1
|
Govindaraju I, Das AR, Chakraborty I, Mal SS, Sarmah B, Baruah VJ, Mazumder N. Investigation of the physicochemical factors affecting the in vitro digestion and glycemic indices of indigenous indica rice cultivars. Sci Rep 2025; 15:2336. [PMID: 39824900 PMCID: PMC11742700 DOI: 10.1038/s41598-025-85660-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Accepted: 01/06/2025] [Indexed: 01/20/2025] Open
Abstract
Rice (Oryza sativa) is a vital food crop and staple diet for most of the world's population. Poor dietary choices have had a significant role in the development of type-2 diabetes in the population that relies on rice and rice-starch-based foods. Hence, our study investigated the in vitro digestion and glycemic indices of certain indigenous rice cultivars and the factors influencing these indices. Cooking properties of rice cultivars were estimated. Further, biochemical investgations such as amylose content, resistant starch content were estimated using iodine-blue complex method and megazyme kit respectively. The in vitro glycemic index was estimated using GOPOD method. The rice cultivars considered in our study were classified into low-, intermediate-, and high-amylose rice varieties. The rice cultivars were subjected to physicochemical characterization by using Fourier transform infrared (FTIR) spectroscopy and differential scanning calorimetry (DSC) techniques. FTIR spectral analysis revealed prominent bands at 3550-3200, 2927-2935, 1628-1650, 1420-1330, and 1300-1000 cm-1, which correspond to -OH groups, C=O, C=C, and C-OH stretches, and H-O-H and -CH bending vibrations, confirming the presence of starch, proteins, and lipids. Additionally, the FTIR ratio R(1047/1022) confirmed the ordered structure of the amylopectin. DSC analysis revealed variations in the gelatinization parameters, which signifies variations in the fine amylopectin structures and the degree of branching inside the starch granules. The percentage of resistant starch (RS) ranged from 0.50-2.6%. The swelling power (SP) of the rice flour ranged between 4.1 and 24.85 g/g. Furthermore, most of the rice cultivars are classified as having a high glycemic index (GI) based on the estimated in vitro GI (eGI), which varies from 73.74-90.88. The cooking properties of these materials were also investigated. Because the amylose content is one of the key factors for determining the cooking, eating, and digestibility properties of rice, we investigated the relationships between the amylose content and other biochemical characteristics of rice cultivars. The SP and GI were negatively correlated with the amylose content, whereas the RS had a positive relationship. The findings of our study can be beneficial in illustrating the nutritional profile and factors affecting the digestibility of traditional rice cultivars which will promote their consumption, cultivation, and contributes to future food security.
Collapse
Affiliation(s)
- Indira Govindaraju
- Department of Biophysics, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - Anusha R Das
- Department of Biophysics, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - Ishita Chakraborty
- Department of Biophysics, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - Sib Sankar Mal
- Materials and Catalysis Lab, Department of Chemistry, National Institute of Technology Karnataka, Surathkal, Karnataka, 575025, India
| | - Bhaswati Sarmah
- Department of Plant Breeding and Genetics, Assam Agricultural University, Jorhat, Assam, 785001, India
| | - Vishwa Jyoti Baruah
- Centre for Biotechnology and Bioinformatics, Dibrugarh University, Assam, 786004, India
| | - Nirmal Mazumder
- Department of Biophysics, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India.
| |
Collapse
|
2
|
Wang J, Zhang X, Xiao Y, Chen H, Wang X, Hu Y. Effect of nitrogen fertilizer on the quality traits of Indica rice with different amylose contents. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2024; 104:8492-8499. [PMID: 38923540 DOI: 10.1002/jsfa.13676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Accepted: 05/07/2024] [Indexed: 06/28/2024]
Abstract
BACKGROUND Nitrogen is a key factor affecting the quality of rice. Studying the impact of nitrogen fertilizer on the taste, physicochemical properties, and starch structure of Indica rice with different amylose contents is of great significance for scientifically fertilizing and cultivating high-quality rice varieties for consumption. RESULTS The results indicate that increasing nitrogen fertilizer application reduces the amylose content and increases the protein content, resulting in a decrease in taste quality. Simultaneously, it reduces the intergranular porosity of starch particles, improving the appearance and milling quality of rice. Compared to the N1 treatment (nitrogen fertilizer application rate of 90 kg ha-1), the taste of low-amylose rice (Yixiangyou 2115) and high-amylose rice (Byou 268) decreased by 14.24% and 19.79%, respectively, under N4 treatment (nitrogen fertilizer application rate of 270 kg ha-1). The effect of nitrogen fertilizer on low-amylose rice is mainly reflected in increased rice hardness, enthalpy value, and setback viscosity, resulting in a decline in taste. The effect of nitrogen fertilizer on high-amylose rice is mainly reflected in a decrease in peak viscosity, an increase in gelatinization temperature, and crystallinity under high nitrogen levels. CONCLUSION Increasing nitrogen fertilizer application can improve the appearance and milling quality of rice, but it also leads to an increase in protein content, hardness, gelatinization enthalpy, decrease in breakdown value, and a decline in palatability. In practical production, different production measures should be taken according to different production goals. © 2024 Society of Chemical Industry.
Collapse
Affiliation(s)
- Jinhui Wang
- Southwest University of Science and Technology, Life Science and Engineering Academy, Mian yang, P. R. China
| | - Xiaoqiao Zhang
- Southwest University of Science and Technology, Life Science and Engineering Academy, Mian yang, P. R. China
| | - Yao Xiao
- Southwest University of Science and Technology, Life Science and Engineering Academy, Mian yang, P. R. China
| | - Hong Chen
- Southwest University of Science and Technology, Life Science and Engineering Academy, Mian yang, P. R. China
| | - Xuechun Wang
- Southwest University of Science and Technology, Life Science and Engineering Academy, Mian yang, P. R. China
| | - Yungao Hu
- Southwest University of Science and Technology, Life Science and Engineering Academy, Mian yang, P. R. China
| |
Collapse
|
3
|
Guo K, Liang W, Wang S, Guo D, Liu F, Persson S, Herburger K, Petersen BL, Liu X, Blennow A, Zhong Y. Strategies for starch customization: Agricultural modification. Carbohydr Polym 2023; 321:121336. [PMID: 37739487 DOI: 10.1016/j.carbpol.2023.121336] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 08/23/2023] [Accepted: 08/24/2023] [Indexed: 09/24/2023]
Abstract
Raw starch is commonly modified to enhance its functionality for industrial applications. There is increasing demand for 'green' modified starches from both end-consumers and producers. It is well known that environmental conditions are key factors that determine plant growth and yield. An increasing number of studies suggest growth conditions can expand affect starch structure and functionality. In this review, we summarized how water, heat, high nitrogen, salinity, shading, CO2 stress affect starch biosynthesis and physicochemical properties. We define these treatments as a fifth type of starch modification method - agricultural modification - in addition to chemical, physical, enzymatic and genetic methods. In general, water stress decreases peak viscosity and gelatinization enthalpy of starch, and high temperature stress increases starch gelatinization enthalpy and temperature. High nitrogen increases total starch content and regulates starch viscosity. Salinity stress mainly regulates starch and amylose content, both of which are genotype-dependent. Shading stress and CO2 stress can both increase starch granule size, but these have different effects on amylose content and amylopectin structure. Compared with other modification methods, agricultural modification has the advantage of operating at a large scale and a low cost and can help meet the ever-rising market of clean-label foods and ingredients.
Collapse
Affiliation(s)
- Ke Guo
- Lab of Food Soft Matter Structure and Advanced Manufacturing, College of Food Science and Engineering, Collaborative Innovation Center for Modern Grain Circulation and Safety, Nanjing University of Finance and Economics, Nanjing 210023, China; Institute of Food Crops, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China; Department of Plant and Environmental Sciences, Faculty of Science, University of Copenhagen, DK-1871 Frederiksberg C, Denmark
| | - Wenxin Liang
- Department of Plant and Environmental Sciences, Faculty of Science, University of Copenhagen, DK-1871 Frederiksberg C, Denmark
| | - Shujun Wang
- State Key Laboratory of Food Nutrition and Safety and School of Food Engineering and Biotechnology, Tianjin University of Science & Technology, Tianjin 300457, China
| | - Dongwei Guo
- Key Laboratory of Biology and Genetic Improvement of Maize in Arid Area of Northwest Region, Ministry of Agriculture, College of Agronomy, Northwest A&F University, Yangling, Shaanxi, China
| | - Fulai Liu
- Department of Plant and Environmental Sciences, Faculty of Science, University of Copenhagen, DK-1871 Frederiksberg C, Denmark
| | - Staffan Persson
- Department of Plant and Environmental Sciences, Faculty of Science, University of Copenhagen, DK-1871 Frederiksberg C, Denmark
| | | | - Bent L Petersen
- Department of Plant and Environmental Sciences, Faculty of Science, University of Copenhagen, DK-1871 Frederiksberg C, Denmark
| | - Xingxun Liu
- Lab of Food Soft Matter Structure and Advanced Manufacturing, College of Food Science and Engineering, Collaborative Innovation Center for Modern Grain Circulation and Safety, Nanjing University of Finance and Economics, Nanjing 210023, China.
| | - Andreas Blennow
- Department of Plant and Environmental Sciences, Faculty of Science, University of Copenhagen, DK-1871 Frederiksberg C, Denmark.
| | - Yuyue Zhong
- Department of Plant and Environmental Sciences, Faculty of Science, University of Copenhagen, DK-1871 Frederiksberg C, Denmark; Department of Sustainable and Bio-inspired Materials, Max Planck Institute of Colloids and Interfaces, Am Muhlenberg 1, D-14476 Potsdam, Germany.
| |
Collapse
|
4
|
Pan YH, Chen L, Zhu XY, Li JC, Rashid MAR, Chen C, Qing DJ, Zhou WY, Yang XH, Gao LJ, Zhao Y, Deng GF. Utilization of natural alleles for heat adaptability QTLs at the flowering stage in rice. BMC PLANT BIOLOGY 2023; 23:256. [PMID: 37189032 DOI: 10.1186/s12870-023-04260-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Accepted: 05/02/2023] [Indexed: 05/17/2023]
Abstract
BACKGROUND Heat stress threatens rice yield and quality at flowering stage. In this study, average relative seed setting rate under heat stress (RHSR) and genotypes of 284 varieties were used for a genome-wide association study. RESULTS We identified eight and six QTLs distributed on chromosomes 1, 3, 4, 5, 7 and 12 in the full population and indica, respectively. qHTT4.2 was detected in both the full population and indica as an overlapping QTL. RHSR was positively correlated with the accumulation of heat-tolerant superior alleles (SA), and indica accession contained at least two heat-tolerant SA with average RHSR greater than 43%, meeting the needs of stable production and heat-tolerant QTLs were offer yield basic for chalkiness degree, amylose content, gel consistency and gelatinization temperature. Chalkiness degree, amylose content, and gelatinization temperature under heat stress increased with accumulation of heat-tolerant SA. Gel consistency under heat stress decreased with polymerization of heat-tolerant SA. The study revealed qHTT4.2 as a stable heat-tolerant QTL that can be used for breeding that was detected in the full population and indica. And the grain quality of qHTT4.2-haplotype1 (Hap1) with chalk5, wx, and alk was better than that of qHTT4.2-Hap1 with CHALK5, WX, and ALK. Twelve putative candidate genes were identified for qHTT4.2 that enhance RHSR based on gene expression data and these genes were validated in two groups. Candidate genes LOC_Os04g52830 and LOC_Os04g52870 were induced by high temperature. CONCLUSIONS Our findings identify strong heat-tolerant cultivars and heat-tolerant QTLs with great potential value to improve rice tolerance to heat stress, and suggest a strategy for the breeding of yield-balance-quality heat-tolerant crop varieties.
Collapse
Affiliation(s)
- Ying-Hua Pan
- Rice Research Institute, Guangxi Academy of Agricultural Sciences/Guangxi Key Laboratory of Rice Genetics and Breeding, Nanning, 530007, China.
| | - Lei Chen
- Rice Research Institute, Guangxi Academy of Agricultural Sciences/Guangxi Key Laboratory of Rice Genetics and Breeding, Nanning, 530007, China
| | - Xiao-Yang Zhu
- State Key Laboratory of Agrobiotechnology/Beijing Key Laboratory of Crop Genetic Improvement, College of Agronomy and Biotechnology, China Agricultural University, Beijing, 100193, China
| | - Jing-Cheng Li
- Rice Research Institute, Guangxi Academy of Agricultural Sciences/Guangxi Key Laboratory of Rice Genetics and Breeding, Nanning, 530007, China
| | - Muhammad Abdul Rehman Rashid
- Department of Bioinformatics and Biotechnology, Government College University Faisalabad, Faisalabad, 38000, Pakistan
| | - Chao Chen
- State Key Laboratory of Crop Germplasm Innovation and Molecular Breeding/Life Science and Technology Center, China National Seed Group Co., LTD, Wuhan, 430206, China
| | - Dong-Jin Qing
- Rice Research Institute, Guangxi Academy of Agricultural Sciences/Guangxi Key Laboratory of Rice Genetics and Breeding, Nanning, 530007, China
| | - Wei-Yong Zhou
- Rice Research Institute, Guangxi Academy of Agricultural Sciences/Guangxi Key Laboratory of Rice Genetics and Breeding, Nanning, 530007, China
| | - Xing-Hai Yang
- Rice Research Institute, Guangxi Academy of Agricultural Sciences/Guangxi Key Laboratory of Rice Genetics and Breeding, Nanning, 530007, China
| | - Li-Jun Gao
- Rice Research Institute, Guangxi Academy of Agricultural Sciences/Guangxi Key Laboratory of Rice Genetics and Breeding, Nanning, 530007, China
| | - Yan Zhao
- State Key Laboratory of Crop Biology, Shandong Key Laboratory of Crop Biology, College of Agronomy, Shandong Agricultural University, Tai'an, 271018, China.
| | - Guo-Fu Deng
- Rice Research Institute, Guangxi Academy of Agricultural Sciences/Guangxi Key Laboratory of Rice Genetics and Breeding, Nanning, 530007, China.
| |
Collapse
|
5
|
Wu W, Zhong Y, Liu Y, Xu R, Zhang X, Liu N, Guo D. A new insight into the biosynthesis, structure, and functionality of waxy maize starch under drought stress. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2023. [PMID: 37005332 DOI: 10.1002/jsfa.12599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 03/11/2023] [Accepted: 04/03/2023] [Indexed: 06/19/2023]
Abstract
BACKGROUND Drought stress (DS) is the main abiotic stress that maize suffers during its whole growth period, and maize is also sensitive to DS. It had been demonstrated that DS could improve the quality of normal maize starch. However, waxy maize, which has special properties, has not been explored in depth, which limits the breeding and cultivation of waxy maize varieties and the application of waxy maize starch. Therefore, in this study, we investigated the effects of DS on the biosynthesis, structure, and functionality of waxy maize starch. RESULTS The results showed that DS decreased the expression level of SSIIb, SSIIIa, GBSSIIa, SBEI, SBEIIb, ISAII, and PUL, but increased the expression level of SSI and SBEIIa. DS did not change the average chain length of amylopectin, while increased the relative content of fa chains (RCfa ) and decreased the RCfb1 and RCfb3 . Furthermore, DS decreased the amylose content, amorphous lamellar distance da , semi-crystalline repeat distance, and average particle size, whereas it increased the relative crystallinity, crystalline distance dc , the content of rapidly digested starch in the uncooked system and resistant starch content in both the uncooked and cooked system. CONCLUSIONS For waxy maize, DS could raise the relative expression level of SSI and SBEIIa, thus increasing RCfa . The larger number of RCfa could create steric hindrance, which can lead to producing more resistant starch in waxy maize starch. © 2023 Society of Chemical Industry.
Collapse
Affiliation(s)
- Wenhao Wu
- Key Laboratory of Biology and Genetic Improvement of Maize in Arid Area of Northwest Region, College of Agronomy, Northwest A&F University, Yangling, China
| | - Yuyue Zhong
- Department of Plant and Environmental Sciences, Faculty of Science, University of Copenhagen, Frederiksberg C, Denmark
| | - Yilin Liu
- Key Laboratory of Biology and Genetic Improvement of Maize in Arid Area of Northwest Region, College of Agronomy, Northwest A&F University, Yangling, China
| | - Renyuan Xu
- Key Laboratory of Biology and Genetic Improvement of Maize in Arid Area of Northwest Region, College of Agronomy, Northwest A&F University, Yangling, China
| | - Xudong Zhang
- Institute of Crop Science, Quality of Plant Products, University of Hohenheim, Stuttgart, Germany
| | - Na Liu
- Key Laboratory of Biology and Genetic Improvement of Maize in Arid Area of Northwest Region, College of Agronomy, Northwest A&F University, Yangling, China
| | - Dongwei Guo
- Key Laboratory of Biology and Genetic Improvement of Maize in Arid Area of Northwest Region, College of Agronomy, Northwest A&F University, Yangling, China
| |
Collapse
|
6
|
Huo Z, Wang L, Yang H. Effects of the duration of post-silking drought on the starch physicochemical properties of waxy maize. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2023; 103:1569-1577. [PMID: 36205226 DOI: 10.1002/jsfa.12255] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Revised: 10/03/2022] [Accepted: 10/07/2022] [Indexed: 06/16/2023]
Abstract
BACKGROUND Drought is a major abiotic stress that affects the physicochemical properties of cereal starch. However, quantitative information on the effects of drought duration on the starch quality of waxy maize, a special maize-type starch composed of nearly pure amylopectin, has been lacking. The effects of post-silking drought duration 1-10 (DS10), 1-20 (DS20), and 1-30 (DS30) days after pollination on the physicochemical properties of starch were assessed from 2019 to 2020 using two waxy maize hybrids as materials. RESULTS With extending drought duration, the starch granule size and average amylopectin chain length of Jingkenuo2000 (JKN2000) gradually increased, with those of Suyunuo5 (SYN5) being the highest for DS20, followed by DS30. All drought durations decreased the degree of branching of both hybrids, with the lowest value obtained for DS30 and DS20 in JKN2000 and SYN5, respectively. Relative crystallinity increased for DS30 in both hybrids but its responses for DS10 and DS20 differed. Pasting viscosities and gelatinization enthalpy were decreased and retrogradation percentage was increased by drought stress. The lowest pasting viscosities were observed for DS30, and the highest retrogradation percentage was found for DS10 in general. CONCLUSION Post-silking drought led to the pasting and retrogradation properties deteriorating, with decreased pasting viscosities and increased retrogradation percentage. The decrease in viscosity was caused by enlarged granules. Meanwhile, the increased proportion of amylopectin chains with a degree of polymerization of 25-36 resulted in lower viscosity and higher retrogradation. © 2022 Society of Chemical Industry.
Collapse
Affiliation(s)
- Zhenggang Huo
- College of Architectural Science and Engineering, Yangzhou University, Yangzhou, China
| | - Longfei Wang
- Jiangsu Key Laboratory of Crop Genetics and Physiology | Jiangsu Key Laboratory of Crop Cultivation and Physiology | Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Agricultural College of Yangzhou University, Yangzhou, China
| | - Huan Yang
- Jiangsu Key Laboratory of Crop Genetics and Physiology | Jiangsu Key Laboratory of Crop Cultivation and Physiology | Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Agricultural College of Yangzhou University, Yangzhou, China
| |
Collapse
|
7
|
Li Z, Tan M, Deng H, Yang X, Yu Y, Zhou D, Dong H. Geographical Origin Differentiation of Rice by LC-MS-Based Non-Targeted Metabolomics. Foods 2022; 11:3318. [PMID: 36359931 PMCID: PMC9657058 DOI: 10.3390/foods11213318] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2022] [Revised: 10/09/2022] [Accepted: 10/17/2022] [Indexed: 01/01/2025] Open
Abstract
Many factors, such as soil, climate, and water source in the planting area, can affect rice taste and quality. Adulterated rice is common in the market, which seriously damages the production and sales of high-quality rice. Traceability analysis of rice has become one of the important research fields of food safety management. In this study, LC-MS-based non-targeted metabolomics technology was used to trace four rice samples from Heilongjiang and Jiangsu Provinces, namely, Daohuaxiang (DH), Huaidao No. 5 (HD), Songjing (SJ), and Changlixiang (CL). Results showed that the discrimination accuracy of the partial least squares discriminant analysis (PLS-DA) model was as high as 100% with satisfactory prediction ability. A total of 328 differential metabolites were screened, indicating significant differences in rice metabolites from different origins. Pathway enrichment analysis was carried out on the four rice samples based on the KEGG database to determine the three metabolic pathways with the highest enrichment degree. The main biochemical metabolic pathways and signal transduction pathways involved in differential metabolites in rice were obtained. This study provides theoretical support for the geographical origins of rice and elucidates the change mechanism of rice metabolic pathways, which can shed light on improving rice quality control.
Collapse
Affiliation(s)
- Zhanming Li
- School of Grain Science and Technology, Jiangsu University of Science and Technology, Zhenjiang 212100, China
- Key Laboratory of Fish Health and Nutrition of Zhejiang Province, Zhejiang Institute of Freshwater Fisheries, Huzhou 313001, China
| | - Mengmeng Tan
- School of Grain Science and Technology, Jiangsu University of Science and Technology, Zhenjiang 212100, China
| | - Huxue Deng
- School of Grain Science and Technology, Jiangsu University of Science and Technology, Zhenjiang 212100, China
| | - Xu Yang
- School of Grain Science and Technology, Jiangsu University of Science and Technology, Zhenjiang 212100, China
| | - Yue Yu
- School of Grain Science and Technology, Jiangsu University of Science and Technology, Zhenjiang 212100, China
| | - Dongren Zhou
- Key Laboratory of Fish Health and Nutrition of Zhejiang Province, Zhejiang Institute of Freshwater Fisheries, Huzhou 313001, China
| | - Hao Dong
- College of Light Industry and Food Sciences, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China
| |
Collapse
|
8
|
Zhang Z, Hu Y, Yu S, Zhao X, Dai G, Deng G, Bao J. Effects of drought stress and elevated CO2 on starch fine structures and functional properties in indica rice. Carbohydr Polym 2022; 297:120044. [DOI: 10.1016/j.carbpol.2022.120044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 08/12/2022] [Accepted: 08/24/2022] [Indexed: 11/02/2022]
|
9
|
Ezin V, Ahanchede WW, Ayenan MAT, Ahanchede A. Physiological and agronomical evaluation of elite rice varieties for adaptation to heat stress. BMC PLANT BIOLOGY 2022; 22:236. [PMID: 35534823 PMCID: PMC9088053 DOI: 10.1186/s12870-022-03604-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Accepted: 04/18/2022] [Indexed: 06/14/2023]
Abstract
BACKGROUND The increasing temperatures due to climate change around the world poses a serious threat to sustainable crop production. The growing adverse effects of heat stress are putting global food security at great risk. Crop improvement for adaptation to increased temperatures is therefore of paramount importance. This study aims at assessing the effects of heat stress in relation to agro-morphological and physiological traits of six rice varieties. The study was carried out in the Township of Glazoué, a rice-growing area in Benin. The experiments were laid in randomized complete block design with three replications. Two types of stress were imposed: high-temperature stress in the dry season and optimal temperatures in the rainy season. The calculated mean values of morphological, physiological, and agronomic traits were used to estimate heritability, genetic advance, PCA, and correlation. RESULTS The results showed that heat stress had a significant (p ≤ 0.01) influence on plant height, leaf length, number of tillers, number of internodes, days to flowering, and days to maturity, 1000-seed weight, and yield per plant. The heat stress had significantly delayed the flowering of all the varieties when compared to the controls. The highest values of 1000-seed weight (34. 67 g) were recorded for BRIZ-8B while the lowest (25.33 g) were recorded for NERICA-L20. The highest values for the genotypic coefficient of variation (43.05%) and phenotypic coefficient of variation (99.13%) were recorded for yield per plant under heat stress. The topmost broad-sense heritability was recorded for grain width (92.72%), followed by days to maturity (69.33%), days to flowering (68.50%), number of grains per panicle (57.35%), and yield (54.55%). CONCLUSIONS These results showed that BRIZ-8B and BRIZ-10B were the most tolerant to high temperature amongst the six varieties assessed and potentially could be recommended to farmers for production under high temperature and be used in breeding programs to improve heat tolerance in rice.
Collapse
Affiliation(s)
- Vincent Ezin
- Department of Crop Production, Faculty of Agricultural Sciences, University of Abomey-Calavi, 01 BP 526, Cotonou, Benin.
| | - Wassiou Worou Ahanchede
- Department of Crop Production, Faculty of Agricultural Sciences, University of Abomey-Calavi, 01 BP 526, Cotonou, Benin
| | - Mathieu Anatole Tele Ayenan
- West Africa Centre for Crop Improvement, College of Basic and Applied Science, University of Ghana, Legon, Ghana
- World Vegetable Center, West and Central Africa-Coastal and Humid Regions, IITA-Benin Campus, Cotonou, Benin
| | - Adam Ahanchede
- Department of Crop Production, Faculty of Agricultural Sciences, University of Abomey-Calavi, 01 BP 526, Cotonou, Benin
| |
Collapse
|
10
|
Chen Z, Du Y, Mao Z, Zhang Z, Li P, Cao C. Grain starch, fatty acids, and amino acids determine the pasting properties in dry cultivation plus rice cultivars. Food Chem 2022; 373:131472. [PMID: 34740046 DOI: 10.1016/j.foodchem.2021.131472] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2021] [Revised: 10/04/2021] [Accepted: 10/24/2021] [Indexed: 12/31/2022]
Abstract
A field experiment was conducted to explore the effects of cultivars under flooding irrigation and dry cultivation (D) on starch, fatty acids, and amino acids metabolism, starch physicochemical traits, and pasting properties of rice flour. In this study, high-quality cultivar (HH) had better pasting properties among all other cultivars in D treatment. DHH supported higher short-branch chain amylopectin to develop the crystalline regions. Besides, DHH increased C16:0, C16:1, C18:1, C18:2, glutamate, aspartate, lysine, and threonine, and reduced glutelin and prolamine levels in head rice. Higher pasting properties in DHH was also supported by higher CO in esters and ketones, CO in carboxylic acid, esters, alcohols, and ethers, OH in alcohols before pasting and lower CO and CO in carboxylic acid, CO in aldehydes, and CO, CO and OH in carboxylic acid after pasting. Overall, these findings improve pasting properties to maintain a higher cooking quality in dry cultivation.
Collapse
Affiliation(s)
- Zongkui Chen
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Yunfeng Du
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Zilin Mao
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Zhijuan Zhang
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Ping Li
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, China.
| | - Cougui Cao
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, China.
| |
Collapse
|
11
|
Jia M, Wang X, Liu J, Wang R, Wang A, Strappe P, Shang W, Zhou Z. Physicochemical and volatile characteristics present in different grain layers of various rice cultivars. Food Chem 2022; 371:131119. [PMID: 34560335 DOI: 10.1016/j.foodchem.2021.131119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2021] [Revised: 08/26/2021] [Accepted: 09/08/2021] [Indexed: 11/17/2022]
Abstract
Five rice cultivars were applied for investigating effect of milling degree on rice physicochemical properties. The first layer had the lowest peak viscosity, followed by the second and third layers, indicating the effect of non-starchy components on starch gelatinization behaviors. Consistently, more content of non-starch components in the first layer led to an enhanced gelatinization temperature. Rheological study demonstrated the G' and G" were successively increased as the layer moved inward, indicating a stronger gel network due to the increased amylose content and crystallinity in the corresponding layer. This is the first study to reveal the second layer has the highest digestibility, suggesting both non-starch components and starch structure control starch digestion. Furthermore, analysis of volatile compounds found alcohols and ketones concentrated in the first layer, whilst compounds including (E,E)-2,4-decadienal, 3-octanone and 3-nonen-2-one only existed in the second layer, serving as an indicator for managing the rice quality during milling.
Collapse
Affiliation(s)
- Meng Jia
- Key Laboratory of Food Nutrition and Safety, Ministry of Education, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Xixi Wang
- Key Laboratory of Food Nutrition and Safety, Ministry of Education, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Jinguang Liu
- Key Laboratory of Food Nutrition and Safety, Ministry of Education, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Rui Wang
- Key Laboratory of Food Nutrition and Safety, Ministry of Education, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Anqi Wang
- Key Laboratory of Food Nutrition and Safety, Ministry of Education, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Padraig Strappe
- School of Medical and Applied Sciences, Central Queensland University, Rockhampton, Qld 4700, Australia
| | - Wenting Shang
- School of Food Science and Engineering, Hainan University, Haikou, China
| | - Zhongkai Zhou
- Key Laboratory of Food Nutrition and Safety, Ministry of Education, Tianjin University of Science and Technology, Tianjin 300457, China; ARC Industrial Transformation Training Centre for Functional Grains, Charles Sturt University, WaggaWagga, NSW 2678, Australia.
| |
Collapse
|
12
|
Chen Z, Li P, Xiao J, Jiang Y, Cai M, Wang J, Li C, Zhan M, Cao C. Dry cultivation with ratoon system impacts rice quality using rice flour physicochemical traits, fatty and amino acids contents. Food Res Int 2021; 150:110764. [PMID: 34865781 DOI: 10.1016/j.foodres.2021.110764] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 09/09/2021] [Accepted: 10/12/2021] [Indexed: 12/24/2022]
Abstract
A field experiment was conducted to explore the impact on rice quality using high-quality (HH) or drought-resistant (HY) cultivars under flooding irrigation (F) or dry cultivation (D) in ratooning rice system by evaluating the metabolism or physicochemical traits of starch, fatty acids, and amino acids affecting grain quality. Compared to FHY and DHY in the main or ratoon season, DHH in ratoon season (DHHR) exhibited a higher appearance and processing quality but lower cooking quality. DHHR mainly synthesized long branch chain amylopectin to construct the crystalline regions with increased crystallinity, crystallites size, interplanar spacing, dislocation density, Asp and Thr in brown and head rice. Also, it accumulated more of C16:0, C18:0, C18:1, C18:2, and C18:3 but reduced glutelin in head rice. An increase in functional groups and diversity was seen in brown and head rice, respectively. Overall, these traits improved the processing, appearance, and pasting quality of DHHR.
Collapse
Affiliation(s)
- Zongkui Chen
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Ping Li
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Junchen Xiao
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Yang Jiang
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Mingli Cai
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Jinping Wang
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Chengfang Li
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Ming Zhan
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Cougui Cao
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, China.
| |
Collapse
|
13
|
Effect of dry heat modification and the addition of Chinese quince seed gum on the physicochemical properties and structure of tigernut tuber starch. ARAB J CHEM 2021. [DOI: 10.1016/j.arabjc.2021.103407] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
14
|
Chen Z, Li P, Du Y, Jiang Y, Cai M, Cao C. Dry cultivation and cultivar affect starch synthesis and traits to define rice grain quality in various panicle parts. Carbohydr Polym 2021; 269:118336. [PMID: 34294346 DOI: 10.1016/j.carbpol.2021.118336] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2020] [Revised: 05/30/2021] [Accepted: 06/09/2021] [Indexed: 12/22/2022]
Abstract
A pot experiment was conducted to explore the effects of high-quality (Huanghuazhan, HH), drought-resistant (IR, IRAT109) and drought-susceptible cultivars (ZS, Zhenshan97) under flooding irrigation and dry cultivation (D) on the starch accumulation and synthesis, physicochemical traits of starch granules and rice grain quality at the upper (U) and lower panicle. Under D treatment, IR and ZS had lower rice quality, especially the appearance and cooking quality. DHH-U had the highest appearance, nutritional and cooking quality among all cultivars under D treatment, which could be ascribed to the synthesis of more short-branch chain amylopectin and correspondingly higher starch granule tightness. DHH-U also maintained ordered carbohydrate structure, crystalline regions, and many hydrophilic and hydrophobic functional groups in starch granules before pasting. It could prevent the polymerization of small molecules to avoid the formation of macromolecules after pasting. Overall, these findings may facilitate the improvement of grain quality in rice dry cultivation.
Collapse
Affiliation(s)
- Zongkui Chen
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Ping Li
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Yunfeng Du
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Yang Jiang
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Mingli Cai
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Cougui Cao
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, China.
| |
Collapse
|
15
|
Influence of dynamic high temperature during grain filling on starch fine structure and functional properties of semi-waxy japonica rice. J Cereal Sci 2021. [DOI: 10.1016/j.jcs.2021.103319] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
16
|
Srivastava RK, Shetti NP, Reddy KR, Kwon EE, Nadagouda MN, Aminabhavi TM. Biomass utilization and production of biofuels from carbon neutral materials. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 276:116731. [PMID: 33607352 DOI: 10.1016/j.envpol.2021.116731] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Revised: 02/01/2021] [Accepted: 02/09/2021] [Indexed: 05/22/2023]
Abstract
The availability of organic matters in vast quantities from the agricultural/industrial practices has long been a significant environmental challenge. These wastes have created global issues in increasing the levels of BOD or COD in water as well as in soil or air segments. Such wastes can be converted into bioenergy using a specific conversion platform in conjunction with the appropriate utilization of the methods such as anaerobic digestion, secondary waste treatment, or efficient hydrolytic breakdown as these can promote bioenergy production to mitigate the environmental issues. By the proper utilization of waste organics and by adopting innovative approaches, one can develop bioenergy processes to meet the energy needs of the society. Waste organic matters from plant origins or other agro-sources, biopolymers, or complex organic matters (cellulose, hemicelluloses, non-consumable starches or proteins) can be used as cheap raw carbon resources to produce biofuels or biogases to fulfill the ever increasing energy demands. Attempts have been made for bioenergy production by biosynthesizing, methanol, n-butanol, ethanol, algal biodiesel, and biohydrogen using different types of organic matters via biotechnological/chemical routes to meet the world's energy need by producing least amount of toxic gases (reduction up to 20-70% in concentration) in order to promote sustainable green environmental growth. This review emphasizes on the nature of available wastes, different strategies for its breakdown or hydrolysis, efficient microbial systems. Some representative examples of biomasses source that are used for bioenergy production by providing critical information are discussed. Furthermore, bioenergy production from the plant-based organic matters and environmental issues are also discussed. Advanced biofuels from the organic matters are discussed with efficient microbial and chemical processes for the promotion of biofuel production from the utilization of plant biomasses.
Collapse
Affiliation(s)
- Rajesh K Srivastava
- Department of Biotechnology, GIT, GITAM (Deemed to Be University), Rushikonda, Visakhapatnam, 530045, (A.P.), India
| | - Nagaraj P Shetti
- Department of Chemistry, K. L. E. Institute of Technology, Gokul, Hubballi, 580027, Karnataka, India
| | - Kakarla Raghava Reddy
- School of Chemical and Biomolecular Engineering, The University of Sydney, Sydney, NSW, 2006, Australia
| | - Eilhann E Kwon
- Department of Environment and Energy, Sejong University, Seoul, 05006, Republic of Korea
| | - Mallikarjuna N Nadagouda
- Department of Mechanical and Materials Engineering, Wright State University, Dayton, OH, 45324, USA
| | | |
Collapse
|
17
|
Sapkota S, Boatwright JL, Jordan K, Boyles R, Kresovich S. Identification of Novel Genomic Associations and Gene Candidates for Grain Starch Content in Sorghum. Genes (Basel) 2020; 11:E1448. [PMID: 33276449 PMCID: PMC7760202 DOI: 10.3390/genes11121448] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Revised: 11/10/2020] [Accepted: 11/27/2020] [Indexed: 01/15/2023] Open
Abstract
Starch accumulated in the endosperm of cereal grains as reserve energy for germination serves as a staple in human and animal nutrition. Unraveling genetic control for starch metabolism is important for breeding grains with high starch content. In this study, we used a sorghum association panel with 389 individuals and 141,557 single nucleotide polymorphisms (SNPs) to fit linear mixed models (LMM) for identifying genomic regions and potential candidate genes associated with starch content. Three associated genomic regions, one in chromosome (chr) 1 and two novel associations in chr-8, were identified using combination of LMM and Bayesian sparse LMM. All significant SNPs were located within protein coding genes, with SNPs ∼ 52 Mb of chr-8 encoding a Casperian strip membrane protein (CASP)-like protein (Sobic.008G111500) and a heat shock protein (HSP) 90 (Sobic.008G111600) that were highly expressed in reproductive tissues including within the embryo and endosperm. The HSP90 is a potential hub gene with gene network of 75 high-confidence first interactors that is enriched for five biochemical pathways including protein processing. The first interactors of HSP90 also showed high transcript abundance in reproductive tissues. The candidates of this study are likely involved in intricate metabolic pathways and represent candidate gene targets for source-sink activities and drought and heat stress tolerance during grain filling.
Collapse
Affiliation(s)
- Sirjan Sapkota
- Advanced Plant Technology Program, Clemson University, Clemson, SC 29634, USA; (J.L.B.); (K.J.); (S.K.)
- Department of Plant and Environmental Sciences, Clemson University, Clemson, SC 29634, USA;
| | - J. Lucas Boatwright
- Advanced Plant Technology Program, Clemson University, Clemson, SC 29634, USA; (J.L.B.); (K.J.); (S.K.)
- Department of Plant and Environmental Sciences, Clemson University, Clemson, SC 29634, USA;
| | - Kathleen Jordan
- Advanced Plant Technology Program, Clemson University, Clemson, SC 29634, USA; (J.L.B.); (K.J.); (S.K.)
| | - Richard Boyles
- Department of Plant and Environmental Sciences, Clemson University, Clemson, SC 29634, USA;
- Pee Dee Research and Education Center, Clemson University, Florence, SC 29506, USA
| | - Stephen Kresovich
- Advanced Plant Technology Program, Clemson University, Clemson, SC 29634, USA; (J.L.B.); (K.J.); (S.K.)
- Department of Plant and Environmental Sciences, Clemson University, Clemson, SC 29634, USA;
| |
Collapse
|