1
|
Song T, Yuan L, Wang J, Li W, Sun Y. Advances in the transport of oral nanoparticles in gastrointestinal tract. Colloids Surf B Biointerfaces 2025; 245:114321. [PMID: 39423764 DOI: 10.1016/j.colsurfb.2024.114321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 10/08/2024] [Accepted: 10/13/2024] [Indexed: 10/21/2024]
Abstract
Biological barriers in the gastrointestinal tract (GIT) prevent oral absorption of insoluble drugs. Recently, significant progress has been made in the development of various nanoparticles (NPs) designed to enhance the efficacy of oral drugs. However, the mechanism underlying the intracellular transport of NPs remains unclear, and there are still limitations to improving the oral bioavailability of drugs. This article reviews the challenges faced in the absorption of oral NPs, proposes strategies to overcome these barriers, and discusses the future prospects.
Collapse
Affiliation(s)
- Tingting Song
- Department of Pharmaceutics, School of Pharmacy, Qingdao University, Qingdao 266071, China
| | - Lu Yuan
- Department of Pharmaceutics, School of Pharmacy, Qingdao University, Qingdao 266071, China
| | - Jie Wang
- Department of Pharmacy, Qingdao Traditional Chinese Medicine Hospital, Qingdao Hiser Hospital Affiliated to Qingdao University, Qingdao 266033, China
| | - Wenjing Li
- Department of Pharmaceutics, School of Pharmacy, Qingdao University, Qingdao 266071, China
| | - Yong Sun
- Department of Pharmaceutics, School of Pharmacy, Qingdao University, Qingdao 266071, China.
| |
Collapse
|
2
|
Yue L, Ye P, Zhang Y, Guo R, Xu W, Huang S, Xiu Y, Huang Y, Wang B. An enhanced bioactive chitosan-modified microemulsion for mucosal healing of ulcerative colitis. Int J Biol Macromol 2025; 284:137847. [PMID: 39581424 DOI: 10.1016/j.ijbiomac.2024.137847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2024] [Revised: 11/10/2024] [Accepted: 11/17/2024] [Indexed: 11/26/2024]
Abstract
The intestinal mucus layer plays a crucial role in the systemic absorption of drugs. While penetration through this layer traditionally constitutes a pivotal phase in drug absorption, the approach for treating ulcerative colitis (UC) shifts towards facilitating the direct delivery of drugs to the colon. In this study, we engineered a chitosan-modified microemulsion encapsulated nobiletin (NOB-CS-ME) characterized by small particle dimensions and positive charge specifically, designed to enable targeted delivery. In vitro experiments demonstrated that this NOB-CS-ME effectively became less into the intestinal mucus layer, thus achieving successful escape of the intestinal mucus barrier absorption. After circumventing this barrier, NOB-CS-ME exhibited heightened cellular uptake by colonic epithelial cells, displaying an approximately 1.3-fold increase compared to the unmodified microemulsion. Collectively, these observations imply enhanced drug bioavailability, potentially resulting in more efficacious mucosal healing, providing a promising avenue for natural small-molecule drug delivery in UC treatment.
Collapse
Affiliation(s)
- Lixia Yue
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Ping Ye
- Shanghai Institute for Minimally Invasive Therapy, School of Medical Instrument and Food Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Yi Zhang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China; Department of Implant Dentistry, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, College of Stomatology, Shanghai Jiao Tong University; National Center for Stomatology; National Clinical Research Center for Oral Diseases; Shanghai Key Laboratory of Stomatology, Shanghai 200011, China
| | - Ru Guo
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Weihua Xu
- Department of Pharmacy, Shanghai University of Medicine & Health Sciences Affiliated Zhoupu Hospital, Shanghai 201318, China
| | - Shaogang Huang
- The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou 501405, China
| | - Yanfeng Xiu
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China.
| | - Yongzhuo Huang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China.
| | - Bing Wang
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China; State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200032, China.
| |
Collapse
|
3
|
Salamone FL, Molonia MS, Muscarà C, Saija A, Cimino F, Speciale A. In Vitro Protective Effects of a Standardized Extract of Opuntia ficus-indica (L.) Mill. Cladodes and Olea europaea L. Leaves Against Indomethacin-Induced Intestinal Epithelial Cell Injury. Antioxidants (Basel) 2024; 13:1507. [PMCID: PMC11673993 DOI: 10.3390/antiox13121507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Revised: 12/05/2024] [Accepted: 12/09/2024] [Indexed: 01/06/2025] Open
Abstract
Nonsteroidal anti-inflammatory drugs (NSAIDs) can induce serious adverse effects in gastrointestinal (GI) mucosa, increasing intestinal permeability and leading to mitochondrial dysfunction, oxidative stress, apoptosis and inflammation. As proton pump inhibitors are effective in protecting against NSAID-induced gastropathy but not NSAID-induced enteropathy, current research is focused on natural products as protective substances for therapy and prevention of intestinal injury. Herein, through the use of an in vitro model based on intestinal epithelial cell (Caco-2) damage caused by indomethacin (INDO), we examined the protective activity of a commercially available standardized extract (OFI+OE) from Opuntia ficus-indica (L.) Mill. cladodes and Olea europaea L. leaves. Pre-treatment with OFI+OE prevented INDO-induced intestinal epithelial barrier damage, as demonstrated by TEER measurement, fluorescein permeability, and tight junction protein expression. The extract showed positive effects against INDO-induced oxidative stress and correlated activation of apoptosis, decreasing pro-apoptotic markers BAX and Caspase-3 and increasing anti-apoptotic factor Bcl-2. Moreover, the extract inhibited the NF-κB pathway and pro-inflammatory cascade. In conclusion, these data support the use of OFI+OE extract as a natural strategy for therapy and prevention of intestinal mucosal damage, demonstrating its beneficial effects against INDO-induced intestinal damage, through modulation of oxidative, apoptotic, and inflammatory pathways.
Collapse
|
4
|
Hazt B, Read DJ, Harlen OG, Poon WCK, O'Connell A, Sarkar A. Mucoadhesion across scales: Towards the design of protein-based adhesives. Adv Colloid Interface Sci 2024; 334:103322. [PMID: 39489118 DOI: 10.1016/j.cis.2024.103322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 10/22/2024] [Accepted: 10/23/2024] [Indexed: 11/05/2024]
Abstract
Mucoadhesion is a special case of bioadhesion in which a material adheres to soft mucosal tissues. This review elucidates our current understanding of mucoadhesion across length, time, and energy scales by focusing on relevant structural features of mucus. We highlight the importance of both covalent and non-covalent interactions that can be tailored to maximize mucoadhesive interactions, particularly concerning proteinaceous mucoadhesives, which have been explored only to a limited extent so far in the literature. In particular, we highlight the importance of thiol groups, hydrophobic moieties, and charged species inherent to proteins as key levers to fine tune mucoadhesive performance. Some aspects of protein surface modification by grafting specific functional groups or coupling with polysaccharides to influence mucoadhesive performance are examined. Insights from this review offer a physicochemical roadmap to inform the development of biocompatible, protein-based mucoadhesive systems that can fulfil dual roles for both adhesion and delivery of actives, enabling the fabrication of advanced biomedical, nutritional and allied soft material technologies.
Collapse
Affiliation(s)
- Bianca Hazt
- Food Colloids and Bioprocessing Group, School of Food Science and Nutrition, University of Leeds, LS2 9JT, UK
| | - Daniel J Read
- School of Mathematics, University of Leeds, LS2 9JT, UK
| | | | - Wilson C K Poon
- School of Physics and Astronomy, University of Edinburgh, Peter Guthrie Tait Road, Edinburgh EH9 3FD, UK
| | - Adam O'Connell
- Polymer Science Platform, Reckitt Benckiser Healthcare (UK) Ltd, Dansom Lane S, Hull, HU8 7DS, UK
| | - Anwesha Sarkar
- Food Colloids and Bioprocessing Group, School of Food Science and Nutrition, University of Leeds, LS2 9JT, UK.
| |
Collapse
|
5
|
Kumari D, Karmakar V, Sisinthy SP, Pandey M, Jain N, Gorain B. Nanoemulsion and nanoemulgel-based carriers as advanced delivery tools for the treatment of oral diseases. Drug Deliv Transl Res 2024. [DOI: 10.1007/s13346-024-01735-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/18/2024] [Indexed: 01/03/2025]
|
6
|
Berkenfeld K, Carneiro S, Corzo C, Laffleur F, Salar-Behzadi S, Winkeljann B, Esfahani G. Formulation strategies, preparation methods, and devices for pulmonary delivery of biologics. Eur J Pharm Biopharm 2024; 204:114530. [PMID: 39393712 DOI: 10.1016/j.ejpb.2024.114530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 10/07/2024] [Accepted: 10/08/2024] [Indexed: 10/13/2024]
Abstract
Biological products, including vaccines, blood components, and recombinant therapeutic proteins, are derived from natural sources such as humans, animals, or microorganisms and are typically produced using advanced biotechnological methods. The success of biologics, particularly monoclonal antibodies, can be attributed to their favorable safety profiles and target specificity. However, their large molecular size presents significant challenges in drug delivery, particularly in overcoming biological barriers. Pulmonary delivery has emerged as a promising route for administering biologics, offering non-invasive delivery with rapid absorption, high systemic bioavailability, and avoidance of first-pass metabolism. This review first details the anatomy and physiological barriers of the respiratory tract and the associated challenges of pulmonary drug delivery (PDD). It further discusses innovations in PDD, the impact of particle size on drug deposition, and the use of secondary particles, such as nanoparticles, to enhance bioavailability and targeting. The review also explains various devices used for PDD, including dry powder inhalers (DPIs) and nebulizers, highlighting their advantages and limitations in delivering biologics. The role of excipients in improving the stability and performance of inhalation products is also addressed. Since dry powders are considered the suitable format for delivering biomolecules, particular emphasis is placed on the excipients used in DPI development. The final section of the article reviews and compares various dry powder manufacturing methods, clarifying their clinical relevance and potential for future applications in the field of inhalable drug formulation.
Collapse
Affiliation(s)
- Kai Berkenfeld
- Laboratory of Pharmaceutical Technology and Biopharmaceutics, Institute of Pharmacy, University of Bonn, Gerhard-Domagk-Street 3, 53121 Bonn, Germany; Pharmaceutical Engineering and Technology Research Scientists (PETRS)
| | - Simone Carneiro
- Department of Pharmacy, Ludwig-Maximilians-Universität Munich, Butenandtstrasse 5-13, Haus B, 81377 München, Germany; Center for NanoScience (CeNS), Ludwig-Maximilians-Universität München, München 80799, Germany; Pharmaceutical Engineering and Technology Research Scientists (PETRS)
| | - Carolina Corzo
- Research Center Pharmaceutical Engineering GmbH, Graz, Austria; Pharmaceutical Engineering and Technology Research Scientists (PETRS)
| | - Flavia Laffleur
- Department of Pharmaceutical Technology, Institute of Pharmacy, Center for Chemistry and Biomedicine, University of Innsbruck, Innrain 80-82, 6020 Innsbruck, Austria; Pharmaceutical Engineering and Technology Research Scientists (PETRS)
| | - Sharareh Salar-Behzadi
- Research Center Pharmaceutical Engineering GmbH, Graz, Austria; Institute of Pharmaceutical Sciences, Department of Pharmaceutical Technology, University of Graz, Graz, Austria; Pharmaceutical Engineering and Technology Research Scientists (PETRS)
| | - Benjamin Winkeljann
- Department of Pharmacy, Ludwig-Maximilians-Universität Munich, Butenandtstrasse 5-13, Haus B, 81377 München, Germany; Center for NanoScience (CeNS), Ludwig-Maximilians-Universität München, München 80799, Germany; RNhale GmbH, München 81371, Germany; Comprehensive Pneumology Center Munich (CPC-M), Helmholtz Munich, German Center for Lung Research (DZL), 81377 Munich, Germany; Pharmaceutical Engineering and Technology Research Scientists (PETRS)
| | - Golbarg Esfahani
- Department of Pharmaceutical Technology, Institute of Pharmacy, Martin Luther University Halle-Wittenberg, Wolfgang-Langenbeck-Straße 4, Halle 06120, Saale, Germany; Pharmaceutical Engineering and Technology Research Scientists (PETRS).
| |
Collapse
|
7
|
Zhao S, Wang L, Huang X, Xiao Y, Li M, Huang X, Chen X, Li S, Xie J, Liu P, Wang YD, Chen WD. Design, Synthesis, and Biological Evaluation of Covalently Mucoadhesive Derivatives as Nonsystemic Intestine-Targeted TGR5 Agonists. J Med Chem 2024; 67:17701-17712. [PMID: 39321318 DOI: 10.1021/acs.jmedchem.4c01637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/27/2024]
Abstract
Takeda G-protein-coupled receptor 5 (TGR5) is considered a promising therapeutic target for treating type 2 diabetes mellitus (T2DM), obesity, and other metabolism-related diseases. Although many TGR5 agonists have been identified, they might cause some side effects in the gallbladder and the heart. To reduce these side effects and improve glucose-lowering capability, we first designed and synthesized a series of 4-phenoxynicotinamide intestine-targeted TGR5 agonist derivatives containing maleimides in the side chains with different linker lengths. All of the target compounds demonstrated significant TGR5 agonistic activity, among which compound 22b displayed the best TGR5 agonistic activity. Additionally, compound 22b displayed low Caco-2 cell permeability and strong mucoadhesion to mucin and the rat intestine. In C57BL/6J, diet-induced obese, and db/db mice, compound 22b demonstrated a robust and prolonged hypoglycemic effect along with an acceptable safety profile.
Collapse
Affiliation(s)
- Shizhen Zhao
- The First Affiliated Hospital of Henan University, Kaifeng 475000, China
- Key Laboratory of Receptors-Mediated Gene Regulation, School of Basic Medical Sciences, Henan University, Kaifeng 475000, China
| | - Le Wang
- Key Laboratory of Receptors-Mediated Gene Regulation, School of Basic Medical Sciences, Henan University, Kaifeng 475000, China
| | - Xiaotong Huang
- The First Affiliated Hospital of Henan University, Kaifeng 475000, China
| | - Yali Xiao
- Key Laboratory of Receptors-Mediated Gene Regulation, School of Basic Medical Sciences, Henan University, Kaifeng 475000, China
| | - Mengqi Li
- The First Affiliated Hospital of Henan University, Kaifeng 475000, China
| | - Xueyuan Huang
- Key Laboratory of Receptors-Mediated Gene Regulation, School of Basic Medical Sciences, Henan University, Kaifeng 475000, China
| | - Xueyu Chen
- The First Affiliated Hospital of Henan University, Kaifeng 475000, China
| | - Shengjie Li
- Key Laboratory of Receptors-Mediated Gene Regulation, School of Basic Medical Sciences, Henan University, Kaifeng 475000, China
| | - Jing Xie
- The First Affiliated Hospital of Henan University, Kaifeng 475000, China
| | - Peng Liu
- Hebi Key Laboratory of Cardiovascular Diseases, Hebi Key Laboratory of Energy Metabolism, People's Hospital of Hebi, Henan University, Kaifeng 475000, China
| | - Yan-Dong Wang
- State Key Laboratory of Chemical Resource Engineering, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China
| | - Wei-Dong Chen
- Key Laboratory of Receptors-Mediated Gene Regulation, School of Basic Medical Sciences, Henan University, Kaifeng 475000, China
- Key Laboratory of Receptors-Mediated Gene Regulation and Drug Discovery, School of Basic Medical Science, Inner Mongolia Medical University, Hohhot 010110, China
| |
Collapse
|
8
|
Maslii Y, Herbina N, Dene L, Ivanauskas L, Bernatoniene J. Development and Evaluation of Oromucosal Spray Formulation Containing Plant-Derived Compounds for the Treatment of Infectious and Inflammatory Diseases of the Oral Cavity. Polymers (Basel) 2024; 16:2649. [PMID: 39339113 PMCID: PMC11435575 DOI: 10.3390/polym16182649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2024] [Revised: 09/12/2024] [Accepted: 09/17/2024] [Indexed: 09/30/2024] Open
Abstract
According to data in the literature, natural products and essential oils are often used in dental practice. To develop a new oromucosal spray for the treatment of infectious and inflammatory diseases of the oral cavity, clove CO2 extract and essential oils of lavender and grapefruit were used as active pharmaceutical ingredients. Clove extract was obtained by the method of subcritical extraction from various raw materials, the choice of which was based on the yield of the CO2 extract and the study of its phytochemical and microbiological properties. Based on the results of microscopic and diffraction analyses, the rational time of ultrasonic exposure for the emulsion of active pharmaceutical ingredients was established. Mucoadhesive polymers were used as stabilizers of the two-phase system and prolongators. This article discusses the impact of the type and concentration of mucoadhesive polymers on the stability of the emulsion system; the viscous, textural, adhesive, and film characteristics of oromucosal spray; and the parameters determining sprayability.
Collapse
Affiliation(s)
- Yuliia Maslii
- Department of Drug Technology and Social Pharmacy, Lithuanian University of Health Sciences, LT-50161 Kaunas, Lithuania; (Y.M.); (N.H.)
- Department of Industrial Technology of Drugs, National University of Pharmacy, 61002 Kharkiv, Ukraine
| | - Nataliia Herbina
- Department of Drug Technology and Social Pharmacy, Lithuanian University of Health Sciences, LT-50161 Kaunas, Lithuania; (Y.M.); (N.H.)
- Department of Industrial Technology of Drugs, National University of Pharmacy, 61002 Kharkiv, Ukraine
| | - Lina Dene
- Laboratory of Biochemistry and Technology, Institute of Horticulture, Lithuanian Research Centre for Agriculture and Forestry, LT-54333 Babtai, Lithuania;
- PetalNord MB, Kruosto g. 31, LT-47214 Kaunas, Lithuania
| | - Liudas Ivanauskas
- Department of Analytical and Toxicological Chemistry, Lithuanian University of Health Sciences, LT-50161 Kaunas, Lithuania;
| | - Jurga Bernatoniene
- Department of Drug Technology and Social Pharmacy, Lithuanian University of Health Sciences, LT-50161 Kaunas, Lithuania; (Y.M.); (N.H.)
- Institute of Pharmaceutical Technologies, Faculty of Pharmacy, Medical Academy, Lithuanian University of Health Sciences, LT-50161 Kaunas, Lithuania
| |
Collapse
|
9
|
Sabatelle RC, Geller A, Li S, Van Heest A, Sachdeva UM, Bressler E, Korunes-Miller J, Tfayli B, Tal-Mason A, Kharroubi H, Colson YL, Grinstaff MW. Synthesis of Amphiphilic Amino Poly-Amido-Saccharide and Poly(lactic) Acid Block Copolymers and Fabrication of Paclitaxel-Loaded Mucoadhesive Nanoparticles. Bioconjug Chem 2024; 35:1429-1440. [PMID: 39159059 DOI: 10.1021/acs.bioconjchem.4c00325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/21/2024]
Abstract
Drug delivery to the esophagus through systemic administration remains challenging, as minimal drug reaches the desired target. Local delivery offers the potential for improved efficacy while minimizing off-target toxicities but necessitates bioadhesive properties for mucosal delivery. Herein, we describe the synthesis of two new mucoadhesive amphiphilic copolymers prepared by sequential ring-opening copolymerization or postpolymerization click conjugation. Both strategies yield block copolymers containing a hydrophilic amine-functionalized poly-amido-saccharide and either a hydrophobic alkyl derivatized poly-amido-saccharide or poly(lactic acid), respectively. The latter resulting copolymers readily self-assemble into spherical, ≈200 nm diameter, positively charged mucoadhesive nanoparticles. The NPs entrap ultrahigh levels of paclitaxel via encapsulation of free paclitaxel and paclitaxel conjugated to a biodegradable, biocompatible poly(1,2-glycerol carbonate). Paclitaxel-loaded NPs rapidly enter cells, release paclitaxel, are cytotoxic to esophageal OE33 and OE19 tumor cells in vitro, and, importantly, demonstrate improved mucoadhesion compared to conventional poly(ethylene glycol)-poly(lactic acid) nanoparticles to ex vivo esophageal tissue.
Collapse
Affiliation(s)
- Robert C Sabatelle
- Boston University, Departments of Chemistry and Biomedical Engineering, Boston, Massachusetts 02215, United States
| | - Abraham Geller
- Division of Thoracic Surgery, Department of Surgery, Massachusetts General Hospital, Boston, Massachusetts 02114, United States
| | - Siyuan Li
- Boston University, Departments of Chemistry and Biomedical Engineering, Boston, Massachusetts 02215, United States
| | - Audrey Van Heest
- Boston University, Departments of Chemistry and Biomedical Engineering, Boston, Massachusetts 02215, United States
| | - Uma M Sachdeva
- Division of Thoracic Surgery, Department of Surgery, Massachusetts General Hospital, Boston, Massachusetts 02114, United States
| | - Eric Bressler
- Boston University, Departments of Chemistry and Biomedical Engineering, Boston, Massachusetts 02215, United States
| | - Jenny Korunes-Miller
- Boston University, Departments of Chemistry and Biomedical Engineering, Boston, Massachusetts 02215, United States
| | - Bassel Tfayli
- Division of Thoracic Surgery, Department of Surgery, Massachusetts General Hospital, Boston, Massachusetts 02114, United States
| | - Aya Tal-Mason
- Division of Thoracic Surgery, Department of Surgery, Massachusetts General Hospital, Boston, Massachusetts 02114, United States
| | - Hussein Kharroubi
- Division of Thoracic Surgery, Department of Surgery, Massachusetts General Hospital, Boston, Massachusetts 02114, United States
| | - Yolonda L Colson
- Division of Thoracic Surgery, Department of Surgery, Massachusetts General Hospital, Boston, Massachusetts 02114, United States
| | - Mark W Grinstaff
- Boston University, Departments of Chemistry and Biomedical Engineering, Boston, Massachusetts 02215, United States
| |
Collapse
|
10
|
Khan O, Bhawale R, Vasave R, Mehra NK. Ionic liquid-based formulation approaches for enhanced transmucosal drug delivery. Drug Discov Today 2024; 29:104109. [PMID: 39032809 DOI: 10.1016/j.drudis.2024.104109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 07/09/2024] [Accepted: 07/15/2024] [Indexed: 07/23/2024]
Abstract
The utilization of ionic liquids (ILs) in pharmaceutical drug delivery applications has seen significant expansion in recent years, owing to their distinctive characteristics and inherent adjustability. These innovative compounds can be used to tackle challenges associated with traditional dosage forms, such as polymorphism, inadequate solubility, permeability, and efficacy in topical drug delivery systems. Here, we provide a brief classification of ILs, and their effectiveness in augmenting transmucosal drug delivery approaches by improving the solubility and permeability of active pharmaceutical ingredients (APIs) by temporary mucus modulation aiding the paracellular transport of APIs, prolonging drug retention, and, thus, aiding controlled drug release across various mucosal surfaces. We also highlight potential advances in, and future perspectives of, IL-based formulations in mucosal drug delivery.
Collapse
Affiliation(s)
- Omar Khan
- Pharmaceutical Nanotechnology Research Laboratory, Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research, Hyderabad, Telangana, India
| | - Rohit Bhawale
- Pharmaceutical Nanotechnology Research Laboratory, Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research, Hyderabad, Telangana, India
| | - Ravindra Vasave
- Pharmaceutical Nanotechnology Research Laboratory, Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research, Hyderabad, Telangana, India
| | - Neelesh Kumar Mehra
- Pharmaceutical Nanotechnology Research Laboratory, Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research, Hyderabad, Telangana, India.
| |
Collapse
|
11
|
Sapra A, Hm H, Amin SM, Syahrani, Kelsi FA, Nur S, Permana AD. Development of mucoadhesive microspheres for intranasal delivery of fluconazole as an alternative treatment of cryptococcal meningitis infection in patients with acquired immunodeficiency. ANNALES PHARMACEUTIQUES FRANÇAISES 2024; 82:813-821. [PMID: 38604290 DOI: 10.1016/j.pharma.2024.04.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 01/23/2024] [Accepted: 04/03/2024] [Indexed: 04/13/2024]
Abstract
INTRODUCTION Cryptococcal meningitis is a deadly disease with few treatment options. Its incidence is still high and closely linked to the HIV/AIDS epidemic. This study aimed to develop a mucoadhesive microsphere delivery system for fluconazole for the intranasal route. METHOD Microspheres of mucoadhesive fluconazole formulation variables such as different amounts of drug concentration and polymer concentration were prepared by a simple emulsion-crosslinking method. The prepared microspheres' surface was characterised by SEM (Scanning electron microscopy) and evaluated for particle size, entrapment efficiency, production yield, infrared spectroscopic study, in-vitro muco-adhesion, and in-vitro drug release. RESULTS The results showed that formula 1 is the optimal mucoadhesive microsphere preparation, with a particle size of 56.375m, a spherical surface shape, an entrapment efficiency of 99.96%, and a greater mucoadhesive capability during 6-hour evaluation. Furthermore, wash-off examination revealed that the mucoadhesive ability of this delivery system has a long duration and may release the active material at the right time. CONCLUSION The result of the researches suggesting that the formulation of mucoadhesive microspheres of fluconazole could be used to treat cryptococcal meningitis infection in HIV/AIDS patients.
Collapse
Affiliation(s)
- Amriani Sapra
- Department of Pharmaceutical Technology, Almarisah Madani University, 90242 Makassar, Indonesia.
| | - Hendrawan Hm
- Department of Pharmaceutical Technology, Almarisah Madani University, 90242 Makassar, Indonesia
| | - Sayyid M Amin
- Department of Pharmaceutical Technology, Almarisah Madani University, 90242 Makassar, Indonesia
| | - Syahrani
- Department of Pharmaceutical Technology, Almarisah Madani University, 90242 Makassar, Indonesia
| | - Filia Ananda Kelsi
- Department of Pharmaceutical Technology, Almarisah Madani University, 90242 Makassar, Indonesia
| | - Syamsu Nur
- Department of Pharmaceutical Chemistry, Almarisah Madani University, 90242 Makassar, Indonesia
| | - Andi Dian Permana
- Department of Pharmaceutical Technology, Hasanuddin University, 90242 Makassar, Indonesia
| |
Collapse
|
12
|
Anam A, Abbas G, Shah S, Saadullah M, Shahwar D, Mahmood K, Hanif M, Ahmad N, Basheer E, Obaidullah AJ, Alotaibi HF, Alqarni M, Ameer N. Quantitative analysis of loxoprofen sodium loaded microspheres comprising pectin and its thiolated conjugates: In-vivo evaluation of their sustained release behavior. Heliyon 2024; 10:e36297. [PMID: 39247278 PMCID: PMC11378961 DOI: 10.1016/j.heliyon.2024.e36297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 08/13/2024] [Accepted: 08/13/2024] [Indexed: 09/10/2024] Open
Abstract
Continuous use of oral NSAIDs can damage mucosal membrane, which results in decreased bioavailability and non-compliance with the therapy. But the use of sustained release drug delivery systems might offer a solution. Objective was to synthesize mucoadhesive SR microspheres by using different combinations of pectin (PEC) and its thiolated derivative (T-PEC3100) for improved loxoprofen (LS) permeation. Thiolated pectin (T-PEC) was synthesized by the esterification method using thioglycolic acid. Thiolation was confirmed by thiol group quantification and charring point determination. Further characterization was done by Fourier Transform Infrared spectroscopy (FTIR), and Scanning electron microscopy (SEM). Ex-vivo mucoadhesion study was performed to confirm the improved characteristics. Microspheres (MS) were prepared using different ratios of PEC/T-PEC by solvent evaporation method and their particle size and surface morphology were evaluated. Mucus permeation study was carried out using the trans-well plate method. Sustained release behavior of prepared microspheres was investigated through the edema inhibition method in albino rats. T-PEC3100 was considered the optimum formulation for further evaluation and contained maximum thiol group content. FTIR spectra showed a characteristic peak of -SH and charring point was also changed considerably confirming the successful thiolation of PEC. SEM results showed spherical microspheres in the size range of 2-10 μm. Thiol-rich formulation of MS exhibited more than 80 % release after 12 h and maximum absorbable dose (MAD) was calculated as 400 μg % inhibition of edema in MS treated group was slowly attained initially but the reduction in inflammation was detected even after 24 h as compared to control group. Promising results from In-vivo edema inhibition study suggest the possible use of these thiolated MS in formulating sustained release formulation for arthritis.
Collapse
Affiliation(s)
- Aisha Anam
- Department of Pharmaceutics, Faculty of Pharmacy, Bahauddin Zakariya University Multan, Pakistan
| | - Ghulam Abbas
- Department of Pharmaceutics, Faculty of Pharmaceutical Sciences, Government College University, Faisalabad, Pakistan
| | - Shahid Shah
- Department of Pharmacy Practice, Faculty of Pharmaceutical Sciences, Government College University, Faisalabad, Pakistan
| | - Malik Saadullah
- Department of Pharmaceutical Chemistry, Faculty of Pharmaceutical Sciences, Government College University, Faisalabad, Pakistan
| | - Dure Shahwar
- Department of Pharmaceutics, Faculty of Pharmacy, Bahauddin Zakariya University Multan, Pakistan
| | - Khalid Mahmood
- Institute of Chemical Sciences, Bahauddin Zakariya University, Multan, Pakistan
| | - Muhammad Hanif
- Department of Pharmaceutics, Faculty of Pharmacy, Bahauddin Zakariya University Multan, Pakistan
| | - Nabeel Ahmad
- School of Chemical and Materials Engineering, National University of Science and Technology, Islamabad, Pakistan
| | - Ejaz Basheer
- Department of Pharmacognosy, Faculty of Pharmaceutical Sciences, Government College University, Faisalabad, Pakistan
| | - Ahmad J Obaidullah
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh, 11451, Saudi Arabia
| | - Hadil Faris Alotaibi
- Department of Pharmaceutical Sciences, College of Pharmacy, Princess Nourah Bint Abdul Rahman University, Riyadh, 11671, Saudi Arabia
| | - Mohammed Alqarni
- Department of Pharmaceutical Chemistry, College of Pharmacy, Taif University, P.O. Box 11099, Taif, 21944, Saudi Arabia
| | - Nabeela Ameer
- Department of Pharmaceutics, Faculty of Pharmacy, Bahauddin Zakariya University Multan, Pakistan
| |
Collapse
|
13
|
Biswas M, Nurunnabi M, Khatun Z. Understanding Mucosal Physiology and Rationale of Formulation Design for Improved Mucosal Immunity. ACS APPLIED BIO MATERIALS 2024; 7:5037-5056. [PMID: 38787767 DOI: 10.1021/acsabm.4c00395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/26/2024]
Abstract
The oral and nasal cavities serve as critical gateways for infectious pathogens, with microorganisms primarily gaining entry through these routes. Our first line of defense against these invaders is the mucosal membrane, a protective barrier that shields the body's internal systems from infection while also contributing to vital functions like air and nutrient intake. One of the key features of this mucosal barrier is its ability to protect the physiological system from pathogens. Additionally, mucosal tolerance plays a crucial role in maintaining homeostasis by regulating the pH and water balance within the body. Recognizing the importance of the mucosal barrier, researchers have developed various mucosal formulations to enhance the immune response. Mucosal vaccines, for example, deliver antigens directly to mucosal tissues, triggering local immune stimulation and ultimately inducing systemic immunity. Studies have shown that lipid-based formulations such as liposomes and virosomes can effectively elicit both local and systemic immune responses. Furthermore, mucoadhesive polymeric particles, with their prolonged delivery to target sites, have demonstrated an enhanced immune response. This Review delves into the critical role of material selection and delivery approaches in optimizing mucosal immunity.
Collapse
Affiliation(s)
- Mila Biswas
- Department of Electrical and Computer Engineering, University of Texas at El Paso, El Paso, Texas 79902, United States
| | - Md Nurunnabi
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Texas at El Paso, El Paso, Texas 79902, United States
- Department of Biomedical Engineering, College of Engineering, University of Texas at El Paso, El Paso, Texas 79968, United States
| | - Zehedina Khatun
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Texas at El Paso, El Paso, Texas 79902, United States
| |
Collapse
|
14
|
Tang B, Xie X, Lu J, Huang W, Yang J, Tian J, Lei L. Designing biomaterials for the treatment of autoimmune diseases. APPLIED MATERIALS TODAY 2024; 39:102278. [DOI: 10.1016/j.apmt.2024.102278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/04/2024]
|
15
|
Vaezi Z, Baradaran Ghavami S, Farmani M, Mahdavian R, Asadzadeh Aghdaei H, Naderi-Manesh H. Oral Formulation of 5-Aminosalicylic Acid-Hemoglobin Bio-Adhesive Nanoparticles Enhance Therapeutic Efficiency in Ulcerative Colitis Mice: A Preclinical Evaluation. J Pharm Sci 2024; 113:2331-2341. [PMID: 38582281 DOI: 10.1016/j.xphs.2024.03.028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 03/31/2024] [Accepted: 03/31/2024] [Indexed: 04/08/2024]
Abstract
The oral formulation design for colon-specific drug delivery brings some therapeutic benefits in the ulcerative colitis treatment. We recently reported the specific delivery of hemoglobin nanoparticles-conjugating 5-aminosalicylic acid (5-ASA-HbNPs) to the inflamed site. In the current study, the therapeutic effect of the 5-ASA-HbNPs formulation was confirmed in vivo. This evaluation of 5-ASA-HbNPs not only shows longer colonic retention time due to adhesive properties, also provides full support for it as compared with free 5-ASA. It was considered as a suitable bio-adhesive nanoparticle with mucoadhesive property to pass through the mucus layer and accumulate into the mucosa. In UC model mice, a two-fold decrease in the disease activity indexes and colon weight/length ratios was significantly observed in the group treated with 5-ASA-HbNPs. This group received one percent of the standard dosage of 5-ASA (50 μg/kg), while, a similar result was observed for a significant amount of free 5-ASA (5 mg/kg). Furthermore, microscopic images of histological sections of the extracted colons demonstrated that the 5-ASA-HbNPs and 5-ASA groups displayed instances of inflammatory damage within the colon. However, in comparison to the colitis group, the extent of this damage was relatively moderate, suggesting 5-ASA-HbNPs improved therapeutic efficacy with the lower dosage form.
Collapse
Affiliation(s)
- Zahra Vaezi
- Department of Bioactive compounds, Faculty of Interdisciplinary Sciences and Technologies, Tarbiat Modares University, Postal codes: 14115-154, Tehran, Iran.
| | - Shaghayegh Baradaran Ghavami
- Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, P.O.BOX: 1985717411, Tehran, Iran
| | - Maryam Farmani
- Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, P.O.BOX: 1985717411, Tehran, Iran
| | - Reza Mahdavian
- Department of Biophysics, Faculty of Biological Science, Tarbiat Modares University, Postal codes: 14115-154, Tehran, Iran
| | - Hamid Asadzadeh Aghdaei
- Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, P.O.BOX: 1985717411, Tehran, Iran.
| | - Hossein Naderi-Manesh
- Department of Bioactive compounds, Faculty of Interdisciplinary Sciences and Technologies, Tarbiat Modares University, Postal codes: 14115-154, Tehran, Iran; Department of Biophysics, Faculty of Biological Science, Tarbiat Modares University, Postal codes: 14115-154, Tehran, Iran.
| |
Collapse
|
16
|
Eker F, Duman H, Akdaşçi E, Bolat E, Sarıtaş S, Karav S, Witkowska AM. A Comprehensive Review of Nanoparticles: From Classification to Application and Toxicity. Molecules 2024; 29:3482. [PMID: 39124888 PMCID: PMC11314082 DOI: 10.3390/molecules29153482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 07/12/2024] [Accepted: 07/22/2024] [Indexed: 08/12/2024] Open
Abstract
Nanoparticles are structures that possess unique properties with high surface area-to-volume ratio. Their small size, up to 100 nm, and potential for surface modifications have enabled their use in a wide range of applications. Various factors influence the properties and applications of NPs, including the synthesis method and physical attributes such as size and shape. Additionally, the materials used in the synthesis of NPs are primary determinants of their application. Based on the chosen material, NPs are generally classified into three categories: organic, inorganic, and carbon-based. These categories include a variety of materials, such as proteins, polymers, metal ions, lipids and derivatives, magnetic minerals, and so on. Each material possesses unique attributes that influence the activity and application of the NPs. Consequently, certain NPs are typically used in particular areas because they possess higher efficiency along with tenable toxicity. Therefore, the classification and the base material in the NP synthesis hold significant importance in both NP research and application. In this paper, we discuss these classifications, exemplify most of the major materials, and categorize them according to their preferred area of application. This review provides an overall review of the materials, including their application, and toxicity.
Collapse
Affiliation(s)
- Furkan Eker
- Department of Molecular Biology and Genetics, Çanakkale Onsekiz Mart University, Çanakkale 17000, Türkiye; (F.E.); (H.D.); (E.A.); (E.B.); (S.S.)
| | - Hatice Duman
- Department of Molecular Biology and Genetics, Çanakkale Onsekiz Mart University, Çanakkale 17000, Türkiye; (F.E.); (H.D.); (E.A.); (E.B.); (S.S.)
| | - Emir Akdaşçi
- Department of Molecular Biology and Genetics, Çanakkale Onsekiz Mart University, Çanakkale 17000, Türkiye; (F.E.); (H.D.); (E.A.); (E.B.); (S.S.)
| | - Ecem Bolat
- Department of Molecular Biology and Genetics, Çanakkale Onsekiz Mart University, Çanakkale 17000, Türkiye; (F.E.); (H.D.); (E.A.); (E.B.); (S.S.)
| | - Sümeyye Sarıtaş
- Department of Molecular Biology and Genetics, Çanakkale Onsekiz Mart University, Çanakkale 17000, Türkiye; (F.E.); (H.D.); (E.A.); (E.B.); (S.S.)
| | - Sercan Karav
- Department of Molecular Biology and Genetics, Çanakkale Onsekiz Mart University, Çanakkale 17000, Türkiye; (F.E.); (H.D.); (E.A.); (E.B.); (S.S.)
| | - Anna Maria Witkowska
- Department of Food Biotechnology, Medical University of Bialystok, 15-089 Bialystok, Poland
| |
Collapse
|
17
|
Kruk K, Winnicka K. Hard Gelatin Capsules with Alginate-Hypromellose Microparticles as a Multicompartment Drug Delivery System for Sustained Posaconazole Release. Int J Mol Sci 2024; 25:7116. [PMID: 39000223 PMCID: PMC11241651 DOI: 10.3390/ijms25137116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 06/24/2024] [Accepted: 06/26/2024] [Indexed: 07/16/2024] Open
Abstract
Microparticles as a multicompartment drug delivery system are beneficial for poorly soluble drugs. Mucoadhesive polymers applied in microparticle technology prolong the contact of the drug with the mucosa surface enhancing drug bioavailability and extending drug activity. Sodium alginate (ALG) and hydroxypropyl methylcellulose (hypromellose, HPMC) are polymers of a natural or semi-synthetic origin, respectively. They are characterized by mucoadhesive properties and are applied in microparticle technology. Spray drying is a technology employed in microparticle preparation, consisting of the atomization of liquid in a stream of gas. In this study, the pharmaceutical properties of spray-dried ALG/HPMC microparticles with posaconazole were compared with the properties of physical mixtures of powders with equal qualitative and quantitative compositions. Posaconazole (POS) as a relatively novel antifungal was utilized as a model poorly water-soluble drug, and hard gelatin capsules were applied as a reservoir for designed formulations. A release study in 0.1 M HCl showed significantly prolonged POS release from microparticles compared to a mixture of powders. Such a relationship was not followed in simulated vaginal fluid (SVF). Microparticles were also characterized by stronger mucoadhesive properties, an increased swelling ratio, and prolonged residence time compared to physical mixtures of powders. The obtained results indicated that the pharmaceutical properties of hard gelatin capsules filled with microparticles were significantly different from hard gelatin capsules with mixtures of powders.
Collapse
Affiliation(s)
- Katarzyna Kruk
- Department of Pharmaceutical Technology, Medical University of Białystok, Mickiewicza 2C, 15-222 Białystok, Poland
| | - Katarzyna Winnicka
- Department of Pharmaceutical Technology, Medical University of Białystok, Mickiewicza 2C, 15-222 Białystok, Poland
| |
Collapse
|
18
|
Paul S, Bhuyan S, Balasoupramanien DD, Palaniappan A. Muco-Adhesive and Muco-Penetrative Formulations for the Oral Delivery of Insulin. ACS OMEGA 2024; 9:24121-24141. [PMID: 38882129 PMCID: PMC11170654 DOI: 10.1021/acsomega.3c10305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Revised: 04/18/2024] [Accepted: 04/23/2024] [Indexed: 06/18/2024]
Abstract
Insulin, a pivotal anabolic hormone, regulates glucose homeostasis by facilitating the conversion of blood glucose to energy or storage. Dysfunction in insulin activity, often associated with pancreatic β cells impairment, leads to hyperglycemia, a hallmark of diabetes. Type 1 diabetes (T1D) results from autoimmune destruction of β cells, while type 2 diabetes (T2D) stems from genetic, environmental, and lifestyle factors causing β cell dysfunction and insulin resistance. Currently, insulin therapy is used for most of the cases of T1D, while it is used only in a few persistent cases of T2D, often supplemented with dietary and lifestyle changes. The key challenge in oral insulin delivery lies in overcoming gastrointestinal (GI) barriers, including enzymatic degradation, low permeability, food interactions, low bioavailability, and long-term safety concerns. The muco-adhesive (MA) and muco-penetrative (MP) formulations aim to enhance oral insulin delivery by addressing these challenges. The mucus layer, a hydrogel matrix covering epithelial cells in the GI tract, poses significant barriers to oral insulin absorption. Its structure, composition, and turnover rate influence interactions with insulin and other drug carriers. Some of the few factors that influence mucoadhesion and mucopenetration are particle size, surface charge distribution, and surface modifications. This review discusses the challenges associated with oral insulin delivery, explores the properties of mucus, and evaluates the strategies for achieving excellent MA and MP formulations, focusing on nanotechnology-based approaches. The development of effective oral insulin formulations holds the potential to revolutionize diabetes management, providing patients with a more convenient and patient-friendly alternative to traditional insulin administration methods.
Collapse
Affiliation(s)
- Srijita Paul
- School of Biosciences and Technology (SBST), Vellore Institute of Technology (VIT), Vellore, Tamil Nadu 632014, India
- Advanced Academic Programs, Krieger School of Arts and Sciences, Johns Hopkins University, Baltimore Maryland21218, United States
| | - Snigdha Bhuyan
- School of Biosciences and Technology (SBST), Vellore Institute of Technology (VIT), Vellore, Tamil Nadu 632014, India
- Department of Biomedical Engineering, National University of Singapore, Singapore 119077
| | | | - Arunkumar Palaniappan
- Human Organ Manufacturing Engineering (HOME) Lab, Centre for Biomaterials, Cellular and Molecular Theranostics (CBCMT), Vellore Institute of Technology (VIT), Vellore, Tamil Nadu 632014, India
| |
Collapse
|
19
|
Ahmad K, Zhang Y, Chen P, Yang X, Hou H. Chitosan interaction with stomach mucin layer to enhances gastric retention and mucoadhesive properties. Carbohydr Polym 2024; 333:121926. [PMID: 38494203 DOI: 10.1016/j.carbpol.2024.121926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Revised: 02/04/2024] [Accepted: 02/05/2024] [Indexed: 03/19/2024]
Abstract
The interaction between mucoadhesive materials and mucin layers is of significant interest in the development of drug delivery systems and biomedical applications for effective targeting and prolonged stay in the gastrointestinal tract. In this article, the current advancement and mucoadhesive properties of chitosan concerning the stomach mucin layer and its interactions have been briefly addressed. Chitosan a biocompatible polysaccharide exhibited promising mucoadhesive properties attributed to its cationic nature and ability to establish bonds with mucin glycoproteins. The mucoadhesion mechanism is ascribed to the electrostatic interactions between the positively charged amino (NH2) groups of chitosan and the sialic acid residues in mucin glycoprotein which carry a negative charge. The article provides a succinct overview of prior uses, current trends, and recent advancements in chitosan-based gastric-targeted delivery systems. We look forward to further innovations and emerging research related to chitosan-based methods of delivery that may increase the chitosan suitability for use in novel therapeutic approaches.
Collapse
Affiliation(s)
- Khurshid Ahmad
- State Key Laboratory of Marine Food Processing & Safety Control, College of Food Science and Engineering, Ocean University of China, No. 1299, Sansha Road, Qingdao, Shandong Province 266404, PR China
| | - Yanying Zhang
- State Key Laboratory of Marine Food Processing & Safety Control, College of Food Science and Engineering, Ocean University of China, No. 1299, Sansha Road, Qingdao, Shandong Province 266404, PR China
| | - Peng Chen
- State Key Laboratory of Marine Food Processing & Safety Control, College of Food Science and Engineering, Ocean University of China, No. 1299, Sansha Road, Qingdao, Shandong Province 266404, PR China
| | - Xia Yang
- State Key Laboratory of Marine Food Processing & Safety Control, College of Food Science and Engineering, Ocean University of China, No. 1299, Sansha Road, Qingdao, Shandong Province 266404, PR China
| | - Hu Hou
- State Key Laboratory of Marine Food Processing & Safety Control, College of Food Science and Engineering, Ocean University of China, No. 1299, Sansha Road, Qingdao, Shandong Province 266404, PR China; Laboratory for Marine Drugs and Bioproducts, Laoshan Laboratory, Qingdao, Shandong Province 266237, PR China; Sanya Oceanographic Institution, Ocean University of China, Sanya, Hainan Province 572024, PR China; Qingdao Institute of Marine Bioresources for Nutrition & Health Innovation, Qingdao, Shandong Province 266000, PR China.
| |
Collapse
|
20
|
Han R, He H, Lu Y, Lu H, Shen S, Wu W. Oral targeted drug delivery to post-gastrointestinal sites. J Control Release 2024; 370:256-276. [PMID: 38679163 DOI: 10.1016/j.jconrel.2024.04.047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Revised: 03/21/2024] [Accepted: 04/25/2024] [Indexed: 05/01/2024]
Abstract
As an essential branch of targeted drug delivery, oral targeted delivery is attracting growing attention in recent years. In addition to site-specific delivery for the treatment of locoregional diseases in the gastrointestinal tract (GIT), oral targeted delivery to remote sites beyond the GIT emerges as a cutting-edge research topic. This review aims to provide an overview of the fundamental concepts and most recent advances in this field. Owing to the physiological barriers existing in the GIT, carrier systems should be transported across the enteric epithelia to target remote sites. Recently, pioneer investigations have validated the transport of intact micro- or nanocarriers across gastrointestinal barriers and subsequently to various distal organs and tissues. The microfold (M) cell pathway is the leading mechanism underlying the oral absorption of particulates, but the contribution of the transcellular and paracellular pathways should not be neglected either. In addition to well-acknowledged physicochemical and biological factors, the formation of a protein corona may also influence the biological fate of carrier systems. Although in an early stage of conceptualization, oral targeted delivery to remote diseases has demonstrated promising potential for the treatment of inflammation, tumors, and diseases inflicting the lymphatic and mononuclear phagocytosis systems.
Collapse
Affiliation(s)
- Rongze Han
- Key Laboratory of Smart Drug Delivery of MOE, School of Pharmacy, Fudan University, Shanghai 201203, China
| | - Haisheng He
- Key Laboratory of Smart Drug Delivery of MOE, School of Pharmacy, Fudan University, Shanghai 201203, China
| | - Yi Lu
- Key Laboratory of Smart Drug Delivery of MOE, School of Pharmacy, Fudan University, Shanghai 201203, China; Shanghai Skin Disease Hospital, Tongji University School of Medicine, Shanghai 200443, China; Fudan Zhangjiang Institute, Shanghai 201203, China
| | - Huiping Lu
- Pharmacy Department and Center for Medical Research and Innovation, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai 201399, China
| | - Shun Shen
- Pharmacy Department and Center for Medical Research and Innovation, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai 201399, China.
| | - Wei Wu
- Key Laboratory of Smart Drug Delivery of MOE, School of Pharmacy, Fudan University, Shanghai 201203, China; Pharmacy Department and Center for Medical Research and Innovation, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai 201399, China; Shanghai Skin Disease Hospital, Tongji University School of Medicine, Shanghai 200443, China; Fudan Zhangjiang Institute, Shanghai 201203, China.
| |
Collapse
|
21
|
Dubashynskaya NV, Petrova VA, Skorik YA. Biopolymer Drug Delivery Systems for Oromucosal Application: Recent Trends in Pharmaceutical R&D. Int J Mol Sci 2024; 25:5359. [PMID: 38791397 PMCID: PMC11120705 DOI: 10.3390/ijms25105359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Revised: 05/10/2024] [Accepted: 05/13/2024] [Indexed: 05/26/2024] Open
Abstract
Oromucosal drug delivery, both local and transmucosal (buccal), is an effective alternative to traditional oral and parenteral dosage forms because it increases drug bioavailability and reduces systemic drug toxicity. The oral mucosa has a good blood supply, which ensures that drug molecules enter the systemic circulation directly, avoiding drug metabolism during the first passage through the liver. At the same time, the mucosa has a number of barriers, including mucus, epithelium, enzymes, and immunocompetent cells, that are designed to prevent the entry of foreign substances into the body, which also complicates the absorption of drugs. The development of oromucosal drug delivery systems based on mucoadhesive biopolymers and their derivatives (especially thiolated and catecholated derivatives) is a promising strategy for the pharmaceutical development of safe and effective dosage forms. Solid, semi-solid and liquid pharmaceutical formulations based on biopolymers have several advantageous properties, such as prolonged residence time on the mucosa due to high mucoadhesion, unidirectional and modified drug release capabilities, and enhanced drug permeability. Biopolymers are non-toxic, biocompatible, biodegradable and may possess intrinsic bioactivity. A rational approach to the design of oromucosal delivery systems requires an understanding of both the anatomy/physiology of the oral mucosa and the physicochemical and biopharmaceutical properties of the drug molecule/biopolymer, as presented in this review. This review summarizes the advances in the pharmaceutical development of mucoadhesive oromucosal dosage forms (e.g., patches, buccal tablets, and hydrogel systems), including nanotechnology-based biopolymer nanoparticle delivery systems (e.g., solid lipid particles, liposomes, biopolymer polyelectrolyte particles, hybrid nanoparticles, etc.).
Collapse
Affiliation(s)
| | | | - Yury A. Skorik
- Institute of Macromolecular Compounds of the Russian Academy of Sciences, Bolshoi VO 31, 199004 St. Petersburg, Russia
| |
Collapse
|
22
|
Ahmad K, Meng Y, Fan C, Din ASU, Jia Q, Ashraf A, Zhang Y, Hou H. Collagen/gelatin and polysaccharide complexes enhance gastric retention and mucoadhesive properties. Int J Biol Macromol 2024; 266:131034. [PMID: 38518948 DOI: 10.1016/j.ijbiomac.2024.131034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Revised: 03/09/2024] [Accepted: 03/19/2024] [Indexed: 03/24/2024]
Abstract
This article has focused on collagen-gelatin, the gelation process, as well as blend interaction between collagen/gelatin with various polysaccharides to boost mucoadhesion and gastric retention. The interaction between mucoadhesive materials and mucin layers is of significant interest in the development of drug delivery systems and biomedical applications for effective targeting and prolonged time in the gastrointestinal tract. This paper reviews the current advancement and mucoadhesive properties of collagen/gelatin and different polysaccharide complexes concerning the mucin layer and interactions are briefly highlighted. Collagen/gelatin and polysaccharide blends biocompatible and biodegradable, the complex biomolecules have shown encouraging mucoadhesive properties due to their cationic nature and ability to form hydrogen bonds with mucin glycoproteins. The mucoadhesion mechanism was attributed to the electrostatic interactions between the positively charged amino (NH2) groups of blend biopolymers and the negatively charged sialic acid residues present in mucin glycoprotein. At the end of this article, the encouraging prospect of collagen/polysaccharide complex and mucin glycoprotein is highlighted.
Collapse
Affiliation(s)
- Khurshid Ahmad
- State Key Laboratory of Marine Food Processing & Safety Control, College of Food Science and Engineering, Ocean University of China, No.1299, Sansha Road, Qingdao, Shandong Province 266404, PR China
| | - Yuqian Meng
- State Key Laboratory of Marine Food Processing & Safety Control, College of Food Science and Engineering, Ocean University of China, No.1299, Sansha Road, Qingdao, Shandong Province 266404, PR China
| | - Chaozhong Fan
- State Key Laboratory of Marine Food Processing & Safety Control, College of Food Science and Engineering, Ocean University of China, No.1299, Sansha Road, Qingdao, Shandong Province 266404, PR China
| | - Aiman Salah Ud Din
- State Key Laboratory of Marine Food Processing & Safety Control, College of Food Science and Engineering, Ocean University of China, No.1299, Sansha Road, Qingdao, Shandong Province 266404, PR China
| | - Qiannan Jia
- State Key Laboratory of Marine Food Processing & Safety Control, College of Food Science and Engineering, Ocean University of China, No.1299, Sansha Road, Qingdao, Shandong Province 266404, PR China
| | - Azqa Ashraf
- State Key Laboratory of Marine Food Processing & Safety Control, College of Food Science and Engineering, Ocean University of China, No.1299, Sansha Road, Qingdao, Shandong Province 266404, PR China
| | - Yanying Zhang
- State Key Laboratory of Marine Food Processing & Safety Control, College of Food Science and Engineering, Ocean University of China, No.1299, Sansha Road, Qingdao, Shandong Province 266404, PR China
| | - Hu Hou
- State Key Laboratory of Marine Food Processing & Safety Control, College of Food Science and Engineering, Ocean University of China, No.1299, Sansha Road, Qingdao, Shandong Province 266404, PR China; Laboratory for Marine Drugs and Bioproducts, Laoshan Laboratory, Qingdao, Shandong Province 266237, PR China; Sanya Oceanographic Institution, Ocean University of China, Sanya, Hainan Province 572024, PR China; Qingdao Institute of Marine Bioresources for Nutrition & Health Innovation, Qingdao, Shandong Province 266000, PR China.
| |
Collapse
|
23
|
Liu H, Guo S, Wei S, Liu J, Tian B. Pharmacokinetics and pharmacodynamics of cyclodextrin-based oral drug delivery formulations for disease therapy. Carbohydr Polym 2024; 329:121763. [PMID: 38286540 DOI: 10.1016/j.carbpol.2023.121763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 12/07/2023] [Accepted: 12/28/2023] [Indexed: 01/31/2024]
Abstract
Oral drug administration has become the most common and preferred mode of disease treatment due to its good medication adherence and convenience. For orally administered drugs, the safety, efficacy, and targeting ability requirements have grown as disease treatment research advances. It is difficult to obtain prominent efficacy of traditional drugs simply via oral administration. Numerous studies have demonstrated that cyclodextrins (CDs) can improve the clinical applications of certain orally administered drugs by enhancing their water solubility and masking undesirable odors. Additionally, deeper studies have discovered that CDs can influence disease treatment by altering the drug pharmacokinetics (PK) or pharmacodynamics (PD). This review highlights recent research progress on the PK and PD effects of CD-based oral drug delivery in disease therapy. Firstly, the review describes the characteristics of current drug delivery modes in oral administration. Besides, we minutely summarized the different CD-containing drugs, focusing on the impact of CD-based alterations in PK or PD of orally administered drugs in treating diseases. Finally, we deeply discussed current challenges and future opportunities with regard to PK and PD of CD-based oral drug delivery formulations.
Collapse
Affiliation(s)
- Hui Liu
- Pharmacy Department, General Hospital of Ningxia Medical University, Yinchuan 750004, Ningxia, China
| | - Songlin Guo
- Institute of Medical Sciences, General Hospital of Ningxia Medical University, Yinchuan 750004, Ningxia, China
| | - Shijie Wei
- Pharmacy Department, General Hospital of Ningxia Medical University, Yinchuan 750004, Ningxia, China.
| | - Jiayue Liu
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, Macau SAR, China.
| | - Bingren Tian
- Institute of Medical Sciences, General Hospital of Ningxia Medical University, Yinchuan 750004, Ningxia, China.
| |
Collapse
|
24
|
Garbati P, Picco C, Magrassi R, Signorello P, Cacopardo L, Dalla Serra M, Faticato MG, De Luca M, Balestra F, Scavo MP, Viti F. Targeting the Gut: A Systematic Review of Specific Drug Nanocarriers. Pharmaceutics 2024; 16:431. [PMID: 38543324 PMCID: PMC10974668 DOI: 10.3390/pharmaceutics16030431] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Revised: 03/16/2024] [Accepted: 03/19/2024] [Indexed: 01/05/2025] Open
Abstract
The intestine is essential for the modulation of nutrient absorption and the removal of waste. Gut pathologies, such as cancer, inflammatory bowel diseases (IBD), irritable bowel syndrome (IBS), and celiac disease, which extensively impact gut functions, are thus critical for human health. Targeted drug delivery is essential to tackle these diseases, improve therapy efficacy, and minimize side effects. Recent strategies have taken advantage of both active and passive nanocarriers, which are designed to protect the drug until it reaches the correct delivery site and to modulate drug release via the use of different physical-chemical strategies. In this systematic review, we present a literature overview of the different nanocarriers used for drug delivery in a set of chronic intestinal pathologies, highlighting the rationale behind the controlled release of intestinal therapies. The overall aim is to provide the reader with useful information on the current approaches for gut targeting in novel therapeutic strategies.
Collapse
Affiliation(s)
- Patrizia Garbati
- Institute of Biophysics, National Research Council, Via De Marini 16, 16149 Genova, Italy; (P.G.); (C.P.); (R.M.); (M.D.S.)
| | - Cristiana Picco
- Institute of Biophysics, National Research Council, Via De Marini 16, 16149 Genova, Italy; (P.G.); (C.P.); (R.M.); (M.D.S.)
| | - Raffaella Magrassi
- Institute of Biophysics, National Research Council, Via De Marini 16, 16149 Genova, Italy; (P.G.); (C.P.); (R.M.); (M.D.S.)
| | - Paolo Signorello
- Department of Information Engineering, University of Pisa, Via Girolamo Caruso 16, 56122 Pisa, Italy; (P.S.); (L.C.)
- Research Center ‘E. Piaggio’, University of Pisa, Largo Lucio Lazzarino 1, 56122 Pisa, Italy
- Centro 3R: Interuniversity Center for the Promotion of the 3Rs Principles in Teaching and Research, 56122 Pisa, Italy
| | - Ludovica Cacopardo
- Department of Information Engineering, University of Pisa, Via Girolamo Caruso 16, 56122 Pisa, Italy; (P.S.); (L.C.)
- Research Center ‘E. Piaggio’, University of Pisa, Largo Lucio Lazzarino 1, 56122 Pisa, Italy
- Centro 3R: Interuniversity Center for the Promotion of the 3Rs Principles in Teaching and Research, 56122 Pisa, Italy
| | - Mauro Dalla Serra
- Institute of Biophysics, National Research Council, Via De Marini 16, 16149 Genova, Italy; (P.G.); (C.P.); (R.M.); (M.D.S.)
| | - Maria Grazia Faticato
- Pediatric Surgery, IRCCS Istituto Giannina Gaslini, Via Gerolamo Gaslini 5, 16147 Genova, Italy;
| | - Maria De Luca
- National Institute of Gastroenterology, IRCCS de Bellis, Via Turi 27, 70013 Castellana Grotte, Bari, Italy; (M.D.L.); (F.B.); (M.P.S.)
| | - Francesco Balestra
- National Institute of Gastroenterology, IRCCS de Bellis, Via Turi 27, 70013 Castellana Grotte, Bari, Italy; (M.D.L.); (F.B.); (M.P.S.)
| | - Maria Principia Scavo
- National Institute of Gastroenterology, IRCCS de Bellis, Via Turi 27, 70013 Castellana Grotte, Bari, Italy; (M.D.L.); (F.B.); (M.P.S.)
| | - Federica Viti
- Institute of Biophysics, National Research Council, Via De Marini 16, 16149 Genova, Italy; (P.G.); (C.P.); (R.M.); (M.D.S.)
| |
Collapse
|
25
|
Cho E, Mun SJ, Kim HK, Ham YS, Gil WJ, Yang CS. Colon-targeted S100A8/A9-specific peptide systems ameliorate colitis and colitis-associated colorectal cancer in mouse models. Acta Pharmacol Sin 2024; 45:581-593. [PMID: 38040838 PMCID: PMC10834475 DOI: 10.1038/s41401-023-01188-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Accepted: 10/29/2023] [Indexed: 12/03/2023] Open
Abstract
The link between chronic inflammation and cancer development is well acknowledged. Inflammatory bowel disease including ulcerative colitis and Crohn's disease frequently promotes colon cancer development. Thus, control of intestinal inflammation is a therapeutic strategy to prevent and manage colitis-associated colorectal cancer (CRC). Recently, gut mucosal damage-associated molecular patterns S100A8 and S100A9, acting via interactions with their pattern recognition receptors (PRRs), especially TLR4 and RAGE, have emerged as key players in the pathogenesis of colonic inflammation. We found elevated serum levels of S100A8 and S100A9 in both colitis and colitis-associated CRC mouse models along with significant increases in their binding with PRR, TLR4, and RAGE. In this study we developed a dual PRR-inhibiting peptide system (rCT-S100A8/A9) that consisted of TLR4- and RAGE-inhibiting motifs derived from S100A8 and S100A9, and conjugated with a CT peptide (TWYKIAFQRNRK) for colon-specific delivery. In human monocyte THP-1 and mouse BMDMs, S100A8/A9-derived peptide comprising TLR4- and RAGE-interacting motif (0.01, 0.1, 1 μM) dose-dependently inhibited the binding of S100 to TLR4 or RAGE, and effectively inhibited NLRP3 inflammasome activation. We demonstrated that rCT-S100A8/A9 had appropriate drug-like properties including in vitro stabilities and PK properties as well as pharmacological activities. In mouse models of DSS-induced acute and chronic colitis, injection of rCT-S100A8/A9 (50 μg·kg-1·d-1, i.p. for certain consecutive days) significantly increased the survival rates and alleviated the pathological injuries of the colon. In AOM/DSS-induced colitis-associated colorectal cancer (CAC) mouse model, injection of rCT-S100A8/A9 (50 μg·kg-1·d-1, i.p.) increased the body weight, decreased tumor burden in the distal colon, and significantly alleviated histological colonic damage. In mice bearing oxaliplatin-resistant CRC xenografts, injection of rCT-S100A8/A9 (20 μg/kg, i.p., every 3 days for 24-30 days) significantly inhibited the tumor growth with reduced EMT-associated markers in tumor tissues. Our results demonstrate that targeting the S100-PRR axis improves colonic inflammation and thus highlight this axis as a potential therapeutic target for colitis and CRC.
Collapse
Affiliation(s)
- Euni Cho
- Department of Bionano Engineering, Hanyang University, Seoul, 04673, Republic of Korea
- Center for Bionano Intelligence Education and Research, Ansan, 15588, Republic of Korea
| | - Seok-Jun Mun
- Department of Bionano Engineering, Hanyang University, Seoul, 04673, Republic of Korea
- Center for Bionano Intelligence Education and Research, Ansan, 15588, Republic of Korea
| | - Hyo Keun Kim
- Center for Bionano Intelligence Education and Research, Ansan, 15588, Republic of Korea
- Department of Molecular and Life Science, Hanyang University, Ansan, 15588, Republic of Korea
| | - Yu Seong Ham
- Center for Bionano Intelligence Education and Research, Ansan, 15588, Republic of Korea
- Department of Molecular and Life Science, Hanyang University, Ansan, 15588, Republic of Korea
| | - Woo Jin Gil
- Center for Bionano Intelligence Education and Research, Ansan, 15588, Republic of Korea
- Department of Molecular and Life Science, Hanyang University, Ansan, 15588, Republic of Korea
| | - Chul-Su Yang
- Center for Bionano Intelligence Education and Research, Ansan, 15588, Republic of Korea.
- Department of Molecular and Life Science, Hanyang University, Ansan, 15588, Republic of Korea.
- Department of Medicinal and Life Science, Hanyang University, Ansan, 15588, Republic of Korea.
| |
Collapse
|
26
|
Cao Z, Pang Y, Pu J, Liu J. Bacteria-based drug delivery for treating non-oncological diseases. J Control Release 2024; 366:668-683. [PMID: 38219912 DOI: 10.1016/j.jconrel.2024.01.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Revised: 01/03/2024] [Accepted: 01/11/2024] [Indexed: 01/16/2024]
Abstract
Bacteria inhabit all over the human body, especially the skin, gastrointestinal tract, respiratory tract, urogenital tract, as well as specific lesion sites, such as wound and tumor. By leveraging their distinctive attributes including rapid proliferation, inherent abilities to colonize various biointerfaces in vivo and produce diverse biomolecules, and the flexibility to be functionalized via genetic engineering or surface modification, bacteria have been widely developed as living therapeutic agents, showing promising potential to make a great impact on the exploration of advanced drug delivery systems. In this review, we present an overview of bacteria-based drug delivery and its applications in treating non-oncological diseases. We systematically summarize the physiological positions where living bacterial therapeutic agents can be delivered to, including the skin, gastrointestinal tract, respiratory tract, and female genital tract. We discuss the success of using bacteria-based drug delivery systems in the treatment of diseases that occur in specific locations, such as skin wound healing/infection, inflammatory bowel disease, respiratory diseases, and vaginitis. We also discuss the advantages as well as the limitations of these living therapeutics and bacteria-based drug delivery, highlighting the key points that need to be considered for further translation. This review article may provide unique insights for designing next-generation bacteria-based therapeutics and developing advanced drug delivery systems.
Collapse
Affiliation(s)
- Zhenping Cao
- Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Institute of Molecular Medicine, State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Yan Pang
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Department of Ophthalmology, Shanghai Ninth People's Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200011, China
| | - Jun Pu
- Department of Cardiology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China.
| | - Jinyao Liu
- Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Institute of Molecular Medicine, State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China.
| |
Collapse
|
27
|
Kumar R, Afrin H, Bhatt HN, Beaven E, Gangavarap A, Esquivel SV, Zahid MI, Nurunnabi M. Mucoadhesive Carrier-Mediated Oral Co-delivery of Bcl2 Inhibitors Improves Gastric Cancer Treatment. ACS APPLIED MATERIALS & INTERFACES 2024; 16:305-317. [PMID: 38157479 DOI: 10.1021/acsami.3c15226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2024]
Abstract
Gastric cancer treatment is challenging due to the lack of early-stage diagnostic technology and targeted delivery systems. Currently, the available treatments for gastric cancer are surgery, chemotherapy, immunotherapy, and radiation. These strategies are either invasive or require systemic delivery, exerting toxicities within healthy tissues. By creation of a targeted delivery system to the stomach, gastric cancer can be treated in the early stages. Such an approach reduces the negative effects on the rest of the body by minimizing systemic absorbance and random localization. With this in mind, we developed a mucoadhesive vehicle composed of β-Glucan And Docosahexaenoic Acid (GADA) for controlled drug/gene delivery. In the current study, we investigated the therapeutic effect of codelivery Bcl2 inhibitors navitoclax (NAVI) and siRNA (Bcl2) via oral using GADA. The therapeutic efficacy of the GADA-mediated oral NAVI/siRNA was investigated in a gastric cancer mouse model. Higher Bcl2 inhibition efficacy was observed in Western blotting and TUNEL assay in mice treated with GADA/NAVI/siRNA compared to free NAVI, siRNA, and NAVI/siRNA. Histology (H&E) and immunohistochemistry (Ki67, TUNEL, and BCl2) analyses confirmed a significant reduction of the tumor region. Interaction between GADA and mucus resulted in retention for over 6 h and thereby sustained local payload release. The developed oral carrier GADA is an emerging vehicle that has promising potential in oral delivery of both small and large molecules, and their mucoadhesive property results in improved therapeutic efficacy with minimal side effects compared to conventional treatment. This study opens a new window for the effective delivery of oral medicine for the treatment of gastric cancer and other gastrointestinal diseases.
Collapse
Affiliation(s)
- Raj Kumar
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Texas at El Paso, El Paso, Texas 79902, United States
- Department of Biomedical Engineering, University of Texas at El Paso, El Paso, Texas 79968, United States
| | - Humayra Afrin
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Texas at El Paso, El Paso, Texas 79902, United States
- Environmental Science & Engineering, University of Texas at El Paso, El Paso, Texas 79965,United States
| | - Himanshu N Bhatt
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Texas at El Paso, El Paso, Texas 79902, United States
- Department of Biomedical Engineering, University of Texas at El Paso, El Paso, Texas 79968, United States
| | - Elfa Beaven
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Texas at El Paso, El Paso, Texas 79902, United States
- Department of Biomedical Engineering, University of Texas at El Paso, El Paso, Texas 79968, United States
| | - Anushareddy Gangavarap
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Texas at El Paso, El Paso, Texas 79902, United States
| | - Stephanie V Esquivel
- Department of Aerospace & Mechanical Engineering, University of Texas at El Paso, El Paso, Texas 79968, United States
| | - Md Ikhtiar Zahid
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Texas at El Paso, El Paso, Texas 79902, United States
- Department of Biomedical Engineering, University of Texas at El Paso, El Paso, Texas 79968, United States
| | - Md Nurunnabi
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Texas at El Paso, El Paso, Texas 79902, United States
- Department of Biomedical Engineering, University of Texas at El Paso, El Paso, Texas 79968, United States
- Environmental Science & Engineering, University of Texas at El Paso, El Paso, Texas 79965,United States
- Border Biomedical Research Center, University of Texas at El Paso, El Paso, Texas 79968, United States
| |
Collapse
|
28
|
Jangid H, Kumar D, Kumar G, Kumar R, Mamidi N. An Emerging Foodborne Pathogen Spotlight: A Bibliometric Analysis and Scholarly Review of Escherichia coli O157 Research. Antibiotics (Basel) 2024; 13:60. [PMID: 38247619 PMCID: PMC10812834 DOI: 10.3390/antibiotics13010060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 12/25/2023] [Accepted: 01/04/2024] [Indexed: 01/23/2024] Open
Abstract
Foodborne infections pose a substantial global threat, causing an estimated 600 million illnesses and resulting in approximately 420,000 deaths annually. Among the diverse array of pathogens implicated in these infections, Escherichia coli (E. coli), specifically the O157 strain (E. coli O157), emerges as a prominent pathogen associated with severe outbreaks. This study employs a comprehensive bibliometric analysis and scholarly review focused on E. coli O157 research. The bibliometric analysis highlights the significant role played by the United States in the E. coli O157 research domain. Further exploration underscores the noteworthy contributions of the researcher Doyle MP, whose body of work, consisting of 84 documents and an impressive H-Index of 49, reflects their substantial impact in the field. Recent research trends indicate a discernible shift towards innovative detection methods, exemplified by the adoption of CRISPR-CAS and Loop-Mediated Isothermal Amplification. Moreover, high-throughput whole-genome sequencing techniques are gaining prominence for the expeditious analysis of pathogenic E. coli strains. Scientists are increasingly exploring antimicrobial agents, including phage therapy, to address the challenges posed by antibiotic-resistant E. coli strains, thereby addressing critical concerns related to multi-drug resistance. This comprehensive analysis provides vital insights into the dynamic landscape of E. coli O157 research. It serves as a valuable resource for researchers, policymakers, and healthcare professionals dedicated to mitigating E. coli O157 outbreaks and advancing global public health strategies.
Collapse
Affiliation(s)
- Himanshu Jangid
- Department of Microbiology, School of Bioengineering and Biosciences, Lovely Professional University, Phagwara 144411, Punjab, India;
| | - Deepak Kumar
- Department of Chemistry, School of Chemical Engineering and Physical Sciences, Lovely Professional University, Phagwara 144411, Punjab, India;
| | - Gaurav Kumar
- Department of Microbiology, School of Bioengineering and Biosciences, Lovely Professional University, Phagwara 144411, Punjab, India;
| | - Raj Kumar
- Department of Pharmaceutical Sciences, University of Nebraska Medical Center, Omaha, NE 68105, USA
| | - Narsimha Mamidi
- Wisconsin Center for NanoBioSystems, School of Pharmacy, University of Wisconsin-Madison, Madison, WI 53705, USA
| |
Collapse
|
29
|
Wang L, Fu R, Meng Y, Liang J, Xue W, Hu H, Meng J, Zhang M. pH Sensitive Quercetin Nanoparticles Ameliorate DSS-Induced Colitis in Mice by Colon-Specific Delivery. Mol Nutr Food Res 2024; 68:e2300051. [PMID: 38010348 DOI: 10.1002/mnfr.202300051] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 07/04/2023] [Indexed: 11/29/2023]
Abstract
SCOPE Ulcerative colitis (UC) is a classic inflammatory bowel disease (IBD) that represents a serious threat to human health. As a natural flavonoid with multiple biological activities, quercetin (QCT) suffers from low bioavailability through limitations in chemical stability. Here, the study investigates the regulatory effects of quercetin nanoparticles (QCT NPs) on dextran sulfate sodium (DSS) induced colitis mice. METHODS AND RESULTS Chitosan is modified to obtain N-succinyl chitosan (NSC) with superior water solubility. Nanoparticles composed of sodium alginate (SA) and NSC can encapsulate QCT after cross-linking, forming QCT NPs. In vitro drug release assays demonstrate the pH sensitivity of QCT NPs. Compared with free quercetin, QCT NPs have better therapeutic efficacy in modulating gut microbiota and its metabolites short chain fatty acid (SCFAs) to relieve DSS-induced colitis in mice, thereby alleviating colon inflammatory infiltration, increasing goblet cells density and mucus protein, ameliorating TNF-α, IL-1β, IL-6, IL-10, and Myeloperoxidase (MPO) levels, and recovering intestinal barrier integrity. CONCLUSION pH sensitive QCT nanoparticles can reduce inflammatory reaction, improve gut microbiota, and repair intestinal barrier by targeting colon, thus improving DSS induced colitis in mice, providing reference for the treatment of colitis.
Collapse
Affiliation(s)
- Lechen Wang
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin, 300457, China
| | - Rongrong Fu
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin, 300457, China
| | - Ying Meng
- Department of Rehabilitation Medicine, Shandong Provincial Third Hospital, Shandong University, Jinan, Shandong, 250031, China
| | - Jingjie Liang
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin, 300457, China
| | - Wenqing Xue
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin, 300457, China
| | - Haitao Hu
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin, 300457, China
| | - Jing Meng
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin, 300457, China
- Tianjin International Joint Academy of Biomedicine, Tianjin, 300457, China
| | - Min Zhang
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin, 300457, China
- Tianjin Agricultural University, Tianjin, 300384, China
| |
Collapse
|
30
|
Yao L, Liu Q, Lei Z, Sun T. Development and challenges of antimicrobial peptide delivery strategies in bacterial therapy: A review. Int J Biol Macromol 2023; 253:126819. [PMID: 37709236 DOI: 10.1016/j.ijbiomac.2023.126819] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 09/06/2023] [Accepted: 09/07/2023] [Indexed: 09/16/2023]
Abstract
The escalating global prevalence of antimicrobial resistance poses a critical threat, prompting concerns about its impact on public health. This predicament is exacerbated by the acute shortage of novel antimicrobial agents, a scarcity attributed to the rapid surge in bacterial resistance. This review delves into the realm of antimicrobial peptides, a diverse class of compounds ubiquitously present in plants and animals across various natural organisms. Renowned for their intrinsic antibacterial activity, these peptides provide a promising avenue to tackle the intricate challenge of bacterial resistance. However, the clinical utility of peptide-based drugs is hindered by limited bioavailability and susceptibility to rapid degradation, constraining efforts to enhance the efficacy of bacterial infection treatments. The emergence of nanocarriers marks a transformative approach poised to revolutionize peptide delivery strategies. This review elucidates a promising framework involving nanocarriers within the realm of antimicrobial peptides. This paradigm enables meticulous and controlled peptide release at infection sites by detecting dynamic shifts in microenvironmental factors, including pH, ROS, GSH, and reactive enzymes. Furthermore, a glimpse into the future reveals the potential of targeted delivery mechanisms, harnessing inflammatory responses and intricate signaling pathways, including adenosine triphosphate, macrophage receptors, and pathogenic nucleic acid entities. This approach holds promise in fortifying immunity, thereby amplifying the potency of peptide-based treatments. In summary, this review spotlights peptide nanosystems as prospective solutions for combating bacterial infections. By bridging antimicrobial peptides with advanced nanomedicine, a new therapeutic era emerges, poised to confront the formidable challenge of antimicrobial resistance head-on.
Collapse
Affiliation(s)
- Longfukang Yao
- School of Chemistry, Chemical Engineering and Life Science, Wuhan University of Technology, 122 Luoshi Road, Wuhan 430070, China; Hubei Key Laboratory of Nanomedicine for Neurodegenerative Diseases, Wuhan University of Technology, 122 Luoshi Road, Wuhan 430070, China
| | - Qianying Liu
- School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Zhixin Lei
- School of Chemistry, Chemical Engineering and Life Science, Wuhan University of Technology, 122 Luoshi Road, Wuhan 430070, China; Hubei Key Laboratory of Nanomedicine for Neurodegenerative Diseases, Wuhan University of Technology, 122 Luoshi Road, Wuhan 430070, China.
| | - Taolei Sun
- School of Chemistry, Chemical Engineering and Life Science, Wuhan University of Technology, 122 Luoshi Road, Wuhan 430070, China; Hubei Key Laboratory of Nanomedicine for Neurodegenerative Diseases, Wuhan University of Technology, 122 Luoshi Road, Wuhan 430070, China.
| |
Collapse
|
31
|
Chen C, Beloqui A, Xu Y. Oral nanomedicine biointeractions in the gastrointestinal tract in health and disease. Adv Drug Deliv Rev 2023; 203:115117. [PMID: 37898337 DOI: 10.1016/j.addr.2023.115117] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 10/03/2023] [Accepted: 10/21/2023] [Indexed: 10/30/2023]
Abstract
Oral administration is the preferred route of administration based on the convenience for and compliance of the patient. Oral nanomedicines have been developed to overcome the limitations of free drugs and overcome gastrointestinal (GI) barriers, which are heterogeneous across healthy and diseased populations. This review aims to provide a comprehensive overview and comparison of the oral nanomedicine biointeractions in the gastrointestinal tract (GIT) in health and disease (GI and extra-GI diseases) and highlight emerging strategies that exploit these differences for oral nanomedicine-based treatment. We introduce the key GI barriers related to oral delivery and summarize their pathological changes in various diseases. We discuss nanomedicine biointeractions in the GIT in health by describing the general biointeractions based on the type of oral nanomedicine and advanced biointeractions facilitated by advanced strategies applied in this field. We then discuss nanomedicine biointeractions in different diseases and explore how pathological characteristics have been harnessed to advance the development of oral nanomedicine.
Collapse
Affiliation(s)
- Cheng Chen
- UCLouvain, Université catholique de Louvain, Louvain Drug Research Institute, Advanced Drug Delivery and Biomaterials, 1200 Brussels, Belgium
| | - Ana Beloqui
- UCLouvain, Université catholique de Louvain, Louvain Drug Research Institute, Advanced Drug Delivery and Biomaterials, 1200 Brussels, Belgium; WEL Research Institute, avenue Pasteur, 6, 1300 Wavre, Belgium.
| | - Yining Xu
- Department of Pharmacy, Institute of Metabolic Diseases and Pharmacotherapy, West China Hospital, Sichuan University, Chengdu 610041, China; Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, Department of Clinical Pharmacy and Pharmacy Administration, West China School of Pharmacy, Sichuan University, Chengdu 610041, China.
| |
Collapse
|
32
|
Song H, Dong H, Dong W, Luo Y. Atomic-Level Insights into Hollow Silica-Based Materials for Drug Delivery: Effects of Wettability and Porosity. ACS Biomater Sci Eng 2023; 9:6156-6164. [PMID: 37831542 DOI: 10.1021/acsbiomaterials.3c01063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2023]
Abstract
Experimental evidence has demonstrated that the drug carrier capacity can be significantly enhanced through the use of hollow silica particles. Nevertheless, the effects of varying functional drug carrier surfaces and porous structures remain ambiguous. This study employs molecular dynamics simulations to examine the effects of varying the surface wettability, pore size, and flow velocity on the transfer process. The different levels of wettability of the silica surface with the coarse-grained water model is illustrated by adjusted interaction parameters. The effect of wettability is investigated. With weak interactions, the flow molecules form a nanodroplet to transfer through the porous structure. A strong interaction will lead to molecules flowing as a liquid film to transfer through the structure. Interestingly, the "contradiction effect" is observed when the flow molecules fail to penetrate the porous structure with weak interactions, during which surface tension dominates their flow behavior. Moreover, different porous structures are considered. The flow behaviors are divided into three processes: (1) fast flowing, (2) transient point, and (3) penetration flowing. Furthermore, the concept of surface molecules is defined to quantitatively measure the effect of porosity. A recommended contact angle is proposed. The results will pave the way for more carrier structures in medical engineering.
Collapse
Affiliation(s)
- Haoxin Song
- Department of Pharmacy, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China
| | - Haiyan Dong
- Department of Pharmacy, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China
| | - Weihua Dong
- Department of Pharmacy, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China
| | - Yu Luo
- Department of Pharmacy, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China
| |
Collapse
|
33
|
Jangid H, Kumar D, Kumar G, Kumar R, Mamidi N. Bibliometric Examination of Global Scientific Research about Carbapenem-Resistant Acinetobacter Baumannii (CRAB). Antibiotics (Basel) 2023; 12:1593. [PMID: 37998795 PMCID: PMC10668794 DOI: 10.3390/antibiotics12111593] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 10/28/2023] [Accepted: 11/01/2023] [Indexed: 11/25/2023] Open
Abstract
This review paper presents a comprehensive bibliometric analysis of the global scientific research pertaining to carbapenem-resistant Acinetobacter baumannii (CRAB) from the years 1996 to 2023. The review employs a systematic approach to evaluate the trends, patterns, and collaborative networks within the CRAB research landscape, shedding light on its substantial global health implications. An analysis of the Scopus database reveals that the earliest publication within the CRAB research domain dates back to 1996. By conducting a meticulous examination of publication output, citation trends, author affiliations, and keyword distributions, this paper provides valuable insights into the evolution of research themes and the emergence of new areas of interest concerning CRAB. The findings of this bibliometric analysis prominently feature the most influential author within this field, namely, Higgins PG, who has contributed a remarkable 39 documents to CRAB research. It is noteworthy that China leads in terms of the quantity of published research articles in this domain, whereas the United States occupies the foremost position about citations within the CRAB research sphere. Furthermore, a more profound exploration of the data yields a heightened understanding of the current status of CRAB research, emphasizing potential avenues for future investigations and underscoring the imperative need for collaborative initiatives to address the challenges posed by this antibiotic-resistant pathogen.
Collapse
Affiliation(s)
- Himanshu Jangid
- Department of Microbiology, School of Bioengineering and Biosciences, Lovely Professional University, Phagwara 144411, India;
| | - Deepak Kumar
- Department of Chemistry, School of Chemical Engineering and Physical Sciences, Lovely Professional University, Phagwara 144411, India;
| | - Gaurav Kumar
- Department of Microbiology, School of Bioengineering and Biosciences, Lovely Professional University, Phagwara 144411, India;
| | - Raj Kumar
- Department of Pharmaceutical Sciences, University of Nebraska Medical Center, Omaha, NE 68105, USA;
| | - Narsimha Mamidi
- Wisconsin Center for NanoBioSystems, School of Pharmacy, University of Wisconsin-Madison, Madison, WI 53705, USA
| |
Collapse
|
34
|
Kulchar RJ, Singh R, Ding S, Alexander E, Leong KW, Daniell H. Delivery of biologics: Topical administration. Biomaterials 2023; 302:122312. [PMID: 37690380 PMCID: PMC10840840 DOI: 10.1016/j.biomaterials.2023.122312] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 08/27/2023] [Accepted: 08/31/2023] [Indexed: 09/12/2023]
Abstract
Biologics are unaffordable to a large majority of the global population because of prohibitively expensive fermentation systems, purification and the requirement for cold chain for storage and transportation. Limitations of current production and delivery systems of biologics were evident during the recent pandemic when <2.5% of vaccines produced were available to low-income countries and ∼19 million doses were discarded in Africa due to lack of cold-chain infrastructure. Among FDA-approved biologics since 2015, >90% are delivered using invasive methods. While oral or topical drugs are highly preferred by patients because of their affordability and convenience, only two oral drugs have been approved by FDA since 2015. A newly launched oral biologic costs only ∼3% of the average cost of injectable biologics because of the simplified regulatory approval process by elimination of prohibitively expensive fermentation, purification, cold storage/transportation. In addition, the cost of developing a new biologic injectable product (∼$2.5 billion) has been dramatically reduced through oral or topical delivery. Topical delivery has the unique advantage of targeted delivery of high concentration protein drugs, without getting diluted in circulating blood. However, only very few topical drugs have been approved by the FDA. Therefore, this review highlights recent advances in oral or topical delivery of proteins at early or advanced stages of human clinical trials using chewing gums, patches or sprays, or nucleic acid drugs directly, or in combination with, nanoparticles and offers future directions.
Collapse
Affiliation(s)
- Rachel J. Kulchar
- Department of Basic and Translational Sciences, School of Dental Medicine, University of Pennsylvania, Philadelphia PA 19104, USA
| | - Rahul Singh
- Department of Basic and Translational Sciences, School of Dental Medicine, University of Pennsylvania, Philadelphia PA 19104, USA
| | - Suwan Ding
- Department of Biomedical Engineering, Columbia University, New York City NY 10032, USA
| | - Elena Alexander
- Department of Biomedical Engineering, Columbia University, New York City NY 10032, USA
| | - Kam W Leong
- Department of Biomedical Engineering, Columbia University, New York City NY 10032, USA
| | - Henry Daniell
- Department of Basic and Translational Sciences, School of Dental Medicine, University of Pennsylvania, Philadelphia PA 19104, USA
| |
Collapse
|
35
|
Pires PC, Paiva-Santos AC, Veiga F. Liposome-Derived Nanosystems for the Treatment of Behavioral and Neurodegenerative Diseases: The Promise of Niosomes, Transfersomes, and Ethosomes for Increased Brain Drug Bioavailability. Pharmaceuticals (Basel) 2023; 16:1424. [PMID: 37895895 PMCID: PMC10610493 DOI: 10.3390/ph16101424] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 09/29/2023] [Accepted: 10/06/2023] [Indexed: 10/29/2023] Open
Abstract
Psychiatric and neurodegenerative disorders are amongst the most prevalent and debilitating diseases, but current treatments either have low success rates, greatly due to the low permeability of the blood-brain barrier, and/or are connected to severe side effects. Hence, new strategies are extremely important, and here is where liposome-derived nanosystems come in. Niosomes, transfersomes, and ethosomes are nanometric vesicular structures that allow drug encapsulation, protecting them from degradation, and increasing their solubility, permeability, brain targeting, and bioavailability. This review highlighted the great potential of these nanosystems for the treatment of Alzheimer's disease, Parkinson's disease, schizophrenia, bipolar disorder, anxiety, and depression. Studies regarding the encapsulation of synthetic and natural-derived molecules in these systems, for intravenous, oral, transdermal, or intranasal administration, have led to an increased brain bioavailability when compared to conventional pharmaceutical forms. Moreover, the developed formulations proved to have neuroprotective, anti-inflammatory, and antioxidant effects, including brain neurotransmitter level restoration and brain oxidative status improvement, and improved locomotor activity or enhancement of recognition and working memories in animal models. Hence, albeit being relatively new technologies, niosomes, transfersomes, and ethosomes have already proven to increase the brain bioavailability of psychoactive drugs, leading to increased effectiveness and decreased side effects, showing promise as future therapeutics.
Collapse
Affiliation(s)
- Patrícia C. Pires
- Faculty of Pharmacy, Faculty of Pharmacy of the University of Coimbra, Azinhaga de Santa Comba, 3000-548 Coimbra, Portugal;
- REQUIMTE/LAQV, Group of Pharmaceutical Technology, Faculty of Pharmacy, University of Coimbra, 3000-548 Coimbra, Portugal
- Health Sciences Research Centre (CICS-UBI), University of Beira Interior, Av. Infante D. Henrique, 6200-506 Covilhã, Portugal
| | - Ana Cláudia Paiva-Santos
- Faculty of Pharmacy, Faculty of Pharmacy of the University of Coimbra, Azinhaga de Santa Comba, 3000-548 Coimbra, Portugal;
- REQUIMTE/LAQV, Group of Pharmaceutical Technology, Faculty of Pharmacy, University of Coimbra, 3000-548 Coimbra, Portugal
| | - Francisco Veiga
- Faculty of Pharmacy, Faculty of Pharmacy of the University of Coimbra, Azinhaga de Santa Comba, 3000-548 Coimbra, Portugal;
- REQUIMTE/LAQV, Group of Pharmaceutical Technology, Faculty of Pharmacy, University of Coimbra, 3000-548 Coimbra, Portugal
| |
Collapse
|
36
|
Mehta CH, Paliwal S, Muttigi MS, Seetharam RN, Prasad ASB, Nayak Y, Acharya S, Nayak UY. Polyphenol-based targeted therapy for oral submucous fibrosis. Inflammopharmacology 2023; 31:2349-2368. [PMID: 37106237 PMCID: PMC10518296 DOI: 10.1007/s10787-023-01212-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Accepted: 03/26/2023] [Indexed: 04/29/2023]
Abstract
Oral submucous fibrosis (OSF) is a chronic, progressive, and precancerous condition mainly caused by chewing areca nut. Currently, OSF therapy includes intralesional injection of corticosteroids with limited therapeutic success in disease management. Therefore, a combined approach of in silico, in vitro and in vivo drug development can be helpful. Polyphenols are relatively safer than other synthetic counterparts. We used selected polyphenols to shortlist the most suitable compound by in silico tools. Based on the in silico results, epigallocatechin-3-gallate (EGCG), quercetin (QUR), resveratrol, and curcumin had higher affinity and stability with the selected protein targets, transforming growth factor beta-1 (TGF-β1), and lysyl oxidase (LOX). The efficacy of selected polyphenols was studied in primary buccal mucosal fibroblasts followed by in vivo areca nut extract induced rat OSF model. In in vitro studies, the induced fibroblast cells were treated with EGCG and QUR. EGCG was safer at higher concentrations and more efficient in reducing TGF-β1, collagen type-1A2 and type-3A1 mRNA expression than QUR. In vivo studies confirmed that the EGCG hydrogel was efficient in improving the disease conditions compared to the standard treatment betamethasone injection with significant reduction in TGF-β1 and collagen concentrations with increase in mouth opening. EGCG can be considered as a potential, safer and efficient phytomolecule for OSF therapy and its mucoadhesive topical formulation help in the improvement of patient compliance without any side effects. Highlights Potential polyphenols were shortlisted to treat oral submucous fibrosis (OSF) using in silico tools Epigallocatechin 3-gallate (EGCG) significantly reduced TGF-β1 and collagen both in vitro and in vivo EGCG hydrogel enhanced antioxidant defense, modulated inflammation by reducing TGF-β1 and improved mouth opening in OSF rat model.
Collapse
Affiliation(s)
- Chetan Hasmukh Mehta
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, 576104, Karnataka, India
| | - Shivangi Paliwal
- Manipal Centre for Biotherapeutics Research, Manipal Academy of Higher Education, Manipal, 576104, Karnataka, India
| | - Manjunatha S Muttigi
- Manipal Centre for Biotherapeutics Research, Manipal Academy of Higher Education, Manipal, 576104, Karnataka, India
| | - Raviraja N Seetharam
- Manipal Centre for Biotherapeutics Research, Manipal Academy of Higher Education, Manipal, 576104, Karnataka, India
| | - Alevoor Srinivas Bharath Prasad
- Department of Ageing Research, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, 576104, Karnataka, India
| | - Yogendra Nayak
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, 576104, Karnataka, India
| | - Shruthi Acharya
- Department of Oral Medicine and Radiology, Manipal College of Dental Sciences, Manipal, Manipal Academy of Higher Education, Manipal, 576104, Karnataka, India
| | - Usha Yogendra Nayak
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, 576104, Karnataka, India.
| |
Collapse
|
37
|
Ma M, Zeng H, Yang P, Xu J, Zhang X, He W. Drug Delivery and Therapy Strategies for Osteoporosis Intervention. Molecules 2023; 28:6652. [PMID: 37764428 PMCID: PMC10534890 DOI: 10.3390/molecules28186652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 09/04/2023] [Accepted: 09/12/2023] [Indexed: 09/29/2023] Open
Abstract
With the advent of the aging society, osteoporosis (OP) risk increases yearly. Currently, the clinical usage of anti-OP drugs is challenged by recurrent side effects and poor patient compliance, regardless of oral, intravenous, or subcutaneous administration. Properly using a drug delivery system or formulation strategy can achieve targeted drug delivery to the bone, diminish side effects, improve bioavailability, and prolong the in vivo residence time, thus effectively curing osteoporosis. This review expounds on the pathogenesis of OP and the clinical medicaments used for OP intervention, proposes the design approach for anti-OP drug delivery, emphatically discusses emerging novel anti-OP drug delivery systems, and enumerates anti-OP preparations under clinical investigation. Our findings may contribute to engineering anti-OP drug delivery and OP-targeting therapy.
Collapse
Affiliation(s)
- Mingyang Ma
- School of Pharmacy, China Pharmaceutical University, Nanjing 211198, China; (M.M.); (H.Z.)
| | - Huiling Zeng
- School of Pharmacy, China Pharmaceutical University, Nanjing 211198, China; (M.M.); (H.Z.)
| | - Pei Yang
- School of Science, China Pharmaceutical University, Nanjing 211198, China;
| | - Jiabing Xu
- Taizhou Institute for Drug Control, Taizhou 225316, China;
| | - Xingwang Zhang
- Department of Pharmaceutics, School of Pharmacy, Jinan University, Guangzhou 510632, China
| | - Wei He
- Shanghai Skin Disease Hospital, Tongji University School of Medicine, Shanghai 200443, China
| |
Collapse
|
38
|
Afrin H, Geetha Bai R, Kumar R, Ahmad SS, Agarwal SK, Nurunnabi M. Oral delivery of RNAi for cancer therapy. Cancer Metastasis Rev 2023; 42:699-724. [PMID: 36971908 PMCID: PMC10040933 DOI: 10.1007/s10555-023-10099-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Accepted: 03/14/2023] [Indexed: 03/29/2023]
Abstract
Cancer is a major health concern worldwide and is still in a continuous surge of seeking for effective treatments. Since the discovery of RNAi and their mechanism of action, it has shown promises in targeted therapy for various diseases including cancer. The ability of RNAi to selectively silence the carcinogenic gene makes them ideal as cancer therapeutics. Oral delivery is the ideal route of administration of drug administration because of its patients' compliance and convenience. However, orally administered RNAi, for instance, siRNA, must cross various extracellular and intracellular biological barriers before it reaches the site of action. It is very challenging and important to keep the siRNA stable until they reach to the targeted site. Harsh pH, thick mucus layer, and nuclease enzyme prevent siRNA to diffuse through the intestinal wall and thereby induce a therapeutic effect. After entering the cell, siRNA is subjected to lysosomal degradation. Over the years, various approaches have been taken into consideration to overcome these challenges for oral RNAi delivery. Therefore, understanding the challenges and recent development is crucial to offer a novel and advanced approach for oral RNAi delivery. Herein, we have summarized the delivery strategies for oral delivery RNAi and recent advancement towards the preclinical stages.
Collapse
Affiliation(s)
- Humayra Afrin
- Environmental Science & Engineering, University of Texas at El Paso, El Paso, TX, 79965, USA
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Texas at El Paso, 1101 N. Campbell St, El Paso, TX, 79902, USA
| | - Renu Geetha Bai
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Texas at El Paso, 1101 N. Campbell St, El Paso, TX, 79902, USA
- Chair of Biosystems Engineering, Institute of Forestry and Engineering, Estonian University of Life Sciences, Kreutzwaldi 56/1, 51006, Tartu, Estonia
| | - Raj Kumar
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Texas at El Paso, 1101 N. Campbell St, El Paso, TX, 79902, USA
| | - Sheikh Shafin Ahmad
- Environmental Science & Engineering, University of Texas at El Paso, El Paso, TX, 79965, USA
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Texas at El Paso, 1101 N. Campbell St, El Paso, TX, 79902, USA
- Aerospace Center (cSETR), University of Texas at El Paso, El Paso, TX, 79965, USA
| | - Sandeep K Agarwal
- Section of Immunology, Allergy and Rheumatology, Department of Medicine, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Md Nurunnabi
- Environmental Science & Engineering, University of Texas at El Paso, El Paso, TX, 79965, USA.
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Texas at El Paso, 1101 N. Campbell St, El Paso, TX, 79902, USA.
- Aerospace Center (cSETR), University of Texas at El Paso, El Paso, TX, 79965, USA.
- Biomedical Engineering, College of Engineering, University of Texas at El Paso, El Paso, TX, 79965, USA.
| |
Collapse
|
39
|
Kolipaka T, Khairnar P, Phatale V, Pandey G, Famta P, Shah S, Asthana A, Nanduri S, Raghuvanshi RS, Srivastava S. Multifaceted roles of pollen in the management of cancer. Int J Pharm 2023; 643:123278. [PMID: 37516214 DOI: 10.1016/j.ijpharm.2023.123278] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 07/13/2023] [Accepted: 07/26/2023] [Indexed: 07/31/2023]
Abstract
Oral drug delivery of microparticles demonstrates shortcomings like aggregation, decreased loading capacity and batch-to-batch variation, which limits its scale-up. Later, porous structures gained attention because of their large surface-to-volume ratio, high loading capacity and ability to carry biomacromolecules, which undergo degradation in GIT. But there are pitfalls like non-uniform particle size distribution, the impact of porogen properties, and harsh chemicals. To circumvent these drawbacks, natural carriers like pollen are explored in drug delivery, which withstands harsh environments. This property helps to subdue the acid-sensitive drug in GIT. It shows uniform particle size distribution within the species. On the other side, they contain phytoconstituents like flavonoids and polysaccharides, which possess various pharmacological applications. Therefore, pollen has the capability as a carrier system and therapeutic agent. This review focuses on pollen's microstructure, composition and utility in cancer management. The extraction strategies, characterisation techniques and chemical structure of sporopollenin exine capsule, its use in the oral delivery of antineoplastic drugs, and emerging cancer treatments like photothermal therapy, immunotherapy and microrobots have been highlighted. We have mentioned a note on the anticancer activity of pollen extract. Further, we have summarised the regulatory perspective, bottlenecks and way forward associated with pollen.
Collapse
Affiliation(s)
- Tejaswini Kolipaka
- Pharmaceutical Innovation and Translational Research Lab (PITRL), Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, India
| | - Pooja Khairnar
- Pharmaceutical Innovation and Translational Research Lab (PITRL), Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, India
| | - Vivek Phatale
- Pharmaceutical Innovation and Translational Research Lab (PITRL), Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, India
| | - Giriraj Pandey
- Pharmaceutical Innovation and Translational Research Lab (PITRL), Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, India
| | - Paras Famta
- Pharmaceutical Innovation and Translational Research Lab (PITRL), Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, India
| | - Saurabh Shah
- Pharmaceutical Innovation and Translational Research Lab (PITRL), Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, India
| | - Amit Asthana
- Department of Medical Devices, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, India
| | - Srinivas Nanduri
- Department of Chemical Sciences, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, India
| | - Rajeev Singh Raghuvanshi
- Central Drugs Standard Control Organization (CDSCO), Directorate General of Health Services, Ministry of Health & Family Welfare, Government of India, India
| | - Saurabh Srivastava
- Pharmaceutical Innovation and Translational Research Lab (PITRL), Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, India.
| |
Collapse
|
40
|
Zhang S, Zhu C, Huang W, Liu H, Yang M, Zeng X, Zhang Z, Liu J, Shi J, Hu Y, Shi X, Wang ZH. Recent progress of micro/nanomotors to overcome physiological barriers in the gastrointestinal tract. J Control Release 2023; 360:514-527. [PMID: 37429360 DOI: 10.1016/j.jconrel.2023.07.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 07/01/2023] [Accepted: 07/03/2023] [Indexed: 07/12/2023]
Abstract
Oral administration is a convenient administration route for gastrointestinal disease therapy with good patient compliance. But the nonspecific distribution of the oral drugs may cause serious side effects. In recent years, oral drug delivery systems (ODDS) have been applied to deliver the drugs to the gastrointestinal disease sites with decreased side effects. However, the delivery efficiency of ODDS is tremendously limited by physiological barriers in the gastrointestinal sites, such as the long and complex gastrointestinal tract, mucus layer, and epithelial barrier. Micro/nanomotors (MNMs) are micro/nanoscale devices that transfer various energy sources into autonomous motion. The outstanding motion characteristics of MNMs inspired the development of targeted drug delivery, especially the oral drug delivery. However, a comprehensive review of oral MNMs for the gastrointestinal diseases therapy is still lacking. Herein, the physiological barriers of ODDS were comprehensively reviewed. Afterward, the applications of MNMs in ODDS for overcoming the physiological barriers in the past 5 years were highlighted. Finally, future perspectives and challenges of MNMs in ODDS are discussed as well. This review will provide inspiration and direction of MNMs for the therapy of gastrointestinal diseases, pushing forward the clinical application of MNMs in oral drug delivery.
Collapse
Affiliation(s)
- Shuhao Zhang
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China; Henan Key Laboratory of Targeting Therapy and Diagnosis for Critical Diseases, Zhengzhou 450001, China; Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, Zhengzhou 450001, China
| | - Chaoran Zhu
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China; Henan Key Laboratory of Targeting Therapy and Diagnosis for Critical Diseases, Zhengzhou 450001, China; Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, Zhengzhou 450001, China
| | - Wanting Huang
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China; Henan Key Laboratory of Targeting Therapy and Diagnosis for Critical Diseases, Zhengzhou 450001, China; Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, Zhengzhou 450001, China
| | - Hua Liu
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China; Henan Key Laboratory of Targeting Therapy and Diagnosis for Critical Diseases, Zhengzhou 450001, China; Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, Zhengzhou 450001, China
| | - Mingzhu Yang
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China; Henan Key Laboratory of Targeting Therapy and Diagnosis for Critical Diseases, Zhengzhou 450001, China; Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, Zhengzhou 450001, China
| | - Xuejiao Zeng
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China; Henan Key Laboratory of Targeting Therapy and Diagnosis for Critical Diseases, Zhengzhou 450001, China; Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, Zhengzhou 450001, China
| | - Zhenzhong Zhang
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China; Henan Key Laboratory of Targeting Therapy and Diagnosis for Critical Diseases, Zhengzhou 450001, China; Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, Zhengzhou 450001, China; State Key Laboratory of Esophageal Cancer Prevention & Treatment, Zhengzhou 450001, China
| | - Junjie Liu
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China; Henan Key Laboratory of Targeting Therapy and Diagnosis for Critical Diseases, Zhengzhou 450001, China; Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, Zhengzhou 450001, China; State Key Laboratory of Esophageal Cancer Prevention & Treatment, Zhengzhou 450001, China
| | - Jinjin Shi
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China; Henan Key Laboratory of Targeting Therapy and Diagnosis for Critical Diseases, Zhengzhou 450001, China; Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, Zhengzhou 450001, China; State Key Laboratory of Esophageal Cancer Prevention & Treatment, Zhengzhou 450001, China
| | - Yurong Hu
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China; Henan Key Laboratory of Targeting Therapy and Diagnosis for Critical Diseases, Zhengzhou 450001, China; Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, Zhengzhou 450001, China; State Key Laboratory of Esophageal Cancer Prevention & Treatment, Zhengzhou 450001, China.
| | - Xiufang Shi
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China; Henan Key Laboratory of Targeting Therapy and Diagnosis for Critical Diseases, Zhengzhou 450001, China; Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, Zhengzhou 450001, China; State Key Laboratory of Esophageal Cancer Prevention & Treatment, Zhengzhou 450001, China.
| | - Zhi-Hao Wang
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China; Henan Key Laboratory of Targeting Therapy and Diagnosis for Critical Diseases, Zhengzhou 450001, China; Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, Zhengzhou 450001, China; State Key Laboratory of Esophageal Cancer Prevention & Treatment, Zhengzhou 450001, China.
| |
Collapse
|
41
|
Edmans JG, Murdoch C, Hatton PV, Madsen LS, Santocildes-Romero ME, Spain SG, Colley HE. Bioactive Protein and Peptide Release from a Mucoadhesive Electrospun Membrane. BIOMEDICAL MATERIALS & DEVICES (NEW YORK, N.Y.) 2023; 2:444-453. [PMID: 38425458 PMCID: PMC10899313 DOI: 10.1007/s44174-023-00098-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Accepted: 06/03/2023] [Indexed: 03/02/2024]
Abstract
Protein-based biologics constitute a rapidly expanding category of therapeutic agents with high target specificity. Their clinical use has dramatically increased in recent years, but administration is largely via injection. Drug delivery across the oral mucosa is a promising alternative to injections, in order to avoid the gastrointestinal tract and first-pass metabolism. Current drug delivery formulations include liquid sprays, mucoadhesive tablets and films, which lack dose control in the presence of salivary flow. To address this, electrospun membranes that adhere tightly to the oral mucosa and release drugs locally have been developed. Here, we investigated the suitability of these mucoadhesive membranes for peptide or protein release. Bradykinin (0.1%) or insulin (1, 3, and 5%) were incorporated by electrospinning from ethanol/water mixtures. Immersion of membranes in buffer resulted in the rapid release of bradykinin, with a maximal release of 70 ± 12% reached after 1 h. In contrast, insulin was liberated more slowly, with 88 ± 11, 69.0 ± 5.4, and 63.9 ± 9.0% cumulative release of the total encapsulated dose after 8 h for membranes containing 1, 3, and 5% w/w insulin, respectively. Membrane-eluted bradykinin retained pharmacological activity by inducing rapid intracellular calcium release upon binding to its cell surface receptor on oral fibroblasts, when examined by flow cytometry. To quantify further, time-lapse confocal microscopy revealed that membrane-eluted bradykinin caused a 1.58 ± 0.16 fold-change in intracellular calcium fluorescence after 10 s compared to bradykinin solution (2.13 ± 0.21), relative to placebo. In conclusion, these data show that electrospun membranes may be highly effective vehicles for site-specific administration of biotherapeutic proteins or peptides directly to the oral mucosa for either local or systemic drug delivery applications.
Collapse
Affiliation(s)
- Jake G. Edmans
- School of Clinical Dentistry, University of Sheffield, 19 Claremont Crescent, Sheffield, S10 2TA UK
- Department of Chemistry, University of Sheffield, Brook Hill, Sheffield, S3 7HF UK
| | - Craig Murdoch
- School of Clinical Dentistry, University of Sheffield, 19 Claremont Crescent, Sheffield, S10 2TA UK
| | - Paul V. Hatton
- School of Clinical Dentistry, University of Sheffield, 19 Claremont Crescent, Sheffield, S10 2TA UK
| | | | | | - Sebastian G. Spain
- Department of Chemistry, University of Sheffield, Brook Hill, Sheffield, S3 7HF UK
| | - Helen E. Colley
- School of Clinical Dentistry, University of Sheffield, 19 Claremont Crescent, Sheffield, S10 2TA UK
| |
Collapse
|
42
|
Miri AH, Kamankesh M, Rad-Malekshahi M, Yadegar A, Banar M, Hamblin MR, Haririan I, Aghdaei HA, Zali MR. Factors associated with treatment failure, and possible applications of probiotic bacteria in the arsenal against Helicobacter pylori. Expert Rev Anti Infect Ther 2023; 21:617-639. [PMID: 37171213 DOI: 10.1080/14787210.2023.2203382] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
INTRODUCTION Helicobacter pylori is a widespread helical Gram-negative bacterium, which causes a variety of stomach disorders, such as peptic ulcer, chronic atrophic gastritis, and gastric cancer. This microbe frequently colonizes the mucosal layer of the human stomach and survives in the inhospitable microenvironment, by adapting to this hostile milieu. AREAS COVERED In this extensive review, we describe conventional antibiotic treatment regimens used against H. pylori including, empirical, tailored, and salvage therapies. Then, we present state-of-the-art information about reasons for treatment failure against H. pylori. Afterward, the latest advances in the use of probiotic bacteria against H. pylori infection are discussed. Finally, we propose a polymeric bio-platform to provide efficient delivery of probiotics for H. pylori infection. EXPERT OPINION For effective probiotic delivery systems, it is necessary to avoid the early release of probiotics at the acidic stomach pH, to protect them against enzymes and antimicrobials, and precisely target H. pylori bacteria which have colonized the antrum area of the stomach (basic pH).
Collapse
Affiliation(s)
- Amir Hossein Miri
- Department of Pharmaceutical Biomaterials and Medical Biomaterials Research Center, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Mojtaba Kamankesh
- Polymer Chemistry Department, School of Science, University of Tehran, Tehran, Iran
| | - Mazda Rad-Malekshahi
- Department of Pharmaceutical Biomaterials and Medical Biomaterials Research Center, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Abbas Yadegar
- Foodborne and Waterborne Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Maryam Banar
- Department of Pathobiology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Michael R Hamblin
- Laser Research Centre, Faculty of Health Science, University of Johannesburg Doornfontein, Johannesburg, South Africa
| | - Ismaeil Haririan
- Department of Pharmaceutical Biomaterials and Medical Biomaterials Research Center, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Hamid Asadzadeh Aghdaei
- Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad Reza Zali
- Gastroenterology and Liver Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
43
|
Esquivel SV, Bhatt HN, Diwan R, Habib A, Lee WY, Khatun Z, Nurunnabi M. β-Glucan and Fatty Acid Based Mucoadhesive Carrier for Gastrointestinal Tract Specific Local and Sustained Drug Delivery. Biomolecules 2023; 13:biom13050768. [PMID: 37238639 DOI: 10.3390/biom13050768] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 04/26/2023] [Accepted: 04/26/2023] [Indexed: 05/28/2023] Open
Abstract
The oral route is considered the most convenient route of drug administration for both systemic and local delivery. Besides stability and transportation, another unmet but important issue regarding oral medication is retention duration within the specific region of the gastrointestinal (GI) tract. We hypothesize that an oral vehicle that can adhere and maintain retention within the stomach for a longer duration can be more effective to treat stomach-related diseases. Therefore, in this project, we developed a carrier that is highly specific to the stomach and maintains its retention for a longer duration. We developed a vehicle composed of β-Glucan And Docosahexaenoic Acid (GADA) to observe its affinity and specificity to the stomach. GADA forms a spherical-shaped particle with negative zeta potential values that vary based on the feed ratio of docosahexaenoic acid. Docosahexaenoic acid is an omega-3 fatty acid that has transporters and receptors throughout the GI tract, such as CD36, plasma membrane-associated fatty acid-binding protein (FABP (pm)), and a family of fatty acid transport proteins (FATP1-6). The in vitro studies and characterization data showed that GADA has the capability to carry a payload of hydrophobic molecules and specifically deliver the payload to the GI tract, exert its therapeutic effects, and help to maintain stability for more than 12 h in the gastric and intestinal fluid. The particle size and surface plasmon resonance (SPR) data showed that GADA has a strong binding affinity with mucin in the presence of simulated gastric fluids. We observed a comparatively higher drug release of lidocaine in gastric juice than that in intestinal fluids, demonstrating the influence of the pH values of the media on drug-release kinetics. In vivo and ex vivo imaging of mice demonstrated that GADA maintains its retention within the stomach for at least 4 hr. This stomach-specific oral vehicle holds strong promise to translate various injectable therapeutic drugs to oral form upon further optimizations.
Collapse
Affiliation(s)
- Stephanie Vargas Esquivel
- Aerospace Center (cSETR), University of Texas at El Paso, El Paso, TX 79968, USA
- Department of Aerospace & Mechanical Engineering, University of Texas at El Paso, El Paso, TX 79968, USA
| | - Himanshu N Bhatt
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Texas at El Paso, El Paso, TX 79902, USA
- Biomedical Engineering Program, College of Engineering, University of Texas at El Paso, El Paso, TX 79968, USA
| | - Rimpy Diwan
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Texas at El Paso, El Paso, TX 79902, USA
- Biomedical Engineering Program, College of Engineering, University of Texas at El Paso, El Paso, TX 79968, USA
| | - Ahsan Habib
- Department of Chemistry and Biochemistry, College of Science, University of Texas at El Paso, El Paso, TX 79968, USA
| | - Wen-Yee Lee
- Department of Chemistry and Biochemistry, College of Science, University of Texas at El Paso, El Paso, TX 79968, USA
| | - Zehedina Khatun
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Texas at El Paso, El Paso, TX 79902, USA
| | - Md Nurunnabi
- Aerospace Center (cSETR), University of Texas at El Paso, El Paso, TX 79968, USA
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Texas at El Paso, El Paso, TX 79902, USA
- Biomedical Engineering Program, College of Engineering, University of Texas at El Paso, El Paso, TX 79968, USA
| |
Collapse
|
44
|
Wang S, Meng S, Zhou X, Gao Z, Piao MG. pH-Responsive and Mucoadhesive Nanoparticles for Enhanced Oral Insulin Delivery: The Effect of Hyaluronic Acid with Different Molecular Weights. Pharmaceutics 2023; 15:pharmaceutics15030820. [PMID: 36986680 PMCID: PMC10056758 DOI: 10.3390/pharmaceutics15030820] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 02/24/2023] [Accepted: 02/25/2023] [Indexed: 03/06/2023] Open
Abstract
Drug degradation at low pH and rapid clearance from intestinal absorption sites are the main factors limiting the development of oral macromolecular delivery systems. Based on the pH responsiveness and mucosal adhesion of hyaluronic acid (HA) and poly[2-(dimethylamino)ethyl methacrylate] (PDM), we prepared three HA–PDM nano-delivery systems loaded with insulin (INS) using three different molecular weights (MW) of HA (L, M, H), respectively. The three types of nanoparticles (L/H/M-HA–PDM–INS) had uniform particle sizes and negatively charged surfaces. The optimal drug loadings of the L-HA–PDM–INS, M-HA–PDM–INS, H-HA–PDM–INS were 8.69 ± 0.94%, 9.11 ± 1.03%, and 10.61 ± 1.16% (w/w), respectively. The structural characteristics of HA–PDM–INS were determined using FT-IR, and the effect of the MW of HA on the properties of HA–PDM–INS was investigated. The release of INS from H-HA–PDM–INS was 22.01 ± 3.84% at pH 1.2 and 63.23 ± 4.10% at pH 7.4. The protective ability of HA–PDM–INS with different MW against INS was verified by circular dichroism spectroscopy and protease resistance experiments. H-HA–PDM–INS retained 45.67 ± 5.03% INS at pH 1.2 at 2 h. The biocompatibility of HA–PDM–INS, regardless of the MW of HA, was demonstrated using CCK-8 and live–dead cell staining. Compared with the INS solution, the transport efficiencies of L-HA–PDM–INS, M-HA–PDM–INS, and H-HA–PDM–INS increased 4.16, 3.81, and 3.10 times, respectively. In vivo pharmacodynamic and pharmacokinetic studies were performed in diabetic rats following oral administration. H-HA–PDM–INS exhibited an effective hypoglycemic effect over a long period, with relative bioavailability of 14.62%. In conclusion, these simple, environmentally friendly, pH-responsive, and mucoadhesive nanoparticles have the potential for industrial development. This study provides preliminary data support for oral INS delivery.
Collapse
Affiliation(s)
- Shuangqing Wang
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, College of Pharmacy, Yanbian University, Yanji 133002, China
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Department of Pharmaceutics, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Saige Meng
- Department of Pharmacy, No. 73 Group Military Hospital of PLA, Xiamen 361003, China
| | - Xinlei Zhou
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, College of Pharmacy, Yanbian University, Yanji 133002, China
| | - Zhonggao Gao
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, College of Pharmacy, Yanbian University, Yanji 133002, China
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Department of Pharmaceutics, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
- Correspondence: (Z.G.); (M.G.P.)
| | - Ming Guan Piao
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, College of Pharmacy, Yanbian University, Yanji 133002, China
- Correspondence: (Z.G.); (M.G.P.)
| |
Collapse
|
45
|
Kulkarni R, Fanse S, Burgess DJ. Mucoadhesive drug delivery systems: a promising noninvasive approach to bioavailability enhancement. Part II: formulation considerations. Expert Opin Drug Deliv 2023; 20:413-434. [PMID: 36803264 DOI: 10.1080/17425247.2023.2181332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/22/2023]
Abstract
INTRODUCTION Mucoadhesive drug delivery systems (MDDS) are specifically designed to interact and bind to the mucosal layer of the epithelium for localized, prolonged, and/or targeted drug delivery. Over the past 4 decades, several dosage forms have been developed for localized as well as systemic drug delivery at different anatomical sites. AREAS COVERED The objective of this review is to provide a detailed understanding of the different aspects of MDDS. Part II describes the origin and evolution of MDDS, followed by a discussion of the properties of mucoadhesive polymers. Finally, a synopsis of the different commercial aspects of MDDS, recent advances in the development of MDDS for biologics and COVID-19 as well as future perspectives are provided. EXPERT OPINION A review of the past reports and recent advances reveal MDDS as highly versatile, biocompatible, and noninvasive drug delivery systems. The rise in the number of approved biologics, the introduction of newer highly efficient thiomers, as well as the recent advances in the field of nanotechnology have led to several excellent applications of MDDS, which are predicted to grow significantly in the future.
Collapse
Affiliation(s)
- Radha Kulkarni
- School of Pharmacy, University of Connecticut, Storrs, CT, USA
| | - Suraj Fanse
- School of Pharmacy, University of Connecticut, Storrs, CT, USA
| | - Diane J Burgess
- School of Pharmacy, University of Connecticut, Storrs, CT, USA
| |
Collapse
|
46
|
Zhao H. Progress of research on oral mucosal adhesive agents. HUA XI KOU QIANG YI XUE ZA ZHI = HUAXI KOUQIANG YIXUE ZAZHI = WEST CHINA JOURNAL OF STOMATOLOGY 2023; 41:1-10. [PMID: 38596935 PMCID: PMC9988457 DOI: 10.7518/hxkq.2023.01.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 12/28/2022] [Indexed: 04/11/2024]
Abstract
Oral mucosal administration is extensively used to treat systemic diseases and oral mucosal diseases owing to unique oral mucosal structure and convenient administration. However, the special microenvironment of the oral cavity being open, moving, and humid causes oral mucosal drug delivery to face great challenges. To address this dilemma, local adhesive agents have been widely studied for sustained drug delivery and improved bioavailability, showing broad prospects. Recently, the author has performed studies on oral mucosal adhesive agents. In this paper, the progress of research on oral mucosal adhesive materials is reviewed.
Collapse
Affiliation(s)
- Hang Zhao
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Dept. of Preclinical Stomatology, West China School of Stomatology, Sichuan University, Chengdu 610041, China
| |
Collapse
|
47
|
Prabhakar PK, Khurana N, Vyas M, Sharma V, Batiha GES, Kaur H, Singh J, Kumar D, Sharma N, Kaushik A, Kumar R. Aspects of Nanotechnology for COVID-19 Vaccine Development and Its Delivery Applications. Pharmaceutics 2023; 15:pharmaceutics15020451. [PMID: 36839773 PMCID: PMC9960567 DOI: 10.3390/pharmaceutics15020451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 01/21/2023] [Accepted: 01/27/2023] [Indexed: 01/31/2023] Open
Abstract
Coronavirus, a causative agent of the common cold to a much more complicated disease such as "severe acute respiratory syndrome (SARS-CoV-2), Middle East Respiratory Syndrome (MERS-CoV-2), and Coronavirus Disease 2019 (COVID-19)", is a member of the coronaviridae family and contains a positive-sense single-stranded RNA of 26-32 kilobase pairs. COVID-19 has shown very high mortality and morbidity and imparted a significantly impacted socioeconomic status. There are many variants of SARS-CoV-2 that have originated from the mutation of the genetic material of the original coronavirus. This has raised the demand for efficient treatment/therapy to manage newly emerged SARS-CoV-2 infections successfully. However, different types of vaccines have been developed and administered to patients but need more attention because COVID-19 is not under complete control. In this article, currently developed nanotechnology-based vaccines are explored, such as inactivated virus vaccines, mRNA-based vaccines, DNA-based vaccines, S-protein-based vaccines, virus-vectored vaccines, etc. One of the important aspects of vaccines is their administration inside the host body wherein nanotechnology can play a very crucial role. Currently, more than 26 nanotechnology-based COVID-19 vaccine candidates are in various phases of clinical trials. Nanotechnology is one of the growing fields in drug discovery and drug delivery that can also be used for the tackling of coronavirus. Nanotechnology can be used in various ways to design and develop tools and strategies for detection, diagnosis, and therapeutic and vaccine development to protect against COVID-19. The design of instruments for speedy, precise, and sensitive diagnosis, the fabrication of potent sanitizers, the delivery of extracellular antigenic components or mRNA-based vaccines into human tissues, and the administration of antiretroviral medicines into the organism are nanotechnology-based strategies for COVID-19 management. Herein, we discuss the application of nanotechnology in COVID-19 vaccine development and the challenges and opportunities in this approach.
Collapse
Affiliation(s)
| | - Navneet Khurana
- School of Pharmaceutical Sciences, Lovely Professional University, Punjab 144411, India
- Correspondence: (N.K.); (R.K.)
| | - Manish Vyas
- School of Pharmaceutical Sciences, Lovely Professional University, Punjab 144411, India
| | - Vikas Sharma
- School of Pharmaceutical Sciences, Lovely Professional University, Punjab 144411, India
| | - Gaber El-Saber Batiha
- Department of Pharmacology and Therapeutics, Faculty of Veterinary Medicine, Damanhour University, Damanhour 22511, Egypt
| | - Harpreet Kaur
- School of Chemical Engineering and Physical Sciences, Lovely Professional University, Punjab 144411, India
| | - Jashanpreet Singh
- School of Chemical Engineering and Physical Sciences, Lovely Professional University, Punjab 144411, India
| | - Deepak Kumar
- School of Chemical Engineering and Physical Sciences, Lovely Professional University, Punjab 144411, India
| | - Neha Sharma
- School of Pharmaceutical Sciences, Lovely Professional University, Punjab 144411, India
| | - Ajeet Kaushik
- NanoBioTech Laboratory, Department of Environmental Engineering, Florida Polytechnic University, Lakeland, FL 33805, USA
- School of Engineering, University of Petroleum and Energy Studies (UPES), Uttarakhand 248007, India
| | - Raj Kumar
- Department of Pharmaceutical Sciences, University of Nebraska Medical Sciences, Omaha, NE 68198, USA
- Correspondence: (N.K.); (R.K.)
| |
Collapse
|
48
|
Applications of polydopaminic nanomaterials in mucosal drug delivery. J Control Release 2023; 353:842-849. [PMID: 36529384 DOI: 10.1016/j.jconrel.2022.12.037] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 12/12/2022] [Accepted: 12/14/2022] [Indexed: 12/23/2022]
Abstract
Polydopamine (PDA) is a biopolymer with unique physicochemical properties, including free-radical scavenging, high photothermal conversion efficiency, biocompatibility, biodegradability, excellent fluorescent and theranostic capacity due to their abundant surface chemistry. Thus, PDA is used for a myriad of applications including drug delivery, biosensing, imaging and cancer therapy. Recent reports present a new functionality of PDA as a coating nanomaterial, with major implications in mucosal drug delivery applications, particularly muco-adhesion and muco-penetration. However, this application has received minimal traction in the literature. In this review, we present the physicochemical and functional properties of PDA and highlight its key biomedical applications, especially in cancer therapy. A detailed presentation of the role of PDA as a promising coating material for nanoparticulate carriers intended for mucosal delivery forms the core aspect of the review. Finally, a reflection on key considerations and challenges in the utilizing PDA for mucosal drug delivery, along with the possibilities of translation to clinical studies is expounded.
Collapse
|