1
|
Oliveira-Lopes AF, Götze MM, Lopes-Neto BE, Guerreiro DD, Bustamante-Filho IC, Moura AA. Molecular and Pathobiology of Canine Mammary Tumour: Defining a Translational Model for Human Breast Cancer. Vet Comp Oncol 2024. [PMID: 39011576 DOI: 10.1111/vco.12996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 06/26/2024] [Accepted: 07/02/2024] [Indexed: 07/17/2024]
Abstract
Canine mammary tumours (CMT) have histological, clinicopathological and molecular resemblances to human breast cancer (HBC), positioning them as viable models for studying the human disease. CMT initiation and progression occur spontaneously in immune-competent animals, which challenge the suggested limitations of genetically modified mice, also enabling the evaluation of immunotherapies in canine patients. Dogs have shorter life expectancy compared to humans, and cancer advances more rapidly in this species. This makes it possible to perform studies about the clinical efficacy of new therapeutic modalities in a much shorter time than in human patients. The identification of biomarkers for tumour subtypes, progression and treatment response paves the way for the development of novel therapeutic and diagnostic approaches. This review addresses the similarities between CMT and HBC and the molecular signatures identified in CMT samples that have been explored to date. We proposed a detailed molecular exploration of the CMT stroma using state-of-the-art methods in transcriptomics and proteomics. Using CMT as an analog for HBC not only helps to understand the complexities of the disease, but also to advance comparative oncology to the next level to prove the claim of dogs as a valid translational model.
Collapse
Affiliation(s)
| | - Marcelo M Götze
- Graduate Studies Program in Biotechnology, University of Vale do Taquari-Univates, Lajeado, Brazil
| | | | - Denise D Guerreiro
- Department of Animal Science, Federal University of Ceará, Fortaleza, Brazil
| | | | | |
Collapse
|
2
|
Nowosh V, Braun AC, Ruano APC, Chinén LTD, de Oliveira Massoco C. Pilot study to evaluate isolation by size of circulating tumour cells in canine oral melanoma. Vet Comp Oncol 2024. [PMID: 38837514 DOI: 10.1111/vco.12982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Revised: 04/21/2024] [Accepted: 05/06/2024] [Indexed: 06/07/2024]
Abstract
Liquid biopsy for circulating tumour cell (CTC) detection is generally unexplored in veterinary medicine. Dogs with highly aggressive and heterogeneous tumours, such as oral malignant melanoma (OMM), could benefit from studies involving size-based isolation methods for CTCs, as they do not depend on specific antibodies. This pilot study aimed to detect CTCs from canine OMM using Isolation by Size of Epithelial Tumor Cells (ISET), a microfiltration methodology, followed by immunocytochemistry (ICC) with Melan-A, PNL2, and S100 antibodies. Ten canine patients diagnosed by histopathology and confirmed as OMM by immunohistochemistry were enrolled, their prognostic data was assessed, and blood samples were collected for CTC analysis. Results have shown the detection of intact cells in 9/10 patients. ICC has shown 3/9 Melan-A-positive, 3/9 PNL2-positive, and 8/9 S100-positive patients, confirming the importance of opting for a multimarker assay. A significant number of negative-stained CTCs were found, suggesting their high heterogeneity in circulation. Microemboli stained with either PNL2 or S100 were found in a patient with a high isolated cell count and advanced clinical stage. Preliminary statistical analysis shows a significant difference in CTC count between patients with and without lymph node metastasis (p < .05), which may correlate with tumour metastatic potential. However, we recommend further studies with more extensive sampling to confirm this result. This pilot study is the first report of intact CTC detection in canine OMM and the first application of ISET in veterinary medicine, opening new possibilities for liquid biopsy studies in canine OMM and other tumours.
Collapse
Affiliation(s)
- Victor Nowosh
- Department of Pathology, School of Veterinary Medicine and Animal Science, University of São Paulo, São Paulo, Brazil
| | - Alexcia Camila Braun
- Secretaria de Ciência, Tecnologia e Inovação do Complexo Econômico-Industrial da Saúde, Coordenação Geral de Pesquisa Clínica, Ministério da Saúde, Brasilia, Brazil
| | | | | | - Cristina de Oliveira Massoco
- Department of Pathology, School of Veterinary Medicine and Animal Science, University of São Paulo, São Paulo, Brazil
| |
Collapse
|
3
|
Kehl A, Aupperle-Lellbach H, de Brot S, van der Weyden L. Review of Molecular Technologies for Investigating Canine Cancer. Animals (Basel) 2024; 14:769. [PMID: 38473154 PMCID: PMC10930838 DOI: 10.3390/ani14050769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 02/09/2024] [Accepted: 02/27/2024] [Indexed: 03/14/2024] Open
Abstract
Genetic molecular testing is starting to gain traction as part of standard clinical practice for dogs with cancer due to its multi-faceted benefits, such as potentially being able to provide diagnostic, prognostic and/or therapeutic information. However, the benefits and ultimate success of genomic analysis in the clinical setting are reliant on the robustness of the tools used to generate the results, which continually expand as new technologies are developed. To this end, we review the different materials from which tumour cells, DNA, RNA and the relevant proteins can be isolated and what methods are available for interrogating their molecular profile, including analysis of the genetic alterations (both somatic and germline), transcriptional changes and epigenetic modifications (including DNA methylation/acetylation and microRNAs). We also look to the future and the tools that are currently being developed, such as using artificial intelligence (AI) to identify genetic mutations from histomorphological criteria. In summary, we find that the molecular genetic characterisation of canine neoplasms has made a promising start. As we understand more of the genetics underlying these tumours and more targeted therapies become available, it will no doubt become a mainstay in the delivery of precision veterinary care to dogs with cancer.
Collapse
Affiliation(s)
- Alexandra Kehl
- Laboklin GmbH & Co. KG, Steubenstr. 4, 97688 Bad Kissingen, Germany; (A.K.); (H.A.-L.)
- School of Medicine, Institute of Pathology, Technical University of Munich, Trogerstr. 18, 81675 München, Germany
| | - Heike Aupperle-Lellbach
- Laboklin GmbH & Co. KG, Steubenstr. 4, 97688 Bad Kissingen, Germany; (A.K.); (H.A.-L.)
- School of Medicine, Institute of Pathology, Technical University of Munich, Trogerstr. 18, 81675 München, Germany
| | - Simone de Brot
- Institute of Animal Pathology, COMPATH, University of Bern, 3012 Bern, Switzerland;
| | | |
Collapse
|
4
|
Novais AA, Tamarindo GH, Chuffa LGDA, Zuccari DAPDC. Decoding Hidden Messengers: Proteomic Profiling of Exosomes in Mammary Cancer Research. Biomedicines 2023; 11:2839. [PMID: 37893211 PMCID: PMC10604896 DOI: 10.3390/biomedicines11102839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 10/11/2023] [Accepted: 10/14/2023] [Indexed: 10/29/2023] Open
Abstract
Cancer is a complex and heterogeneous disease, influenced by various factors that affect its progression and response to treatment. Although a histopathological diagnosis is crucial for identifying and classifying cancer, it may not accurately predict the disease's development and evolution in all cases. To address this limitation, liquid biopsy has emerged as a valuable tool, enabling a more precise and non-invasive analysis of cancer. Liquid biopsy can detect tumor DNA fragments, circulating tumor cells, and exosomes released by cancer cells into the bloodstream. Exosomes attracted significant attention in cancer research because of their specific protein composition, which can provide valuable insights into the disease. The protein profile of exosomes often differs from that of normal cells, reflecting the unique molecular characteristics of cancer. Analyzing these proteins can help identify cancer-associated markers that play important roles in tumor progression, invasion, and metastasis. Ongoing research and clinical validation are essential to advance and effectively utilize protein biomarkers in cancer. Nevertheless, their potential to improve diagnosis and treatment is highly promising. This review discusses several exosome proteins of interest in breast cancer, particularly focusing on studies conducted in mammary tissue and cell lines in humans and experimental animals. Unfortunately, studies conducted in canine species are scarce. This emphasis sheds light on the limited research available in this field. In addition, we present a curated selection of studies that explored exosomal proteins as potential biomarkers, aiming to achieve benefits in breast cancer diagnosis, prognosis, monitoring, and treatment.
Collapse
Affiliation(s)
- Adriana Alonso Novais
- Health Sciences Institute (ICS), Universidade Federal de Mato Grosso (UFMT), Sinop 78550-728, Brazil;
| | - Guilherme Henrique Tamarindo
- Brazilian Biosciences National Laboratory, Brazilian Center for Research in Energy and Materials (CNPEM), Campinas 13083-970, Brazil;
- Cancer Molecular Research Laboratory (LIMC), Department of Molecular Biology, Faculdade de Medicina de São José do Rio Preto/FAMERP (FAMERP), São José do Rio Preto 15090-000, Brazil
| | - Luiz Gustavo de Almeida Chuffa
- Department of Structural and Functional Biology, Institute of Biosciences, Universidade Estadual Paulista (UNESP), Botucatu 18618-689, Brazil;
| | - Debora Aparecida Pires de Campos Zuccari
- Cancer Molecular Research Laboratory (LIMC), Department of Molecular Biology, Faculdade de Medicina de São José do Rio Preto/FAMERP (FAMERP), São José do Rio Preto 15090-000, Brazil
| |
Collapse
|
5
|
Colombe P, Béguin J, Benchekroun G, Le Roux D. Blood biomarkers for canine cancer, from human to veterinary oncology. Vet Comp Oncol 2022; 20:767-777. [PMID: 35815441 PMCID: PMC9796515 DOI: 10.1111/vco.12848] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 07/05/2022] [Accepted: 07/07/2022] [Indexed: 01/01/2023]
Abstract
In recent decades, interest in circulating tumour biomarkers is increasing both in human and veterinary oncology. An ideal tumour biomarker would allow early diagnosis of neoplasia, identify it specifically, accurately, establish a prognosis and predict its behaviour, especially regarding different therapeutic solutions. It would also allow to monitor its evolution over time and all this in a non-invasive and inexpensive way. Actually, no biomarkers meeting all of these criteria have been identified in veterinary medicine, particularly due to a lack of specificity of the main protein tumour biomarkers studied to date. However, great hope is currently placed in biomarkers grouped under the name of liquid biopsy, which could prove to be effective tools for common clinical use in the near future. This review gives an update on blood cancer biomarkers studied in dogs, such as ions, proteins, nucleic acids and also circulating cells, of which some might become more prominent in the coming years to help improve the management of animal care.
Collapse
Affiliation(s)
- Philippe Colombe
- Ecole Nationale Vétérinaire d'AlfortBioPôle AlfortMaisons‐AlfortFrance,Ecole Nationale Vétérinaire d'AlfortCHUVA, Service de Médecine InterneMaisons‐AlfortFrance
| | - Jérémy Béguin
- Ecole Nationale Vétérinaire d'AlfortCHUVA, Service de Médecine InterneMaisons‐AlfortFrance,Anses, INRAE, Ecole Nationale Vétérinaire d'AlfortUMR VIROLOGIE, Laboratoire de Santé AnimaleMaisons‐AlfortFrance
| | - Ghita Benchekroun
- Ecole Nationale Vétérinaire d'AlfortCHUVA, Service de Médecine InterneMaisons‐AlfortFrance,Ecole nationale Vétérinaire d'AlfortUniv Paris Est Créteil, INSERM, IMRBMaisons‐AlfortFrance
| | - Delphine Le Roux
- Ecole Nationale Vétérinaire d'AlfortBioPôle AlfortMaisons‐AlfortFrance,Anses, INRAE, Ecole Nationale Vétérinaire d'AlfortUMR BIPAR, Laboratoire de Santé AnimaleMaisons‐AlfortFrance
| |
Collapse
|
6
|
Detection and Prognostic Relevance of Circulating and Disseminated Tumour Cell in Dogs with Metastatic Mammary Carcinoma: A Pilot Study. Cancers (Basel) 2019; 11:cancers11020163. [PMID: 30717110 PMCID: PMC6406716 DOI: 10.3390/cancers11020163] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2018] [Revised: 01/23/2019] [Accepted: 01/24/2019] [Indexed: 02/05/2023] Open
Abstract
In human breast cancer, both circulating tumour cells (CTCs) in peripheral blood and disseminated tumour cells (DTCs) in the bone marrow are predictive of short survival and may be used as liquid biopsy to guide therapy. Herein we investigate, for the first time, the feasibility to quantify CTCs and DTCs in canine metastatic mammary carcinoma (MMC) with the automated CellSearch platform, which identifies tumour cells by immune-magnetic enrichment and fluorescent labelling. Using this approach before start of treatment, we could detect at least 1 CTC per 7.5 mL of peripheral blood in 12 out of 27 evaluable samples (44.4%) and at least 1 DTC per 1 mL of bone marrow in 11 out of 14 evaluable samples (78.6%). Conversely, we did not find any CTCs in the healthy, negative control dogs (n = 5) that we analysed in parallel. Interestingly, the levels of CTCs/DTCs and the prevalence of positive dogs closely resemble results obtained by CellSearch assay in metastatic breast cancer patients at diagnosis. Moreover, in the canine cohort, the presence of CTCs was significantly associated with poor outcome. These observations identify the first actionable marker in veterinarian oncology to guide treatment of canine MMC. Furthermore, our findings have important implications for human research, since it reinforce the value of canine MMC as model useful to speed up pharmacological studies with primary endpoint of overall survival, given the reduced life-span of the canine species.
Collapse
|
7
|
Kaszak I, Ruszczak A, Kanafa S, Kacprzak K, Król M, Jurka P. Current biomarkers of canine mammary tumors. Acta Vet Scand 2018; 60:66. [PMID: 30373614 PMCID: PMC6206704 DOI: 10.1186/s13028-018-0417-1] [Citation(s) in RCA: 78] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2018] [Accepted: 10/20/2018] [Indexed: 12/22/2022] Open
Abstract
Mammary tumors are the second most common neoplasia in dogs. Due to the high similarity of canine mammary tumors (CMT) to human breast cancers (HBC), human biomarkers of HBC are also detectable in cases of CMT. The evaluation of biomarkers enables clinical diagnoses, treatment options and prognosis for bitches suffering from this disease. The aim of this article is to give a short summary of the biomarkers of CMT based on current literature. Very promising biomarkers are miRNAs, cancer stem cells, and circulating tumor cells, as well as mutations of the breast cancer 1 gene (BRCA1) and breast cancer 2 gene (BRCA2). Until now, the most studied and reliable biomarkers of CMT have remained antigen Ki-67 (Ki-67), endothelial growth factor receptor, human epidermal growth factor receptor 2 (HER-2), estrogen receptor, progesterone receptor and cyclooxygenase 1 (COX-2), which can be detected in both serum and tissue samples using different molecular methods. However, carcinoembryonic antigen and cancer antigen 15-3 (CA 15-3), while poorly studied, seem to be good biomarkers, especially for the early detection and prognosis of CMT. We will also mention the following: proliferative cell nuclear antigen, tumor protein p53 (p53), E-cadherin, vascular endothelial growth factor, microRNAs, cancer stem cells and circulating tumor cells, which can also be useful biomarkers. Although many studies have been conducted so far, the estimation of biomarkers in cases of CMT is still not a common practice, and more detailed research should be done.
Collapse
|
8
|
Ceciliani F, Roccabianca P, Giudice C, Lecchi C. Application of post-genomic techniques in dog cancer research. MOLECULAR BIOSYSTEMS 2017; 12:2665-79. [PMID: 27345606 DOI: 10.1039/c6mb00227g] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Omics techniques have been widely applied to veterinary science, although mostly on farm animal productions and infectious diseases. In canine oncology, on the contrary, the use of omics methodologies is still far behind. This review presents the most recent achievement in the application of postgenomic techniques, such as transcriptomics, proteomics, and metabolomics, to canine cancer research. The protocols to recover material suitable for omics analyses from formalin-fixed, paraffin-embedded tissues are presented, and omics applications for biomarker discovery and their potential for cancer diagnostics in veterinary medicine are highlighted.
Collapse
Affiliation(s)
- F Ceciliani
- Department of Veterinary Medicine, Università di Milano, Via Celoria 02, 20133 Milano, Italy.
| | - P Roccabianca
- Department of Veterinary Medicine, Università di Milano, Via Celoria 02, 20133 Milano, Italy.
| | - C Giudice
- Department of Veterinary Medicine, Università di Milano, Via Celoria 02, 20133 Milano, Italy.
| | - C Lecchi
- Department of Veterinary Medicine, Università di Milano, Via Celoria 02, 20133 Milano, Italy.
| |
Collapse
|
9
|
Milovancev M, Russell DS. Surgical margins in the veterinary cancer patient. Vet Comp Oncol 2017; 15:1136-1157. [PMID: 28194921 DOI: 10.1111/vco.12284] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2016] [Revised: 09/26/2016] [Accepted: 09/27/2016] [Indexed: 12/14/2022]
Abstract
In veterinary oncologic specimens, histopathology is the gold standard for determining adequacy of excision. Despite limitations of this technique, the pathologist's interpretation of margin status significantly impacts patient management, including indications for adjuvant therapy. This article aims to summarize peer-reviewed literature as it relates to histologic margin evaluation in veterinary cancer patients. The value of histologic tumour-free margins and technical factors influencing histopathologic margin outcomes are also discussed. We review alternative strategies for determining excisional status, and discuss how an evolving understanding of tumour biology might inform clinical and research perspectives on surgical margins. In doing so, we aim to provide context and a stimulus for future investigations into this important yet incompletely understood topic.
Collapse
Affiliation(s)
- M Milovancev
- Department of Veterinary Clinical Sciences, Oregon State University, Corvallis, OR, 97331, USA
| | - D S Russell
- Department of Biomedical Sciences, Oregon State University, Corvallis, OR, 97331, USA
| |
Collapse
|
10
|
Tohti M, Li J, Tang C, Wen G, Abdujilil A, Yizim P, Ma C. Serum AGR2 as a useful biomarker for pituitary adenomas. Clin Neurol Neurosurg 2017; 154:19-22. [PMID: 28092730 DOI: 10.1016/j.clineuro.2017.01.004] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2016] [Revised: 12/12/2016] [Accepted: 01/07/2017] [Indexed: 11/18/2022]
Abstract
OBJECTIVE This study aims to evaluate whether the serum Anterior Gradient-2 (AGR2) can be used as a potential biomarker screening in the diagnosis of Pituitary adenomas(PAs). PATIENTS AND METHODS The serum AGR2 protein levels were preoperatively measured in 163 PA patients, 43 patients with other sellar lesions excluding PAs, 7 patients with prostate cancer as a positive control and 20 normal people(10 female and 10 male) using Enzyme-Linked ImmunoSorbent Assay (ELISA). Differences in the serum AGR2 level between different groups were analyzed for statistical significance with a Mann-Whitney U test. RESULTS The data showed that serum AGR2 level was significantly higher in the serum of PA patients (250.10±79.14ng/ml) than the patients with other sellar lesions (220.84±79.62ng/ml, P=0.017) and normal people (163.67±50.38ng/ml, P <0.001). Receiver operating characteristic (ROC) curve analysis was used. The detected area under the curve (AUC) was 0.835. The calculated optimal cut-off point for AGR2 level in serum samples was 158.63ng/ml (Youden index=0.564). The sensitivity was 91.4% and the specificity was 65.0%. Despite the variety of PA clinical features, the serum level of AGR2 are definite in PAs, although there may be a difference between male or female patients. CONCLUSION Our data suggests AGR2 as a potential biomarker for the diagnosis of PAs.
Collapse
Affiliation(s)
- Mamatemin Tohti
- Department of Neurosurgery, Jinling Hospital, School of Medicine, Nanjing University, 305 East Zhongshan Road, Nanjing, 210002, China; Department of Neurosurgery, The People's Hospital of Xinjiang Uygur Autonomous Region, 91 Tianchi Road, Urumqi, 830001, China
| | - Junyang Li
- Department of Neurosurgery, Jinling Hospital, School of Medicine, Nanjing University, 305 East Zhongshan Road, Nanjing, 210002, China
| | - Chao Tang
- Department of Neurosurgery, Jinling Hospital, School of Medicine, Nanjing University, 305 East Zhongshan Road, Nanjing, 210002, China
| | - Guodao Wen
- Department of Neurosurgery, Jinling Hospital, School of Medicine, Nanjing University, 305 East Zhongshan Road, Nanjing, 210002, China
| | - Abdukeyum Abdujilil
- Department of Neurosurgery, The People's Hospital of Xinjiang Uygur Autonomous Region, 91 Tianchi Road, Urumqi, 830001, China
| | - Parhat Yizim
- Department of Neurosurgery, The People's Hospital of Xinjiang Uygur Autonomous Region, 91 Tianchi Road, Urumqi, 830001, China
| | - Chiyuan Ma
- Department of Neurosurgery, Jinling Hospital, School of Medicine, Nanjing University, 305 East Zhongshan Road, Nanjing, 210002, China.
| |
Collapse
|
11
|
Abstract
αB-crystallin is a widely expressed member of the small heat shock protein family that protects cells from stress by its dual function as a molecular chaperone to preserve proteostasis and as a cell death antagonist that negatively regulates components of the conserved apoptotic cell death machinery. Deregulated expression of αB-crystallin occurs in a broad array of solid tumors and has been linked to tumor progression and poor clinical outcomes. This review will focus on new insights into the molecular mechanisms by which oncogenes, oxidative stress, matrix detachment and other tumor microenvironmental stressors deregulate αB-crystallin expression. We will also review accumulating evidence pointing to an essential role for αB-crystallin in the multi-step metastatic cascade whereby tumor cells colonize distant organs by circumventing a multitude of barriers to cell migration and survival. Finally, we will evaluate emerging strategies to therapeutically target αB-crystallin and/or interacting proteins to selectively activate apoptosis and/or derail the metastatic cascade in an effort to improve outcomes for patients with metastatic disease.
Collapse
|
12
|
Lacambra MD, Tsang JYS, Ni YB, Chan SK, Tan PH, Tse GM. Anterior Gradient 2 is a Poor Outcome Indicator in Luminal Breast Cancer. Ann Surg Oncol 2015; 22:3489-3496. [DOI: 10.1245/s10434-015-4420-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/30/2023]
|
13
|
Personalised medicine in veterinary oncology: One to cure just one. Vet J 2015; 205:128-35. [DOI: 10.1016/j.tvjl.2015.01.004] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2014] [Revised: 01/04/2015] [Accepted: 01/05/2015] [Indexed: 12/14/2022]
|
14
|
Piane L, Sayag D, Lermuzeaux J, Semin MO, Lamour-Layssol C, Aumann M, Trumel C. What is your diagnosis? Abnormal cells on a blood smear from a dog. Vet Clin Pathol 2014; 43:461-2. [PMID: 24889354 DOI: 10.1111/vcp.12159] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Laetitia Piane
- Laboratoire Central de Biologie Médicale, INP-ENVT, Université de Toulouse, Toulouse, France; Laboratoire Central de Biologie Médicale, INSERM, UMS 006, Toulouse, France
| | | | | | | | | | | | | |
Collapse
|
15
|
Giantin M, Granato A, Baratto C, Marconato L, Vascellari M, Morello EM, Vercelli A, Mutinelli F, Dacasto M. Global gene expression analysis of canine cutaneous mast cell tumor: could molecular profiling be useful for subtype classification and prognostication? PLoS One 2014; 9:e95481. [PMID: 24748173 PMCID: PMC3991658 DOI: 10.1371/journal.pone.0095481] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2013] [Accepted: 03/27/2014] [Indexed: 02/06/2023] Open
Abstract
Prognosis and therapeutic management of dogs with cutaneous mast cell tumors (MCTs) depend on clinical stage and histological grade. However, the prognostic value of this latter is still questionable. In the present study, MCT transcriptome was analyzed to identify a set of candidate genes potentially useful for predicting the biological behavior of MCTs. Fifty-one canine MCT biopsies were analyzed. Isolated and purified total RNAs were individually hybridized to the Agilent Canine V2 4x44k DNA microarray. The comparison of reference differentiated and undifferentiated MCT transcriptome revealed a total of 597 differentially expressed genes (147 down-regulated and 450 up-regulated). The functional analysis of this set of genes provided evidence that they were mainly involved in cell cycle, DNA replication, p53 signaling pathway, nucleotide excision repair and pyrimidine metabolism. Class prediction analysis identified 13 transcripts providing the greatest accuracy of class prediction and divided samples into two categories (differentiated and undifferentiated), harboring a different prognosis. The Principal Component Analysis of all samples, made by using the selected 13 markers, confirmed MCT classification. The first three components accounted for 99.924% of the total variance. This molecular classification significantly correlated with survival time (p = 0.0026). Furthermore, among all marker genes, a significant association was found between mRNA expression and MCT-related mortality for FOXM1, GSN, FEN1 and KPNA2 (p<0.05). Finally, marker genes mRNA expression was evaluated in a cohort of 22 independent samples. Data obtained enabled to identify MCT cases with different prognosis. Overall, the molecular characterization of canine MCT transcriptome allowed the identification of a set of 13 transcripts that clearly separated differentiated from undifferentiated MCTs, thus predicting outcome regardless of the histological grade. These results may have clinical relevance and warrant future validation in a prospective study.
Collapse
Affiliation(s)
- Mery Giantin
- Dipartimento di Biomedicina Comparata e Alimentazione, Università di Padova, Legnaro (Padova), Italy
- * E-mail:
| | - Anna Granato
- Istituto Zooprofilattico Sperimentale delle Venezie, Legnaro (Padova), Italy
| | - Chiara Baratto
- Istituto Zooprofilattico Sperimentale delle Venezie, Legnaro (Padova), Italy
| | - Laura Marconato
- Centro Oncologico Veterinario, Sasso Marconi, Bologna, Italy
| | - Marta Vascellari
- Istituto Zooprofilattico Sperimentale delle Venezie, Legnaro (Padova), Italy
| | - Emanuela M. Morello
- Dipartimento di Scienze Veterinarie, Università di Torino, Grugliasco (Torino), Italy
| | | | - Franco Mutinelli
- Istituto Zooprofilattico Sperimentale delle Venezie, Legnaro (Padova), Italy
| | - Mauro Dacasto
- Dipartimento di Biomedicina Comparata e Alimentazione, Università di Padova, Legnaro (Padova), Italy
| |
Collapse
|
16
|
Peña L, Gama A, Goldschmidt MH, Abadie J, Benazzi C, Castagnaro M, Díez L, Gärtner F, Hellmén E, Kiupel M, Millán Y, Miller MA, Nguyen F, Poli A, Sarli G, Zappulli V, de las Mulas JM. Canine mammary tumors: a review and consensus of standard guidelines on epithelial and myoepithelial phenotype markers, HER2, and hormone receptor assessment using immunohistochemistry. Vet Pathol 2013; 51:127-45. [PMID: 24227007 DOI: 10.1177/0300985813509388] [Citation(s) in RCA: 113] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Although there have been several studies on the use of immunohistochemical biomarkers of canine mammary tumors (CMTs), the results are difficult to compare. This article provides guidelines on the most useful immunohistochemical markers to standardize their use and understand how outcomes are measured, thus ensuring reproducibility of results. We have reviewed the biomarkers of canine mammary epithelial and myoepithelial cells and identified those biomarkers that are most useful and those biomarkers for invasion and lymph node micrometastatic disease. A 10% threshold for positive reaction for most of these markers is recommended. Guidelines on immunolabeling for HER2, estrogen receptors (ERs), and progesterone receptors (PRs) are provided along with the specific recommendations for interpretation of the results for each of these biomarkers in CMTs. Only 3+ HER2-positive tumors should be considered positive, as found in human breast cancer. The lack of any known response to adjuvant endocrine therapy of ER- and PR-positive CMTs prevents the use of the biological positive/negative threshold used in human breast cancer. Immunohistochemistry results of ER and PR in CMTs should be reported as the sum of the percentage of positive cells and the intensity of immunolabeling (Allred score). Incorporation of these recommendations in future studies, either prospective or retrospective, will provide a mechanism for the direct comparison of studies and will help to determine whether these biomarkers have prognostic significance. Finally, these biomarkers may ascertain the most appropriate treatment(s) for canine malignant mammary neoplasms.
Collapse
Affiliation(s)
- L Peña
- Department of Animal Medicine, Surgery and Pathology, Veterinary School, Carretera de la Coruña s/n, Ciudad Universitaria, 28040 Madrid, Spain.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Salmans ML, Zhao F, Andersen B. The estrogen-regulated anterior gradient 2 (AGR2) protein in breast cancer: a potential drug target and biomarker. Breast Cancer Res 2013; 15:204. [PMID: 23635006 PMCID: PMC3672732 DOI: 10.1186/bcr3408] [Citation(s) in RCA: 83] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Initially discovered as an estrogen-responsive gene in breast cancer cell lines, anterior gradient 2 (AGR2) is a developmentally regulated gene belonging to the protein disulfide isomerase (PDI) gene family. Developmentally, AGR2 is expressed in the mammary gland in an estrogen-dependent manner, and AGR2 knockout and overexpression mouse models indicate that the gene promotes lobuloalveolar development by stimulating cell proliferation. Although AGR2 overexpression alone seems insufficient for breast tumorigenesis in mice, several lines of investigations suggest that AGR2 promotes breast tumorigenesis. Overexpression of AGR2 in several breast cancer cell lines increases cell survival in clonogenic assays and cell proliferation, whereas AGR2 loss of function leads to decreased cell cycle progression and cell death. In addition, AGR2 was shown to promote metastasis of breast epithelial cells in an in vivo metastasis assay. As a PDI, AGR2 is thought to be involved in the unfolded protein response that alleviates endoplasmic reticulum stress. Since cancer has to overcome proteotoxic stress due to excess protein production, AGR2 may be one of many pro-survival factors recruited to assist in protein folding or degradation or both. When AGR2 is secreted, it plays a role in cellular adhesion and dissemination of metastatic tumor cells. In breast cancer, AGR2 expression is associated with estrogen receptor (ER)-positive tumors; its overexpression is a predictor of poor prognosis. The AGR2 gene is directly targeted by ER-alpha, which is preferentially bound in tumors with poor outcome. Whereas aromatase inhibitor therapy decreases AGR2 expression, tamoxifen acts as an agonist of AGR2 expression in ER-positive tumors, perhaps contributing to tamoxifen resistance. AGR2 is also overexpressed in a subset of ER-negative tumors. Furthermore, AGR2 expression is associated with the dissemination of metastatic breast cancer cells and can be used as a marker to identify circulating tumor cells and metastatic cells in sentinel lymph nodes. In conclusion, AGR2 is a promising drug target in breast cancer and may serve as a useful prognostic indicator as well as a marker of breast cancer metastasis.
Collapse
|