1
|
Eletreby R, Abdelaziz R, Shousha HI, Hammam Z, Hany A, Sabry D, Elawady B, Zayed N, Yosry A, Alem SA. Screening for maternal cytomegalovirus infection during pregnancy and pregnancy outcome in patients with liver disease: an observational study. BMC Infect Dis 2023; 23:210. [PMID: 37024831 PMCID: PMC10080798 DOI: 10.1186/s12879-023-08144-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Accepted: 03/09/2023] [Indexed: 04/08/2023] Open
Abstract
BACKGROUND Cytomegalovirus (CMV) infection among pregnant females could induce CMV hepatitis with possible changes in liver stiffness measurement (LSM) which could be reversibly increased during normal pregnancies, particularly in the third trimester. This study aimed to detect the prevalence of CMV infection among pregnant females with and without chronic liver disease and to evaluate the effects of CMV infection on LSM and pregnancy outcomes in comparison to non-CMV-infected pregnant females. METHODS This is an observational prospective study that included 201 pregnant ladies presented to the liver disease with pregnancy clinic, Cairo University from March 2018 to April 2019. We assessed the laboratory results, abdominal ultrasonography, LSM using ARFI elastography, and pregnancy outcomes. RESULTS Two hundred and one pregnant ladies were divided into ; group 1: pregnant ladies with normal pregnancy (n = 128), group 2: pregnant ladies with chronic liver diseases not related to pregnancy (n = 35), and group 3: pregnant ladies with pregnancy-related liver diseases (n = 38). Positive CMV serology (either/or, +ve CMV-IgM, IgG) was detected in 106/201 patients (52.74%), and fifteen of them had an active infection (IgG +, IgM+, PCR+). Pregnant females with chronic liver diseases not related to pregnancy had significantly higher serum levels of CMV IgM, IgG, and PCR. Moreover, LSM had a significant correlation with CMV IgG and CM_PCR in normal pregnant ladies. Maternal mortality occurred only in pregnant females with chronic liver diseases in 5.7% (2/35). CONCLUSION Maternal CMV infection carries a significant risk to pregnant females with chronic liver disease. Routine CMV screening for women planning to be pregnant, especially those with chronic liver disease could help to avoid bad maternal and fetal outcomes.
Collapse
Affiliation(s)
- Rasha Eletreby
- Endemic Medicine and Hepatology Department, Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Rasha Abdelaziz
- Endemic Medicine and Hepatology Department, Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Hend Ibrahim Shousha
- Endemic Medicine and Hepatology Department, Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Zeinab Hammam
- Endemic Medicine and Hepatology Department, Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Ayman Hany
- Gynecology and Obstetrics Department, Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Dina Sabry
- Medical Biochemistry and Molecular Biology Department, Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Basma Elawady
- Medical Microbiology and Immunology Department, Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Naglaa Zayed
- Endemic Medicine and Hepatology Department, Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Ayman Yosry
- Endemic Medicine and Hepatology Department, Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Shereen Abdel Alem
- Endemic Medicine and Hepatology Department, Faculty of Medicine, Cairo University, Cairo, Egypt.
| |
Collapse
|
2
|
Prognosis of Human Cytomegalovirus in Cancer Patients Undergoing Chemotherapeutic Treatment in Egypt and an Emergent Prevalence of Glycoprotein B-5. JOURNAL OF PURE AND APPLIED MICROBIOLOGY 2022. [DOI: 10.22207/jpam.16.4.17] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022] Open
Abstract
The human cytomegalovirus (HCMV) is a global opportunistic β-herpes virus causing severe diseases in immune-compromised patients, such as malignant tumor patients, especially those undergoing chemotherapeutic treatment. This study aimed to determine the prevalence of HCMV-DNA in chemotherapeutic treatment naive cancer patients, and after chemotherapy, to compare between conventional nested PCR and ELISA techniques for the detection of HCMV, and to detect glycoprotein B genotypes. Plasma and serum samples before and after three chemotherapy cycles were collected from 49 chemotherapy-naive cancer patients. DNA was extracted from plasma samples using QIAamp® DNA Mini kit. HCMV-DNA was detected using a nested PCR technique. Multiplex nested PCR was used for HCMV-glycoprotein B (gB) genotyping. HCMV-IgG and -IgM were detected using ELISA technique. Thirty one (63.3 %) of the 49 plasma samples of the chemotherapy-naïve cancer patients were positive for HCMV-DNA; 21 of which remained positive after chemotherapy. However, 18 samples were negative of which 16 became positive after chemotherapy. gB-5 was the most common glycoprotein genotype detected (80.6 %), followed by gB-1, gB-3, gB-4, and gB-2. HCMV IgG was detected in the 49 serum samples of chemotherapy-naïve patients, and after exposure to chemotherapy. HCMV-DNA is commonly identified in cancer patients. Its detection after chemotherapy exposure may suggest HCMV reactivation. The most common genotype detected in cancer patients in Egypt is gB-5 in contrast to earlier research. IgG was detected in all patients. This indicates that HCMV is endemic in Egypt, necessitating the development of public awareness campaigns about HCMV infection and preventive strategies.
Collapse
|
3
|
Cytomegalovirus Glycoprotein Polymorphisms and Increasing Viral Load in Non-Transplant Patients with Hematological Malignancies Undergoing Chemotherapy: A Prospective Observational Study. Infect Dis Ther 2021; 10:1549-1566. [PMID: 34148225 PMCID: PMC8322362 DOI: 10.1007/s40121-021-00457-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2021] [Accepted: 05/10/2021] [Indexed: 12/04/2022] Open
Abstract
Introduction Cytomegalovirus (CMV) predisposes to several clinical complications and is a major cause of morbidity and mortality in immunocompromised patients, including patients with hematological malignancies (HM). The present study was carried out to determine the distribution of CMV glycoprotein B, N, and O (gB, gN, and gO) genotypes and their potential effect on its viral load and on clinical outcomes in a cohort of Tunisian non-hematopoietic stem cell transplant (HSCT) patients with HM undergoing chemotherapy. Methods CMV viral load was evaluated by real-time quantitative PCR. The gB, gN, and gO genotypes of the CMV strains were analyzed by multiplex nested PCR and sequencing. Results This prospective study involved 60 clinical isolates obtained from 60 non-HSCT patients with HM undergoing chemotherapy. Mixed CMV gB, gN, and gO genotypes were the predominant glycoprotein genotypes in 31%, 41.4%, and 46.4% of patients, respectively. Mixed gB genotypes were associated with higher initial levels of CMV load (p = 0.001), increased rate of fever (0.025), and co-infection with other herpesviruses (HHVs) (p = 0.024) more frequently than in single gB genotype. Mixed gN genotypes were more associated with severe lymphopenia (ALC < 500/µL) (p = 0.01) and increased risk of death (p = 0.042) than single gN genotype. Single gO2b genotype had also a more unfavorable outcome (p = 0.009) than the other single gO genotype. Mixed gO genotypes were associated with female gender (p = 0.015), acute leukemia disease (p = 0.036), initial high level of CMV viral load (at least 1000 copies/mL) (p = 0.029), skin rash (p = 0.01) more frequently than in single gO genotype. The gO1a/gN3b linkage was associated with an increased initial viral load (p = 0.012). Conclusion Infection with mixed CMV genotypes was common and multiple gB, gN, and gO genotypes were associated with clinical manifestation and higher viral load. Supplementary Information The online version contains supplementary material available at 10.1007/s40121-021-00457-z.
Collapse
|
4
|
Wang HY, Valencia SM, Pfeifer SP, Jensen JD, Kowalik TF, Permar SR. Common Polymorphisms in the Glycoproteins of Human Cytomegalovirus and Associated Strain-Specific Immunity. Viruses 2021; 13:v13061106. [PMID: 34207868 PMCID: PMC8227702 DOI: 10.3390/v13061106] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Revised: 06/04/2021] [Accepted: 06/07/2021] [Indexed: 12/18/2022] Open
Abstract
Human cytomegalovirus (HCMV), one of the most prevalent viruses across the globe, is a common cause of morbidity and mortality for immunocompromised individuals. Recent clinical observations have demonstrated that mixed strain infections are common and may lead to more severe disease progression. This clinical observation illustrates the complexity of the HCMV genome and emphasizes the importance of taking a population-level view of genotypic evolution. Here we review frequently sampled polymorphisms in the glycoproteins of HCMV, comparing the variable regions, and summarizing their corresponding geographic distributions observed to date. The related strain-specific immunity, including neutralization activity and antigen-specific cellular immunity, is also discussed. Given that these glycoproteins are common targets for vaccine design and anti-viral therapies, this observed genetic variation represents an important resource for future efforts to combat HCMV infections.
Collapse
Affiliation(s)
- Hsuan-Yuan Wang
- Department of Pediatrics, Weill Cornell Medicine, New York, NY 10065, USA;
- Duke Human Vaccine Institute, Duke University Medical Center, Durham, NC 27710, USA;
| | - Sarah M. Valencia
- Duke Human Vaccine Institute, Duke University Medical Center, Durham, NC 27710, USA;
| | - Susanne P. Pfeifer
- Center for Evolution & Medicine, School of Life Sciences, Arizona State University, Tempe, AZ 85281, USA; (S.P.P.); (J.D.J.)
| | - Jeffrey D. Jensen
- Center for Evolution & Medicine, School of Life Sciences, Arizona State University, Tempe, AZ 85281, USA; (S.P.P.); (J.D.J.)
| | - Timothy F. Kowalik
- Department of Microbiology and Physiological Systems, University of Massachusetts Medical School, Worcester, MA 01655, USA;
| | - Sallie R. Permar
- Department of Pediatrics, Weill Cornell Medicine, New York, NY 10065, USA;
- Correspondence: ; Tel.: +1-212-746-4111
| |
Collapse
|
5
|
Goodwin ML, Webster HS, Wang HY, Jenks JA, Nelson CS, Tu JJ, Mangold JF, Valencia S, Pollara J, Edwards W, McLellan JS, Wrapp D, Fu TM, Zhang N, Freed DC, Wang D, An Z, Permar SR. Specificity and effector functions of non-neutralizing gB-specific monoclonal antibodies isolated from healthy individuals with human cytomegalovirus infection. Virology 2020; 548:182-191. [PMID: 32838941 PMCID: PMC7447913 DOI: 10.1016/j.virol.2020.07.009] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Revised: 07/07/2020] [Accepted: 07/10/2020] [Indexed: 01/23/2023]
Abstract
Human cytomegalovirus (HCMV) is the most common congenital infection. A glycoprotein B (gB) subunit vaccine (gB/MF59) is the most efficacious clinically tested to date, having achieved 50% protection against primary infection of HCMV-seronegative women. We previously identified that gB/MF59 vaccination primarily elicits non-neutralizing antibody responses, with variable binding to gB genotypes, and protection associated with binding to membrane-associated gB. We hypothesized that gB-specific non-neutralizing antibody binding breadth and function are dependent on epitope and genotype specificity, and ability to interact with membrane-associated gB. We mapped twenty-four gB-specific monoclonal antibodies (mAbs) from naturally HCMV-infected individuals for gB domain specificity, genotype preference, and ability to mediate phagocytosis or NK cell activation. gB-specific mAbs were primarily specific for Domain II and demonstrated variable binding to gB genotypes. Two mAbs facilitated phagocytosis with binding specificities of Domain II and AD2. This investigation provides novel understanding on the relationship between gB domain specificity and antigenic variability on gB-specific antibody effector functions.
Collapse
Affiliation(s)
- Matthew L Goodwin
- Duke Human Vaccine Institute, Duke University Medical Center, Durham, NC, USA
| | - Helen S Webster
- Duke Human Vaccine Institute, Duke University Medical Center, Durham, NC, USA
| | - Hsuan-Yuan Wang
- Duke Human Vaccine Institute, Duke University Medical Center, Durham, NC, USA
| | - Jennifer A Jenks
- Duke Human Vaccine Institute, Duke University Medical Center, Durham, NC, USA
| | - Cody S Nelson
- Duke Human Vaccine Institute, Duke University Medical Center, Durham, NC, USA
| | - Joshua J Tu
- Duke Human Vaccine Institute, Duke University Medical Center, Durham, NC, USA
| | - Jesse F Mangold
- Duke Human Vaccine Institute, Duke University Medical Center, Durham, NC, USA
| | - Sarah Valencia
- Duke Human Vaccine Institute, Duke University Medical Center, Durham, NC, USA
| | - Justin Pollara
- Duke Human Vaccine Institute, Duke University Medical Center, Durham, NC, USA
| | - Whitney Edwards
- Duke Human Vaccine Institute, Duke University Medical Center, Durham, NC, USA
| | - Jason S McLellan
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX, USA
| | - Daniel Wrapp
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX, USA
| | - Tong-Ming Fu
- Merck & Co., Inc., Kenilworth, NJ, USA; Texas Therapeutics Institute, Brown Foundation Institute of Molecular Medicine, The University of Texas Health Science Center, Houston, USA
| | - Ningyan Zhang
- Texas Therapeutics Institute, Brown Foundation Institute of Molecular Medicine, The University of Texas Health Science Center, Houston, USA
| | | | - Dai Wang
- Merck & Co., Inc., Kenilworth, NJ, USA
| | - Zhiqiang An
- Texas Therapeutics Institute, Brown Foundation Institute of Molecular Medicine, The University of Texas Health Science Center, Houston, USA
| | - Sallie R Permar
- Duke Human Vaccine Institute, Duke University Medical Center, Durham, NC, USA.
| |
Collapse
|
6
|
Hasing ME, Pang XL, Mabilangan C, Preiksaitis JK. Donor Cytomegalovirus Transmission Patterns in Solid Organ Transplant Recipients With Primary Infection. J Infect Dis 2020; 223:827-837. [PMID: 32706857 DOI: 10.1093/infdis/jiaa450] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Accepted: 07/19/2020] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND The epidemiology of single versus multiple cytomegalovirus (CMV) strain transmission from donor (D+) to seronegative solid organ transplant (SOT) recipients (R-) is uncertain, as is whether "relapsing" recipient infection represents changing strain predominance when multiple strains are transmitted. Here we characterized CMV strain transmission patterns in D+/R- SOT recipients. METHODS We studied pairs or groups of D+/R- SOT recipients who received organs from a common donor (group A) and recipients who experienced ≥2 waves of CMV DNAemia (group B). CMV in plasma was characterized by genotype-specific real-time PCR for genes gB and gH. RESULTS Single concordant genotypes were identified in 12 of 18 recipient pairs/group sharing a common donor (group A); at least 6 of 18 (33%) donors transmitted > 1 strain. A single CMV strain was detected in 14 of 15 recipients in group B; only 1 recipient had coinfection. A shift in CMV strain predominance occurred after the first posttransplant year in at least 4 recipients with coinfection. CONCLUSIONS Using a common donor approach, we confirmed that multiple CMV strain transmission from donors to R- SOT recipients is not uncommon. D+/R- SOT recipients with CMV coinfection can undergo changes in strain predominance in late waves of CMV DNAemia.
Collapse
Affiliation(s)
- Maria E Hasing
- Department of Laboratory Medicine and Pathology, University of Alberta, Edmonton, Canada
| | - Xiaoli L Pang
- Department of Laboratory Medicine and Pathology, University of Alberta, Edmonton, Canada.,Provincial Laboratory of Public Health, Edmonton, Canada
| | | | | |
Collapse
|
7
|
Brait N, Stögerer T, Kalser J, Adler B, Kunz I, Benesch M, Kropff B, Mach M, Puchhammer-Stöckl E, Görzer I. Influence of Human Cytomegalovirus Glycoprotein O Polymorphism on the Inhibitory Effect of Soluble Forms of Trimer- and Pentamer-Specific Entry Receptors. J Virol 2020; 94:e00107-20. [PMID: 32350071 PMCID: PMC7343208 DOI: 10.1128/jvi.00107-20] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Accepted: 04/21/2020] [Indexed: 01/24/2023] Open
Abstract
Human cytomegalovirus (HCMV) envelope glycoprotein complexes, gH/gL/gO trimer and gH/gL/UL128-131 pentamer, are important for cell-free HCMV entry. While soluble NRP2-Fc (sNRP2-Fc) interferes with epithelial/endothelial cell entry through UL128, soluble platelet-derived growth factor receptor α-Fc (sPDGFRα-Fc) interacts with gO, thereby inhibiting infection of all cell types. Since gO is the most variable subunit, we investigated the influence of gO polymorphism on the inhibitory capacities of sPDGFRα-Fc and sNRP2-Fc. Accordingly, gO genotype 1c (GT1c) sequence was fully or partially replaced by gO GT2b, GT3, and GT5 sequences in the bacterial artificial chromosome (BAC) TB40-BAC4-luc background (where luc is luciferase). All mutants were tested for fibroblast and epithelial cell infectivity, for virion content of gB, gH, and gO, and for infection inhibition by sPDGFRα-Fc and sNRP2-Fc. Full-length and partial gO GT swapping may increase epithelial-to-fibroblast ratios due to subtle alterations in fibroblast and/or epithelial infectivity but without substantial changes in gB and gH levels in mutant virions. All gO GT mutants except recombinant gO GT1c/3 displayed a nearly complete inhibition at 1.25 μg/ml sPDGFRα-Fc on epithelial cells (98% versus 91%), and all experienced complete inhibition on fibroblasts (≥99%). While gO GT replacement did not influence sNRP2-Fc inhibition at 1.25 μg/ml on epithelial cells (97% to 99%), it rendered recombinant mutant GT1c/3 moderately accessible to fibroblast inhibition (40%). In contrast to the steep sPDGFRα-Fc inhibition curves (slope of >1.0), sNRP2-Fc dose-response curves on epithelial cells displayed slopes of ∼1.0, suggesting functional differences between these entry inhibitors. Our findings demonstrate that artificially generated gO recombinants rather than the major gO genotypic forms may affect the inhibitory capacities of sPDGFRα and sNRP2 in a cell type-dependent manner.IMPORTANCE Human cytomegalovirus (HCMV) is known for its broad cell tropism, as reflected by the different organs and tissues affected by HCMV infection. Hence, inhibition of HCMV entry into distinct cell types could be considered a promising therapeutic option to limit cell-free HCMV infection. Soluble forms of cellular entry receptor PDGFRα rather than those of entry receptor neuropilin-2 inhibit infection of multiple cell types. sPDGFRα specifically interacts with gO of the trimeric gH/gL/gO envelope glycoprotein complex. HCMV strains may differ with respect to the amounts of trimer in virions and the highly polymorphic gO sequence. In this study, we show that the major gO genotypes of HCMV that are also found in vivo are similarly well inhibited by sPDGFRα. Novel gO genotypic forms potentially emerging through recombination, however, may evade sPDGFRα inhibition on epithelial cells. These findings provide useful additional information for the future development of anti-HCMV therapeutic compounds based on sPDGFRα.
Collapse
Affiliation(s)
- Nadja Brait
- Center for Virology, Medical University of Vienna, Vienna, Austria
| | - Tanja Stögerer
- Center for Virology, Medical University of Vienna, Vienna, Austria
| | - Julia Kalser
- Center for Virology, Medical University of Vienna, Vienna, Austria
| | - Barbara Adler
- Max von Pettenkofer Institute for Virology, Ludwig Maximilians University Munich, Munich, Germany
| | - Ines Kunz
- Center for Virology, Medical University of Vienna, Vienna, Austria
| | - Max Benesch
- Center for Virology, Medical University of Vienna, Vienna, Austria
| | - Barbara Kropff
- Virologisches Institut, Klinische und Molekulare Virologie, Friedrich Alexander Universität Erlangen Nürnberg, Erlangen, Germany
| | - Michael Mach
- Virologisches Institut, Klinische und Molekulare Virologie, Friedrich Alexander Universität Erlangen Nürnberg, Erlangen, Germany
| | | | - Irene Görzer
- Center for Virology, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
8
|
Ross SA, Pati P, Jensen TL, Goll JB, Gelber CE, Singh A, McNeal M, Boppana SB, Bernstein DI. Cytomegalovirus Genetic Diversity Following Primary Infection. J Infect Dis 2020; 221:715-720. [PMID: 31593588 PMCID: PMC7026889 DOI: 10.1093/infdis/jiz507] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Accepted: 10/03/2019] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Infection with multiple cytomegalovirus (CMV) strains (mixed infection) was reported in a variety of hosts. As the virus genetic diversity in primary CMV infection and the changes over time remain incompletely defined, we examined CMV diversity and changes in diversity over time in healthy adolescent females who participated in a phase 2 CMV gB/MF59 vaccine trial. METHODS CMV genetic diversity was determined by genotyping of 5 genes-gB (UL55), gH (UL75), gN (UL73), US28, and UL144-in urine, saliva, and plasma samples from 15 study subjects. RESULTS At the time of primary infection, 5 of 12 (42%) urine samples had multiple virus strains, and 50% of vaccine recipients were infected with gB1 genotype (vaccine strain). Mixed infection was documented in all 15 subjects within 3 months after primary infection, and the majority had different CMV genotypes in different compartments. Changes in genotypes over time were observed in all subjects. CONCLUSIONS Infection with multiple CMV genotypes was common during primary infection and further diversification occurred over time. Infection with gB1 genotype in vaccine recipients suggests a lack of strain-specific protection from the vaccine. As only 5 polymorphic genes were assessed, this study likely underestimated the true genetic diversity in primary CMV infection.
Collapse
Affiliation(s)
- Shannon A Ross
- Department of Pediatrics, University of Alabama at Birmingham, Birmingham, Alabama, USA
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Pravasini Pati
- Department of Pediatrics, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | | | | | | | - Amy Singh
- Cincinnati Children’s Hospital Medical Center, University of Cincinnati, Cincinnati, Ohio, USA
| | - Monica McNeal
- Cincinnati Children’s Hospital Medical Center, University of Cincinnati, Cincinnati, Ohio, USA
| | - Suresh B Boppana
- Department of Pediatrics, University of Alabama at Birmingham, Birmingham, Alabama, USA
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - David I Bernstein
- Cincinnati Children’s Hospital Medical Center, University of Cincinnati, Cincinnati, Ohio, USA
| |
Collapse
|
9
|
Abdelaziz MO, Ossmann S, Kaufmann AM, Leitner J, Steinberger P, Willimsky G, Raftery MJ, Schönrich G. Development of a Human Cytomegalovirus (HCMV)-Based Therapeutic Cancer Vaccine Uncovers a Previously Unsuspected Viral Block of MHC Class I Antigen Presentation. Front Immunol 2019; 10:1776. [PMID: 31417555 PMCID: PMC6682651 DOI: 10.3389/fimmu.2019.01776] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Accepted: 07/15/2019] [Indexed: 12/12/2022] Open
Abstract
Human cytomegalovirus (HCMV) induces a uniquely high frequency of virus-specific effector/memory CD8+ T-cells, a phenomenon termed “memory inflation”. Thus, HCMV-based vaccines are particularly interesting in order to stimulate a sustained and strong cellular immune response against cancer. Glioblastoma multiforme (GBM) is the most aggressive primary brain tumor with high lethality and inevitable relapse. The current standard treatment does not significantly improve the desperate situation underlining the urgent need to develop novel approaches. Although HCMV is highly fastidious with regard to species and cell type, GBM cell lines are susceptible to HCMV. In order to generate HCMV-based therapeutic vaccine candidates, we deleted all HCMV-encoded proteins (immunoevasins) that interfere with MHC class I presentation. The aim being to use the viral vector as an adjuvant for presentation of endogenous tumor antigens, the presentation of high levels of vector-encoded neoantigens and finally the repurposing of bystander HCMV-specific CD8+ T cells to fight the tumor. As neoantigen, we exemplarily used the E6 and E7 proteins of human papillomavirus type 16 (HPV-16) as a non-transforming fusion protein (E6/E7) that covers all relevant antigenic peptides. Surprisingly, GBM cells infected with E6/E7-expressing HCMV-vectors failed to stimulate E6-specific T cells despite high level expression of E6/E7 protein. Further experiments revealed that MHC class I presentation of E6/E7 is impaired by the HCMV-vector although it lacks all known immunoevasins. We also generated HCMV-based vectors that express E6-derived peptide fused to HCMV proteins. GBM cells infected with these vectors efficiently stimulated E6-specific T cells. Thus, fusion of antigenic sequences to HCMV proteins is required for efficient presentation via MHC class I molecules during infection. Taken together, these results provide the preclinical basis for development of HCMV-based vaccines and also reveal a novel HCMV-encoded block of MHC class I presentation.
Collapse
Affiliation(s)
- Mohammed O Abdelaziz
- Institute of Virology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Sophia Ossmann
- Clinic for Gynecology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health, Berlin, Germany
| | - Andreas M Kaufmann
- Clinic for Gynecology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health, Berlin, Germany
| | - Judith Leitner
- Division of Immune Receptors and T Cell Activation, Institute of Immunology, Medical University of Vienna, Vienna, Austria
| | - Peter Steinberger
- Division of Immune Receptors and T Cell Activation, Institute of Immunology, Medical University of Vienna, Vienna, Austria
| | - Gerald Willimsky
- Institute of Immunology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health, Berlin, Germany.,German Cancer Research Center, Heidelberg, Germany.,German Cancer Consortium, Partner Site Berlin, Berlin, Germany
| | - Martin J Raftery
- Institute of Virology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Günther Schönrich
- Institute of Virology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| |
Collapse
|
10
|
Picarda G, Benedict CA. Cytomegalovirus: Shape-Shifting the Immune System. THE JOURNAL OF IMMUNOLOGY 2019; 200:3881-3889. [PMID: 29866770 DOI: 10.4049/jimmunol.1800171] [Citation(s) in RCA: 93] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Accepted: 03/26/2018] [Indexed: 11/19/2022]
Abstract
Systems-based based approaches have begun to shed light on extrinsic factors that contribute to immune system variation. Among these, CMV (HHV-5, a β-herpesvirus) imposes a surprisingly profound impact. Most of the world's population is CMV+, and the virus goes through three distinct infection phases en route to establishing lifelong détente with its host. Immune control of CMV in each phase recruits unique arms of host defense, and in turn the virus employs multiple immune-modulatory strategies that help facilitate the establishment of lifelong persistence. In this review, we explain how CMV shapes immunity and discuss the impact it may have on overall health.
Collapse
Affiliation(s)
- Gaëlle Picarda
- Division of Immune Regulation, La Jolla Institute for Allergy and Immunology, La Jolla, CA 92037; and
| | - Chris A Benedict
- Division of Immune Regulation, La Jolla Institute for Allergy and Immunology, La Jolla, CA 92037; and .,Center for Infectious Disease, La Jolla Institute for Allergy and Immunology, La Jolla, CA 92037
| |
Collapse
|
11
|
Beyranvand Nejad E, Ratts RB, Panagioti E, Meyer C, Oduro JD, Cicin-Sain L, Früh K, van der Burg SH, Arens R. Demarcated thresholds of tumor-specific CD8 T cells elicited by MCMV-based vaccine vectors provide robust correlates of protection. J Immunother Cancer 2019; 7:25. [PMID: 30704520 PMCID: PMC6357411 DOI: 10.1186/s40425-019-0500-9] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Accepted: 01/08/2019] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND The capacity of cytomegalovirus (CMV) to elicit long-lasting strong T cell responses, and the ability to engineer the genome of this DNA virus positions CMV-based vaccine vectors highly suitable as a cancer vaccine platform. Defined immune thresholds for tumor protection and the factors affecting such thresholds have not well been investigated in cancer immunotherapy. We here determined using CMV as a vaccine platform whether critical thresholds of vaccine-specific T cell responses can be established that relate to tumor protection, and which factors control such thresholds. METHODS We generated CMV-based vaccine vectors expressing the E7 epitope and tested these in preclinical models of HPV16-induced cancer. Vaccination was applied via different doses and routes (intraperitoneal (IP), subcutaneous (SC) and intranasal (IN)). The magnitude, kinetics and phenotype of the circulating tumor-specific CD8+ T cell response were determined. Mice were subsequently challenged with tumor cells, and the tumor protection was monitored. RESULTS Immunization with CMV-based vaccines via the IP or SC route eliciting vaccine-induced CD8+ T cell responses of > 0.3% of the total circulating CD8 T cell population fully protects mice against lethal tumor challenge. However, low dose inoculations via the IP or SC route or IN vaccination elicited vaccine-induced CD8+ T cell responses that did not reach protective thresholds for tumor protection. In addition, whereas weak pre-existing immunity did not alter the protective thresholds of the vaccine-specific T cell response following subsequent immunization with CMV-based vaccine vectors, strong pre-existing immunity inhibited the development of vaccine-induced T cells and their control on tumor progression. CONCLUSIONS This study highlight the effectiveness of CMV-based vaccine vectors, and shows that demarcated thresholds of vaccine-specific T cells could be defined that correlate to tumor protection. Together, these results may hold importance for cancer vaccine development to achieve high efficacy in vaccine recipients.
Collapse
Affiliation(s)
- Elham Beyranvand Nejad
- Department of Immunohematology and Blood Transfusion, Leiden University Medical Center, Albinusdreef 2, 2333, ZA, Leiden, The Netherlands.,Department of Medical Oncology, Leiden University Medical Center, Leiden, The Netherlands
| | | | - Eleni Panagioti
- Department of Immunohematology and Blood Transfusion, Leiden University Medical Center, Albinusdreef 2, 2333, ZA, Leiden, The Netherlands.,Department of Medical Oncology, Leiden University Medical Center, Leiden, The Netherlands
| | | | - Jennifer D Oduro
- Department of Vaccinology and Applied Microbiology, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Luka Cicin-Sain
- Department of Vaccinology and Applied Microbiology, Helmholtz Centre for Infection Research, Braunschweig, Germany.,Institute for Virology, Hannover Medical School, Hannover, Germany.,German Centre for Infection Research (DZIF), Partner site, Hannover/Braunschweig, Germany
| | | | - Sjoerd H van der Burg
- Department of Medical Oncology, Leiden University Medical Center, Leiden, The Netherlands
| | - Ramon Arens
- Department of Immunohematology and Blood Transfusion, Leiden University Medical Center, Albinusdreef 2, 2333, ZA, Leiden, The Netherlands.
| |
Collapse
|
12
|
Barrado L, Prieto C, Hernando S, Folgueira L. Detection of glycoproteins B and H genotypes to predict the development of Cytomegalovirus disease in solid organ transplant recipients. J Clin Virol 2018; 109:50-56. [PMID: 30500488 DOI: 10.1016/j.jcv.2018.11.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Revised: 11/05/2018] [Accepted: 11/10/2018] [Indexed: 10/27/2022]
Abstract
BACKGROUND Our study focuses on the role that human Cytomegalovirus (CMV) genotypes play in the development of disease. OBJECTIVES (1) To analyze the frequency of various genotype envelope proteins (gB, gH) in a group of solid organ transplant (SOT) recipients; (2) to assess their correlation with CMV disease; (3) to study the association between any of the genotypes and viral loads. STUDY DESIGN A retrospective observational study conducted by analyzing CMV gB and gH genotypes detected with real-time polymerase chain reaction (PCR)-specific assays in 162 CMV-positive blood samples from 62 SOT recipients. Demographic, clinical, and microbiological data were recorded. RESULTS Mixed gB genotypes were associated with viral syndrome (70%, p = .004), earlier presentation of symptoms (48.27 ± 27.03 versus 74.33 ± 47.25 days, respectively, p = .001), and higher median of the plasma viral load log10 (UI/ml) than infection with a single genotype (p = .004). Furthermore, the gB3 genotype was detected more frequently in patients who presented with asymptomatic viremia (77.27%, p < .0001). The gH1 genotype was more frequent (65%) in patients who presented with asymptomatic viremia (p = .003), and it caused infection later than gH2 or the mixed genotype (84.88 ± 48.10 versus 57.91 ± 39.18 days, respectively, p < .001). CONCLUSIONS Patients who presented mixed gB genotypes more frequently developed clinical manifestations and earlier, higher, plasma viral loads. The detection of gB and gH genotypes by real-time PCR can provide relevant information to stratify the risk of SOT recipients to develop symptomatic infection by CMV.
Collapse
Affiliation(s)
- Laura Barrado
- Virology Laboratory, Clinical Microbiology Department, University Hospital 12 de Octubre, Avda. de Córdoba s/n, 28041 Madrid, Spain.
| | - Columbiana Prieto
- Virology Laboratory, Clinical Microbiology Department, University Hospital 12 de Octubre, Avda. de Córdoba s/n, 28041 Madrid, Spain
| | - Susana Hernando
- Virology Laboratory, Clinical Microbiology Department, University Hospital 12 de Octubre, Avda. de Córdoba s/n, 28041 Madrid, Spain
| | - Lola Folgueira
- Virology Laboratory, Clinical Microbiology Department, University Hospital 12 de Octubre, Avda. de Córdoba s/n, 28041 Madrid, Spain; Biomedical Research Institute i+12, University Hospital 12 de Octubre, Avda. de Córdoba, s/n, 28041 Madrid, Spain; Department of Medicine, School of Medicine, Complutense University, Pl. Ramón y Cajal, s/n, 28040 Madrid, Spain
| |
Collapse
|
13
|
Study the Impact of Cytomegalovirus (CMV) Infection and the Risk Factor for Liver Dysfunction in Saudi Patients. JOURNAL OF PURE AND APPLIED MICROBIOLOGY 2018. [DOI: 10.22207/jpam.12.3.27] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
14
|
Nahar S, Hokama A, Iraha A, Ohira T, Kinjo T, Hirata T, Kinjo T, Parrott GL, Fujita J. Distribution of cytomegalovirus genotypes among ulcerative colitis patients in Okinawa, Japan. Intest Res 2018; 16:90-98. [PMID: 29422803 PMCID: PMC5797277 DOI: 10.5217/ir.2018.16.1.90] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/09/2017] [Revised: 05/27/2017] [Accepted: 06/01/2017] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND/AIMS To determine the prevalence of glycoprotein B (gB), glycoprotein N (gN), and glycoprotein H (gH) genotypes of human cytomegalovirus (HCMV) superimposed on ulcerative colitis (UC) patients in Japan. METHODS Four archived stool samples and 7-archived extracted DNA from stool samples of 11 UC patients with positive multiplex polymerase chain reaction (PCR) results for HCMV were used UL55 gene encoding gB, UL73 gene encoding gN, and UL75 gene encoding gH were identified by PCR. Genotypes of gB and glycoprotein N were determined by sequencing. RESULTS Among 11 samples, 8 samples were amplified through PCR. gB, gN, and gH genotypes were successfully detected in 3 of 8 (37.5%), 4 of 8 (50%), and 8 of 8 (100%), respectively. The distribution of gB and gN genotypes analyzed through phylogenetic analysis were as follows: gB1 (2/3, 66.7%), gB3 (1/3, 33.3%), gN3a (2/4, 50%), and gN3b (2/4, 50%). Other gB genotypes (gB2 and gB4) and gN genotypes (gN1, gN2, and gN4) were not detected in this study. Out of successfully amplified 8 samples of gH genotype, gH1 and gH2 were distributed in 12.5% and 75% samples, respectively. Only 1 sample revealed mixed infection of gH genotype. The distribution of gH1 and gH2 differed significantly (1:6, P<0.05) in UC patients. The distribution of single gH genotype also revealed significant difference in UC patients who were treated with immunosuppressive drug (P<0.05). CONCLUSIONS In this study, gB1, gN3, and gH2 gene were determined as the most frequently observed genotypes in UC patients, which suggest that there might be an association between these genotypes of HCMV and UC.
Collapse
Affiliation(s)
- Saifun Nahar
- Department of Infectious, Respiratory, and Digestive Medicine, Graduate School of Medicine, University of the Ryukyus, Okinawa, Japan
| | - Akira Hokama
- Department of Endoscopy, Graduate School of Medicine, University of the Ryukyus, Okinawa, Japan
| | - Atsushi Iraha
- Department of Endoscopy, Graduate School of Medicine, University of the Ryukyus, Okinawa, Japan
| | - Tetsuya Ohira
- Department of Endoscopy, Graduate School of Medicine, University of the Ryukyus, Okinawa, Japan
| | - Tetsu Kinjo
- Department of Endoscopy, Graduate School of Medicine, University of the Ryukyus, Okinawa, Japan
| | - Tetsuo Hirata
- Department of Infectious, Respiratory, and Digestive Medicine, Graduate School of Medicine, University of the Ryukyus, Okinawa, Japan
| | - Takeshi Kinjo
- Department of Infectious, Respiratory, and Digestive Medicine, Graduate School of Medicine, University of the Ryukyus, Okinawa, Japan
| | - Gretchen L. Parrott
- Department of Infectious, Respiratory, and Digestive Medicine, Graduate School of Medicine, University of the Ryukyus, Okinawa, Japan
| | - Jiro Fujita
- Department of Infectious, Respiratory, and Digestive Medicine, Graduate School of Medicine, University of the Ryukyus, Okinawa, Japan
| |
Collapse
|
15
|
Pontejo SM, Murphy PM. Chemokines encoded by herpesviruses. J Leukoc Biol 2017; 102:1199-1217. [PMID: 28848041 DOI: 10.1189/jlb.4ru0417-145rr] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2017] [Revised: 07/25/2017] [Accepted: 07/26/2017] [Indexed: 12/15/2022] Open
Abstract
Viruses use diverse strategies to elude the immune system, including copying and repurposing host cytokine and cytokine receptor genes. For herpesviruses, the chemokine system of chemotactic cytokines and receptors is a common source of copied genes. Here, we review the current state of knowledge about herpesvirus-encoded chemokines and discuss their possible roles in viral pathogenesis, as well as their clinical potential as novel anti-inflammatory agents or targets for new antiviral strategies.
Collapse
Affiliation(s)
- Sergio M Pontejo
- Laboratory of Molecular Immunology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Philip M Murphy
- Laboratory of Molecular Immunology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| |
Collapse
|
16
|
Stangherlin LM, de Paula FN, Icimoto MY, Ruiz LGP, Nogueira ML, Braz ASK, Juliano L, da Silva MCC. Positively Selected Sites at HCMV gB Furin Processing Region and Their Effects in Cleavage Efficiency. Front Microbiol 2017; 8:934. [PMID: 28588572 PMCID: PMC5441137 DOI: 10.3389/fmicb.2017.00934] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2017] [Accepted: 05/08/2017] [Indexed: 12/16/2022] Open
Abstract
Human cytomegalovirus is a ubiquitous infectious agent that affects mainly immunosuppressed, fetuses, and newborns. The virus has several polymorphic regions, in particular in the envelope glycoproteins. The UL55 gene encodes the glycoprotein B that has a variable region, containing a furin cleavage site and according to the variability different genotypes are characterized. Here we investigated variability and existence of selective pressure on the UL55 variable region containing the furin cleavage site in 213 clinical sequences from patients worldwide. We showed the occurrence of positive selective pressure on gB codons 461 and 462, near the furin cleavage site. Cleavage analysis of synthesized peptides demonstrated that most mutations confer better cleavage by furin, suggesting that evolution is acting in order to increase the efficiency cleavage and supporting the hypothesis that gB processing is important in the host. We also demonstrated that peptides containing sequences, that characterize genotypes gB2 and 3, are differentially cleaved by furin. Our data demonstrate for the first time that variability in the cleavage site is related to degree of gB processing by furin.
Collapse
Affiliation(s)
- Lucas M Stangherlin
- Center for Natural Sciences and Humanities, Federal University of ABCSanto André, Brazil
| | - Felipe N de Paula
- Center for Natural Sciences and Humanities, Federal University of ABCSanto André, Brazil.,Pasteur InstituteSão Paulo, Brazil
| | - Marcelo Y Icimoto
- Department of Biophysics, Paulista Medical School, Federal University of São PauloSão Paulo, Brazil
| | - Leonardo G P Ruiz
- Medical School of São José do Rio PretoSão José do Rio Preto, Brazil
| | | | - Antônio S K Braz
- Center for Natural Sciences and Humanities, Federal University of ABCSanto André, Brazil
| | - Luiz Juliano
- Department of Biophysics, Paulista Medical School, Federal University of São PauloSão Paulo, Brazil
| | - Maria C C da Silva
- Center for Natural Sciences and Humanities, Federal University of ABCSanto André, Brazil
| |
Collapse
|
17
|
Cytomegalovirus Reinfections Stimulate CD8 T-Memory Inflation. PLoS One 2016; 11:e0167097. [PMID: 27870919 PMCID: PMC5117776 DOI: 10.1371/journal.pone.0167097] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2016] [Accepted: 11/08/2016] [Indexed: 12/26/2022] Open
Abstract
Cytomegalovirus (CMV) has been shown to induce large populations of CD8 T-effector memory cells that unlike central memory persist in large quantities following infection, a phenomenon commonly termed “memory inflation”. Although murine models to date have shown very large and persistent CMV-specific T-cell expansions following infection, there is considerable variability in CMV-specific T-memory responses in humans. Historically such memory inflation in humans has been assumed a consequence of reactivation events during the life of the host. Because basic information about CMV infection/re-infection and reactivation in immune competent humans is not available, we used a murine model to test how primary infection, reinfection, and reactivation stimuli influence memory inflation. We show that low titer infections induce “partial” memory inflation of both mCMV specific CD8 T-cells and antibody. We show further that reinfection with different strains can boost partial memory inflation. Finally, we show preliminary results suggesting that a single strong reactivation stimulus does not stimulate memory inflation. Altogether, our results suggest that while high titer primary infections can induce memory inflation, reinfections during the life of a host may be more important than previously appreciated.
Collapse
|
18
|
Kumar A, Herbein G. Epigenetic regulation of human cytomegalovirus latency: an update. Epigenomics 2015; 6:533-46. [PMID: 25431945 DOI: 10.2217/epi.14.41] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Human cytomegalovirus (HCMV) is a ubiquitous virus which infects 50-90% of the population worldwide. In immunocompetent hosts, HCMV either remains unnoticed or causes mild symptoms. Upon primary infection it establishes latent infection in a few cells. However, in certain situations where immunity is either immature or compromised, HCMV may reactivate and cause mortality and morbidity. Therefore, it is utmost important to understand how HCMV establishes latent infection and associated mechanisms responsible for its reactivation. Several mechanisms are involved in the regulation of latency including chromatin remodeling by an array of enzymes and microRNAs. Here we will describe the epigenetic regulation of HCMV latency. Further we will discuss the unique HCMV latency signature and patho-physiological relevance of latent HCMV infection.
Collapse
Affiliation(s)
- Amit Kumar
- Department of Virology, University of Franche-Comte, CHRU Besançon, UPRES EA4266 Pathogens & Inflammation Department, SFR FED 4234, F-25030 Besançon, France
| | | |
Collapse
|
19
|
Gonzalez-Sanchez HM, Alvarado-Hernandez DL, Guerra-Palomares S, Garcia-Sepulveda CA, Noyola DE. Cytomegalovirus glycoprotein B genotypes in Mexican children and women. Intervirology 2015; 58:115-21. [PMID: 25833320 DOI: 10.1159/000373922] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2014] [Accepted: 01/07/2015] [Indexed: 11/19/2022] Open
Abstract
OBJECTIVE Cytomegalovirus (CMV) is widely distributed and constitutes the main cause of congenital infections worldwide. CMV transmission during pregnancy represents one of the major impacts of this virus on public health. This study aimed at assessing glycoprotein B (gB) CMV genotypes in Mexican children and pregnant women, since there is limited information regarding CMV genomic diversity in Mexico. METHODS We analyzed CMV strains detected in Mexican children (n = 38) and women (n = 38) between 2001 and 2012. A fragment of the gB gene was amplified and sequenced, and genotypes were defined based on prototype sequences. RESULTS The gB1 genotype was detected more frequently in children (68.4%) compared to women (31.6%; p = 0.0028), while genotype 2 was more common in women (65.8%) compared to children (26.3%, p = 0.0012). Genotype 3 was uncommon in both groups (5.3 and 2.6%). Nucleotide sequences exhibited a high degree of similarity to prototype strains. However, we identified 17 distinct sequences that resulted in changes in the encoded amino acid sequence in four strains. CONCLUSIONS gB1 and gB2 are the most common strains associated with CMV infection in Mexican children and women. In addition, we found that the frequency for each genotype differed amongst them, possibly due to variability in transmission or reactivation dynamics.
Collapse
|
20
|
McCormick AL, Mocarski ES. The immunological underpinnings of vaccinations to prevent cytomegalovirus disease. Cell Mol Immunol 2014; 12:170-9. [PMID: 25544503 DOI: 10.1038/cmi.2014.120] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2014] [Accepted: 11/10/2014] [Indexed: 01/03/2023] Open
Abstract
A universal cytomegalovirus (CMV) vaccination promises to reduce the burden of the developmental damage that afflicts up to 0.5% of live births worldwide. An effective vaccination that prevents transplacental transmission would reduce CMV congenital disease and CMV-associated still births and leave populations less susceptible to opportunistic CMV disease. Thus, a vaccination against this virus has long been recognized for the potential of enormous health-care savings because congenital damage is life-long and existing anti-viral options are limited. Vaccine researchers, industry leaders, and regulatory representatives have discussed the challenges posed by clinical efficacy trials that would lead to a universal CMV vaccine, reviewing the links between infection and disease, and identifying settings where disrupting viral transmission might provide a surrogate endpoint for disease prevention. Reducing the complexity of such trials would facilitate vaccine development. Children and adolescents are the targets for universal vaccination, with the expectation of protecting the offspring of immunized women. Given that a majority of females worldwide experience CMV infection during childhood, a universal vaccine must boost natural immunity and reduce transmission due to reactivation and re-infection as well as primary infection during pregnancy. Although current vaccine strategies recognize the value of humoral and cellular immunity, the precise mechanisms that act at the placental interface remain elusive. Immunity resulting from natural infection appears to limit rather than prevent reactivation of latent viruses and susceptibility to re-infection, leaving a challenge for universal vaccination to improve upon natural immunity levels. Despite these hurdles, early phase clinical trials have achieved primary end points in CMV seronegative subjects. Efficacy studies must be expanded to mixed populations of CMV-naive and naturally infected subjects to understand the overall efficacy and potential. Together with CMV vaccine candidates currently in clinical development, additional promising preclinical strategies continue to come forward; however, these face limitations due to the insufficient understanding of host defense mechanisms that prevent transmission, as well as the age-old challenges of reaching the appropriate threshold of immunogenicity, efficacy, durability and potency. This review focuses on the current understanding of natural and CMV vaccine-induced protective immunity.
Collapse
Affiliation(s)
- A Louise McCormick
- Laboratory of Biochemical Pharmacology, Department of Pediatrics, Emory University, Atlanta, GA, USA
| | - Edward S Mocarski
- Department of Microbiology and Immunology and Emory Vaccine Center, Emory University, Atlanta, GA, USA
| |
Collapse
|
21
|
Slavov SN, Kashima S, Wagatsuma VMD, Silva-Pinto AC, Martinez EZ, Favarin MDC, Covas DT. Glycoprotein B genotyping of human cytomegalovirus strains isolated from Brazilian patients with sickle cell disease and beta-thalassemia major. Viral Immunol 2014; 28:123-9. [PMID: 25420197 DOI: 10.1089/vim.2014.0057] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
The role of the human cytomegalovirus (HCMV) infection in individuals with hemoglobinopathies is unclear. Our objective was to examine the molecular and genotypic characteristics of HCMV in patients with sickle cell disease, beta-thalassemia major, and volunteer blood donors by viral load quantitation, glycoprotein B (gB) genotyping, and phylogenetic analysis. The patients with sickle cell disease demonstrated the highest HCMV DNA prevalence (13.8%), followed by the patients with beta-thalassemia major (7.6%), and the blood donors (3%). The infection was characterized by a low mean viral load (3.8×10(3) copies/mL), but infections with higher copy numbers were also observed. Genotype gB2 was detected in the majority of cases (90.9%), followed by genotype gB1 (9.1%). No gB3/gB4 genotype was detected. No statistical significance was observed between HCMV DNAemia/gB genotype and hematological alterations or severity of the disease. The high number of sickle cell disease patients with HCMV DNAemia could be due to their partial immune dysfunction (multiple transfusions, spleen dysfunction, hydroxyurea treatment). The extensive HCMV gB2 prevalence in patients with hemoglobinopathies is probably due to HCMV epidemiologic characteristics in the examined region, and can be important during the clinical management of these patients.
Collapse
Affiliation(s)
- Svetoslav N Slavov
- 1 Regional Blood Center of Ribeirão Preto, Ribeirão Preto Medical School, University of São Paulo , Ribeirão Preto, Brazil
| | | | | | | | | | | | | |
Collapse
|
22
|
Mohamed HT, El-Shinawi M, Nouh MA, Bashtar AR, Elsayed ET, Schneider RJ, Mohamed MM. Inflammatory breast cancer: high incidence of detection of mixed human cytomegalovirus genotypes associated with disease pathogenesis. Front Oncol 2014; 4:246. [PMID: 25309872 PMCID: PMC4160966 DOI: 10.3389/fonc.2014.00246] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2014] [Accepted: 08/27/2014] [Indexed: 12/11/2022] Open
Abstract
Inflammatory breast cancer (IBC) is a highly metastatic, aggressive, and fatal form of breast cancer. Patients presenting with IBC are characterized by a high number of axillary lymph node metastases. Recently, we found that IBC carcinoma tissues contain significantly higher levels of human cytomegalovirus (HCMV) DNA compared to other breast cancer tissues that may regulate cell signaling pathways. In fact, HCMV pathogenesis and clinical outcome can be statistically associated with multiple HCMV genotypes within IBC. Thus, in the present study, we established the incidence and types of HCMV genotypes present in carcinoma tissues of infected non-IBC versus IBC patients. We also assessed the correlation between detection of mixed genotypes of HCMV and disease progression. Genotyping of HCMV in carcinoma tissues revealed that glycoprotein B (gB)-1 and glycoprotein N (gN)-1 were the most prevalent HCMV genotypes in both non-IBC and IBC patients with no significant difference between patients groups. IBC carcinoma tissues, however, showed statistically significant higher incidence of detection of the gN-3b genotype compared to non-IBC patients. The incidence of detection of mixed genotypes of gB showed that gB-1 + gB-3 was statistically significantly higher in IBC than non-IBC patients. Similarly, the incidence of detection of mixed genotypes of gN showed that gN-1 + gN-3b and gN-3 + gN-4b/c were statistically significant higher in the carcinoma tissues of IBC than non-IBC. Mixed presence of different HCMV genotypes was found to be significantly correlated with the number of metastatic lymph nodes in non-IBC but not in IBC patients. In IBC, detection of mixed HCMV different genotypes significantly correlates with lymphovascular invasion and formation of dermal lymphatic emboli, which was not found in non-IBC patients.
Collapse
Affiliation(s)
| | - Mohamed El-Shinawi
- Department of General Surgery, Faculty of Medicine, Ain Shams University , Cairo , Egypt
| | - M Akram Nouh
- Department of Pathology, National Cancer Institute, Cairo University , Giza , Egypt
| | | | | | - Robert J Schneider
- Department of Microbiology, School of Medicine, New York University , New York, NY , USA
| | | |
Collapse
|
23
|
de Havenon A, Davis G, Hoesch R. Splenic rupture associated with primary CMV infection, AMSAN, and IVIG. J Neuroimmunol 2014; 272:103-5. [DOI: 10.1016/j.jneuroim.2014.05.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2013] [Accepted: 05/04/2014] [Indexed: 10/25/2022]
|
24
|
Sijmons S, Van Ranst M, Maes P. Genomic and functional characteristics of human cytomegalovirus revealed by next-generation sequencing. Viruses 2014; 6:1049-72. [PMID: 24603756 PMCID: PMC3970138 DOI: 10.3390/v6031049] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2014] [Revised: 02/11/2014] [Accepted: 02/11/2014] [Indexed: 01/08/2023] Open
Abstract
The complete genome of human cytomegalovirus (HCMV) was elucidated almost 25 years ago using a traditional cloning and Sanger sequencing approach. Analysis of the genetic content of additional laboratory and clinical isolates has lead to a better, albeit still incomplete, definition of the coding potential and diversity of wild-type HCMV strains. The introduction of a new generation of massively parallel sequencing technologies, collectively called next-generation sequencing, has profoundly increased the throughput and resolution of the genomics field. These increased possibilities are already leading to a better understanding of the circulating diversity of HCMV clinical isolates. The higher resolution of next-generation sequencing provides new opportunities in the study of intrahost viral population structures. Furthermore, deep sequencing enables novel diagnostic applications for sensitive drug resistance mutation detection. RNA-seq applications have changed the picture of the HCMV transcriptome, which resulted in proof of a vast amount of splicing events and alternative transcripts. This review discusses the application of next-generation sequencing technologies, which has provided a clearer picture of the intricate nature of the HCMV genome. The continuing development and application of novel sequencing technologies will further augment our understanding of this ubiquitous, but elusive, herpesvirus.
Collapse
Affiliation(s)
- Steven Sijmons
- Laboratory of Clinical Virology, Rega Institute for Medical Research, K.U.Leuven, Minderbroedersstraat 10, Leuven BE-3000, Belgium.
| | - Marc Van Ranst
- Laboratory of Clinical Virology, Rega Institute for Medical Research, K.U.Leuven, Minderbroedersstraat 10, Leuven BE-3000, Belgium.
| | - Piet Maes
- Laboratory of Clinical Virology, Rega Institute for Medical Research, K.U.Leuven, Minderbroedersstraat 10, Leuven BE-3000, Belgium.
| |
Collapse
|
25
|
Paradowska E, Jabłońska A, Studzińska M, Kasztelewicz B, Zawilińska B, Wiśniewska-Ligier M, Dzierżanowska-Fangrat K, Woźniakowska-Gęsicka T, Kosz-Vnenchak M, Leśnikowski ZJ. Cytomegalovirus glycoprotein H genotype distribution and the relationship with hearing loss in children. J Med Virol 2014; 86:1421-7. [PMID: 24615599 DOI: 10.1002/jmv.23906] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/27/2014] [Indexed: 01/29/2023]
Abstract
Cytomegalovirus (CMV) is a leading cause of congenital infection and a leading infectious cause of hearing loss in children. The ORF UL75 gene encodes envelope glycoprotein H (gH), which is essential for CMV entry into host cells and the target of the immune response in humans. However, the distribution of gH variants and the relationship between the viral genotype, viral load, and sequelae in children infected with CMV is debated. The UL75 genetic variation of CMV isolates from 42 newborns infected congenitally with CMV and 93 infants with postnatal or unproven congenital CMV infection was analyzed. Genotyping was performed by analysis of PCR-amplified fragments, and the viral load was measured by quantitative real-time PCR. There were no differences in the distribution of gH genotypes in the children infected congenitally and postnatally. Mixed-genotype infections with both gH1 and gH2 variants were detected in approximately 25% of the examined patients. No relationship between UL75 gene polymorphisms and the symptoms at birth was observed. The results suggest that the infection with gH2 genotype diminishes the risk of hearing loss in children (P = 0.010). In addition, sensorineural hearing loss was associated with CMV gH1 genotype infection in infants (P = 0.032) and a high viral load in urine (P = 0.005). In conclusion, it was found that the gH genotype does not predict clinical sequelae in newborn infants following congenital CMV infection. However, these results suggest that the gH genotype might be associated with hearing loss in children.
Collapse
Affiliation(s)
- Edyta Paradowska
- Laboratory of Molecular Virology and Biological Chemistry, Institute of Medical Biology, Polish Academy of Sciences, Lodz, Poland
| | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Molecular imprint of exposure to naturally occurring genetic variants of human cytomegalovirus on the T cell repertoire. Sci Rep 2014; 4:3993. [PMID: 24509977 PMCID: PMC3918921 DOI: 10.1038/srep03993] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2013] [Accepted: 01/20/2014] [Indexed: 11/14/2022] Open
Abstract
Exposure to naturally occurring variants of herpesviruses in clinical settings can have a dramatic impact on anti-viral immunity. Here we have evaluated the molecular imprint of variant peptide-MHC complexes on the T-cell repertoire during human cytomegalovirus (CMV) infection and demonstrate that primary co-infection with genetic variants of CMV was coincident with development of strain-specific T-cell immunity followed by emergence of cross-reactive virus-specific T-cells. Cross-reactive CMV-specific T cells exhibited a highly conserved public T cell repertoire, while T cells directed towards specific genetic variants displayed oligoclonal repertoires, unique to each individual. T cell recognition foot–print and pMHC-I structural analyses revealed that the cross-reactive T cells accommodate alterations in the pMHC complex with a broader foot-print focussing on the core of the peptide epitope. These findings provide novel molecular insight into how infection with naturally occurring genetic variants of persistent human herpesviruses imprints on the evolution of the anti-viral T-cell repertoire.
Collapse
|
27
|
Ikuta K, Minematsu T, Inoue N, Kubo T, Asano K, Ishibashi K, Imamura T, Nakai H, Yoshikawa T, Moriuchi H, Fujiwara S, Koyano S, Suzutani T. Cytomegalovirus (CMV) glycoprotein H-based serological analysis in Japanese healthy pregnant women, and in neonates with congenital CMV infection and their mothers. J Clin Virol 2013; 58:474-8. [DOI: 10.1016/j.jcv.2013.07.004] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2013] [Revised: 06/25/2013] [Accepted: 07/03/2013] [Indexed: 11/30/2022]
|
28
|
Gabaev I, Steinbrück L, Pokoyski C, Pich A, Stanton RJ, Schwinzer R, Schulz TF, Jacobs R, Messerle M, Kay-Fedorov PC. The human cytomegalovirus UL11 protein interacts with the receptor tyrosine phosphatase CD45, resulting in functional paralysis of T cells. PLoS Pathog 2011; 7:e1002432. [PMID: 22174689 PMCID: PMC3234252 DOI: 10.1371/journal.ppat.1002432] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2011] [Accepted: 10/27/2011] [Indexed: 01/15/2023] Open
Abstract
Human cytomegalovirus (CMV) exerts diverse and complex effects on the immune system, not all of which have been attributed to viral genes. Acute CMV infection results in transient restrictions in T cell proliferative ability, which can impair the control of the virus and increase the risk of secondary infections in patients with weakened or immature immune systems. In a search for new immunomodulatory proteins, we investigated the UL11 protein, a member of the CMV RL11 family. This protein family is defined by the RL11 domain, which has homology to immunoglobulin domains and adenoviral immunomodulatory proteins. We show that pUL11 is expressed on the cell surface and induces intercellular interactions with leukocytes. This was demonstrated to be due to the interaction of pUL11 with the receptor tyrosine phosphatase CD45, identified by mass spectrometry analysis of pUL11-associated proteins. CD45 expression is sufficient to mediate the interaction with pUL11 and is required for pUL11 binding to T cells, indicating that pUL11 is a specific CD45 ligand. CD45 has a pivotal function regulating T cell signaling thresholds; in its absence, the Src family kinase Lck is inactive and signaling through the T cell receptor (TCR) is therefore shut off. In the presence of pUL11, several CD45-mediated functions were inhibited. The induction of tyrosine phosphorylation of multiple signaling proteins upon TCR stimulation was reduced and T cell proliferation was impaired. We therefore conclude that pUL11 has immunosuppressive properties, and that disruption of T cell function via inhibition of CD45 is a previously unknown immunomodulatory strategy of CMV. The human cytomegalovirus (CMV) belongs to a class of viruses that interferes with the immune response of its host. Accordingly, infection with CMV is a severe risk for immunologically immature newborns and immunocompromised patients such as transplant recipients. The mechanisms by which CMV affects the immune system are not completely understood. Here we show that a CMV protein, pUL11, which is expressed on the surface of cells, binds to leukocytes by interacting with the receptor tyrosine phosphatase CD45. In T cells, CD45 is essential for transmission of activating signals received via the T cell receptor (TCR) to downstream effector molecules that ultimately lead to activation and proliferation of these immune cells. Binding of the CMV pUL11 protein to CD45 on T cells prevents signal transduction via the TCR and restricts T cell proliferation. Interestingly, the mechanism by which the activity of CD45 is regulated is a matter of debate and no specific cellular ligand of CD45 has yet been described. The identification of a first viral ligand for CD45 may provide the means to investigate CD45 regulatory mechanisms and also allow the development of therapies to interfere with CMV-mediated immunomodulation.
Collapse
Affiliation(s)
- Ildar Gabaev
- Institute of Virology, Hannover Medical School, Hannover, Germany
| | - Lars Steinbrück
- Institute of Virology, Hannover Medical School, Hannover, Germany
| | - Claudia Pokoyski
- Department of General, Visceral and Transplantation Surgery, Hannover Medical School, Hannover, Germany
| | - Andreas Pich
- Institute of Toxicology, Hannover Medical School, Hannover, Germany
| | - Richard J. Stanton
- Section of Medical Microbiology, School of Medicine, Cardiff University, Cardiff, United Kingdom
| | - Reinhard Schwinzer
- Department of General, Visceral and Transplantation Surgery, Hannover Medical School, Hannover, Germany
| | - Thomas F. Schulz
- Institute of Virology, Hannover Medical School, Hannover, Germany
| | - Roland Jacobs
- Department of Clinical Immunology and Rheumatology, Hannover Medical School, Hannover, Germany
| | - Martin Messerle
- Institute of Virology, Hannover Medical School, Hannover, Germany
- * E-mail:
| | | |
Collapse
|
29
|
Rapid genotyping of cytomegalovirus in dried blood spots by multiplex real-time PCR assays targeting the envelope glycoprotein gB and gH genes. J Clin Microbiol 2011; 50:232-7. [PMID: 22116158 DOI: 10.1128/jcm.05253-11] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Genotyping of cytomegalovirus (CMV) is useful to examine potential differences in the pathogenicity of strains and to demonstrate coinfection with multiple strains involved in CMV disease in adults and congenitally infected newborns. Studies on genotyping of CMV in dried blood spots (DBS) are rare and have been hampered by the small amount of dried blood available. In this study, two multiplex real-time PCR assays for rapid gB and gH genotyping of CMV in DBS were developed. Validation of the assays with 39 CMV-positive plasma samples of transplant recipients and 21 urine specimens of congenitally infected newborns was successful in genotyping 100% of the samples, with gB1 and gB3 being the most prevalent genotypes. Multiple gB and gH genotypes were detected in 36% and 33% of the plasma samples, respectively. One urine sample from a newborn with symptomatic congenital CMV was positive for gB1 and gB2. DBS of congenitally infected newborns (n = 41) were tested using 9 μl of dried blood, and genotypes were detected in 81% (gB) and 73% (gH) of the samples, with gB3 being the most prevalent genotype. No clear association of specific genotypes with clinical outcome was observed. In conclusion, the CMV gB and gH PCR assays were found to be rapid, sensitive for detecting mixed infections, and suitable for direct usage on DBS. These assays are efficient tools for genotyping of CMV in DBS of congenitally infected newborns.
Collapse
|
30
|
Tabll A, Shoman S, Ghanem H, Nabil M, El Din NGB, El Awady MK. Assessment of human cytomegalovirus co-infection in Egyptian chronic HCV patients. Virol J 2011. [PMID: 21740595 DOI: 10.1186/1743-422x-8-343.] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Human cytomegalovirus (HCMV) is the most common cause of severe morbidity and mortality in immune- compromised individuals. This study was conducted to determine the incidence of HCMV infection in HCV patients who either spontaneously cleared the virus or progressed to chronic HCV infection. The study included a total of eighty four cases (48 females and 36 males) that were referred to blood banks for blood donation with an age range of 18-64 years (mean age 37.62 ± 10.03 years). Hepatitis C virus RNA and HCMV DNA were detected in sera by RT-nested PCR and nested PCR respectively in all subjects. Immunoglobulin G levels for HCV and HCMV were determined. Besides, IgM antibodies for HCMV infection were also determined in subjects' sera. Fifty three out of 84 cases (63%) were positive for HCV-RNA while 31 (37%) cases had negative HCV RNA. Forty six (87%) and 13 (25%) cases out of 53 HCV RNA positive patients were positive for HCMV IgG and IgM antibodies respectively. While 20 of 53 cases (38%) had detectable HCMV DNA. To examine the role of HCMV infection in HCV spontaneous resolution, two groups of HCV patients, group 1) chronic HCV infection (positive HCV RNA and positive IgG antibodies) vs group 2) spontaneous resolution (negative HCV RNA and positive IgG antibodies) were compared. The percentages of positive CMV IgG and IgM results is higher in chronic HCV patient than those in spontaneously cleared HCV patients and the difference is highly statistically significant (P value < 0.001). Also, there is a general trend towards elevated levels of CMV IgG antibodies in HCV chronic patients than those in spontaneously cleared HCV patients (P value < 0.02). HCMV DNA detection in group 1 was more than twice the value observed in group 2 (38% vs 14.3%, P value < 0.001). Moreover, levels of liver enzymes were significantly higher in HCV RNA positive cases co-infected with HCMV DNA than HCMV negative cases (P value < 0.001). The results indicate the role of HCMV in the liver pathogenesis. We conclude that chronic HCV patients co-infected with HCMV infection can be regarded as high risk groups for liver disease progression where they should be monitored for the long term outcome of the disease.
Collapse
Affiliation(s)
- Ashraf Tabll
- Department of Microbial Biotechnology, National Research Center, Giza, Egypt.
| | | | | | | | | | | |
Collapse
|
31
|
Tabll A, Shoman S, Ghanem H, Nabil M, El Din NGB, El Awady MK. Assessment of human cytomegalovirus co-infection in Egyptian chronic HCV patients. Virol J 2011; 8:343. [PMID: 21740595 PMCID: PMC3145597 DOI: 10.1186/1743-422x-8-343] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2011] [Accepted: 07/10/2011] [Indexed: 02/07/2023] Open
Abstract
Human cytomegalovirus (HCMV) is the most common cause of severe morbidity and mortality in immune- compromised individuals. This study was conducted to determine the incidence of HCMV infection in HCV patients who either spontaneously cleared the virus or progressed to chronic HCV infection. The study included a total of eighty four cases (48 females and 36 males) that were referred to blood banks for blood donation with an age range of 18-64 years (mean age 37.62 ± 10.03 years). Hepatitis C virus RNA and HCMV DNA were detected in sera by RT-nested PCR and nested PCR respectively in all subjects. Immunoglobulin G levels for HCV and HCMV were determined. Besides, IgM antibodies for HCMV infection were also determined in subjects' sera. Fifty three out of 84 cases (63%) were positive for HCV-RNA while 31 (37%) cases had negative HCV RNA. Forty six (87%) and 13 (25%) cases out of 53 HCV RNA positive patients were positive for HCMV IgG and IgM antibodies respectively. While 20 of 53 cases (38%) had detectable HCMV DNA. To examine the role of HCMV infection in HCV spontaneous resolution, two groups of HCV patients, group 1) chronic HCV infection (positive HCV RNA and positive IgG antibodies) vs group 2) spontaneous resolution (negative HCV RNA and positive IgG antibodies) were compared. The percentages of positive CMV IgG and IgM results is higher in chronic HCV patient than those in spontaneously cleared HCV patients and the difference is highly statistically significant (P value < 0.001). Also, there is a general trend towards elevated levels of CMV IgG antibodies in HCV chronic patients than those in spontaneously cleared HCV patients (P value < 0.02). HCMV DNA detection in group 1 was more than twice the value observed in group 2 (38% vs 14.3%, P value < 0.001). Moreover, levels of liver enzymes were significantly higher in HCV RNA positive cases co-infected with HCMV DNA than HCMV negative cases (P value < 0.001). The results indicate the role of HCMV in the liver pathogenesis. We conclude that chronic HCV patients co-infected with HCMV infection can be regarded as high risk groups for liver disease progression where they should be monitored for the long term outcome of the disease.
Collapse
Affiliation(s)
- Ashraf Tabll
- Department of Microbial Biotechnology, National Research Center, Giza, Egypt
| | - Sahar Shoman
- Department of Microbiology, Faculty of Science, Ain Shams University, Cairo, Egypt
| | - Hussam Ghanem
- Department of Microbiology, Faculty of Science, Ain Shams University, Cairo, Egypt
| | - Mohamed Nabil
- Department of Microbiology, Faculty of Science, Ain Shams University, Cairo, Egypt
| | - Noha G Bader El Din
- Department of Microbial Biotechnology, National Research Center, Giza, Egypt
| | - Mostafa K El Awady
- Department of Microbial Biotechnology, National Research Center, Giza, Egypt
| |
Collapse
|
32
|
Puchhammer-Stöckl E, Görzer I. Human cytomegalovirus: an enormous variety of strains and their possible clinical significance in the human host. Future Virol 2011. [DOI: 10.2217/fvl.10.87] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Human cytomegalovirus (HCMV) does not exist as one defined virus genotype, but as a variety of different strains. Several studies have investigated the significance of specific viral genotypes for the clinical course of HCMV infection. Upon reinfection, patients may acquire additional HCMV strains, and infections with a mixture of HCMV strains appear to be quite common. The analysis of such mixed infections has become increasingly important, not only for investigating the clinical implications of mixed-genotype infections, but also for understanding the pathogenesis of subsequent reinfections with HCMV strains, and this is also of importance for HCMV vaccine development. This article summarizes the clinical implications of infection with individual HCMV genotypes and focuses on infection with mixed populations of HCMV strains.
Collapse
Affiliation(s)
| | - Irene Görzer
- Department of Virology, Medical University Vienna, Kinderspitalgasse 15, A-1095 Vienna, Austria
| |
Collapse
|