1
|
Islam A, Ferdous J, Islam S, Sayeed MA, Dutta Choudhury S, Saha O, Hassan MM, Shirin T. Evolutionary Dynamics and Epidemiology of Endemic and Emerging Coronaviruses in Humans, Domestic Animals, and Wildlife. Viruses 2021; 13:1908. [PMID: 34696338 PMCID: PMC8537103 DOI: 10.3390/v13101908] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 09/12/2021] [Accepted: 09/17/2021] [Indexed: 12/21/2022] Open
Abstract
Diverse coronavirus (CoV) strains can infect both humans and animals and produce various diseases. CoVs have caused three epidemics and pandemics in the last two decades, and caused a severe impact on public health and the global economy. Therefore, it is of utmost importance to understand the emergence and evolution of endemic and emerging CoV diversity in humans and animals. For diverse bird species, the Infectious Bronchitis Virus is a significant one, whereas feline enteric and canine coronavirus, recombined to produce feline infectious peritonitis virus, infects wild cats. Bovine and canine CoVs have ancestral relationships, while porcine CoVs, especially SADS-CoV, can cross species barriers. Bats are considered as the natural host of diverse strains of alpha and beta coronaviruses. Though MERS-CoV is significant for both camels and humans, humans are nonetheless affected more severely. MERS-CoV cases have been reported mainly in the Arabic peninsula since 2012. To date, seven CoV strains have infected humans, all descended from animals. The severe acute respiratory syndrome coronaviruses (SARS-CoV and SARS-CoV-2) are presumed to be originated in Rhinolopoid bats that severely infect humans with spillover to multiple domestic and wild animals. Emerging alpha and delta variants of SARS-CoV-2 were detected in pets and wild animals. Still, the intermediate hosts and all susceptible animal species remain unknown. SARS-CoV-2 might not be the last CoV to cross the species barrier. Hence, we recommend developing a universal CoV vaccine for humans so that any future outbreak can be prevented effectively. Furthermore, a One Health approach coronavirus surveillance should be implemented at human-animal interfaces to detect novel coronaviruses before emerging to humans and to prevent future epidemics and pandemics.
Collapse
Affiliation(s)
- Ariful Islam
- EcoHealth Alliance, New York, NY 10001-2320, USA; (J.F.); (S.I.); (M.A.S.); (S.D.C.)
- Centre for Integrative Ecology, School of Life and Environmental Science, Deakin University, Burwood, VIC 3216, Australia
- Institute of Epidemiology, Disease Control and Research (IEDCR), Dhaka 1212, Bangladesh;
| | - Jinnat Ferdous
- EcoHealth Alliance, New York, NY 10001-2320, USA; (J.F.); (S.I.); (M.A.S.); (S.D.C.)
- Institute of Epidemiology, Disease Control and Research (IEDCR), Dhaka 1212, Bangladesh;
- School of Veterinary Science, The University of Queensland, Gatton, QLD 4343, Australia
| | - Shariful Islam
- EcoHealth Alliance, New York, NY 10001-2320, USA; (J.F.); (S.I.); (M.A.S.); (S.D.C.)
- Institute of Epidemiology, Disease Control and Research (IEDCR), Dhaka 1212, Bangladesh;
| | - Md. Abu Sayeed
- EcoHealth Alliance, New York, NY 10001-2320, USA; (J.F.); (S.I.); (M.A.S.); (S.D.C.)
- Institute of Epidemiology, Disease Control and Research (IEDCR), Dhaka 1212, Bangladesh;
| | - Shusmita Dutta Choudhury
- EcoHealth Alliance, New York, NY 10001-2320, USA; (J.F.); (S.I.); (M.A.S.); (S.D.C.)
- Institute of Epidemiology, Disease Control and Research (IEDCR), Dhaka 1212, Bangladesh;
| | - Otun Saha
- Department of Microbiology, University of Dhaka, Dhaka 1000, Bangladesh;
| | - Mohammad Mahmudul Hassan
- Faculty of Veterinary Medicine, Chattogram Veterinary and Animal Sciences University, Chattogram 4225, Bangladesh;
| | - Tahmina Shirin
- Institute of Epidemiology, Disease Control and Research (IEDCR), Dhaka 1212, Bangladesh;
| |
Collapse
|
2
|
Nguyen L, Boorstein J, Wynn ER, Welihozkiy A, Baldwin T, Stine JM, Miller Michau T. Prevalence and type of ocular disease in a population of aged captive nondomestic felids. Vet Ophthalmol 2021; 25:31-43. [PMID: 34176199 DOI: 10.1111/vop.12913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2020] [Revised: 06/01/2021] [Accepted: 06/05/2021] [Indexed: 11/26/2022]
Abstract
OBJECTIVES Report of prevalence and type of ocular disease in a captive population of nondomestic felids. METHODS Medical records of 202 cats from 1993 to 2018 were reviewed. Species, age at diagnosis, sex, ocular examination abnormalities, systemic/physical examination abnormalities, type of examination (visual, sedated, or anesthetized), ocular structures affected, other diagnostics, therapy, and resolution of ocular disease were recorded. RESULTS A total of 202 nondomestic felids including 18 different species (bobcat, caracal, cougar, Fishing cat, Geoffroy's cat, jaguar, jungle cat, leopard, leopard cat, liger, lion, lynx, ocelot, Sand cat, Savannah cat, serval, snow leopard, and tiger) from a rescue facility were evaluated. Forty-six ocular lesions were diagnosed in 33 (16.3%) cats from 8 different species (bobcat, caracal, cougar, leopard, lion, ocelot, serval, and tiger) with a mean age of 16 ± 5.9 years at time of diagnosis. Ocular lesions included corneal disease (37%) (ulcerations, perforations, keratitis, corneal scars), cataracts (23.9%), hyphema (8.7%), lens luxation (6.5%), retinal detachment (6.5%), uveitis (4.3%), conjunctival disease (4.3%), retinal degeneration (2.1%), glaucoma (2.1%), and optic neuritis (2.1%). Therapies included medical (topical antibiotics, anti-inflammatories, serum, etc.) and/or surgical management (enucleation, intracapsular lens extraction, corneoconjunctival transposition, and corneal burr debridement). CONCLUSIONS To the authors' knowledge, this is the first report of the prevalence of ocular disease in a population of captive nondomestic felids. It is difficult to diagnose and treat ocular disease in nondomestic cats due to challenges related to handling, diagnostics, and therapeutics in nondomestic species. Ocular disease seen in this population is similar to that found in domestic cat populations.
Collapse
Affiliation(s)
- Laison Nguyen
- BluePearl Veterinary Partners, Tampa, FL, USA.,BluePearl Veterinary Partners, Sarasota, FL, USA.,BluePearl Veterinary Partners, Clearwater, FL, USA
| | | | | | | | | | | | | |
Collapse
|
3
|
FELINE CORONAVIRUS AND FELINE INFECTIOUS PERITONITIS IN NONDOMESTIC FELID SPECIES. J Zoo Wildl Med 2021; 52:14-27. [PMID: 33827157 DOI: 10.1638/2020-0134] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/06/2020] [Indexed: 11/21/2022] Open
Abstract
Feline coronavirus (FCoV) is reported worldwide and known to cause disease in domestic and nondomestic felid species. Although FCoV often results in mild to inapparent disease, a small subset of cats succumb to the fatal, systemic disease feline infectious peritonitis (FIP). An outbreak of FIP in Cheetahs (Acinonyx jubatus) in a zoological collection demonstrated the devastating effect of FCoV introduction into a naïve group of animals. In addition to cheetahs, FIP has been described in European wildcats (Felis silvestris), a tiger (Panthera tigris), a mountain lion (Puma concolor), and lion (Panthera leo). This paper reviews the reported cases of FIP in nondomestic felid species and highlights the surveys of FCoV in populations of nondomestic felids.
Collapse
|
4
|
Zappulli V, Ferro S, Bonsembiante F, Brocca G, Calore A, Cavicchioli L, Centelleghe C, Corazzola G, De Vreese S, Gelain ME, Mazzariol S, Moccia V, Rensi N, Sammarco A, Torrigiani F, Verin R, Castagnaro M. Pathology of Coronavirus Infections: A Review of Lesions in Animals in the One-Health Perspective. Animals (Basel) 2020; 10:E2377. [PMID: 33322366 PMCID: PMC7764021 DOI: 10.3390/ani10122377] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Revised: 12/04/2020] [Accepted: 12/09/2020] [Indexed: 12/13/2022] Open
Abstract
Coronaviruses (CoVs) are worldwide distributed RNA-viruses affecting several species, including humans, and causing a broad spectrum of diseases. Historically, they have not been considered a severe threat to public health until two outbreaks of COVs-related atypical human pneumonia derived from animal hosts appeared in 2002 and in 2012. The concern related to CoVs infection dramatically rose after the COVID-19 global outbreak, for which a spill-over from wild animals is also most likely. In light of this CoV zoonotic risk, and their ability to adapt to new species and dramatically spread, it appears pivotal to understand the pathophysiology and mechanisms of tissue injury of known CoVs within the "One-Health" concept. This review specifically describes all CoVs diseases in animals, schematically representing the tissue damage and summarizing the major lesions in an attempt to compare and put them in relation, also with human infections. Some information on pathogenesis and genetic diversity is also included. Investigating the lesions and distribution of CoVs can be crucial to understand and monitor the evolution of these viruses as well as of other pathogens and to further deepen the pathogenesis and transmission of this disease to help public health preventive measures and therapies.
Collapse
Affiliation(s)
- Valentina Zappulli
- Department of Comparative Biomedicine and Food Science, University of Padua, Legnaro, 35020 Padua, Italy; (V.Z.); (F.B.); (G.B.); (A.C.); (L.C.); (C.C.); (G.C.); (S.D.V.); (M.E.G.); (S.M.); (V.M.); (N.R.); (A.S.); (F.T.); (R.V.); (M.C.)
| | - Silvia Ferro
- Department of Comparative Biomedicine and Food Science, University of Padua, Legnaro, 35020 Padua, Italy; (V.Z.); (F.B.); (G.B.); (A.C.); (L.C.); (C.C.); (G.C.); (S.D.V.); (M.E.G.); (S.M.); (V.M.); (N.R.); (A.S.); (F.T.); (R.V.); (M.C.)
| | - Federico Bonsembiante
- Department of Comparative Biomedicine and Food Science, University of Padua, Legnaro, 35020 Padua, Italy; (V.Z.); (F.B.); (G.B.); (A.C.); (L.C.); (C.C.); (G.C.); (S.D.V.); (M.E.G.); (S.M.); (V.M.); (N.R.); (A.S.); (F.T.); (R.V.); (M.C.)
- Department of Animal Medicine, Productions and Health, University of Padua, Legnaro, 35020 Padua, Italy
| | - Ginevra Brocca
- Department of Comparative Biomedicine and Food Science, University of Padua, Legnaro, 35020 Padua, Italy; (V.Z.); (F.B.); (G.B.); (A.C.); (L.C.); (C.C.); (G.C.); (S.D.V.); (M.E.G.); (S.M.); (V.M.); (N.R.); (A.S.); (F.T.); (R.V.); (M.C.)
| | - Alessandro Calore
- Department of Comparative Biomedicine and Food Science, University of Padua, Legnaro, 35020 Padua, Italy; (V.Z.); (F.B.); (G.B.); (A.C.); (L.C.); (C.C.); (G.C.); (S.D.V.); (M.E.G.); (S.M.); (V.M.); (N.R.); (A.S.); (F.T.); (R.V.); (M.C.)
| | - Laura Cavicchioli
- Department of Comparative Biomedicine and Food Science, University of Padua, Legnaro, 35020 Padua, Italy; (V.Z.); (F.B.); (G.B.); (A.C.); (L.C.); (C.C.); (G.C.); (S.D.V.); (M.E.G.); (S.M.); (V.M.); (N.R.); (A.S.); (F.T.); (R.V.); (M.C.)
| | - Cinzia Centelleghe
- Department of Comparative Biomedicine and Food Science, University of Padua, Legnaro, 35020 Padua, Italy; (V.Z.); (F.B.); (G.B.); (A.C.); (L.C.); (C.C.); (G.C.); (S.D.V.); (M.E.G.); (S.M.); (V.M.); (N.R.); (A.S.); (F.T.); (R.V.); (M.C.)
| | - Giorgia Corazzola
- Department of Comparative Biomedicine and Food Science, University of Padua, Legnaro, 35020 Padua, Italy; (V.Z.); (F.B.); (G.B.); (A.C.); (L.C.); (C.C.); (G.C.); (S.D.V.); (M.E.G.); (S.M.); (V.M.); (N.R.); (A.S.); (F.T.); (R.V.); (M.C.)
| | - Steffen De Vreese
- Department of Comparative Biomedicine and Food Science, University of Padua, Legnaro, 35020 Padua, Italy; (V.Z.); (F.B.); (G.B.); (A.C.); (L.C.); (C.C.); (G.C.); (S.D.V.); (M.E.G.); (S.M.); (V.M.); (N.R.); (A.S.); (F.T.); (R.V.); (M.C.)
- Laboratory of Applied Bioacoustics, Technical University of Catalunya, BarcelonaTech, Vilanova i la Geltrù, 08800 Barcelona, Spain
| | - Maria Elena Gelain
- Department of Comparative Biomedicine and Food Science, University of Padua, Legnaro, 35020 Padua, Italy; (V.Z.); (F.B.); (G.B.); (A.C.); (L.C.); (C.C.); (G.C.); (S.D.V.); (M.E.G.); (S.M.); (V.M.); (N.R.); (A.S.); (F.T.); (R.V.); (M.C.)
| | - Sandro Mazzariol
- Department of Comparative Biomedicine and Food Science, University of Padua, Legnaro, 35020 Padua, Italy; (V.Z.); (F.B.); (G.B.); (A.C.); (L.C.); (C.C.); (G.C.); (S.D.V.); (M.E.G.); (S.M.); (V.M.); (N.R.); (A.S.); (F.T.); (R.V.); (M.C.)
| | - Valentina Moccia
- Department of Comparative Biomedicine and Food Science, University of Padua, Legnaro, 35020 Padua, Italy; (V.Z.); (F.B.); (G.B.); (A.C.); (L.C.); (C.C.); (G.C.); (S.D.V.); (M.E.G.); (S.M.); (V.M.); (N.R.); (A.S.); (F.T.); (R.V.); (M.C.)
| | - Nicolò Rensi
- Department of Comparative Biomedicine and Food Science, University of Padua, Legnaro, 35020 Padua, Italy; (V.Z.); (F.B.); (G.B.); (A.C.); (L.C.); (C.C.); (G.C.); (S.D.V.); (M.E.G.); (S.M.); (V.M.); (N.R.); (A.S.); (F.T.); (R.V.); (M.C.)
| | - Alessandro Sammarco
- Department of Comparative Biomedicine and Food Science, University of Padua, Legnaro, 35020 Padua, Italy; (V.Z.); (F.B.); (G.B.); (A.C.); (L.C.); (C.C.); (G.C.); (S.D.V.); (M.E.G.); (S.M.); (V.M.); (N.R.); (A.S.); (F.T.); (R.V.); (M.C.)
- Department of Neurology and Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02129, USA
| | - Filippo Torrigiani
- Department of Comparative Biomedicine and Food Science, University of Padua, Legnaro, 35020 Padua, Italy; (V.Z.); (F.B.); (G.B.); (A.C.); (L.C.); (C.C.); (G.C.); (S.D.V.); (M.E.G.); (S.M.); (V.M.); (N.R.); (A.S.); (F.T.); (R.V.); (M.C.)
| | - Ranieri Verin
- Department of Comparative Biomedicine and Food Science, University of Padua, Legnaro, 35020 Padua, Italy; (V.Z.); (F.B.); (G.B.); (A.C.); (L.C.); (C.C.); (G.C.); (S.D.V.); (M.E.G.); (S.M.); (V.M.); (N.R.); (A.S.); (F.T.); (R.V.); (M.C.)
| | - Massimo Castagnaro
- Department of Comparative Biomedicine and Food Science, University of Padua, Legnaro, 35020 Padua, Italy; (V.Z.); (F.B.); (G.B.); (A.C.); (L.C.); (C.C.); (G.C.); (S.D.V.); (M.E.G.); (S.M.); (V.M.); (N.R.); (A.S.); (F.T.); (R.V.); (M.C.)
| |
Collapse
|
5
|
FRCOphth AK, Shantha JG, Olivia Li JP, Faia LJ, Hartley C, Kuthyar S, Albini TA, Wu H, Chodosh J, Ting DSW, Yeh S. SARS-CoV-2 and the Eye: Implications for the Retina Specialist from Human Coronavirus Outbreaks and Animal Models. ACTA ACUST UNITED AC 2020; 4:411-419. [PMID: 33665540 PMCID: PMC7928265 DOI: 10.1177/2474126420939723] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Purpose The current SARS-CoV-2 pandemic has escalated rapidly since December 2019. Understanding the ophthalmic manifestations in patients and animal models of the novel coronavirus may have implications for disease surveillance. Recognition of the potential for viral transmission through the tear film has ramification for protection of patients, physicians, and the public. Methods Information from relevant published journal articles was surveyed using a computerized PubMed search and public health websites. We summarize current knowledge of ophthalmic manifestations of SARS-CoV-2 infection in patients and animal models, risk mitigation measures for patients and their providers, and implications for retina specialists. Results SARS-CoV-2 is efficiently transmitted among humans, and while the clinical course is mild in the majority of infected patients, severe complications including pneumonia, acute respiratory distress syndrome, and death can ensue, most often in elderly patients and individuals with co-morbidities. Conjunctivitis occurs in a small minority of patients with COVID-19 and SARS-CoV-2 RNA has been identified primarily in association with conjunctivitis. Uveitis has been observed in animal models of coronavirus infection and cotton-wool spots have been reported recently. Conclusion SARS-CoV-2 and other coronaviruses have been rarely associated with conjunctivitis. The identification of SARS-CoV and SARS-CoV-2 RNA in the tear film of patients and its highly efficient transmission via respiratory aerosols supports eye protection, mask and gloves as part of infection prevention and control recommendations for retina providers. Disease surveillance during the COVID-19 pandemic outbreak may also include ongoing evaluation for uveitis and retinal disease given prior findings observed in animal models and a recent report of retinal manifestations.
Collapse
Affiliation(s)
| | | | - Ji-Peng Olivia Li
- Moorfields Eye Hospital NHS Foundation Trust, London, United Kingdom
| | - Lisa J Faia
- Associated Retinal Consultants, Royal Oak, MI
| | - Caleb Hartley
- Emory University Rollins School of Public Health, Atlanta, GA
| | - Sanjana Kuthyar
- Emory Eye Center, Emory University School of Medicine, Atlanta, GA
| | - Thomas A Albini
- Bascom Palmer Eye Institute, University of Miami Miller School of Medicine
| | - Henry Wu
- Division of Infectious Diseases, Department of Medicine, Emory University School of Medicine, Atlanta, GA
| | - James Chodosh
- Massachusetts Eye and Ear, Harvard Medical School, Boston, MA
| | - Daniel S W Ting
- Singapore National Eye Center, Duke-NUS Medical School, Singapore
| | - Steven Yeh
- Emory Eye Center, Emory University School of Medicine, Atlanta, GA.,Emory Global Health Institute, Emory University, Atlanta, GA
| |
Collapse
|
6
|
Felten S, Hartmann K. Diagnosis of Feline Infectious Peritonitis: A Review of the Current Literature. Viruses 2019; 11:v11111068. [PMID: 31731711 PMCID: PMC6893704 DOI: 10.3390/v11111068] [Citation(s) in RCA: 62] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2019] [Revised: 11/10/2019] [Accepted: 11/13/2019] [Indexed: 12/12/2022] Open
Abstract
Feline infectious peritonitis (FIP) is a fatal disease that poses several challenges for veterinarians: clinical signs and laboratory changes are non-specific, and there are two pathotypes of the etiologic agent feline coronavirus (FCoV), sometimes referred to as feline enteric coronavirus (FECV) and feline infectious peritonitis virus (FIPV) that vary fundamentally in their virulence, but are indistinguishable by a number of diagnostic methods. This review focuses on all important steps every veterinary practitioner has to deal with and new diagnostic tests that can be considered when encountering a cat with suspected FIP with the aim to establish a definitive diagnosis. It gives an overview on all available direct and indirect diagnostic tests and their sensitivity and specificity reported in the literature in different sample material. By providing summarized data for sensitivity and specificity of each diagnostic test and each sample material, which can easily be accessed in tables, this review can help to facilitate the interpretation of different diagnostic tests and raise awareness of their advantages and limitations. Additionally, diagnostic trees depict recommended diagnostic steps that should be performed in cats suspected of having FIP based on their clinical signs or clinicopathologic abnormalities. These steps can easily be followed in clinical practice.
Collapse
|