430072, China.
- Wuhan University Shenzhen Research Institute, Shenzhen 518057, China
| |
Collapse
|
20
|
Zhang J, Li H, Albakr L, Zhang Y, Lu A, Chen W, Shao T, Zhu L, Yuan H, Yang G, Wheate NJ, Kang L, Wu C. Microneedle-enabled therapeutics delivery and biosensing in clinical trials. J Control Release 2023; 360:687-704. [PMID: 37442203 DOI: 10.1016/j.jconrel.2023.07.023] [Citation(s) in RCA: 19] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 06/16/2023] [Accepted: 07/10/2023] [Indexed: 07/15/2023]
Abstract
Microneedles (MNs) are micron-sized protrusions attached to a range of devices that are used in therapeutic delivery and diagnosis. Because MNs can be self-applied, are painless, and can carry multiple therapeutic agents, they have received extensive attention, and have been widely investigated, for local and systemic therapy. Many researchers are currently working to extend the use of MNs to clinical applications. In this review, we provide an update and analysis on MN-based clinical trials since their inception in 2007. The MNs in clinical trials are classified into five types based on their appearance and properties, including: hollow MNs, MN patches, radiofrequency MNs, MN rollers, and other MNs. The various aspects of MN trials are summarized, such as MN types, clinical trial time, and trial regions. This review aims to present an overview of MN development and provide insights for future research in this field. To our knowledge, this is the first review focused on MN clinical trials which showcases the latest applications of this advanced technology in medicine.
Collapse
Affiliation(s)
- Junying Zhang
- Department of TCMs Pharmaceuticals, China Pharmaceutical University, Nanjing 210009, China
| | - Hailiang Li
- Department of TCMs Pharmaceuticals, China Pharmaceutical University, Nanjing 210009, China
| | - Lamyaa Albakr
- School of Pharmacy, Faculty of Medicine and Health, University of Sydney, Pharmacy and Bank Building A15, NSW 2006, Australia; Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh 11454, Saudi Arabia
| | - Yiwen Zhang
- Department of TCMs Pharmaceuticals, China Pharmaceutical University, Nanjing 210009, China
| | - Aiyu Lu
- Department of TCMs Pharmaceuticals, China Pharmaceutical University, Nanjing 210009, China
| | - Wenlin Chen
- Department of TCMs Pharmaceuticals, China Pharmaceutical University, Nanjing 210009, China
| | - Tianyu Shao
- Department of TCMs Pharmaceuticals, China Pharmaceutical University, Nanjing 210009, China
| | - Luying Zhu
- Department of TCMs Pharmaceuticals, China Pharmaceutical University, Nanjing 210009, China
| | - Hua Yuan
- KPC Pharmaceuticals Inc., Kunming 650106, China
| | - Gongjun Yang
- Department of Pharmaceutical Analysis, China Pharmaceutical University, Nanjing 210009, China
| | - Nial J Wheate
- School of Pharmacy, Faculty of Medicine and Health, University of Sydney, Pharmacy and Bank Building A15, NSW 2006, Australia
| | - Lifeng Kang
- School of Pharmacy, Faculty of Medicine and Health, University of Sydney, Pharmacy and Bank Building A15, NSW 2006, Australia.
| | - Chungyong Wu
- Department of Pharmaceutical Analysis, China Pharmaceutical University, Nanjing 210009, China.
| |
Collapse
|
21
|
Lobita MC, El-Sayed N, Pinto JF, Santos HA. Development of fast dissolving polymer-based microneedles for delivery of an antigenic melanoma cell membrane. Int J Pharm 2023; 642:123143. [PMID: 37330154 DOI: 10.1016/j.ijpharm.2023.123143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 06/09/2023] [Accepted: 06/11/2023] [Indexed: 06/19/2023]
Abstract
Delivery of cancer cell membranes (CM) is a new approach for the activation of the immune system and the induction of immunotherapy of cancer. Local delivery of melanoma CM into skin can induce efficient immune stimulation of antigen presenting cells (APCs), such as dendritic cells. In the current study, fast dissolving microneedles (MNs) were developed for the delivery of melanoma B16F10 CM. Two polymers were tested for the fabrication of MNs: poly(methyl vinyl ether-co-maleic acid) (PMVE-MA) and hyaluronic acid (HA). The incorporation of CM in MNs was achieved through coating of the MNs using a multi-step layering procedure or the micromolding technique. The CM loading and its stabilization were improved by adding sugars (sucrose and trehalose) and a surfactant (Poloxamer 188), respectively. In an ex vivo experiment, both PMVE-MA and HA showed fast dissolutions (<30 s) after insertion into porcine skin. However, HA-MN showed better mechanical properties, namely improved resistance to fracture when submitted to a compression force. Overall, a B16F10 melanoma CM-dissolving MN system was efficiently developed as a promising device suggesting further studies in immunotherapy and melanoma applications.
Collapse
Affiliation(s)
- Maria C Lobita
- Department of Biomedical Engineering, University Medical Center Groningen, University of Groningen, 9713 AV Groningen, The Netherlands; W.J. Kolff Institute for Biomedical Engineering and Materials Science, University Medical Center Groningen, University of Groningen, 9713 AV Groningen, The Netherlands
| | - Nesma El-Sayed
- Drug Research Program, Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, P.O. Box 56 (Viikinkaari 5 E), University of Helsinki, FI-00014 Helsinki, Finland; Department of Pharmaceutics, Faculty of Pharmacy, Alexandria University, 21521 Alexandria, Egypt.
| | - João F Pinto
- iMED-Research Institute for Medicines, Faculty of Pharmacy, University of Lisbon, Av. Prof. Gama Pinto, 1640-003 Lisbon, Portugal
| | - Hélder A Santos
- Department of Biomedical Engineering, University Medical Center Groningen, University of Groningen, 9713 AV Groningen, The Netherlands; W.J. Kolff Institute for Biomedical Engineering and Materials Science, University Medical Center Groningen, University of Groningen, 9713 AV Groningen, The Netherlands; Drug Research Program, Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, P.O. Box 56 (Viikinkaari 5 E), University of Helsinki, FI-00014 Helsinki, Finland.
| |
Collapse
|
22
|
Ferreira LEN, Franz-Montan M, Benso B, Gill HS. Microneedles for oral mucosal delivery - Current trends and perspective on future directions. Expert Opin Drug Deliv 2023; 20:1251-1265. [PMID: 37781735 DOI: 10.1080/17425247.2023.2264189] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Accepted: 09/25/2023] [Indexed: 10/03/2023]
Abstract
INTRODUCTION Oral cavity drug and vaccine delivery has the potential for local targeting, dose reduction, minimization of systemic side effects, and generation of mucosal immunity. To overcome current limitations of delivery into the oral cavity mucosa, microneedles (MNs) have emerged as a promising technology. AREAS COVERED We reviewed the literature on MN application in the oral cavity, including in vitro studies, in vivo animal studies, and human clinical trials. EXPERT OPINION MNs are sufficiently robust to cross the oral cavity epithelium and nearly painless when applied to different parts of the human oral mucosa including the lip, cheek, tongue, and palate. In recent years, MNs have been evaluated for different applications, including vaccination, topical anesthetic delivery, and treatment of local oral pathologies such as oral lesions or carcinomas. MNs are attractive because they have the potential to produce a better treatment outcome with reduced side effects. Over the coming years, we project a significant increase in research related to the development of MNs for use in dentistry and other medical conditions of the mouth.
Collapse
Affiliation(s)
- Luiz E N Ferreira
- Laboratory of Inflammation and Immunology, Guarulhos University, Guarulhos, SP, Brazil
| | - Michelle Franz-Montan
- Department of Biosciences, Piracicaba Dental School, University of Campinas, Campinas, SP, Brazil
| | - Bruna Benso
- School of Dentistry, Faculty of Medicine, Pontificia Universidad Catolica de Chile, Santiago, Chile
- Millennium Nucleus of Ion Channels Associated Diseases (MiNICAD), Pontificia Universidad Catolica de Chile, Santiago, Chile
| | - Harvinder S Gill
- Department of Chemical Engineering, Texas Tech University, Lubbock, TX, USA
| |
Collapse
|
23
|
Mostafa M, Al Fatease A, Alany RG, Abdelkader H. Recent Advances of Ocular Drug Delivery Systems: Prominence of Ocular Implants for Chronic Eye Diseases. Pharmaceutics 2023; 15:1746. [PMID: 37376194 PMCID: PMC10302848 DOI: 10.3390/pharmaceutics15061746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 06/02/2023] [Accepted: 06/13/2023] [Indexed: 06/29/2023] Open
Abstract
Chronic ocular diseases can seriously impact the eyes and could potentially result in blindness or serious vision loss. According to the most recent data from the WHO, there are more than 2 billion visually impaired people in the world. Therefore, it is pivotal to develop more sophisticated, long-acting drug delivery systems/devices to treat chronic eye conditions. This review covers several drug delivery nanocarriers that can control chronic eye disorders non-invasively. However, most of the developed nanocarriers are still in preclinical or clinical stages. Long-acting drug delivery systems, such as inserts and implants, constitute the majority of the clinically used methods for the treatment of chronic eye diseases due to their steady state release, persistent therapeutic activity, and ability to bypass most ocular barriers. However, implants are considered invasive drug delivery technologies, especially those that are nonbiodegradable. Furthermore, in vitro characterization approaches, although useful, are limited in mimicking or truly representing the in vivo environment. This review focuses on long-acting drug delivery systems (LADDS), particularly implantable drug delivery systems (IDDS), their formulation, methods of characterization, and clinical application for the treatment of eye diseases.
Collapse
Affiliation(s)
- Mahmoud Mostafa
- Department of Pharmaceutics, Faculty of Pharmacy, Minia University, Minya 61519, Egypt;
| | - Adel Al Fatease
- Department of Pharmaceutics, College of Pharmacy, King Khalid University, Abha 62223, Saudi Arabia;
| | - Raid G. Alany
- School of Pharmacy, Kingston University London, Kingston Upon Tames KT1 2EE, UK;
- School of Pharmacy, The University of Auckland, Auckland 1010, New Zealand
| | - Hamdy Abdelkader
- Department of Pharmaceutics, College of Pharmacy, King Khalid University, Abha 62223, Saudi Arabia;
| |
Collapse
|
24
|
Wang B, Zhang S, Cheng A, Yan J, Gao Y. Soluble Polymer Microneedles Loaded with Interferon Alpha 1b for Treatment of Hyperplastic Scar. Polymers (Basel) 2023; 15:2621. [PMID: 37376266 DOI: 10.3390/polym15122621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 05/29/2023] [Accepted: 06/06/2023] [Indexed: 06/29/2023] Open
Abstract
To achieve the painless administration of interferon alpha 1b (rhIFNα-1b), a double-layered soluble polymer microneedle (MN) patch loaded with rhIFNα-1b was used to deliver rhIFNα-1b transdermally. The solution containing rhIFNα-1b was concentrated in the MN tips under negative pressure. The MNs punctured the skin and delivered rhIFNα-1b to the epidermis and dermis. The MN tips implanted in the skin dissolved within 30 min and gradually released rhIFNα-1b. The rhIFNα-1b had a significant inhibitory effect on the abnormal proliferation of fibroblasts and excessive deposition of collagen fibers in the scar tissue. The color and thickness of the scar tissue treated using the MN patches loaded with rhIFNα-1b were effectively reduced. The relative expressions of type I collagen (Collagen I), type III collagen (Collagen III), transforming growth factor beta 1 (TGF-β1), and α-smooth muscle actin (α-SMA) were significantly downregulated in scar tissues. In summary, the MN patch loaded with rhIFNα-1b provided an effective method for the transdermal delivery of rhIFNα-1b.
Collapse
Affiliation(s)
- Baorui Wang
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry of Chinese Academy of Sciences, Beijing 100190, China
- School of Future Technology, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Suohui Zhang
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry of Chinese Academy of Sciences, Beijing 100190, China
- Beijing CAS Microneedle Technology Ltd., Beijing 102609, China
| | - Aguo Cheng
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry of Chinese Academy of Sciences, Beijing 100190, China
- Beijing CAS Microneedle Technology Ltd., Beijing 102609, China
| | - Juan Yan
- Beijing CAS Microneedle Technology Ltd., Beijing 102609, China
- College of Life Sciences, Changchun Normal University, Changchun 130032, China
| | - Yunhua Gao
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry of Chinese Academy of Sciences, Beijing 100190, China
- School of Future Technology, University of Chinese Academy of Sciences, Beijing 100049, China
- Beijing CAS Microneedle Technology Ltd., Beijing 102609, China
| |
Collapse
|
25
|
Yang J, Luo R, Yang L, Wang X, Huang Y. Microneedle-Integrated Sensors for Extraction of Skin Interstitial Fluid and Metabolic Analysis. Int J Mol Sci 2023; 24:9882. [PMID: 37373027 DOI: 10.3390/ijms24129882] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Revised: 06/02/2023] [Accepted: 06/06/2023] [Indexed: 06/29/2023] Open
Abstract
Skin interstitial fluid (ISF) has emerged as a fungible biofluid sample for blood serum and plasma for disease diagnosis and therapy. The sampling of skin ISF is highly desirable considering its easy accessibility, no damage to blood vessels, and reduced risk of infection. Particularly, skin ISF can be sampled using microneedle (MN)-based platforms in the skin tissues, which exhibit multiple advantages including minimal invasion of the skin tissues, less pain, ease of carrying, capacity for continuous monitoring, etc. In this review, we focus on the current development of microneedle-integrated transdermal sensors for collecting ISF and detecting specific disease biomarkers. Firstly, we discussed and classified microneedles according to their structural design, including solid MNs, hollow MNs, porous MNs, and coated MNs. Subsequently, we elaborate on the construction of MN-integrated sensors for metabolic analysis with highlights on the electrochemical, fluorescent, chemical chromogenic, immunodiagnostic, and molecular diagnostic MN-integrated sensors. Finally, we discuss the current challenges and future direction for developing MN-based platforms for ISF extraction and sensing applications.
Collapse
Affiliation(s)
- Jie Yang
- State Key Laboratory of Targeting Oncology, National Center for International Research of Bio-Targeting Theranostics, Guangxi Key Laboratory of Bio-Targeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Medical University, Nanning 530021, China
| | - Ruiyu Luo
- State Key Laboratory of Targeting Oncology, National Center for International Research of Bio-Targeting Theranostics, Guangxi Key Laboratory of Bio-Targeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Medical University, Nanning 530021, China
| | - Lei Yang
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou 325001, China
| | - Xiaocheng Wang
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou 325001, China
| | - Yong Huang
- State Key Laboratory of Targeting Oncology, National Center for International Research of Bio-Targeting Theranostics, Guangxi Key Laboratory of Bio-Targeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Medical University, Nanning 530021, China
| |
Collapse
|
26
|
Wang M, Li X, Du W, Sun M, Ling G, Zhang P. Microneedle-mediated treatment for superficial tumors by combining multiple strategies. Drug Deliv Transl Res 2023; 13:1600-1620. [PMID: 36735217 PMCID: PMC9897165 DOI: 10.1007/s13346-023-01297-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/04/2023] [Indexed: 02/04/2023]
Abstract
Superficial tumors are still challenging to overcome due to the high risk and toxicity of surgery and conventional chemotherapy. Microneedles (MNs) are widely used in the treatment of superficial skin tumors (SST) due to the high penetration rate of the stratum corneum (SC), excellent biocompatibility, simple preparation process, high patient compliance, and minimal invasion. Most importantly, MNs can provide not only efficient and rarely painful delivery carriers, but also combine multi-model strategies with photothermal therapy (PTT), immunotherapy, and gene therapy for synergistic efficacy. To promote an in-depth understanding of their superiorities, this paper systematically summarized the latest application progress of MNs in the treatment of SST by delivering various types of photosensitizers, immune signal molecules, genes, and chemotherapy drugs. Just as important, the advantages, limitations, and drug release mechanisms of MNs based on different materials are introduced in the paper. In addition, the application of MN technology to clinical practice is the ultimate goal of all the work. The obstacles and possible difficulties in expanding the production of MNs and achieving clinical transformation are briefly discussed in this paper. To be anticipated, our work will provide new insights into the precise and rarely painful treatment of SST in the future.
Collapse
Affiliation(s)
- Meng Wang
- Shenyang Pharmaceutical University, No. 103, Wenhua Road, Shenyang, 110016, China
| | - Xiaodan Li
- Shenyang Pharmaceutical University, No. 103, Wenhua Road, Shenyang, 110016, China
| | - Wenzhen Du
- Shenyang Pharmaceutical University, No. 103, Wenhua Road, Shenyang, 110016, China
| | - Minge Sun
- Shenyang Narnia Biomedical Technology Company, Ltd, Shenyang, 110167, China
| | - Guixia Ling
- Shenyang Pharmaceutical University, No. 103, Wenhua Road, Shenyang, 110016, China
| | - Peng Zhang
- Shenyang Pharmaceutical University, No. 103, Wenhua Road, Shenyang, 110016, China.
| |
Collapse
|
27
|
Mohammadi S, Jabbari F, Babaeipour V. Bacterial cellulose-based composites as vehicles for dermal and transdermal drug delivery: A review. Int J Biol Macromol 2023:124955. [PMID: 37245742 DOI: 10.1016/j.ijbiomac.2023.124955] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 05/05/2023] [Accepted: 05/16/2023] [Indexed: 05/30/2023]
Abstract
In recent years, a significant amount of drugs have been taken orally, which are not as effective as desired. To solve this problem, bacterial cellulose-based dermal/transdermal drug delivery systems (BC-DDSs) with unique properties such as cell compatibility, hemocompatibility, tunable mechanical properties, and the ability to encapsulate various therapeutic agents with the controlled release have been introduced. A BC-dermal/transdermal DDS reduces first-pass metabolism and systematic side effects while improving patient compliance and dosage effectiveness by controlling drug release through the skin. The barrier function of the skin, especially the stratum corneum, can interfere with drug delivery. Few drugs can pass through the skin to reach effective concentrations in the blood to treat diseases. Due to their unique physicochemical properties and high potential to reduce immunogenicity and improve bioavailability, BC-dermal/transdermal DDSs are widely used to deliver various types of drugs for disease treatment. In this review, we describe the different types of BC-dermal/ transdermal DDSs, along with a critical discussion of the advantages and disadvantages of these systems. After the general presentation, the review is focused on recent advances in the preparation and applications of BC-based dermal/transdermal DDSs in various types of disease treatment.
Collapse
Affiliation(s)
- Sajad Mohammadi
- 3D Microfluidic Biofabrication Lab, Center for Life Nano- & Neuro-science (CLN2S), Istituto Italiano di Tecnologia (IIT), Rome 00161, Italy; Department of Basic and Applied Science for Engineering, Sapienza University of Rome, 00161, Italy.
| | - Farzaneh Jabbari
- Nanotechnology and Advanced Materials Department, Materials and Energy Research Center (MERC), Tehran 14155-4777, Iran
| | - Valiollah Babaeipour
- Faculty of Chemistry and Chemical Engineering, Malek-Ashtar University of Technology, Tehran 1774-15875, Iran.
| |
Collapse
|
28
|
Guillot AJ, Martínez-Navarrete M, Zinchuk-Mironova V, Melero A. Microneedle-assisted transdermal delivery of nanoparticles: Recent insights and prospects. WILEY INTERDISCIPLINARY REVIEWS. NANOMEDICINE AND NANOBIOTECHNOLOGY 2023:e1884. [PMID: 37041036 DOI: 10.1002/wnan.1884] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2022] [Revised: 02/01/2023] [Accepted: 02/13/2023] [Indexed: 04/13/2023]
Abstract
Transdermal delivery of drugs offers an interesting alternative for the administration of molecules that present certain troubles when delivered by the oral route. It can produce systemic effects or perform a local action when the formulation exerts an optimal controlled drug release or a targeted delivery to the specific cell type or site. It also avoids several inconveniences of the oral administration such as the hepatic first pass effect, gastric pH-induced hydrolysis, drug malabsorption because of certain diseases or surgeries, and unpleasant organoleptic properties. Nanomedicine and microneedle array patches (MAPs) are two of the trendiest delivery systems applied to transdermal research nowadays. However, the skin is a protective barrier and nanoparticles (NPs) cannot pass through the intact stratum corneum. The association of NPs and MAPs (NPs@MAPs) work synergistically, since MAPs assist NPs to bypass the outer skin layers, and NPs contribute to the system providing controlled drug release and targeted delivery. Vaccination and tailored therapies have been proposed as fields where both NPs and MAPs have great potential due to inherent characteristics. MAPs conception and easy use could allow self-administration and therefore facilitate mass vaccination campaigns in undeveloped areas with weak healthcare services. Additionally, nanomedicine is being explored as a platform to personalize therapies in such an important field as oncology. In this work we show recent insights that prove the benefits of NPs@MAPs association and analyze the prospects and the discrete interest of the industry in NPs@MAPs, evaluating different limiting steps that restricts NPs@MAPs translation to the clinical practice. This article is categorized under: Nanotechnology Approaches to Biology > NA Therapeutic Approaches and Drug Discovery > NA.
Collapse
Affiliation(s)
- Antonio José Guillot
- Department of Pharmacy and Pharmaceutical Technology, Faculty of Pharmacy, University of Valencia, Av. Vicent Andrés Estelles s/n, 46100, Burjassot, Spain
| | - Miquel Martínez-Navarrete
- Department of Pharmacy and Pharmaceutical Technology, Faculty of Pharmacy, University of Valencia, Av. Vicent Andrés Estelles s/n, 46100, Burjassot, Spain
| | - Valeria Zinchuk-Mironova
- Department of Pharmacy and Pharmaceutical Technology, Faculty of Pharmacy, University of Valencia, Av. Vicent Andrés Estelles s/n, 46100, Burjassot, Spain
| | - Ana Melero
- Department of Pharmacy and Pharmaceutical Technology, Faculty of Pharmacy, University of Valencia, Av. Vicent Andrés Estelles s/n, 46100, Burjassot, Spain
| |
Collapse
|
29
|
Liu T, Sun Y, Jiang G, Zhang W, Wang R, Nie L, Shavandi A, Yunusov KE, Aharodnikau UE, Solomevich SO. Porcupine-inspired microneedles coupled with an adhesive back patching as dressing for accelerating diabetic wound healing. Acta Biomater 2023; 160:32-44. [PMID: 36764593 DOI: 10.1016/j.actbio.2023.01.059] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 01/25/2023] [Accepted: 01/30/2023] [Indexed: 02/11/2023]
Abstract
Diabetes chronic wound is a severe and frequently occurring medical issue in patients with diabetes that often leads to more serious complications. Microneedles (MNs) can be used for wound healing as they can effectively pierce the epidermis and inject drugs into the wound tissue. However, common MN patches cannot provide sufficient skin adhesion to prevent detachment from the wound area. Inspired by the barb hangnail microstructure of porcupine quills, a porcupine quill-like multilayer MN patch with an adhesive back patching for tissue adhesion and diabetic wound healing was designed. Sodium hyaluronate-modified CaO2 nanoparticles and metformin (hypoglycemic agent) were loaded into the polycaprolactone tips of MNs, endowing them with exceptional antibacterial ability and hypoglycemic effect. A flexible and adhesive back patching was formed by polyacrylamide-polydopamine/Cu2+ composite hydrogel, which ensures that the MN patches do not peel off from the application sites and reduce bacterial infection. The bioinspired multilayer structure of MN patches exhibits satisfactory mechanical and antibacterial properties, which is a potential multifunctional dressing platform for promoting wound healing. STATEMENT OF SIGNIFICANCE: The porcupine quill-like microneedles (MNs) with PAM-PDA/Cu2+ (PPC) composite hydrogel back patching have been fabricated, which can enhance the adhesion property of MNs to the skin through a physical interlock of multilayer MNs and chemical bonding of hydrogel patching. CaO2-HA NPs and metformin were loaded into the polycaprolactone tips of MNs, endowing them with the exceptional antibacterial ability and hypoglycemic effect, which could accelerate diabetic wound healing. As a safe and effective strategy in transdermal delivery of drugs, the as-fabricated flexible multilayer MN patch with good antibacterial, hypoglycemic, and biocompatibility has been used to promote the healing of diabetic wound by releasing oxygen and inhibiting inflammation at the wound site.
Collapse
Affiliation(s)
- Tianqi Liu
- School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, China; International Scientific and Technological Cooperation Base of Intelligent Biomaterials and Functional Fibers, Hangzhou 310018, China
| | - Yanfang Sun
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, Zhejiang 310018, China.
| | - Guohua Jiang
- School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, China; International Scientific and Technological Cooperation Base of Intelligent Biomaterials and Functional Fibers, Hangzhou 310018, China.
| | - Wenjing Zhang
- School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Rui Wang
- School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, China; International Scientific and Technological Cooperation Base of Intelligent Biomaterials and Functional Fibers, Hangzhou 310018, China
| | - Lei Nie
- College of Life Sciences, Xinyang Normal University, Xinyang 464000, China
| | - Amin Shavandi
- Université libre de Bruxelles (ULB), École polytechnique de Bruxelles, 3BIO10 BioMatter, Avenue F.D. Roosevelt, 50 - CP 165/61, Brussels 1050, Belgium
| | - Khaydar E Yunusov
- Institute of Polymer Chemistry and Physics, Uzbekistan Academy of Sciences, Tashkent 100128, Uzbekistan
| | - Uladzislau E Aharodnikau
- Research Institute for Physical Chemical Problems of the Belarusian State University, Minsk 220030, Belarus
| | - Sergey O Solomevich
- Research Institute for Physical Chemical Problems of the Belarusian State University, Minsk 220030, Belarus
| |
Collapse
|
30
|
Long L, Ji D, Hu C, Yang L, Tang S, Wang Y. Microneedles for in situ tissue regeneration. Mater Today Bio 2023; 19:100579. [PMID: 36880084 PMCID: PMC9984687 DOI: 10.1016/j.mtbio.2023.100579] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 02/06/2023] [Accepted: 02/10/2023] [Indexed: 02/13/2023] Open
Abstract
Tissue injury is a common clinical problem, which may cause great burden on patients' life. It is important to develop functional scaffolds to promote tissue repair and regeneration. Due to their unique composition and structure, microneedles have attracted extensive attention in various tissues regeneration, including skin wound, corneal injury, myocardial infarction, endometrial injury, and spinal cord injury et al. Microneedles with micro-needle structure can effectively penetrate the barriers of necrotic tissue or biofilm, therefore improving the bioavailability of drugs. The use of microneedles to deliver bioactive molecules, mesenchymal stem cells, and growth factors in situ allows for targeted tissue and better spatial distribution. At the same time, microneedles can also provide mechanical support or directional traction for tissue, thus accelerating tissue repair. This review summarized the research progress of microneedles for in situ tissue regeneration over the past decade. At the same time, the shortcomings of existing researches, future research direction and clinical application prospect were also discussed.
Collapse
Affiliation(s)
- Linyu Long
- Aier Eye Institute, Changsha, Hunan Province, 410035, China
- Eye Center of Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
| | - Dan Ji
- Eye Center of Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
| | - Cheng Hu
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, 610064, China
| | - Li Yang
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, 610064, China
| | - Shibo Tang
- Aier Eye Institute, Changsha, Hunan Province, 410035, China
- Aier School of Ophthalmology, Central South University, Changsha, Hunan, 410009, China
- CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Yunbing Wang
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, 610064, China
| |
Collapse
|
31
|
Yang Q, Zhong W, Liu Y, Hou R, Wu Y, Yan Q, Yang G. 3D-printed morphology-customized microneedles: understanding the correlation between their morphologies and the received qualities. Int J Pharm 2023; 638:122873. [PMID: 36958610 DOI: 10.1016/j.ijpharm.2023.122873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Revised: 03/14/2023] [Accepted: 03/16/2023] [Indexed: 03/25/2023]
Abstract
Despite remarkable progress in the last decade in transdermal microneedle drug delivery systems, great difficulties in precisely manufacturing microneedles with sophisticated microstructures still strongly retard their practical applications. Herein we propose morphology-customized microneedles (spiral, conical, cylindroid, ring-like, arrow-like and tree-like) fabricated by stereolithography (SLA) based 3D-printing technique, and in-depth investigate the correlation between the customized morphologies and the received qualities of the corresponding microneedles such as the mechanical properties and skin penetration behavior, drug loading capacity and the drug release profiles. Results indicated that 3D-printed morphology-customized microneedles not only enhanced the mechanical strength but also improved both drug loading capacity and drug release behavior, which resulted from their highly controllable and 3D-printable morphologies (surface area and volume). And the in vivo study demonstrated that the 3D-printed morphology-customized microneedles successfully promoted the transdermal delivery of the loaded drug (verapamil hydrochloride) with an enhanced therapeutic efficacy for the treatment of hypertrophic scar.
Collapse
Affiliation(s)
- Qingliang Yang
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou 310014, China; Research Institute of Pharmaceutical Particle Technology, Zhejiang University of Technology, Hangzhou 310014, China
| | - Weizhen Zhong
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou 310014, China
| | - Yiwen Liu
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou 310014, China
| | - Runlin Hou
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou 310014, China
| | - Yujing Wu
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou 310014, China
| | - Qinying Yan
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou 310014, China; Research Institute of Pharmaceutical Particle Technology, Zhejiang University of Technology, Hangzhou 310014, China
| | - Gensheng Yang
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou 310014, China; Research Institute of Pharmaceutical Particle Technology, Zhejiang University of Technology, Hangzhou 310014, China.
| |
Collapse
|
32
|
Sarker S, Colton A, Wen Z, Xu X, Erdi M, Jones A, Kofinas P, Tubaldi E, Walczak P, Janowski M, Liang Y, Sochol RD. 3D-Printed Microinjection Needle Arrays via a Hybrid DLP-Direct Laser Writing Strategy. ADVANCED MATERIALS TECHNOLOGIES 2023; 8:2201641. [PMID: 37064271 PMCID: PMC10104452 DOI: 10.1002/admt.202201641] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Indexed: 06/19/2023]
Abstract
Microinjection protocols are ubiquitous throughout biomedical fields, with hollow microneedle arrays (MNAs) offering distinctive benefits in both research and clinical settings. Unfortunately, manufacturing-associated barriers remain a critical impediment to emerging applications that demand high-density arrays of hollow, high-aspect-ratio microneedles. To address such challenges, here, a hybrid additive manufacturing approach that combines digital light processing (DLP) 3D printing with "ex situ direct laser writing (esDLW)" is presented to enable new classes of MNAs for fluidic microinjections. Experimental results for esDLW-based 3D printing of arrays of high-aspect-ratio microneedles-with 30 μm inner diameters, 50 μm outer diameters, and 550 μm heights, and arrayed with 100 μm needle-to-needle spacing-directly onto DLP-printed capillaries reveal uncompromised fluidic integrity at the MNA-capillary interface during microfluidic cyclic burst-pressure testing for input pressures in excess of 250 kPa (n = 100 cycles). Ex vivo experiments perform using excised mouse brains reveal that the MNAs not only physically withstand penetration into and retraction from brain tissue but also yield effective and distributed microinjection of surrogate fluids and nanoparticle suspensions directly into the brains. In combination, the results suggest that the presented strategy for fabricating high-aspect-ratio, high-density, hollow MNAs could hold unique promise for biomedical microinjection applications.
Collapse
Affiliation(s)
- Sunandita Sarker
- Department of Mechanical Engineering, University of Maryland, College Park, MD 20742, USA; Maryland Robotics Center, University of Maryland, College Park, MD 20742, USA; Institute for Systems Research, University of Maryland, College Park, MD 20742, USA
| | - Adira Colton
- Department of Mechanical Engineering, University of Maryland, College Park, MD 20742, USA; Maryland Robotics Center, University of Maryland, College Park, MD 20742, USA; Institute for Systems Research, University of Maryland, College Park, MD 20742, USA
| | - Ziteng Wen
- Department of Mechanical Engineering, University of Maryland, College Park, MD 20742, USA
| | - Xin Xu
- Department of Mechanical Engineering, University of Maryland, College Park, MD 20742, USA
| | - Metecan Erdi
- Department of Chemical and Biomolecular Engineering, University of Maryland, College Park, MD 20742, USA
| | - Anthony Jones
- Department of Mechanical Engineering, University of Maryland, College Park, MD 20742, USA; Maryland Robotics Center, University of Maryland, College Park, MD 20742, USA; Institute for Systems Research, University of Maryland, College Park, MD 20742, USA
| | - Peter Kofinas
- Department of Chemical and Biomolecular Engineering, University of Maryland, College Park, MD 20742, USA
| | - Eleonora Tubaldi
- Department of Mechanical Engineering, University of Maryland, College Park, MD 20742, USA; Maryland Robotics Center, University of Maryland, College Park, MD 20742, USA; Institute for Systems Research, University of Maryland, College Park, MD 20742, USA
| | - Piotr Walczak
- Program in Image Guided Neurointerventions, Department of Diagnostic Radiology and Nuclear Medicine, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Miroslaw Janowski
- Program in Image Guided Neurointerventions, Department of Diagnostic Radiology and Nuclear Medicine, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Yajie Liang
- Program in Image Guided Neurointerventions, Department of Diagnostic Radiology and Nuclear Medicine, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Ryan D Sochol
- Department of Mechanical Engineering, University of Maryland, College Park, MD 20742, USA; Maryland Robotics Center, University of Maryland, College Park, MD 20742, USA; Institute for Systems Research, University of Maryland, College Park, MD 20742, USA; Fischell Department of Bioengineering, University of Maryland, College Park, MD 20742, USA; Robert E. Fischell Institute for Biomedical Devices, University of Maryland, College Park, MD 20742, USA
| |
Collapse
|
33
|
Parhi R. Recent advances in 3D printed microneedles and their skin delivery application in the treatment of various diseases. J Drug Deliv Sci Technol 2023. [DOI: 10.1016/j.jddst.2023.104395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/30/2023]
|
34
|
Yang Y, Zhou R, Wang Y, Zhang Y, Yu J, Gu Z. Recent Advances in Oral and Transdermal Protein Delivery Systems. Angew Chem Int Ed Engl 2023; 62:e202214795. [PMID: 36478123 DOI: 10.1002/anie.202214795] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 12/03/2022] [Accepted: 12/05/2022] [Indexed: 12/13/2022]
Abstract
Protein and peptide drugs are predominantly administered by injection to achieve high bioavailability, but this greatly compromises patient compliance. Oral and transdermal drug delivery with minimal invasiveness and high adherence represent attractive alternatives to injection administration. However, oral and transdermal administration of bioactive proteins must overcome biological barriers, namely the gastrointestinal and skin barriers, respectively. The rapid development of new materials and technologies promises to address these physiological obstacles. This review provides an overview of the latest advances in oral and transdermal protein delivery, including chemical strategies, synthetic nanoparticles, medical microdevices, and biomimetic systems for oral administration, as well as chemical enhancers, physical approaches, and microneedles in transdermal delivery. We also discuss challenges and future perspectives of the field with a focus on innovation and translation.
Collapse
Affiliation(s)
- Yinxian Yang
- Zhejiang Provincial Key Laboratory for Advanced Drug Delivery Systems, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Ruyi Zhou
- Zhejiang Provincial Key Laboratory for Advanced Drug Delivery Systems, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Yanfang Wang
- Zhejiang Provincial Key Laboratory for Advanced Drug Delivery Systems, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Yuqi Zhang
- Zhejiang Provincial Key Laboratory for Advanced Drug Delivery Systems, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China.,Department of Burns and Wound Center, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310009, China
| | - Jicheng Yu
- Zhejiang Provincial Key Laboratory for Advanced Drug Delivery Systems, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China.,Liangzhu Laboratory, Zhejiang University Medical Center, Hangzhou, 311121, China.,Jinhua Institute of Zhejiang University, Jinhua, 321299, China.,Department of General Surgery, Sir Run Run Hospital, School of Medicine, Zhejiang University, Hangzhou, 310016, China
| | - Zhen Gu
- Zhejiang Provincial Key Laboratory for Advanced Drug Delivery Systems, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China.,Liangzhu Laboratory, Zhejiang University Medical Center, Hangzhou, 311121, China.,Jinhua Institute of Zhejiang University, Jinhua, 321299, China.,Department of General Surgery, Sir Run Run Hospital, School of Medicine, Zhejiang University, Hangzhou, 310016, China.,MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027, China
| |
Collapse
|
35
|
Lee J, Park S, Le PT, Lee G, Lee HW, Yun G, Jeon J, Park J, Pham DT, Park YS, Lim H, Kim C, Hwang TS, Kim SW, Lim G. Peripheral Microneedle Patch for First-Aid Hemostasis. Adv Healthc Mater 2023; 12:e2201697. [PMID: 36538487 DOI: 10.1002/adhm.202201697] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 11/21/2022] [Indexed: 01/18/2023]
Abstract
Despite the minimized puncture sizes and high efficiency, microneedle (MN) patches have not been used to inject hemostatic drugs into bleeding wounds because they easily destroy capillaries when a tissue is pierced. In this study, a shelf-stable dissolving MN patch is developed to prevent rebleeding during an emergency treatment. A minimally and site-selectively invasive hemostatic drug delivery system is established by using a peripheral MN (p-MN) patch that does not directly intrude the wound site but enables topical drug absorption in the damaged capillaries. The invasiveness of MNs is histologically examined by using a bleeding liver of a Sprague-Dawley (SD) rat as an extreme wound model in vivo. The skin penetration force is quantified to demonstrate that the administration of the p-MN patch is milder than that of the conventional MN patch. Hemostatic performance is systematically studied by analyzing bleeding weight and time and comparing them with that of conventional hemostasis methods. The superior performance of a p-MN for the heparin-pretreated SD rat model is demonstrated by intravenous injection in vivo.
Collapse
Affiliation(s)
- Jungho Lee
- Department of Mechanical Engineering, Pohang University of Science and Technology, Pohang, 37673, Republic of Korea
| | - Sebin Park
- Department of Mechanical Engineering, Pohang University of Science and Technology, Pohang, 37673, Republic of Korea
| | - Phuong Thao Le
- School of Interdisciplinary Bioscience and Bioengineering, Pohang University of Science and Technology, Pohang, 37673, Republic of Korea
| | - Geunho Lee
- Department of Mechanical Engineering, Pohang University of Science and Technology, Pohang, 37673, Republic of Korea
| | - Hyoun Wook Lee
- Department of Pathology, Samsung Changwon Hospital, Sungkyunkwan University School of Medicine, Changwon, 51353, Republic of Korea
| | - Gaeun Yun
- Department of Mechanical Engineering, Pohang University of Science and Technology, Pohang, 37673, Republic of Korea
| | - Juhyeong Jeon
- Department of Mechanical Engineering, Pohang University of Science and Technology, Pohang, 37673, Republic of Korea
| | - Jeongwoo Park
- School of Interdisciplinary Bioscience and Bioengineering, Pohang University of Science and Technology, Pohang, 37673, Republic of Korea.,Medical Device Innovation Center, Pohang University of Science and Technology, Pohang, 37673, Republic of Korea
| | - Duy Tho Pham
- Department of Mechanical Engineering, Pohang University of Science and Technology, Pohang, 37673, Republic of Korea.,Department of Emergency Medicine, College of Medicine, Chungnam National University, Daejeon, 35015, Republic of Korea
| | - Young Sook Park
- Department of Physical Rehabilitation Medicine, Samsung Changwon Hospital, Sungkyunkwan University School of Medicine, Changwon, 51353, Republic of Korea
| | - Hoon Lim
- Department of Emergency Medicine, Soonchunhyang University Bucheon Hospital, Bucheon, 14584, Republic of Korea
| | - Chulhong Kim
- Department of Mechanical Engineering, Pohang University of Science and Technology, Pohang, 37673, Republic of Korea.,School of Interdisciplinary Bioscience and Bioengineering, Pohang University of Science and Technology, Pohang, 37673, Republic of Korea.,Medical Device Innovation Center, Pohang University of Science and Technology, Pohang, 37673, Republic of Korea.,Department of Convergence IT Engineering, Pohang University of Science and Technology, Pohang, 37673, Republic of Korea.,Department of Electrical Engineering, Pohang University of Science and Technology, Pohang, 37673, Republic of Korea
| | - Tae Sik Hwang
- Department of Emergency Medicine, Yonsei University College of Medicine, Yongin Severance Hospital, Yongin, 16995, Republic of Korea
| | - Seung Whan Kim
- Department of Emergency Medicine, College of Medicine, Chungnam National University, Daejeon, 35015, Republic of Korea
| | - Geunbae Lim
- Department of Mechanical Engineering, Pohang University of Science and Technology, Pohang, 37673, Republic of Korea.,School of Interdisciplinary Bioscience and Bioengineering, Pohang University of Science and Technology, Pohang, 37673, Republic of Korea.,Institute for Convergence Research and Education in Advanced Technology, Yonsei University, 50, Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea
| |
Collapse
|
36
|
Wang B, Zhang W, Pan Q, Tao J, Li S, Jiang T, Zhao X. Hyaluronic Acid-Based CuS Nanoenzyme Biodegradable Microneedles for Treating Deep Cutaneous Fungal Infection without Drug Resistance. NANO LETTERS 2023; 23:1327-1336. [PMID: 36749122 DOI: 10.1021/acs.nanolett.2c04539] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Deep cutaneous fungal infection (DCFI) is difficult to be treated by the traditional topical application due to low drug transdermal efficiency, poor fungicidal effect, and easy to develop drug resistance. Here, we report a novel biodegradable microneedle patch (CuS/PAF-26 MN) for DCFI treatment. CuS/PAF-26 MN is composed of hyaluronic acid (HA) and sodium carboxymethylcellulose (CMC-Na), which can simultaneously deliver copper sulfide nanoenzyme (CuS NE) and antimicrobial peptide (PAF-26). CuS NE catalyzes hydrogen peroxide to produce reactive oxygen species (ROS), and PAF-26 directly destroys the cell membrane of fungi. The combination of ROS toxicity produced by CuS NE and the destruction of fungal membrane by PAF-26 shows strong antifungal activities without drug resistance. The antifungal effect of CuS/PAF-26 MN is significantly superior to that of traditional ointment, CuS MN or PAF-26 MN in a DCFI mouse model. Therefore, CuS/PAF-26 MN shows a promising application prospect for treating DCFI.
Collapse
Affiliation(s)
- Bingjie Wang
- Key Laboratory of Marine Drugs, Ministry of Education, Shandong Provincial Key Laboratory of Glycoscience and Glycoengineering, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China
| | - Wenshang Zhang
- Key Laboratory of Marine Drugs, Ministry of Education, Shandong Provincial Key Laboratory of Glycoscience and Glycoengineering, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China
| | - Qi Pan
- The Affiliated Qingdao Central Hospital of Qingdao University, The Second Affiliated Hospital of Medical College of Qingdao University, Qingdao 266042, China
| | - Jiaojiao Tao
- Key Laboratory of Marine Drugs, Ministry of Education, Shandong Provincial Key Laboratory of Glycoscience and Glycoengineering, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China
| | - Shuang Li
- Key Laboratory of Marine Drugs, Ministry of Education, Shandong Provincial Key Laboratory of Glycoscience and Glycoengineering, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China
| | - Tianze Jiang
- Key Laboratory of Marine Drugs, Ministry of Education, Shandong Provincial Key Laboratory of Glycoscience and Glycoengineering, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China
- Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China
| | - Xia Zhao
- Key Laboratory of Marine Drugs, Ministry of Education, Shandong Provincial Key Laboratory of Glycoscience and Glycoengineering, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China
- Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China
| |
Collapse
|
37
|
The Pandemic and Your Skin—Direct and Indirect Impact of COVID-19. COSMETICS 2023. [DOI: 10.3390/cosmetics10010034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/18/2023] Open
Abstract
Apart from well-known respiratory symptoms, less frequent symptoms also appear as a direct result of COVID-19 infection, or as indirect effects of the recommended quarantine and related lifestyle changes. The impact of the COVID-19 pandemic on human skin is predominantly focused on in this article. Cutaneous manifestations, including redness, chilblain-like symptoms (COVID toes), hives or urticaria rash, water blisters, and fishing net-like red-blue patterns on the skin, may appear as accompanying or as systemic COVID-19 symptoms with potential lesions at different skin sites. These symptoms were related to skin phototypes and vitamin D deficiency. Moreover, Black, Asian, and minority ethnic origin patients are found to be more sensitive to COVID-19 infection than Caucasians because of vitamin D deficiency. The region of population with lighter skin phototypes have a significantly higher chance to develop cutaneous manifestations than population with dark skin. In addition, adverse effects, such as skin barrier damage and irritation, may also occur due to extensive personal protective equipment usage (e.g., masks, protective suits, and a few others) and predominately alcohol-based sanitizers. This manuscript covers various aspects of COVID-19 and its clinical skin manifestations.
Collapse
|
38
|
Microneedles as a momentous platform for psoriasis therapy and diagnosis: A state-of-the-art review. Int J Pharm 2023; 632:122591. [PMID: 36626973 DOI: 10.1016/j.ijpharm.2023.122591] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Revised: 12/20/2022] [Accepted: 01/04/2023] [Indexed: 01/09/2023]
Abstract
Psoriasis is a chronic, autoimmune, and non-communicable skin disease with a worldwide prevalence rate of 2-3%, creating an economic burden on global health. Some significant risk factors associated with psoriasis include genetic predisposition, pathogens, stress, medications, etc. In addition, most patients with psoriasis should also deal with comorbidities such as psoriatic arthritis, inflammatory bowel diseases, cardiovascular diseases, and psychological conditions, including suicidal thoughts. Based on its severity, the treatment approach for psoriasis is categorised into three types, i.e., topical therapy, systemic therapy, and phototherapy. Topical therapy for mild-to-moderate psoriasis faces several issues, such as poor skin permeability, low skin retention of drug formulation, greasy texture of topical vehicle, lack of controlled release, and so on. On the other arrow, systemic therapy via an oral or parenteral route of drug administration involves numerous drawbacks, including first-pass hepatic metabolism, hepatotoxicity, gastrointestinal disturbances, needle pain and phobia, and requirement of healthcare professional to administer the drug. To overcome these limitations, researchers devised a microneedle-based drug delivery system for treating mild-to-moderate and moderate-to-severe psoriasis. A single microneedle system can deliver the anti-psoriatic drugs either locally (topical) or systemically (transdermal) by adjusting the needle height without involving any pain. In this contemplate, the current review provides concise information on the pathophysiology, risk factors, and comorbidities of psoriasis, followed by their current treatment approaches and limitations. Further, it meticulously discusses the potential of microneedles in psoriasis therapy and diagnosis, along with descriptions of their patents and clinical trials.
Collapse
|
39
|
De Decker I, Logé T, Hoeksema H, Speeckaert MM, Blondeel P, Monstrey S, Claes KEY. Dissolving microneedles for effective and painless intradermal drug delivery in various skin conditions: A systematic review. J Dermatol 2023; 50:422-444. [PMID: 36700529 DOI: 10.1111/1346-8138.16732] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 12/21/2022] [Accepted: 01/05/2023] [Indexed: 01/27/2023]
Abstract
Intra- and transdermal administration of substances via percutaneous injection is effective but considered painful, and inconvenient in addition to bringing forth biohazardous waste material. In contrast to injection, topical drug application, which includes ointments, creams and lotions, increases the local drug load. Moreover, it has reduced side effects compared to systemic administration. However, the epidermis poses a barrier to high molecular weight substances, limiting the delivery efficiency. Dissolving microneedles (DMN) are hydrophilic, mostly polymer-based constructs that are capable of skin penetration and were developed to provide painless and direct dermal drug delivery. This systematic review provides a comprehensive overview of the available clinical evidence for the use of DMN to treat various skin conditions. According to the PRISMA statement, a systematic search for articles on the use of DMN for dermatological indications was conducted on three different databases (Pubmed, Embase, and the Cochrane library). Only human clinical trials were considered. Qualitative assessment was done by two separate reviewers using the Cochrane risk of bias (RoB 2) and Chambers' criteria assessment tools. The search yielded 1090 articles. After deduplication and removal of ineligible records, 889 records were screened on title and abstract. Full text screening was done for 18 articles and ultimately 17 articles were included of which 15 were randomized controlled trials and two were case series. The quality assessment showed that the majority of included studies had low to no risk of bias. Clinical data supports that DMN are an excellent, effective, and pain free drug delivery method for multiple dermatological disorders including skin aging, hyperpigmentation, psoriasis, warts, and keloids by supplying a painless and effective vehicle for intradermal/intralesional drug administration. Microneedle technology provides a promising non- to minimally-invasive alternative to percutaneous injection.
Collapse
Affiliation(s)
- Ignace De Decker
- Burn Center, Ghent University Hospital, Ghent, Belgium.,Department of Plastic Surgery, Ghent University Hospital, Ghent, Belgium
| | - Thomas Logé
- Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium
| | - Henk Hoeksema
- Burn Center, Ghent University Hospital, Ghent, Belgium.,Department of Plastic Surgery, Ghent University Hospital, Ghent, Belgium
| | | | - Phillip Blondeel
- Burn Center, Ghent University Hospital, Ghent, Belgium.,Department of Plastic Surgery, Ghent University Hospital, Ghent, Belgium
| | - Stan Monstrey
- Burn Center, Ghent University Hospital, Ghent, Belgium.,Department of Plastic Surgery, Ghent University Hospital, Ghent, Belgium
| | - Karel E Y Claes
- Burn Center, Ghent University Hospital, Ghent, Belgium.,Department of Plastic Surgery, Ghent University Hospital, Ghent, Belgium
| |
Collapse
|
40
|
Nguyen HX, Nguyen CN. Microneedle-Mediated Transdermal Delivery of Biopharmaceuticals. Pharmaceutics 2023; 15:277. [PMID: 36678906 PMCID: PMC9864466 DOI: 10.3390/pharmaceutics15010277] [Citation(s) in RCA: 20] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 01/05/2023] [Accepted: 01/10/2023] [Indexed: 01/15/2023] Open
Abstract
Transdermal delivery provides numerous benefits over conventional routes of administration. However, this strategy is generally limited to a few molecules with specific physicochemical properties (low molecular weight, high potency, and moderate lipophilicity) due to the barrier function of the stratum corneum layer. Researchers have developed several physical enhancement techniques to expand the applications of the transdermal field; among these, microneedle technology has recently emerged as a promising platform to deliver therapeutic agents of any size into and across the skin. Typically, hydrophilic biomolecules cannot penetrate the skin by passive diffusion. Microneedle insertion disrupts skin integrity and compromises its protective function, thus creating pathways (microchannels) for enhanced permeation of macromolecules. Microneedles not only improve stability but also enhance skin delivery of various biomolecules. Academic institutions and industrial companies have invested substantial resources in the development of microneedle systems for biopharmaceutical delivery. This review article summarizes the most recent research to provide a comprehensive discussion about microneedle-mediated delivery of macromolecules, covering various topics from the introduction of the skin, transdermal delivery, microneedles, and biopharmaceuticals (current status, conventional administration, and stability issues), to different microneedle types, clinical trials, safety and acceptability of microneedles, manufacturing and regulatory issues, and the future of microneedle technology.
Collapse
Affiliation(s)
- Hiep X. Nguyen
- Department of Pharmaceutical Sciences, College of Pharmacy, Mercer University, Atlanta, GA 30341, USA
| | - Chien N. Nguyen
- National Institute of Pharmaceutical Technology, Hanoi University of Pharmacy, Hanoi 100000, Vietnam
- Faculty of Pharmaceutics and Pharmaceutical Technology, Hanoi University of Pharmacy, Hanoi 100000, Vietnam
| |
Collapse
|
41
|
Wang J, Chen Y, Li T, Ren Y, Wang Y, Zhang Y, Hu L, Zhang J, Zhao Y, Li Z, Yan C. Phellodendri Chinensis Cortex-Based Nanoparticles Integrated in Dissolvable Microneedles for Ameliorating Psoriasis-Like Inflammation. J Biomed Nanotechnol 2022. [DOI: 10.1166/jbn.2022.3422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Psoriasis is a common and highly relapsing skin disease, for which topical treatments are used by approximately 88% of people with psoriasis as their primary therapy. However, in practice, the low convenience and side effects such as skin irritation of current topical treatments limit
the application of the therapy. To address these issues, we calcined Phellodendri Chinensis Cortex (PCC) to prepare Phellodendri Chinensis Cortex Nanoparticles (PCC-NPs) which were packed into dissolvable microneedles (MNs) for the treatment of psoriasis. In this study, we revealed that the
trace amounts of PCCNPs delivered by MNs could exert therapeutic effects therapeutic effects in the affected skin comparable to those of standard drugs, accompanied with the suppressed psoriasis-like inflammation without significant hepatic or renal toxicity or allergic reactions. These results
indicate that dissolvable PCC-NPs MNs may serve as an innovative topical therapy for the inhibition of psoriatic inflammation.
Collapse
Affiliation(s)
- Jing Wang
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Yiwen Chen
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Tingyu Li
- School of Integrated Circuits, Peking University, Beijing 100871, China
| | - Yingjie Ren
- School of Integrated Circuits, Peking University, Beijing 100871, China
| | - Yifan Wang
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Yue Zhang
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Li Hu
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Jie Zhang
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Yan Zhao
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Zhihong Li
- School of Integrated Circuits, Peking University, Beijing 100871, China
| | - Cong Yan
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing 100029, China
| |
Collapse
|
42
|
Chen H, Sun T, Jiang C. Extracellular vesicle-based macromolecule delivery systems in cancer immunotherapy. J Control Release 2022; 348:572-589. [PMID: 35714733 DOI: 10.1016/j.jconrel.2022.06.014] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 06/08/2022] [Accepted: 06/09/2022] [Indexed: 02/08/2023]
Abstract
Great attention has been paid to the impressive role the macromolecules played in cancer immunotherapy, however, the applications were largely limited by their poor circulation stability, low cellular uptake efficiency, and off-target effects. As an important messenger of intercellular communication, extracellular vesicles (EVs) exhibit unique advantages in macromolecule delivery compared to traditional synthetic carriers, offering new possibilities for modern drug delivery. These naturally derived carriers can achieve stable, efficient, and selective delivery of macromolecules and improve the efficacy and potentiality of macromolecular drugs in cancer immunotherapy. This review provides a brief overview of the unique features of EVs related to macromolecule delivery, the strategies and recent advances of using EVs as macromolecule delivery carriers in cancer immunotherapy.
Collapse
Affiliation(s)
- Hongyi Chen
- Key Laboratory of Smart Drug Delivery, Ministry of Education, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Department of Pharmaceutics, School of Pharmacy, Fudan University, Shanghai, China
| | - Tao Sun
- Key Laboratory of Smart Drug Delivery, Ministry of Education, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Department of Pharmaceutics, School of Pharmacy, Fudan University, Shanghai, China
| | - Chen Jiang
- Key Laboratory of Smart Drug Delivery, Ministry of Education, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Department of Pharmaceutics, School of Pharmacy, Fudan University, Shanghai, China.
| |
Collapse
|