1
|
Traore KA, Akapovi MM, Ouedraogo N, Ouoba JB, Roques P, Barro N. Geographical distribution of enteric pathogenic viruses in Burkina Faso: a systematic review and meta-analysis. BMC Infect Dis 2024; 24:756. [PMID: 39080551 PMCID: PMC11290313 DOI: 10.1186/s12879-024-09668-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Accepted: 07/25/2024] [Indexed: 08/02/2024] Open
Abstract
BACKGROUND Viruses, which are transmitted mainly via the digestive tract, are responsible for the high morbidity and mortality of diseases, particularly in low-income countries. Although several studies have established the prevalence and characterization of various enteric viruses in Burkina Faso, to date, no aggregate data have been released. OBJECTIVE Our objective was to describe the available data on the prevalence and circulating genotypes of enteric pathogen viruses responsible for human infections in Burkina Faso by carrying out a systematic review and meta-analysis. METHODS Potentially relevant studies were identified by a search of PubMed, ScienceDirect, Google Scholar, university libraries and by a manual search of the reference lists of identified studies. The search with no restrictions on language or age was limited to studies conducted only in Burkina. Study selection, data extraction, and methodological quality of the included studies were performed independently by two investigators. Heterogeneity between studies was assessed using the Cochrane Q test and I2 test statistics based on the random effects model. Comprehensive meta-analysis (CMA 3.7) was employed to compute the pooled prevalence of pathogens identified in the studies. RESULTS Forty-three (43) studies reporting 4,214 diagnosed cases in all aged human populations were selected. Overall, 72.6% of the pathogens diagnosed were gastroenteritis, and 27.2% were entero-transmissible hepatitis viruses. Rotavirus was the most common cause of human viral gastroenteritis, accounting for 27.7% (95% CI: 20.9 - 35.8) of the cases, followed by norovirus (16% (95% CI: 12.25 - 20.6)) and sapovirus (11.2% (95% CI: 6.2 - 19.4)). In terms of human entero-transmissible infections, hepatitis A virus (HAV) was the most prevalent (52% [95% CI: 14.2-87.7] of total antibodies), followed by hepatitis E virus (HEV) (28.3% [95% CI: 17.7-42]). CONCLUSIONS This study highlights the substantial burden of viral enteric infections and highlights the need for more molecular epidemiological studies to improve preventive measures against these viruses.
Collapse
Affiliation(s)
- Kuan Abdoulaye Traore
- Laboratoire Sciences de la Vie et de la Terre (LaSVT), Université Norbert ZONGO (UNZ), Koudougou, Burkina Faso.
- Laboratoire de Biologie Moléculaire, d'Epidémiologie et de Surveillance des Bactéries et Virus Transmissibles par les Aliments (LaBESTA), Université Joseph KI-ZERBO, Ouagadougou, Burkina Faso.
| | - Messanh Marius Akapovi
- Laboratoire de Biologie Moléculaire, d'Epidémiologie et de Surveillance des Bactéries et Virus Transmissibles par les Aliments (LaBESTA), Université Joseph KI-ZERBO, Ouagadougou, Burkina Faso
| | - Nafissatou Ouedraogo
- Laboratoire de Biologie Moléculaire, d'Epidémiologie et de Surveillance des Bactéries et Virus Transmissibles par les Aliments (LaBESTA), Université Joseph KI-ZERBO, Ouagadougou, Burkina Faso
- Université de Dédougou (UDD), Dédougou, Burkina Faso
| | - Jean Bienvenue Ouoba
- Laboratoire de Biologie Moléculaire, d'Epidémiologie et de Surveillance des Bactéries et Virus Transmissibles par les Aliments (LaBESTA), Université Joseph KI-ZERBO, Ouagadougou, Burkina Faso
- Centre universitaire de Manga (CUM), Manga, Burkina Faso
| | - Pierre Roques
- Virology Unit, Institut Pasteur de Guinée (IPGui), Conakry, Guinea
| | - Nicolas Barro
- Laboratoire de Biologie Moléculaire, d'Epidémiologie et de Surveillance des Bactéries et Virus Transmissibles par les Aliments (LaBESTA), Université Joseph KI-ZERBO, Ouagadougou, Burkina Faso
| |
Collapse
|
2
|
Mijatovic-Rustempasic S, Jaimes J, Perkins C, Ward ML, Esona MD, Gautam R, Lewis J, Sturgeon M, Panjwani J, Bloom GA, Miller S, Reisdorf E, Riley AM, Pence MA, Dunn J, Selvarangan R, Jerris RC, DeGroat D, Parashar UD, Cortese MM, Bowen MD. Rotavirus Strain Trends in United States, 2009-2016: Results from the National Rotavirus Strain Surveillance System (NRSSS). Viruses 2022; 14:1775. [PMID: 36016397 PMCID: PMC9414880 DOI: 10.3390/v14081775] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 08/05/2022] [Accepted: 08/09/2022] [Indexed: 11/16/2022] Open
Abstract
Before the introduction of vaccines, group A rotaviruses (RVA) were the leading cause of acute gastroenteritis in children worldwide. The National Rotavirus Strain Surveillance System (NRSSS) was established in 1996 by the Centers for Disease Control and Prevention (CDC) to perform passive RVA surveillance in the USA. We report the distribution of RVA genotypes collected through NRSSS during the 2009-2016 RVA seasons and retrospectively examine the genotypes detected through the NRSSS since 1996. During the 2009-2016 RVA seasons, 2134 RVA-positive fecal specimens were sent to the CDC for analysis of the VP7 and VP4 genes by RT-PCR genotyping assays and sequencing. During 2009-2011, RVA genotype G3P[8] dominated, while G12P[8] was the dominant genotype during 2012-2016. Vaccine strains were detected in 1.7% of specimens and uncommon/unusual strains, including equine-like G3P[8] strains, were found in 1.9%. Phylogenetic analyses showed limited VP7 and VP4 sequence variation within the common genotypes with 1-3 alleles/lineages identified per genotype. A review of 20 years of NRSSS surveillance showed two changes in genotype dominance, from G1P[8] to G3P[8] and then G3P[8] to G12P[8]. A better understanding of the long-term effects of vaccine use on epidemiological and evolutionary dynamics of circulating RVA strains requires continued surveillance.
Collapse
Affiliation(s)
- Slavica Mijatovic-Rustempasic
- Viral Gastroenteritis Branch, Division of Viral Diseases, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, 1600 Clifton Road NE, Mail Stop G-04, Atlanta, GA 30329, USA
| | - Jose Jaimes
- Viral Gastroenteritis Branch, Division of Viral Diseases, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, 1600 Clifton Road NE, Mail Stop G-04, Atlanta, GA 30329, USA
| | - Charity Perkins
- Viral Gastroenteritis Branch, Division of Viral Diseases, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, 1600 Clifton Road NE, Mail Stop G-04, Atlanta, GA 30329, USA
| | - M. Leanne Ward
- Viral Gastroenteritis Branch, Division of Viral Diseases, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, 1600 Clifton Road NE, Mail Stop G-04, Atlanta, GA 30329, USA
| | - Mathew D. Esona
- Viral Gastroenteritis Branch, Division of Viral Diseases, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, 1600 Clifton Road NE, Mail Stop G-04, Atlanta, GA 30329, USA
| | - Rashi Gautam
- Viral Gastroenteritis Branch, Division of Viral Diseases, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, 1600 Clifton Road NE, Mail Stop G-04, Atlanta, GA 30329, USA
| | - Jamie Lewis
- Viral Gastroenteritis Branch, Division of Viral Diseases, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, 1600 Clifton Road NE, Mail Stop G-04, Atlanta, GA 30329, USA
| | - Michele Sturgeon
- Viral Gastroenteritis Branch, Division of Viral Diseases, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, 1600 Clifton Road NE, Mail Stop G-04, Atlanta, GA 30329, USA
| | - Junaid Panjwani
- Viral Gastroenteritis Branch, Division of Viral Diseases, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, 1600 Clifton Road NE, Mail Stop G-04, Atlanta, GA 30329, USA
| | - Gail A. Bloom
- Indiana University Health Pathology Laboratory, Indiana University, 350 West 11th Street, Indianapolis, IN 46202, USA
| | - Steve Miller
- UCSF Clinical Microbiology Laboratory, 185 Berry St, Suite 290, San Francisco, CA 94107, USA
| | - Erik Reisdorf
- Wisconsin State Laboratory of Hygiene, 2601 Agriculture Drive, Madison, WI 53718, USA
| | - Ann Marie Riley
- Infectious Disease Diagnostic Laboratory, Boston Children’s Hospital, 300 Longwood Ave., Boston, MA 02115, USA
| | - Morgan A. Pence
- Cook Children’s Medical Center, 801 Seventh Ave., Fort Worth, TX 76104, USA
| | - James Dunn
- Medical Microbiology and Virology, Department of Pathology, Texas Children’s Hospital, 6621 Fannin Street, Suite AB1195, Houston, TX 77030, USA
| | | | - Robert C. Jerris
- Children’s Healthcare of Atlanta, 1405 Clifton Rd, Atlanta, GA 30329, USA
| | - Dona DeGroat
- Seattle Children’s Hospital, 5801 Sand Point Way NE, Seattle, WA 98105, USA
| | - Umesh D. Parashar
- Viral Gastroenteritis Branch, Division of Viral Diseases, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, 1600 Clifton Road NE, Mail Stop G-04, Atlanta, GA 30329, USA
| | - Margaret M. Cortese
- Viral Gastroenteritis Branch, Division of Viral Diseases, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, 1600 Clifton Road NE, Mail Stop G-04, Atlanta, GA 30329, USA
| | - Michael D. Bowen
- Viral Gastroenteritis Branch, Division of Viral Diseases, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, 1600 Clifton Road NE, Mail Stop G-04, Atlanta, GA 30329, USA
| |
Collapse
|
3
|
Zhang T, Li J, Jiang YZ, Xu JQ, Guan XH, Wang LQ, Chen J, Liang Y. Genotype Distribution and Evolutionary Analysis of Rotavirus Associated with Acute Diarrhea Outpatients in Hubei, China, 2013–2016. Virol Sin 2022; 37:503-512. [PMID: 35643410 PMCID: PMC9437618 DOI: 10.1016/j.virs.2022.05.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Accepted: 05/17/2022] [Indexed: 11/23/2022] Open
Abstract
Group A human rotaviruses (RVAs) annually cause the deaths of 215,000 infants and young children. To understand the epidemiological characteristics and genetic evolution of RVAs, we performed sentinel surveillance on RVA prevalence in a rotavirus-surveillance network in Hubei, China. From 2013 to 2016, a total of 2007 fecal samples from hospital outpatients with acute gastroenteritis were collected from four cities of Hubei Province. Of the 2007 samples, 153 (7.62%) were identified positive for RVA by real-time RT-PCR. RVA infection in Hubei mainly occurred in autumn and winter. The highest detection rate of RVA infection was in 1–2 years old of outpatients (16.97%). No significant difference of RVA positive rate was observed between females and males. We performed a phylogenetic analysis of the G/P genotypes based on the partial VP7/VP4 gene sequences of RVAs. G9P[8] was the most predominant strain in all four years but the prevalence of G2P[4] genotype increased rapidly since 2014. We reconstructed the evolutionary time scale of RVAs in Hubei, and found that the evolutionary rates of the G9, G2, P[8], and P[4] genotypes of RVA were 1.069 × 10−3, 1.029 × 10−3, 1.283 × 10−3 and 1.172 × 10−3 nucleotide substitutions/site/year, respectively. Importantly, using a molecular clock model, we showed that most G9, G2, P[8], and P[4] genotype strains dated from the recent ancestor in 2005, 2005, 1993, and 2013, respectively. The finding of the distribution of RVAs in infants and young children in Hubei Province will contribute to the understanding of the epidemiological characteristics and genetic evolution of RVAs in China. A four-year study of sentinel surveillance program of RVAs was performed in Hubei, China. The key population of rotavirus infection is 1–2 years old of outpatients with acute gastroenteritis. G9P[8] was the most predominant strain between 2013 and 2016. The estimating time to the most recent common ancestor for the G9 genotype based on partial VP7 gene was 46 years. RVA distribution in Hubei Province contributes to the understanding of the epidemiological characteristics of RVAs in China.
Collapse
|
4
|
Whole genome analysis of rotavirus strains circulating in Benin before vaccine introduction, 2016-2018. Virus Res 2022; 313:198715. [PMID: 35247484 DOI: 10.1016/j.virusres.2022.198715] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2021] [Revised: 02/14/2022] [Accepted: 02/15/2022] [Indexed: 11/21/2022]
Abstract
Species A Rotaviruses (RVA) still play a major role in causing acute diarrhea in children under five years old worldwide. Currently, an 11-gene classification system is used to designate the full genotypic constellations of circulating strains. Viral proteins and non-structural proteins in the order VP7-VP4-VP6-VP1-VP2-VP3-NSP1-NSP2-NSP3-NSP4-NSP5/6 are represented by the genotypes Gx-P[x]-Ix-Rx-Cx-Mx-Ax-Nx-Tx-Ex-Hx, respectively. In Benin, ROTAVAC® vaccine was introduced into the Expanded Programme on Immunization in December 2019. To monitor circulating RVA strains for changes that may affect vaccine performance, in-depth analysis of strains prior to vaccine introduction are needed. Here we report, the whole-gene characterization (11 ORFs) for 72 randomly selected RVA strains of common and unusual genotypes collected in Benin from the 2016-2018 seasons. The sequenced strains were 15 G1P[8], 20 G2P[4], 5 G9P[8], 14 G12P[8], 9 G3P[6], 2 G1P[6], 3 G2P[6], 2 G9P[4], 1 G12P[6], and 1 G1G9P[8]/P[4]. The study strains exhibited two genetic constellations designed as Wa-like G1/G9/G12-P[6]/P[8]-I1-R1-C1-M1-A1-N1-T1-E1-H1 and DS-1-like G2/G3/G12-P[4]/P[6]-I2-R2-C2-M2-A2-N2-T2-E2-H2. Genotype G9P[4] strains possessed a DS-1-like genetic constellation with an E6 NSP4 gene, G9-P[4]-I2-R2-C2-M2-A2-N2-T2-E6-H2. The mixed genotype showed both Wa-like and DS-1-like profiles with a T6 NSP3 gene G1/G9P[8]/[4]-I1/I2-R1/R2-C1/C2-M1/M2-A1/A2-N1/N2-T1/T6-E1/E6-H1/H2. At the allelic level, the analysis of the Benin strains, reference strains (with known alleles), vaccine strains (with known alleles) identified 2-13 and 1-17 alleles for DS-1-like and Wa-like strains, respectively. Most of the study strains clustered into previously defined alleles, but we defined 3 new alleles for the VP7 (G3=1 new allele and G12=2 new alleles) and VP4 (P[4]=1 new allele and P[6]=2 new alleles) genes which formed the basis of the VP7 and VP4 gene clusters, respectively. For the remaining 9 genes, 0-6 new alleles were identified for both Wa-like and DS-1-like strains. This analysis of whole genome sequences of RVA strains circulating in Benin described genetic point mutations and reassortment events as well as novel alleles. Further detailed studies on these new alleles are needed and these data can also provide a baseline for studies on RVA in the post-vaccination period.
Collapse
|
5
|
Ballard SB, Requena D, Mayta H, Sanchez GJ, Oyola-Lozada MG, Colquechagua Aliaga FD, Cabrera L, Vittet Mondonedo MD, Taquiri C, Tilley CAPTDH, Simons CDRMP, Meza RA, Bern C, Saito M, Figueroa-Quintanilla DA, Gilman RH. Enteropathogen Changes After Rotavirus Vaccine Scale-up. Pediatrics 2022; 149:e2020049884. [PMID: 34918158 PMCID: PMC9647525 DOI: 10.1542/peds.2020-049884] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 10/14/2021] [Indexed: 01/03/2023] Open
Abstract
OBJECTIVES To inform next steps in pediatric diarrhea burden reduction by understanding the shifting enteropathogen landscape after rotavirus vaccine implementation. METHODS We conducted a case-control study of 1788 medically attended children younger than 5 years, with and without gastroenteritis, after universal rotavirus vaccine implementation in Peru. We tested case and control stools for 5 viruses, 19 bacteria, and parasites; calculated coinfection-adjusted attributable fractions (AFs) to determine pathogen-specific burdens; and evaluated pathogen-specific gastroenteritis severity using Clark and Vesikari scales. RESULTS Six pathogens were independently positively associated with gastroenteritis: norovirus genogroup II (GII) (AF 29.1, 95% confidence interval [CI]: 28.0-32.3), rotavirus (AF 8.9, 95% CI: 6.8-9.7), sapovirus (AF 6.3, 95% CI: 4.3-7.4), astrovirus (AF 2.8, 95% CI: 0.0-4.0); enterotoxigenic Escherichia coli heat stable and/or heat labile and heat stable (AF 2.4, 95% CI: 0.6-3.1), and Shigella spp. (AF 2.0, 95% CI: 0.4-2.2). Among typeable rotavirus cases, we most frequently identified partially heterotypic strain G12P[8] (54 of 81, 67%). Mean severity was significantly higher for norovirus GII-positive cases relative to norovirus GII-negative cases (Vesikari [12.7 vs 11.8; P < .001] and Clark [11.7 vs 11.4; P = .016]), and cases in the 6- to 12-month age range relative to cases in other age groups (Vesikari [12.7 vs 12.0; P = .0002] and Clark [12.0 vs 11.4; P = .0016]). CONCLUSIONS Norovirus is well recognized as the leading cause of pediatric gastroenteritis in settings with universal rotavirus vaccination. However, sapovirus is often overlooked. Both norovirus and sapovirus contribute significantly to the severe pediatric disease burden in this setting. Decision-makers should consider multivalent vaccine acquisition strategies to target multiple caliciviruses in similar countries after successful rotavirus vaccine implementation.
Collapse
Affiliation(s)
- Sarah-Blythe Ballard
- Department of International Health, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland
- Department of Preventive Medicine and Biostatistics, Uniformed Services University of the Health Sciences, Bethesda, Maryland
- Naval Medical Research Unit No. 6, Callao, Peru
| | - David Requena
- Department of International Health, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland
| | - Holger Mayta
- Infectious Disease Research Laboratory, Department of Cellular and Molcular Sciences, Universidad Peruana Cayetano Heredia, Lima, Peru
- Asociación Benéfica PRISMA, Lima, Peru
| | - Gerardo J. Sanchez
- Infectious Disease Research Laboratory, Department of Cellular and Molcular Sciences, Universidad Peruana Cayetano Heredia, Lima, Peru
| | - Maria G. Oyola-Lozada
- Infectious Disease Research Laboratory, Department of Cellular and Molcular Sciences, Universidad Peruana Cayetano Heredia, Lima, Peru
| | | | | | - Macarena D. Vittet Mondonedo
- Infectious Disease Research Laboratory, Department of Cellular and Molcular Sciences, Universidad Peruana Cayetano Heredia, Lima, Peru
| | - Carmen Taquiri
- Infectious Disease Research Laboratory, Department of Cellular and Molcular Sciences, Universidad Peruana Cayetano Heredia, Lima, Peru
| | - CAPT Drake H. Tilley
- Naval Medical Research Unit No. 6, Callao, Peru
- Fleet Surgical Team SEVEN, Okinawa, Japan
| | | | | | - Caryn Bern
- Department of Epidemiology and Biostatistics, University of California San Francisco, San Francisco, California
| | - Mayuko Saito
- Infectious Disease Research Laboratory, Department of Cellular and Molcular Sciences, Universidad Peruana Cayetano Heredia, Lima, Peru
- Department of Virology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | | | - Robert H. Gilman
- Department of International Health, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland
- Infectious Disease Research Laboratory, Department of Cellular and Molcular Sciences, Universidad Peruana Cayetano Heredia, Lima, Peru
- Asociación Benéfica PRISMA, Lima, Peru
| |
Collapse
|
6
|
Gupta RK, Vajpayee S, Agrawal R, Goyal AK, Nair NP, Thiyagarajan V. Post Vaccination Epidemiology and Genotyping of Rotavirus Gastroenteritis at a Tertiary Care Centre of North-East Rajasthan. Indian J Pediatr 2021; 88:90-96. [PMID: 33247377 DOI: 10.1007/s12098-020-03569-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Accepted: 11/09/2020] [Indexed: 10/22/2022]
Abstract
OBJECTIVES To estimate the proportion of rotavirus diarrhea among hospitalized children aged under-five years, to determine the circulating rotavirus genotypes and to know impact rotavirus vaccine on prevalence and severity of rotavirus diarrhea. METHODS This study was a hospital based cross-sectional observational study conducted over a period of 29 mo (September 2017 through January 2020). Stool samples were collected from children who fall within the age range of 0-59 mo with acute diarrhea attending emergency or needing admission. Stool samples were tested for rotavirus by the enzyme linked immune-sorbent assay (ELISA) and genotyped using published methods. RESULTS Out of 1480 samples, 360 (24.32%) cases were positive for rotavirus by ELISA, majority of them were male (62.97%). Maximum rotavirus positivity was found in the age group of <11 mo (55.27%). Statistically significance difference was seen in episodes of diarrhea and experience of vomiting in rotavirus diarrhea cases. Highest prevalence has been seen during winter season. The most prevalent G and P type combinations were G3P [8] strains [122 (34.08%)], G2P [4] [83 (23.18%)], G1P [8] [27 (7.54%)] and G9P [4] [20 (5.59%)]. Mixed strains contribute a significant proportion of stool sample. CONCLUSIONS Rotavirus is an important cause of diarrhea in hospitalized children. There is continued circulation of G9 and G12 strains and the emergence of G3P [8] as most common strain.
Collapse
Affiliation(s)
- R K Gupta
- Department of Pediatric Medicine, SMS Medical College, Jaipur, Rajasthan, India
| | - Shailja Vajpayee
- Department of Pediatric Medicine, SMS Medical College, Jaipur, Rajasthan, India
| | - Ruchi Agrawal
- Department of Pathology, SMS Medical College, Jaipur, Rajasthan, India
| | - Alok Kumar Goyal
- Department of Pediatric Medicine, SMS Medical College, Jaipur, Rajasthan, India.
| | - Nayana P Nair
- Wellcome Trust Research Laboratory, Christian Medical College, Vellore, Tamil Nadu, India
| | | |
Collapse
|
7
|
Silva-Sales M, Leal E, Milagres FADP, Brustulin R, Morais VDS, Marcatti R, Araújo ELL, Witkin SS, Deng X, Sabino EC, Delwart E, Luchs A, Costa ACD. Genomic constellation of human Rotavirus A strains identified in Northern Brazil: a 6-year follow-up (2010-2016). Rev Inst Med Trop Sao Paulo 2020; 62:e98. [PMID: 33331517 PMCID: PMC7748031 DOI: 10.1590/s1678-9946202062098] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Accepted: 11/27/2020] [Indexed: 02/21/2023] Open
Abstract
Surveillance of Rotavirus A (RVA) throughout the national territory is important
to establish a more complete epidemiological-molecular scenario of this virus
circulation in Brazil. The aim of the present study was to investigate the
genetic diversity of RVA strains circulating in Tocantins State (Northern
Brazil) during six years of post-vaccination follow-up (2010-2016). A total of
248 stool samples were screened by next generation sequencing and 107 (43.1%)
nearly full length RVA genome sequences were obtained; one sample was
co-infected with two RVA strains (G2/G8P[4]). Six G and P genotypes combinations
were detected: G12P[8] strains (78.6%), as well as the G3P[8] (9.3%) and G1P[8]
(0.9%) were associated with a Wa-like genogroup backbone. All G2P[4] (5.6%) and
G8P[4] (2.8%) strains, including the mixed G2/G8P[4] infection (0.9%) showed the
DS-1-like genetic background. The two G12P[4] strains (1.9%) were associated
with distinct genetic backbones: Wa-like and DS-1-like. The phylogenetic
analysis revealed the circulation of lineages G1-I, G2-IV, G3-III, G8-I and
G12-III, and P[4]-V and P[8]-III of the VP7 and VP4 genes, respectively.
Conserved clustering pattern and low genetic diversity were observed regarding
VP1-VP3 and VP6, as well as NSP1-5 segments. We identified the same RVA
circulation pattern reported in other Brazilian regions in the period of
2010-2016, suggesting that rural and low-income areas may not have a different
RVA genotypic distribution compared to other parts of the country. The unique
presentation of whole-genome data of RVA strains detected in the Tocantins State
provides a baseline for monitoring variations in the genetic composition of RVA
in this area.
Collapse
Affiliation(s)
- Marcelle Silva-Sales
- Universidade Federal de Goiás, Instituto de Patologia Tropical e Saúde Pública, Laboratório de Virologia e Cultivo Celular, Goiânia, Goiás, Brazil
| | - Elcio Leal
- Universidade Federal do Pará, Instituto de Ciências Biológicas, Belém, Pará, Brazil
| | - Flavio Augusto de Pádua Milagres
- Universidade Federal do Tocantins, Palmas, Tocantins, Brazil.,Laboratório Central de Saúde Pública do Estado de Tocantins, Palmas, Tocantins, Brazil
| | - Rafael Brustulin
- Universidade Federal do Tocantins, Palmas, Tocantins, Brazil.,Laboratório Central de Saúde Pública do Estado de Tocantins, Palmas, Tocantins, Brazil
| | - Vanessa Dos Santos Morais
- Universidade de São Paulo, Instituto de Medicina Tropical de São Paulo, São Paulo, São Paulo, Brazil
| | - Roberta Marcatti
- Universidade de São Paulo, Instituto de Medicina Tropical de São Paulo, São Paulo, São Paulo, Brazil
| | - Emerson Luiz Lima Araújo
- Ministério da Saúde, Secretaria de Vigilância em Saúde, Departamento de Articulação Estratégica de Vigilância em Saúde, Coordenação Geral de Laboratórios de Saúde Pública, Brasília, Distrito Federal, Brazil
| | - Steven S Witkin
- Universidade de São Paulo, Instituto de Medicina Tropical de São Paulo, São Paulo, São Paulo, Brazil.,Weill Cornell Medicine, Department of Obstetrics and Gynecology, New York, New York, USA
| | - Xutao Deng
- Vitalant Research Institute, San Francisco, California, USA.,University of California San Francisco, Department of Laboratory Medicine, San Francisco, California, USA
| | - Ester Cerdeira Sabino
- Universidade de São Paulo, Instituto de Medicina Tropical de São Paulo, São Paulo, São Paulo, Brazil
| | - Eric Delwart
- Vitalant Research Institute, San Francisco, California, USA.,University of California San Francisco, Department of Laboratory Medicine, San Francisco, California, USA
| | - Adriana Luchs
- Instituto Adolfo Lutz, Centro de Virologia, Núcleo de Doenças Entéricas, São Paulo, São Paulo, Brazil
| | - Antonio Charlys da Costa
- Universidade de São Paulo, Instituto de Medicina Tropical de São Paulo, São Paulo, São Paulo, Brazil
| |
Collapse
|
8
|
Bennour H, Bouazizi A, Fodha I, Ben Hadj Fredj M, Ben Hamida-Rebai M, Jerbi A, Dhiflaoui A, Abdelberi S, Abbassi F, Abroug S, Khlifa M, Fathallah A, Boujaafar N, Trabelsi A. Unexpected predominance of rotavirus G9P[8] strain in Tunisian adult diarrheal patients. J Med Microbiol 2020; 69:280-289. [PMID: 32003707 DOI: 10.1099/jmm.0.001156] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Introduction. Group A Rotavirus (RVA) is known to be a major cause of acute gastroenteritis (AGE) in children but its role as a potential pathogen in immunocompetent adults is probably underestimated.Aim. To compare RVA infections in patients from different age groups.Methodology. Fecal samples were collected from patients aged from birth to 65 years, hospitalized or consulting for AGE between 2015 and 2017. All samples were screened by RT-PCR for the detection of VP6 gene specific of RVA. RVA-positive samples were VP7 and VP4 genotyped using multiplex semi-nested RT-PCR. Full-length VP7 gene of G9-positive strains were sequenced and submitted for phylogenetic analysis.Results. Of 1371 stool specimens collected from children (<5 years; n=454), older children (5 to <15 years; n=316) and adults (15-65 years; n=601), 165 (12.0 %) were RVA-positive. RVA detection rates were significantly higher in children and adults than in older children (15.8 % and 12.1 Vs 6.3 %, respectively; P<0.001). While RVA infections were mostly detected during the coldest months in children, they were observed all year-round in patients aged >5 years. Although G1P[8] remained the most prevalent combination (41.7 %) detected in children, G9P[8] strains widely predominated in adults (58.1 %), followed by G2P[4] (12.9 %). All characterized G9 strains clustered in the modern lineage III.Conclusion. RVA play an important role in AGE not only in children but also in adults. The findings of a wide G9 predominance in patients >5 years highlights the need for continuing surveillance in both pediatric and mature populations.
Collapse
Affiliation(s)
- Haifa Bennour
- Faculty of Pharmacy, University of Monastir, Monastir, Tunisia.,Research laboratory for Epidemiology and immunogenetics of viral infections (LR14SP02), Sahloul University Hospital, University of Sousse, Sousse, Tunisia
| | - Asma Bouazizi
- Faculty of Pharmacy, University of Monastir, Monastir, Tunisia.,Research laboratory for Epidemiology and immunogenetics of viral infections (LR14SP02), Sahloul University Hospital, University of Sousse, Sousse, Tunisia
| | - Imene Fodha
- Research laboratory for Epidemiology and immunogenetics of viral infections (LR14SP02), Sahloul University Hospital, University of Sousse, Sousse, Tunisia.,Faculty of Pharmacy, University of Monastir, Monastir, Tunisia
| | - Mouna Ben Hadj Fredj
- Faculty of Sciences and Techniques, University of Kairouan, Kairouan, Tunisia.,Research laboratory for Epidemiology and immunogenetics of viral infections (LR14SP02), Sahloul University Hospital, University of Sousse, Sousse, Tunisia
| | - Meriam Ben Hamida-Rebai
- Faculty of Pharmacy, University of Monastir, Monastir, Tunisia.,Research laboratory for Epidemiology and immunogenetics of viral infections (LR14SP02), Sahloul University Hospital, University of Sousse, Sousse, Tunisia
| | - Amira Jerbi
- Faculty of Pharmacy, University of Monastir, Monastir, Tunisia.,Research laboratory for Epidemiology and immunogenetics of viral infections (LR14SP02), Sahloul University Hospital, University of Sousse, Sousse, Tunisia
| | - Ameni Dhiflaoui
- Faculty of Pharmacy, University of Monastir, Monastir, Tunisia.,Research laboratory for Epidemiology and immunogenetics of viral infections (LR14SP02), Sahloul University Hospital, University of Sousse, Sousse, Tunisia
| | - Shada Abdelberi
- Faculty of Pharmacy, University of Monastir, Monastir, Tunisia.,Research laboratory for Epidemiology and immunogenetics of viral infections (LR14SP02), Sahloul University Hospital, University of Sousse, Sousse, Tunisia
| | - Fairouz Abbassi
- Faculty of Pharmacy, University of Monastir, Monastir, Tunisia.,Research laboratory for Epidemiology and immunogenetics of viral infections (LR14SP02), Sahloul University Hospital, University of Sousse, Sousse, Tunisia
| | - Saoussen Abroug
- Pediatric Unit, Sahloul University Hospital, Sousse, Tunisia
| | - Monia Khlifa
- Pediatric Unit, Regional Hospital of Msaken, Sousse, Tunisia
| | - Akila Fathallah
- Faculty of Medicine, University of Sousse, Sousse, Tunisia.,Parasitology Department, University Hospital Farhat Hached, Sousse, Tunisia
| | - Noureddine Boujaafar
- Microbiology Department, Sahloul University Hospital, Sousse, Tunisia.,Faculty of Pharmacy, University of Monastir, Monastir, Tunisia
| | - Abdelhalim Trabelsi
- Faculty of Pharmacy, University of Monastir, Monastir, Tunisia.,Research laboratory for Epidemiology and immunogenetics of viral infections (LR14SP02), Sahloul University Hospital, University of Sousse, Sousse, Tunisia
| |
Collapse
|
9
|
Full genome characterization of human G3P[6] and G3P[9] rotavirus strains in Lebanon. INFECTION GENETICS AND EVOLUTION 2019; 78:104133. [PMID: 31812761 DOI: 10.1016/j.meegid.2019.104133] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Revised: 11/04/2019] [Accepted: 12/02/2019] [Indexed: 11/24/2022]
Abstract
Rotaviruses are the most common infectious agents causing severe diarrheal diseases in young children globally. Three rare human rotavirus strains, two G3P[9] and one G3P[6], were detected in stool samples of children under 5 years of age hospitalized for gastroenteritis in Lebanon during the course of a surveillance study. Complete genomes of these strains were sequenced using VirCapSeq-VERT, a capture based high-throughput sequencing method. Genomic sequences were further characterized by using phylogenetic analyses with global RVA G3P[6]/P[9] strains, other vaccine and reference strains. Genetic analysis revealed that the G3P[6] strain emerged as a DS-1/Wa-like mono-reassortant strain with a potential Ethiopian origin. The two G3P[9] strains possessed a mixed DS-1/Wa/AU-1-like origin indicating that these may have evolved via multiple reassortment events involving feline, human and bovine rotaviruses. Furthermore, analysis of these strains revealed high antigenic variability compared to the vaccine strains. Additional studies are essential to fully understand the evolutionary dynamics of G3P[6]/P[9] strains spreading worldwide and their implications on vaccine effectiveness.
Collapse
|
10
|
Degiuseppe JI, Stupka JA. Genotype distribution of Group A rotavirus in children before and after massive vaccination in Latin America and the Caribbean: Systematic review. Vaccine 2019; 38:733-740. [PMID: 31771863 DOI: 10.1016/j.vaccine.2019.11.017] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Revised: 10/10/2019] [Accepted: 11/08/2019] [Indexed: 12/16/2022]
Abstract
BACKGROUND During the last decade, most of Latin American and the Caribbean (LAC) countries have implemented oral live rotavirus vaccines in their national vaccination programs with remarkable results. However, it has been suggested that massive vaccination could lead to the replacement of circulating genotypes or the emergence of new variants or neutralizing antibodies escape mutants, which may reduce the effectiveness of the vaccine. The objective was to analyze the genetic diversity of Group A rotavirus before and after the introduction of universal vaccination in LAC. METHODS We conducted a systematic review of studies published in PubMed, Scielo and LILACS. There were considered only LAC countries with rotavirus massive vaccination strategy which had described circulating genotypes data in children under 5 years of age, either for surveillance or vaccine effectiveness purposes, from 2001 to 2017. Systematic review stages were carried out following the recommendations of PRISMA. RESULTS Of the 18 countries that included any of the two licensed rotavirus vaccines in their national schedules since 2006, only 7 (~39%) presented studies of RVA genetic diversity before and after implementation, and met the inclusion criteria. Four of them (Argentina, Brazil, Colombia and Nicaragua) experienced a rapid switch from Wa-like to DS-1-like strains. Also, G1P[8] association, considered the most predominant worldwide in the pre-vaccination era, decreased significantly and was only frequently detected in Venezuela and Nicaragua. No defined pattern of emergence at high frequencies of unusual associations was observed in the post vaccination period, except for some evidence of G9P[4] in Colombia, G3P[6] and G1P[4] in Nicaragua. CONCLUSIONS Even though the evidence shows a DS-1-like change trend, data from studies conducted in Latin America and the Caribbean are diverse and still not sufficient to assess the impact of vaccines on viral ecology or if genetic diversity is influenced by natural mechanisms of fluctuation.
Collapse
Affiliation(s)
- Juan Ignacio Degiuseppe
- Laboratory of Viral Gastroenteritis, INEI-ANLIS "Dr. Carlos G. Malbrán", Avenida Vélez Sársfield 563, Buenos Aires, Argentina.
| | - Juan Andrés Stupka
- Laboratory of Viral Gastroenteritis, INEI-ANLIS "Dr. Carlos G. Malbrán", Avenida Vélez Sársfield 563, Buenos Aires, Argentina
| |
Collapse
|
11
|
Arana A, Jere KC, Chaguza C, Montes M, Alkorta M, Iturriza-Gomara M, Cilla G. Molecular epidemiology of G12 rotavirus strains during eight consecutive epidemic seasons in the Basque Country (North of Spain), 2010–2018. INFECTION GENETICS AND EVOLUTION 2019; 71:67-75. [DOI: 10.1016/j.meegid.2019.03.016] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Revised: 01/31/2019] [Accepted: 03/20/2019] [Indexed: 12/16/2022]
|
12
|
Nirwati H, Donato CM, Mawarti Y, Mulyani NS, Ikram A, Aman AT, Peppelenbosch MP, Soenarto Y, Pan Q, Hakim MS. Norovirus and rotavirus infections in children less than five years of age hospitalized with acute gastroenteritis in Indonesia. Arch Virol 2019; 164:1515-1525. [PMID: 30887229 DOI: 10.1007/s00705-019-04215-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2018] [Accepted: 02/18/2019] [Indexed: 01/19/2023]
Abstract
Rotaviruses and noroviruses are the most important viral causes of acute gastroenteritis in children. While previous studies of acute gastroenteritis in Indonesia mainly focused on rotavirus, here, we investigated the burden and epidemiology of norovirus and rotavirus disease. Children less than five years of age hospitalized with acute gastroenteritis were enrolled in this study from January to December 2015 at three participating hospitals. Rotavirus was detected by enzyme immunoassay (EIA), followed by genotyping by reverse transcription PCR (RT-PCR). Norovirus genogroups were determined by TaqMan-based quantitative RT-PCR. Among 406 enrolled children, 75 (18.47%), 223 (54.93%) and 29 (7.14%) cases were positive for norovirus, rotavirus and both viruses (mixed infections), respectively. Most cases clinically presented with fever, diarrhea, vomiting and some degree of dehydration. The majority (n = 69/75 [92%]) of the noroviruses identified belonged to genogroup II, and several genotypes were identified by sequencing a subset of samples. Among 35 samples tested for rotavirus genotype, the most prevalent genotype was G3P[8] (n = 30/35 [85.6%]). Our study suggests that the burden of norovirus diseases in Indonesian children should not be underestimated. It also shows the emergence of rotavirus genotype G3P[8] in Indonesia.
Collapse
Affiliation(s)
- Hera Nirwati
- Department of Microbiology, Faculty of Medicine, Public Health and Nursing, Universitas Gadjah Mada, Yogyakarta, Indonesia
| | - Celeste M Donato
- Department of Microbiology, Biomedicine Discovery Institute, Monash University, Melbourne, Australia.,Enteric Virus Group, Murdoch Children's Research Institute, Melbourne, Australia
| | - Yuli Mawarti
- Faculty of Medicine, Public Health and Nursing, Universitas Gadjah Mada, Yogyakarta, Indonesia
| | - Nenny S Mulyani
- Department of Child Health, Faculty of Medicine, Public Health and Nursing, Universitas Gadjah Mada, Yogyakarta, Indonesia
| | - Aqsa Ikram
- Department of Gastroenterology and Hepatology, Erasmus MC-University Medical Center, Rotterdam, The Netherlands.,Atta-Ur-Rahman School of Applied Biosciences, National University of Science and Technology, Islamabad, Pakistan
| | - Abu T Aman
- Department of Microbiology, Faculty of Medicine, Public Health and Nursing, Universitas Gadjah Mada, Yogyakarta, Indonesia
| | - Maikel P Peppelenbosch
- Department of Gastroenterology and Hepatology, Erasmus MC-University Medical Center, Rotterdam, The Netherlands
| | - Yati Soenarto
- Department of Child Health, Faculty of Medicine, Public Health and Nursing, Universitas Gadjah Mada, Yogyakarta, Indonesia
| | - Qiuwei Pan
- Department of Gastroenterology and Hepatology, Erasmus MC-University Medical Center, Rotterdam, The Netherlands
| | - Mohamad S Hakim
- Department of Microbiology, Faculty of Medicine, Public Health and Nursing, Universitas Gadjah Mada, Yogyakarta, Indonesia. .,Department of Gastroenterology and Hepatology, Erasmus MC-University Medical Center, Rotterdam, The Netherlands.
| |
Collapse
|
13
|
Luchs A, da Costa AC, Cilli A, Komninakis SCV, Carmona RDCC, Boen L, Morillo SG, Sabino EC, Timenetsky MDCST. Spread of the emerging equine-like G3P[8] DS-1-like genetic backbone rotavirus strain in Brazil and identification of potential genetic variants. J Gen Virol 2018; 100:7-25. [PMID: 30457517 DOI: 10.1099/jgv.0.001171] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
In 2013, the equine-like G3P[8] DS-1-like rotavirus (RVA) strain emerged worldwide. In 2016, this strain was reported in northern Brazil. The aims of the study were to conduct a retrospective genetic investigation to identify the possible entry of these atypical strains in Brazil and to describe their distribution across a representative area of the country. From 2013 to 2017, a total of 4226 faecal samples were screened for RVA by ELISA, PAGE, RT-PCR and sequencing. G3P[8] represented 20.9 % (167/800) of all RVA-positive samples, further subdivided as equine-like G3P[8], DS-1-like (11.0 %; 88/800) and Wa-like G3P[8] (9.9 %; 79/800). Six equine-like G3P[8] DS-1-like samples were selected for whole-genome investigation, confirming the backbone I2-R2-C2-M2-A2-N2-T2-E2-H2. During 2013-2014, Wa-like G3P[8] was predominant and no equine-like G3P[8] DS-1-like was detected. Equine-like G3P[8] DS-1-like was first identified in Paraná in March/2015, suggesting that the strain entered Brazil through the Southern region. Equine-like G3P[8] rapidly spread across the area under surveillance and displayed a marked potential to replace Wa-like G3P[8] strains. Brazilian equine-like G3P[8] DS-1-like strains clustered with contemporary equine-like G3P[8] DS-1-like detected worldwide, but exhibited a distinct NSP2 genotype (N2) compared to the previously reported Amazon equine-like G3P[8] DS-1-like strain (N1). Two distinct NSP4 E2 genotype lineages were also identified. Taken together, these data suggest that different variants of equine-like G3P[8] DS-1-like strains might have been introduced into the country at distinct time points, and co-circulated in the period 2015-2017. The global emergence of equine-like G3P[8] DS-1-like strains, predominantly in countries using the Rotarix vaccine, raises the question of whether vaccines may be inducing selective pressures on zoonotic strains.
Collapse
Affiliation(s)
- Adriana Luchs
- 1Enteric Disease Laboratory, Virology Center, Adolfo Lutz Institute, São Paulo, Brazil
| | - Antonio Charlys da Costa
- 2LIM/46 - Laboratory of Medical Parasitology, Department of Infectious and Parasitic Diseases, College of Medicine, University of São Paulo, São Paulo, Brazil.,3Institute of Tropical Medicine, University of São Paulo, São Paulo, Brazil
| | - Audrey Cilli
- 1Enteric Disease Laboratory, Virology Center, Adolfo Lutz Institute, São Paulo, Brazil
| | - Shirley Cavalcante Vasconcelos Komninakis
- 4Postgraduate Program in Health Science, Faculty of Medicine of ABC, Santo André, Brazil.,5Retrovirology Laboratory, Federal University of São Paulo, São Paulo, São Paulo, Brazil
| | | | - Lais Boen
- 1Enteric Disease Laboratory, Virology Center, Adolfo Lutz Institute, São Paulo, Brazil
| | | | - Ester Cerdeira Sabino
- 2LIM/46 - Laboratory of Medical Parasitology, Department of Infectious and Parasitic Diseases, College of Medicine, University of São Paulo, São Paulo, Brazil.,3Institute of Tropical Medicine, University of São Paulo, São Paulo, Brazil
| | | |
Collapse
|
14
|
Islamuddin M, Khan WH, Gupta S, Tiku VR, Khan N, Akdag AI, Chaudhary S, Upadhyay A, Kumar P, Ghatwala G, Ray P. Surveillance and genetic characterization of rotavirus strains circulating in four states of North Indian children. INFECTION GENETICS AND EVOLUTION 2018; 62:253-261. [DOI: 10.1016/j.meegid.2018.04.030] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2018] [Revised: 04/15/2018] [Accepted: 04/22/2018] [Indexed: 12/16/2022]
|
15
|
Bwogi J, Jere KC, Karamagi C, Byarugaba DK, Namuwulya P, Baliraine FN, Desselberger U, Iturriza-Gomara M. Whole genome analysis of selected human and animal rotaviruses identified in Uganda from 2012 to 2014 reveals complex genome reassortment events between human, bovine, caprine and porcine strains. PLoS One 2017. [PMID: 28640820 PMCID: PMC5480867 DOI: 10.1371/journal.pone.0178855] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Rotaviruses of species A (RVA) are a common cause of diarrhoea in children and the young of various other mammals and birds worldwide. To investigate possible interspecies transmission of RVAs, whole genomes of 18 human and 6 domestic animal RVA strains identified in Uganda between 2012 and 2014 were sequenced using the Illumina HiSeq platform. The backbone of the human RVA strains had either a Wa- or a DS-1-like genetic constellation. One human strain was a Wa-like mono-reassortant containing a DS-1-like VP2 gene of possible animal origin. All eleven genes of one bovine RVA strain were closely related to those of human RVAs. One caprine strain had a mixed genotype backbone, suggesting that it emerged from multiple reassortment events involving different host species. The porcine RVA strains had mixed genotype backbones with possible multiple reassortant events with strains of human and bovine origin.Overall, whole genome characterisation of rotaviruses found in domestic animals in Uganda strongly suggested the presence of human-to animal RVA transmission, with concomitant circulation of multi-reassortant strains potentially derived from complex interspecies transmission events. However, whole genome data from the human RVA strains causing moderate and severe diarrhoea in under-fives in Uganda indicated that they were primarily transmitted from person-to-person.
Collapse
Affiliation(s)
- Josephine Bwogi
- EPI laboratory, Uganda Virus Research Institute, Entebbe, Uganda
- Department of Paediatrics and Child Health, College of Health Sciences, Makerere University, Kampala, Uganda
- * E-mail:
| | - Khuzwayo C. Jere
- Department of Clinical Infection, Microbiology and Immunology, Institute of Infection and Global Health, University of Liverpool, Liverpool, United Kingdom
- Malawi-Liverpool-Wellcome Trust Clinical Research Programme / Department of Medical Laboratory Sciences, University of Malawi, College of Medicine, Blantyre, Malawi
| | - Charles Karamagi
- Department of Paediatrics and Child Health, College of Health Sciences, Makerere University, Kampala, Uganda
| | - Denis K. Byarugaba
- Department of Microbiology, College of Veterinary Medicine and Biosecurity, Makerere University, Kampala, Uganda
| | - Prossy Namuwulya
- EPI laboratory, Uganda Virus Research Institute, Entebbe, Uganda
| | - Frederick N. Baliraine
- Department of Biology and Kinesiology, LeTourneau University, Longview, Texas, United States of America
| | | | - Miren Iturriza-Gomara
- Department of Clinical Infection, Microbiology and Immunology, Institute of Infection and Global Health, University of Liverpool, Liverpool, United Kingdom
| |
Collapse
|
16
|
Moussa A, Fredj MBH, BenHamida-Rebaï M, Fodha I, Boujaafar N, Trabelsi A. Phylogenetic analysis of partial VP7 gene of the emerging human group A rotavirus G12 strains circulating in Tunisia. J Med Microbiol 2017; 66:112-118. [DOI: 10.1099/jmm.0.000420] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Affiliation(s)
- Amal Moussa
- Faculty of Pharmacy, University of Monastir, 5000 Monastir, Tunisia
- LR14SP02, Epidemiology and Immunogenetics of Human Viral Infections, Laboratory of Microbiology, Sahloul University Hospital, 4054 Sousse, Tunisia
| | - Mouna Ben Hadj Fredj
- Faculty of Sciences and Techniques, University of Kairouan, 9100 Kairouan, Tunisia
- LR14SP02, Epidemiology and Immunogenetics of Human Viral Infections, Laboratory of Microbiology, Sahloul University Hospital, 4054 Sousse, Tunisia
| | - Meriam BenHamida-Rebaï
- Faculty of Pharmacy, University of Monastir, 5000 Monastir, Tunisia
- LR14SP02, Epidemiology and Immunogenetics of Human Viral Infections, Laboratory of Microbiology, Sahloul University Hospital, 4054 Sousse, Tunisia
| | - Imene Fodha
- Faculty of Pharmacy, University of Monastir, 5000 Monastir, Tunisia
- LR14SP02, Epidemiology and Immunogenetics of Human Viral Infections, Laboratory of Microbiology, Sahloul University Hospital, 4054 Sousse, Tunisia
| | - Noureddine Boujaafar
- Laboratory of Microbiology, Sahloul University Hospital, 4054 Sousse, Tunisia
- Faculty of Pharmacy, University of Monastir, 5000 Monastir, Tunisia
| | - Abdelhalim Trabelsi
- Faculty of Pharmacy, University of Monastir, 5000 Monastir, Tunisia
- LR14SP02, Epidemiology and Immunogenetics of Human Viral Infections, Laboratory of Microbiology, Sahloul University Hospital, 4054 Sousse, Tunisia
| |
Collapse
|
17
|
Jain S, Thakur N, Vashistt J, Grover N, Krishnan T, Changotra H. Predominance of unusual rotavirus G1P[6] strain in North India: An evidence from hospitalized children and adult diarrheal patients. INFECTION GENETICS AND EVOLUTION 2016; 46:65-70. [PMID: 27806915 DOI: 10.1016/j.meegid.2016.10.021] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2016] [Revised: 10/09/2016] [Accepted: 10/25/2016] [Indexed: 12/16/2022]
Abstract
Group A Rotavirus remains the leading cause of gastroenteritis in children and accounts for 0.2 million fatalities each year; out of which, approximately 47,100 deaths occur in India. In adults also, rotavirus is reported to be responsible for diarrhea severe enough to require hospitalizations. India has recently introduced rotavirus vaccine in the Universal Immunization Programme and Himachal Pradesh became the first Indian state to implement this project. This study is an attempt to provide the pre-vaccination data on rotavirus gastroenteritis burden and circulating genotypes in Himachal Pradesh, India. A total of 607 faecal specimens (247 children ≤5years, 50 older children and 310 adults) from hospitalized diarrheal patients from Himachal Pradesh, India were screened for rotavirus using ELISA and RT-PCR. The positive samples were further G/P genotyped using semi-nested PCR. Rotavirus was detected in 25.2% and 28.3% of samples with ELISA and RT-PCR, respectively. In children, rotavirus frequency was significantly high with positivity in 49.0% cases whereas 14.0% adult samples have rotavirus in them. Genotyping of the positive samples revealed predominance of G1 (66.0%) and P[6] (66.7%) genotypes. The most common G and P combination was G1P[6] (62.8%) followed by G1P[8] (16.5%), G9P[6] (7.4%) and G12P[6] (5.0%). Molecular analysis reveals the belonging of P[6] strains in Lineage 1a. This pre-vaccination data on rotavirus prevalence and diversity would be helpful for assessing the affect of vaccination on the disease burden and its comparison with post-vaccination data of circulating genotypes would help in studying the effect on diversity of rotavirus strains possibly due to vaccine selection pressure.
Collapse
Affiliation(s)
- Swapnil Jain
- Department of Biotechnology and Bioinformatics, Jaypee University of Information Technology, Waknaghat, Solan 173234, Himachal Pradesh, India
| | - Nutan Thakur
- Department of Biotechnology and Bioinformatics, Jaypee University of Information Technology, Waknaghat, Solan 173234, Himachal Pradesh, India
| | - Jitendraa Vashistt
- Department of Biotechnology and Bioinformatics, Jaypee University of Information Technology, Waknaghat, Solan 173234, Himachal Pradesh, India
| | - Neelam Grover
- Department of Pediatrics, Indira Gandhi Medical College, Shimla 171001, Himachal Pradesh, India
| | - Triveni Krishnan
- Division of Virology, National Institute of Cholera and Enteric Diseases (NICED), P-33, C.I.T. Road, Scheme-XM, Beliaghata, Kolkata 700 010, West Bengal, India
| | - Harish Changotra
- Department of Biotechnology and Bioinformatics, Jaypee University of Information Technology, Waknaghat, Solan 173234, Himachal Pradesh, India.
| |
Collapse
|
18
|
Degiuseppe JI, Reale EA, Stupka JA. Rotavirus epidemiology and surveillance before vaccine introduction in Argentina, 2012-2014. J Med Virol 2016; 89:423-428. [PMID: 27487415 DOI: 10.1002/jmv.24650] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/01/2016] [Indexed: 01/11/2023]
Abstract
Group A Rotavirus has been widely described as one of the most important infantile diarrheal pathogens worldwide. In Argentina, it is responsible for over 200,000 acute diarrhea cases and from 30 to 50 deaths annually in children under 5 years. The aim of this study is to analyze frequency, seasonality, age group distribution, and circulating genotypes based on data notified in the 2012-2014 period and in turn to assess the pre-vaccine scenario, considering that rotavirus vaccine was introduced in 2015. Data were taken from the Viral Diarrhea Notification module of the Argentine SNVS-SIVILA surveillance tool. Analyses of circulating genotypes were performed on rotavirus-positive stool specimens by conventional binary characterization of the outermost capsid genes. Overall data showed rotavirus detection in about 25% of samples tested, and higher rates in children under 2 years old were observed. Rotavirus positive cases were distributed according to a typical winter seasonal pattern. A heterogeneous regional pattern of prevalence was also observed, with higher rates detected in the North region. Genotype co-circulation and annual fluctuation were observed. In general, G1P[8], G2P[4], G3P[8], and G12P[8] were the most frequently detected genotypes. This study represents the last survey taken of a population considered to be naïve. J. Med. Virol. 89:423-428, 2017. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Juan Ignacio Degiuseppe
- Laboratorio de Gastroenteritis Virales, Instituto Nacional de Enfermedades Infecciosas (INEI-ANLIS "Dr. Carlos G. Malbrán"), Ciudad Autónoma de Buenos Aires, Argentina
| | - Ezequiel Agustín Reale
- Laboratorio de Gastroenteritis Virales, Instituto Nacional de Enfermedades Infecciosas (INEI-ANLIS "Dr. Carlos G. Malbrán"), Ciudad Autónoma de Buenos Aires, Argentina
| | - Juan Andrés Stupka
- Laboratorio de Gastroenteritis Virales, Instituto Nacional de Enfermedades Infecciosas (INEI-ANLIS "Dr. Carlos G. Malbrán"), Ciudad Autónoma de Buenos Aires, Argentina
| | -
- Laboratorio de Gastroenteritis Virales, Instituto Nacional de Enfermedades Infecciosas (INEI-ANLIS "Dr. Carlos G. Malbrán"), Ciudad Autónoma de Buenos Aires, Argentina
| |
Collapse
|
19
|
Moussa A, Ben Hadj Fredj M, Fodha I, BenHamida-Rebaï M, Kacem S, Argoubi A, Bennour H, Boujaafar N, Trabelsi A. Distribution of rotavirus VP7 and VP4 genotypes circulating in Tunisia from 2009 to 2014: Emergence of the genotype G12. J Med Microbiol 2016; 65:1028-1037. [PMID: 27375269 DOI: 10.1099/jmm.0.000305] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Group A rotavirus (RVA) represents the most important aetiological agent of diarrhoea in children worldwide. From January 2009 to December 2014, a multi-centre study realized through 11 Tunisian cities was undertaken among children aged <5 years consulting or hospitalized for acute gastroenteritis. A total of 1127 faecal samples were collected. All samples were screened by ELISA for the presence of RVA antigen. RVA-positive samples were further analyzed by PAGE and used for G/P-genotyping by semi-nested multiplex RT-PCR. Globally, 270 specimens (24 %) were RVA-positive, with peaks observed annually between November and March. Nine different electropherotypes could be visualized by PAGE, six with a long profile (173 cases) and two with a short one (seven cases). Mixed profiles were detected in two cases. Among the 267 VP7 genotyped strains, the predominant G- genotype was G1 (39.6 %) followed by G3 (22.2 %), G4 (13 %), G9 (11.5 %), G2 (5.2 %) and G12 (5.2 %). Among the 260 VP4 genotyped strains, P[8] genotype was the predominant (74.5 %) followed by P[6] (10.4 %) and P[4] (5.5 %). A total of 257 strains (95.2 %) could be successfully G- and P-genotyped. G1P[8] was the most prevalent combination (34.4 %), followed by G3P[8] (16.3 %), G9P[8] (10.3 %), G4P[8] (8.9 %), G2P[4] (4 %), G12P[6] (2.6 %) and G12P[8] (1.9 %). Uncommon G/Pgenotype combinations, mixed infections and untypeable strains were also detected. This is the first report, in Tunisia, of multiple detection of an emerging human RVA strain, G12 genotype. This study highlighted the need for maintaining active surveillance of emerging strains in Northern Africa.
Collapse
Affiliation(s)
- Amal Moussa
- LR14SP02, Epidemiology and Immunogenetics of Human Viral Infections, Laboratory of Microbiology, Sahloul University Hospital, 4054 Sousse, Tunisia
| | - Mouna Ben Hadj Fredj
- LR14SP02, Epidemiology and Immunogenetics of Human Viral Infections, Laboratory of Microbiology, Sahloul University Hospital, 4054 Sousse, Tunisia.,Faculty of Sciences and Techniques, University of Kairouan, Kairouan, Tunisia
| | - Imene Fodha
- LR14SP02, Epidemiology and Immunogenetics of Human Viral Infections, Laboratory of Microbiology, Sahloul University Hospital, 4054 Sousse, Tunisia.,Faculty of Pharmacy, University of Monastir, Monastir, Tunisia
| | - Meriam BenHamida-Rebaï
- LR14SP02, Epidemiology and Immunogenetics of Human Viral Infections, Laboratory of Microbiology, Sahloul University Hospital, 4054 Sousse, Tunisia.,Faculty of Pharmacy, University of Monastir, Monastir, Tunisia
| | - Saoussen Kacem
- LR14SP02, Epidemiology and Immunogenetics of Human Viral Infections, Laboratory of Microbiology, Sahloul University Hospital, 4054 Sousse, Tunisia.,Faculty of Pharmacy, University of Monastir, Monastir, Tunisia
| | - Aida Argoubi
- LR14SP02, Epidemiology and Immunogenetics of Human Viral Infections, Laboratory of Microbiology, Sahloul University Hospital, 4054 Sousse, Tunisia.,Faculty of Pharmacy, University of Monastir, Monastir, Tunisia
| | - Haifa Bennour
- LR14SP02, Epidemiology and Immunogenetics of Human Viral Infections, Laboratory of Microbiology, Sahloul University Hospital, 4054 Sousse, Tunisia
| | - Noureddine Boujaafar
- Faculty of Pharmacy, University of Monastir, Monastir, Tunisia.,Laboratory of Microbiology, Sahloul University Hospital, 4054 Sousse, Tunisia
| | - Abdelhalim Trabelsi
- Faculty of Pharmacy, University of Monastir, Monastir, Tunisia.,LR14SP02, Epidemiology and Immunogenetics of Human Viral Infections, Laboratory of Microbiology, Sahloul University Hospital, 4054 Sousse, Tunisia
| |
Collapse
|
20
|
de Rougemont A, Kaplon J, Fremy C, Legrand-Guillien MC, Minoui-Tran A, Payan C, Vabret A, Mendes-Martins L, Chouchane M, Maudinas R, Huet F, Dubos F, Hober D, Lazrek M, Bouquignaud C, Decoster A, Alain S, Languepin J, Gillet Y, Lina B, Mekki Y, Morfin-Sherpa F, Guigon A, Guinard J, Foulongne V, Rodiere M, Avettand-Fenoel V, Bonacorsi S, Garbarg-Chenon A, Gendrel D, Lebon P, Lorrot M, Mariani P, Meritet JF, Schnuriger A, Agius G, Beby-Defaux A, Oriot D, Colimon R, Lagathu G, Mory O, Pillet S, Pozzetto B, Stephan JL, Aho S, Pothier P. Clinical severity and molecular characteristics of circulating and emerging rotaviruses in young children attending hospital emergency departments in France. Clin Microbiol Infect 2016; 22:737.e9-737.e15. [PMID: 27287887 DOI: 10.1016/j.cmi.2016.05.025] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2016] [Revised: 05/25/2016] [Accepted: 05/28/2016] [Indexed: 11/18/2022]
Abstract
Group A rotavirus (RVA) is the leading cause of acute gastroenteritis in young children worldwide. A prospective surveillance network has been set up to investigate the virological and clinical features of RVA infections and to detect the emergence of potentially epidemic strains in France. From 2009 to 2014, RVA-positive stool samples were collected from 4800 children <5 years old attending the paediatric emergency units of 16 large hospitals. Rotaviruses were then genotyped by RT-PCR with regard to their outer capsid proteins VP4 and VP7. Genotyping of 4708 RVA showed that G1P[8] strains (62.2%) were predominant. The incidence of G9P[8] (11.5%), G3P[8] (10.4%) and G2P[4] (6.6%) strains varied considerably, whereas G4P[8] (2.7%) strains were circulating mostly locally. Of note, G12P[8] (1.6%) strains emerged during the seasons 2011-12 and 2012-13 with 4.1% and 3.0% prevalence, respectively. Overall, 40 possible zoonotic reassortants, such as G6 (33.3%) and G8 (15.4%) strains, were detected, and were mostly associated with P[6] (67.5%). Analysis of clinical records of 624 hospitalized children and severity scores from 282 of them showed no difference in clinical manifestations or severity in relation to the genotype. The relative stability of RVA genotypes currently co-circulating and the large predominance of P[8] type strains may ensure vaccine effectiveness in France. The surveillance will continue to monitor the emergence of new reassortants that might not respond to current vaccines, all the more so as all genotypes can cause severe infections in infants.
Collapse
Affiliation(s)
- A de Rougemont
- Centre National de Référence des virus entériques, Laboratoire de Virologie, CHU de Dijon, France; UFR des Sciences de Santé, Université de Bourgogne, Dijon, France.
| | - J Kaplon
- Centre National de Référence des virus entériques, Laboratoire de Virologie, CHU de Dijon, France
| | - C Fremy
- Centre National de Référence des virus entériques, Laboratoire de Virologie, CHU de Dijon, France
| | | | | | - C Payan
- Centre Hospitalier Universitaire de Brest, France
| | - A Vabret
- Centre Hospitalier Universitaire de Caen, France
| | | | - M Chouchane
- Centre Hospitalier Universitaire de Dijon, France
| | - R Maudinas
- Centre Hospitalier Universitaire de Dijon, France
| | - F Huet
- UFR des Sciences de Santé, Université de Bourgogne, Dijon, France; Centre Hospitalier Universitaire de Dijon, France
| | - F Dubos
- Centre Hospitalier Régional Universitaire de Lille, France
| | - D Hober
- Centre Hospitalier Régional Universitaire de Lille, France
| | - M Lazrek
- Centre Hospitalier Régional Universitaire de Lille, France
| | - C Bouquignaud
- Groupement des Hôpitaux de l'Institut Catholique de Lille, France
| | - A Decoster
- Groupement des Hôpitaux de l'Institut Catholique de Lille, France
| | - S Alain
- Centre Hospitalier Universitaire de Limoges, France
| | - J Languepin
- Centre Hospitalier Universitaire de Limoges, France
| | | | - B Lina
- Hospices Civils de Lyon, France
| | - Y Mekki
- Hospices Civils de Lyon, France
| | | | - A Guigon
- Centre Hospitalier Universitaire d'Orléans, France
| | - J Guinard
- Centre Hospitalier Universitaire d'Orléans, France
| | - V Foulongne
- Centre Hospitalier Universitaire de Montpellier, France
| | - M Rodiere
- Centre Hospitalier Universitaire de Montpellier, France
| | | | - S Bonacorsi
- Assistance Publique Hôpitaux de Paris, France
| | | | - D Gendrel
- Assistance Publique Hôpitaux de Paris, France
| | - P Lebon
- Assistance Publique Hôpitaux de Paris, France
| | - M Lorrot
- Assistance Publique Hôpitaux de Paris, France
| | - P Mariani
- Assistance Publique Hôpitaux de Paris, France
| | - J-F Meritet
- Assistance Publique Hôpitaux de Paris, France
| | | | - G Agius
- Centre Hospitalier Universitaire de Poitiers, France
| | - A Beby-Defaux
- Centre Hospitalier Universitaire de Poitiers, France
| | - D Oriot
- Centre Hospitalier Universitaire de Poitiers, France
| | - R Colimon
- Centre Hospitalier Universitaire de Rennes, France
| | - G Lagathu
- Centre Hospitalier Universitaire de Rennes, France
| | - O Mory
- Centre Hospitalier Universitaire de Saint-Etienne, France
| | - S Pillet
- Centre Hospitalier Universitaire de Saint-Etienne, France
| | - B Pozzetto
- Centre Hospitalier Universitaire de Saint-Etienne, France
| | - J-L Stephan
- Centre Hospitalier Universitaire de Saint-Etienne, France
| | - S Aho
- Service d'Hygiène Hospitalière, Centre Hospitalier Universitaire de Dijon, France
| | - P Pothier
- Centre National de Référence des virus entériques, Laboratoire de Virologie, CHU de Dijon, France; UFR des Sciences de Santé, Université de Bourgogne, Dijon, France
| |
Collapse
|
21
|
Medici MC, Tummolo F, Martella V, Arcangeletti MC, De Conto F, Chezzi C, Magrì A, Fehér E, Marton S, Calderaro A, Bányai K. Whole genome sequencing reveals genetic heterogeneity of G3P[8] rotaviruses circulating in Italy. INFECTION GENETICS AND EVOLUTION 2016; 40:253-261. [DOI: 10.1016/j.meegid.2016.03.013] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2015] [Revised: 02/29/2016] [Accepted: 03/11/2016] [Indexed: 10/22/2022]
|
22
|
Prevalence and Genetic Diversity of Enteric Viruses in Children with Diarrhea in Ouagadougou, Burkina Faso. PLoS One 2016; 11:e0153652. [PMID: 27092779 PMCID: PMC4836733 DOI: 10.1371/journal.pone.0153652] [Citation(s) in RCA: 61] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2015] [Accepted: 04/01/2016] [Indexed: 02/06/2023] Open
Abstract
Enteric viruses are a major cause of diarrhea in children, especially those under five years old. Identifying the viral agents is critical to the development of effective preventive measures. This study aimed to determine the prevalence and genetic diversity of common enteric viruses in children under five years old in Burkina Faso. Stool samples from children with (n = 263) and without (n = 50) diarrhea disorders were collected in Ouagadougou, Burkina Faso from November 2011 to September 2012. Rotavirus, norovirus, sapovirus, astrovirus, adenovirus and Aichivirus A were detected using real-time or end-point (RT-)PCR. Rotavirus strains were G and P genotyped by multiplex RT-PCR and other viral strains were characterized by sequencing of viral subgenomic segements. At least one viral agent was detected in 85.6% and 72% of the symptomatic and asymptomatic patients, respectively. Rotavirus (63.5%), adenovirus (31.2%) and genogroup II norovirus (18.2%) were the most prevalent viruses in symptomatic patients, but only rotavirus and genogroup II norovirus were significantly associated with diarrhea (OR: 7.9, 95%CI: 3.7-17; OR: 3.5, 95%CI: 1-11.7, respectively). Sapovirus (10.3%), astrovirus (4.9%), genogroup I norovirus (2.7%) and Aichivirus A (0.8%) were less prevalent. The predominant genotype of rotavirus was G9P[8] (36.5%), and the predominant norovirus strain was GII.4 variant 2012 (71.4%). Among sapovirus, the genogroup II (87.5%) predominated. Astrovirus type 1 (41.7%) was the most frequent astrovirus identified. Aichivirus A belonged to the three genotypes (A, B and C). Enteric adenoviruses type 40 and 41 were identified in 10.2% and 5.1% respectively. Several cases of co-infections were detected. The results highlight the high prevalence and the high diversity of enteric viruses in Burkinabe children.
Collapse
|
23
|
Luchs A, Cilli A, Morillo SG, Gregório DDS, de Souza KAF, Vieira HR, Fernandes ADM, Carmona RDCC, Timenetsky MDCST. Detection of the emerging rotavirus G12P[8] genotype at high frequency in brazil in 2014: Successive replacement of predominant strains after vaccine introduction. Acta Trop 2016; 156:87-94. [PMID: 26748357 DOI: 10.1016/j.actatropica.2015.12.008] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2015] [Revised: 12/14/2015] [Accepted: 12/19/2015] [Indexed: 12/12/2022]
Abstract
The continuum characterization of rotavirus (RVA) genotypes is essential to understand how vaccine introduction could impact virus epidemiology. In the present study, an unexpected rapid changing pattern of RVA genotypes distribution in Brazilian population during three followed seasons is described. From January/2012 to December/2014, a total of 3441 fecal specimens were collected from collaborating centers across Southern, Southeastern and Midwest of Brazil. All specimens were screened for RVA using ELISA, and genotyped by RT-PCR. Differences in proportions were tested using Chi-Squares. A p-value of less than 0.05 was considered statistically significant. RVA was detected in 19.7% (677/3441). Among RVA positive cases (n=677), a total of 652 (96.3%) samples were successfully amplified by RT-PCR. G3P[8] remained prevalent in 2012 (37.6%, 69/185) and 2013 (40.1%, 74/186) (χ(2)=0.107, p=0.743), but declined markedly in 2014 (3.5%, 10/281) (χ(2)=71.770, p=0.000). G12P[8] was second highest strain in 2012 (22.7%, 42/185), decrease rapidly in 2013 (2.7%, 5/186) (χ(2)=26.224, p=0.000) and re-emerged as the predominant genotype in 2014 (86.6%, 243/281) (χ(2)=118.299, p=0.000). From July/2014, G12P[8] was the single genotype detected in all regions studied. The sudden emergence, spread and predominance of G12P[8] strain in Brazil, raised the hypothesis of a possible G12 outbreak being in progress. Nationally, the long term decline in gastroenteritis hospitalization observed in the country after RVA vaccine introduction was confirmed. Nevertheless, the sharp increase in diarrhea hospitalization prevalence from 2013 to 2014 observed in Southern and Southeastern regions is consistent with what appears to be an outbreak of G12P[8]. Continued surveillance is needed to verify the effectiveness of the RotarixTM vaccine in Brazil together with potential emergence of unusual genotypes.
Collapse
Affiliation(s)
- Adriana Luchs
- Enteric Disease Laboratory, Virology Centre, Adolfo Lutz Institute, São Paulo, Brazil.
| | - Audrey Cilli
- Enteric Disease Laboratory, Virology Centre, Adolfo Lutz Institute, São Paulo, Brazil
| | | | | | | | - Heloísa Rosa Vieira
- Enteric Disease Laboratory, Virology Centre, Adolfo Lutz Institute, São Paulo, Brazil
| | | | | | | |
Collapse
|
24
|
Tort LFL, Victoria M, Lizasoain A, García M, Berois M, Cristina J, Leite JPG, Gómez MM, Miagostovich MP, Colina R. Detection of Common, Emerging and Uncommon VP4, and VP7 Human Group A Rotavirus Genotypes from Urban Sewage Samples in Uruguay. FOOD AND ENVIRONMENTAL VIROLOGY 2015; 7:342-353. [PMID: 26267835 DOI: 10.1007/s12560-015-9213-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2015] [Accepted: 08/04/2015] [Indexed: 06/04/2023]
Abstract
Environmental approach has proven to be a useful tool for epidemiological studies demonstrating through environmental studies the diversity of viruses circulating in a given population. The aim of this study was to perform a phylogenetic characterization of the group A rotavirus (RVA) glycoprotein (G)- and protease-sensitive (P)-genotypes obtained from sewage samples (n = 116) collected in six cities of Uruguay during March 2011 to April 2013. A worldwide standardized semi-nested multiplex RT-PCR (SNM RT-PCR) protocol directed against VP4 and VP7 genes were conducted for RVA detection and consensual DNA fragments were submitted to nucleotide sequencing. P and/or G genotype was successfully determined by phylogenetic analysis in 61% (n = 37) of the positive samples obtained by SNM RT-PCR (n = 61). The RVA genotypes were as follow: G1 (n = 2), G2 (n = 14), G3 (n = 5), G12 (n = 2), P[4] (n = 4), P[8] (n = 16), and P[3] (n = 2). Interestingly, through phylogenetic analysis, emerging, and uncommon human genotypes could be detected. Results obtained from the comparison of RVA genotypes detected in the current study and Uruguayan RVA strains previously described for contemporary clinical pediatric cases showed that monitoring sewage may be a good screening option for a rapid and economical overview of the circulating genotypes in the surrounding human population and a useful approximation to study RVA epidemiology in a future vaccine monitoring program. The present study represents the first report in Uruguay that describes the phylogenetic diversity of RVA from urban sewage samples.
Collapse
Affiliation(s)
- Luis Fernando Lopez Tort
- Laboratorio de Virología Molecular, Departamento de Ciencias Biológicas, Regional Norte - CENUR Litoral Norte, Universidad de la República, Gral. Rivera 1350, 50000, Salto, Uruguay
| | - Matías Victoria
- Laboratorio de Virología Molecular, Departamento de Ciencias Biológicas, Regional Norte - CENUR Litoral Norte, Universidad de la República, Gral. Rivera 1350, 50000, Salto, Uruguay
| | - Andrés Lizasoain
- Laboratorio de Virología Molecular, Departamento de Ciencias Biológicas, Regional Norte - CENUR Litoral Norte, Universidad de la República, Gral. Rivera 1350, 50000, Salto, Uruguay
| | - Mariana García
- Laboratorio de Virología Molecular, Departamento de Ciencias Biológicas, Regional Norte - CENUR Litoral Norte, Universidad de la República, Gral. Rivera 1350, 50000, Salto, Uruguay
| | - Mabel Berois
- Sección Virología, Facultad de Ciencias, Universidad de la República, Iguá 4225, 11400, Montevideo, Uruguay
| | - Juan Cristina
- Laboratorio de Virología Molecular, Centro de Investigaciones Nucleares, Facultad de Ciencias, Universidad de la República, Iguá 4225, 11400, Montevideo, Uruguay
| | - José Paulo Gagliardi Leite
- Laboratório de Virologia Comparada e Ambiental, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Av. Brasil 4365, Rio de Janeiro, 21040-360, Brazil
| | - Mariela Martínez Gómez
- Laboratório de Virologia Comparada e Ambiental, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Av. Brasil 4365, Rio de Janeiro, 21040-360, Brazil
| | - Marize Pereira Miagostovich
- Laboratório de Virologia Comparada e Ambiental, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Av. Brasil 4365, Rio de Janeiro, 21040-360, Brazil
| | - Rodney Colina
- Laboratorio de Virología Molecular, Departamento de Ciencias Biológicas, Regional Norte - CENUR Litoral Norte, Universidad de la República, Gral. Rivera 1350, 50000, Salto, Uruguay.
| |
Collapse
|
25
|
Neves MAO, Pinheiro HHC, Silva RSU, Linhares AC, Silva LD, Gabbay YB, Silva MCM, Loureiro ECB, Soares LS, Mascarenhas JDP. High prevalence of G12P[8] rotavirus strains in Rio Branco, Acre, Western Amazon, in the post-rotavirus vaccine introduction period. J Med Virol 2015; 88:782-9. [PMID: 26466923 DOI: 10.1002/jmv.24404] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/09/2015] [Indexed: 12/11/2022]
Abstract
The present study aimed to provide a molecular characterization of circulating rotavirus (RVA) strains in Rio Branco, Acre, in the post-rotavirus vaccination period, particularly with regard to the emerging, increasingly prevalent G12P[8] genotype. A total of 488 fecal specimens from diarrheic and non-diarrheic children were obtained between January and December 2012. RVA detection was initially performed using enzyme-linked immunosorbent assay (ELISA) method, followed by reverse-transcription polymerase chain reaction (RT-PCR) using specific primers. RVA was detected in 18.3% (44/241) of the children with acute diarrhea and in 1.2% (3/247) of the non-diarrheic children (P < 0.001), with overall RVA-positivity of 9.6% (47/488). The most common genotype was G2P[4] with 43.2% (19/44) of the diarrheic cases, followed by G12P[8] (27.3%, 12/44), G3P[6] (18.2%, 8/44), G3P[8] (4.5%, 2/44), and G12P[6] (2.3%, 1/44). G12 samples belonged to lineage III and were from children aged 4-52 months. All of these children had acute diarrhea associated with fever (83.3%, 10/12) and vomiting (66.7%, 8/12). Most of the cases occurred in August (58.3%, 7/12), 75% (9/12) of which having received the full vaccination scheme with Rotarix™. For the first time G12 was reported at relative high prevalence in Brazil. Our findings warrant further monitoring studies on the molecular characterization of circulating RVA strains after rotavirus vaccine introduction in Brazil and elsewhere, since the occurrence of either unusual our emerging genotypes may pose a challenge to vaccination strategies.
Collapse
Affiliation(s)
- Mayara A O Neves
- Center for Biological and Health Sciences, University of State of Pará, Pará, Brazil
| | | | - Rita S U Silva
- Municipality Secretary of Health of Rio Branco, Acre, Brazil
| | - Alexandre C Linhares
- Evandro Chagas Institute, Health Surveilance Secretariat, Ministry of Health, Pará, Brazil
| | - Luciana D Silva
- Evandro Chagas Institute, Health Surveilance Secretariat, Ministry of Health, Pará, Brazil
| | - Yvone B Gabbay
- Evandro Chagas Institute, Health Surveilance Secretariat, Ministry of Health, Pará, Brazil
| | - Mônica C M Silva
- Evandro Chagas Institute, Health Surveilance Secretariat, Ministry of Health, Pará, Brazil
| | - Edvaldo C B Loureiro
- Evandro Chagas Institute, Health Surveilance Secretariat, Ministry of Health, Pará, Brazil
| | - Luana S Soares
- Evandro Chagas Institute, Health Surveilance Secretariat, Ministry of Health, Pará, Brazil
| | | |
Collapse
|
26
|
Esona MD, Gautam R, Tam KI, Williams A, Mijatovic-Rustempasic S, Bowen MD. Multiplexed one-step RT-PCR VP7 and VP4 genotyping assays for rotaviruses using updated primers. J Virol Methods 2015; 223:96-104. [PMID: 26231786 DOI: 10.1016/j.jviromet.2015.07.012] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2015] [Revised: 06/23/2015] [Accepted: 07/24/2015] [Indexed: 12/25/2022]
Abstract
The current two-step VP7 and VP4 genotyping RT-PCR assays for rotaviruses have been linked consistently to genotyping failure in an estimated 30% of RVA positive samples worldwide. We have developed a VP7 and VP4 multiplexed one-step genotyping assays using updated primers generated from contemporary VP7 and VP4 sequences. To determine assay specificity and sensitivity, 17 reference virus strains, 6 non-target gastroenteritis viruses and 725 clinical samples carrying the most common VP7 (G1, G2, G3, G4, G9, and G12) and VP4 (P[4], P[6], P[8], P[9] and P[10]) genotypes were tested in this study. All reference RVA strain targets yielded amplicons of the expected sizes and non-target genotypes and gastroenteritis viruses were not detected by either assay. Out of the 725 clinical samples tested, the VP7 and VP4 assays were able to assigned specific genotypes to 711 (98.1%) and 714 (98.5%), respectively. The remaining unassigned samples were re-tested for RVA antigen using EIA and qRT-PCR assays and all were found to be negative. The overall specificity, sensitivity and limit of detection of the VP7 assay were in the ranges of 99.0-100%, 94.0-100% and 8.6×10(1) to 8.6×10(2) copies of RNA/reaction, respectively. For the VP4 assay, the overall specificity, sensitivity and limit of detection assay were in the ranges of 100%, 94.0-100% and ≤1 to 8.6×10(2) copies of RNA/reaction, respectively. Here we report two highly robust, accurate, efficient, affordable and documentable gel-based genotyping systems which are capable of genotyping 97.8% of the six common VP7 and 98.3% of the five common VP4 genotypes of RVA strains which are responsible for approximately 88.2% of all RVA infections worldwide.
Collapse
Affiliation(s)
- Mathew D Esona
- Gastroenteritis and Respiratory Viruses Laboratory Branch, Division of Viral Diseases, NCIRD, Centers for Disease Control and Prevention, Atlanta, GA 30329, USA.
| | - Rashi Gautam
- Gastroenteritis and Respiratory Viruses Laboratory Branch, Division of Viral Diseases, NCIRD, Centers for Disease Control and Prevention, Atlanta, GA 30329, USA
| | - Ka Ian Tam
- Gastroenteritis and Respiratory Viruses Laboratory Branch, Division of Viral Diseases, NCIRD, Centers for Disease Control and Prevention, Atlanta, GA 30329, USA
| | | | - Slavica Mijatovic-Rustempasic
- Gastroenteritis and Respiratory Viruses Laboratory Branch, Division of Viral Diseases, NCIRD, Centers for Disease Control and Prevention, Atlanta, GA 30329, USA
| | - Michael D Bowen
- Gastroenteritis and Respiratory Viruses Laboratory Branch, Division of Viral Diseases, NCIRD, Centers for Disease Control and Prevention, Atlanta, GA 30329, USA
| |
Collapse
|
27
|
Large increase of rotavirus diarrhoea in the hospital setting associated with emergence of G12 genotype in a highly vaccinated population in Nicaragua. Clin Microbiol Infect 2015; 21:603.e1-7. [DOI: 10.1016/j.cmi.2015.01.022] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2014] [Revised: 01/20/2015] [Accepted: 01/25/2015] [Indexed: 02/08/2023]
|
28
|
Ide T, Komoto S, Higo-Moriguchi K, Htun KW, Myint YY, Myat TW, Thant KZ, Thu HM, Win MM, Oo HN, Htut T, Wakuda M, Dennis FE, Haga K, Fujii Y, Katayama K, Rahman S, Nguyen SV, Umeda K, Oguma K, Tsuji T, Taniguchi K. Whole Genomic Analysis of Human G12P[6] and G12P[8] Rotavirus Strains that Have Emerged in Myanmar. PLoS One 2015; 10:e0124965. [PMID: 25938434 PMCID: PMC4418666 DOI: 10.1371/journal.pone.0124965] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2015] [Accepted: 03/20/2015] [Indexed: 11/18/2022] Open
Abstract
G12 rotaviruses are emerging rotavirus strains causing severe diarrhea in infants and young children worldwide. However, the whole genomes of only a few G12 strains have been fully sequenced and analyzed. In this study, we sequenced and characterized the complete genomes of six G12 strains (RVA/Human-tc/MMR/A14/2011/G12P[8], RVA/Human-tc/MMR/A23/2011/G12P[6], RVA/Human-tc/MMR/A25/2011/G12P[8], RVA/Human-tc/MMR/P02/2011/G12P[8], RVA/Human-tc/MMR/P39/2011/G12P[8], and RVA/Human-tc/MMR/P43/2011/G12P[8]) detected in six stool samples from children with acute gastroenteritis in Myanmar. On whole genomic analysis, all six Myanmarese G12 strains were found to have a Wa-like genetic backbone: G12-P[8]-I1-R1-C1-M1-A1-N1-T1-E1-H1 for strains A14, A25, P02, P39, and P43, and G12-P[6]-I1-R1-C1-M1-A1-N1-T1-E1-H1 for strain A23. Phylogenetic analysis showed that most genes of the six strains examined in this study were genetically related to globally circulating human G1, G3, G9, and G12 strains. Of note is that the NSP4 gene of strain A23 exhibited the closest relationship with the cognate genes of human-like bovine strains as well as human strains, suggesting the occurrence of reassortment between human and bovine strains. Furthermore, strains A14, A25, P02, P39, and P43 were very closely related to one another in all the 11 gene segments, indicating derivation of the five strains from a common origin. On the other hand, strain A23 consistently formed distinct clusters as to all the 11 gene segments, indicating a distinct origin of strain A23 from that of strains A14, A25, P02, P39, and P43. To our knowledge, this is the first report on whole genome-based characterization of G12 strains that have emerged in Myanmar. Our observations will provide important insights into the evolutionary dynamics of spreading G12 rotaviruses in Asia.
Collapse
Affiliation(s)
- Tomihiko Ide
- Department of Virology and Parasitology, Fujita Health University School of Medicine, Toyoake, Aichi, Japan
| | - Satoshi Komoto
- Department of Virology and Parasitology, Fujita Health University School of Medicine, Toyoake, Aichi, Japan
- * E-mail:
| | - Kyoko Higo-Moriguchi
- Department of Virology and Parasitology, Fujita Health University School of Medicine, Toyoake, Aichi, Japan
| | - Khaing Win Htun
- Nay Pyi Taw General Hospital (Central Myanmar), Nay Pyi Taw, Myanmar
| | - Yi Yi Myint
- Department of Medical Research (Upper Myanmar), Pyin Oo Lwin, Myanmar
| | | | - Kyaw Zin Thant
- Department of Medical Research (Lower Myanmar), Yangon, Myanmar
| | - Hlaing Myat Thu
- Department of Medical Research (Lower Myanmar), Yangon, Myanmar
| | - Mo Mo Win
- Department of Medical Research (Lower Myanmar), Yangon, Myanmar
| | - Htun Naing Oo
- Department of Traditional Medicine (Central Myanmar), Nay Pyi Taw, Myanmar
| | - Than Htut
- Ministry of Health (Central Myanmar), Nay Pyi Taw, Myanmar
| | - Mitsutaka Wakuda
- Department of Virology and Parasitology, Fujita Health University School of Medicine, Toyoake, Aichi, Japan
| | - Francis Ekow Dennis
- Department of Virology II, National Institute of Infectious Diseases, Musashi-Murayama, Tokyo, Japan
- Department of Electron Microscopy and Histopathology, Noguchi Memorial Institute for Medical Research, College of Health Sciences, University of Ghana, Legon, Ghana
| | - Kei Haga
- Department of Virology II, National Institute of Infectious Diseases, Musashi-Murayama, Tokyo, Japan
| | - Yoshiki Fujii
- Department of Virology II, National Institute of Infectious Diseases, Musashi-Murayama, Tokyo, Japan
| | - Kazuhiko Katayama
- Department of Virology II, National Institute of Infectious Diseases, Musashi-Murayama, Tokyo, Japan
| | - Shofiqur Rahman
- Immunology Research Institute in Gifu, EW Nutrition Japan, Gifu, Japan
| | - Sa Van Nguyen
- Immunology Research Institute in Gifu, EW Nutrition Japan, Gifu, Japan
| | - Kouji Umeda
- Immunology Research Institute in Gifu, EW Nutrition Japan, Gifu, Japan
| | - Keiji Oguma
- Department of Bacteriology, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama, Japan
| | - Takao Tsuji
- Department of Microbiology, Fujita Health University School of Medicine, Toyoake, Aichi, Japan
| | - Koki Taniguchi
- Department of Virology and Parasitology, Fujita Health University School of Medicine, Toyoake, Aichi, Japan
| |
Collapse
|
29
|
Tiku VR, Sharma S, Verma A, Kumar P, Raghavendhar S, Aneja S, Paul VK, Bhan MK, Ray P. Rotavirus diversity among diarrheal children in Delhi, India during 2007-2012. Vaccine 2015; 32 Suppl 1:A62-7. [PMID: 25091683 DOI: 10.1016/j.vaccine.2014.03.005] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Rotavirus is the leading cause of severe gastroenteritis in young children worldwide and is responsible for around 100,000 deaths in India annually. Vaccination against rotavirus (RV) is a high priority: 'ROTAVAC' an indigenous vaccine will soon be licensed in India. Surveillance to determine the impact of vaccines on emerging RV strains is required. In this study we compared the pattern of RV strains circulating in Delhi over a 5 year period with the strains over the past 12 years. The most commonly detected G genotypes were G1 (22.4%), G2 (17.2%), and G9 (25.2%) with P[4] (25.5%), P[6] (20%) and P[8] (16.9%) specificity. G12 genotype was found to be the fourth common G-type with 14.8% prevalence. Among the G-P combinations; G1P[8], G2P[4], G9P[8] and G12P[6] were detected at 7.2%, 7.2%, 5.2% and 10%, respectively. Of note, G9P[4] and G2P[6] that were rarely detected during 2000-2007 in Delhi, were observed quite frequently with prevalence of 6.5% and 3.4%, respectively. In total, 16 different G-P combinations were detected in the present study demonstrating the rich diversity of rotavirus strains in Delhi. Our data from the 12 year period indicate wide circulation of G1 and G9 genotypes in combination with P[8], G2 with P[4] and G12 with P[6] with high frequency of RV strains having rare G-P combinations in Delhi. Since the indigenous vaccine 'ROTAVAC' has a monovalent formulation, the impact of vaccines on strains and the effect of strain diversity on the efficacy of the vaccine should be monitored.
Collapse
Affiliation(s)
- Vasundhara Razdan Tiku
- Department of Pediatrics, All India Institute of Medical Sciences, New Delhi 110029, India
| | - Sumit Sharma
- Department of Pediatrics, All India Institute of Medical Sciences, New Delhi 110029, India
| | - Anil Verma
- Department of Pediatrics, All India Institute of Medical Sciences, New Delhi 110029, India
| | - Praveen Kumar
- Kalawati Saran Children's Hospital, Lady Hardinge Medical College, New Delhi 110001, India
| | - Siva Raghavendhar
- Department of Pediatrics, All India Institute of Medical Sciences, New Delhi 110029, India
| | - Satinder Aneja
- Kalawati Saran Children's Hospital, Lady Hardinge Medical College, New Delhi 110001, India
| | - Vinod Kumar Paul
- Department of Pediatrics, All India Institute of Medical Sciences, New Delhi 110029, India
| | - Maharaj Kishan Bhan
- Department of Pediatrics, All India Institute of Medical Sciences, New Delhi 110029, India
| | - Pratima Ray
- Department of Biotechnology, Faculty of Science, Jamia Hamdard, Hamdard Nagar New Delhi 110062, India.
| |
Collapse
|
30
|
Silva FDF, Espinoza LRL, Tonietti PO, Barbosa BRP, Gregori F. Whole-genomic analysis of 12 porcine group A rotaviruses isolated from symptomatic piglets in Brazil during the years of 2012-2013. INFECTION GENETICS AND EVOLUTION 2015; 32:239-54. [PMID: 25796358 DOI: 10.1016/j.meegid.2015.03.016] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2014] [Revised: 03/11/2015] [Accepted: 03/12/2015] [Indexed: 11/18/2022]
Abstract
Group A rotaviruses (RVAs) are leading causes of viral diarrhea in children and in the young of many animal species, particularly swine. In the current study, porcine RVAs were found in fecal specimens from symptomatic piglets on 4 farms in Brazil during the years of 2012-2013. Using RT-PCR, Sanger nucleotide sequencing, and phylogenetic analyses, the whole genomes of 12 Brazilian porcine RVA strains were analyzed. Specifically, the full-length open reading frame (ORF) sequences were determined for the NSP2-, NSP3-, and VP6-coding genes, and partial ORF sequences were determined for the VP1-, VP2-, VP3-, VP4-, VP7-, NSP1-, NSP4-, and NSP5/6-coding genes. The results indicate that all 12 strains had an overall porcine-RVA-like backbone with most segments being designated as genotype 1, with the exception of the VP6- and NSP1-coding genes, which were genotypes I5 and A8, respectively. These results add to our growing understanding of porcine RVA genetic diversity and will provide a platform for monitoring the role of animals as genetic reservoirs of emerging human RVAs strains.
Collapse
Affiliation(s)
- Fernanda D F Silva
- Department of Preventive Veterinary Medicine and Animal Health, College of Veterinary Medicine, University of São Paulo, Av. Professor Dr. Orlando Marques de Paiva, 87, 05508-270 São Paulo, SP, Brazil.
| | - Luis R L Espinoza
- Department of Preventive Veterinary Medicine and Animal Health, College of Veterinary Medicine, University of São Paulo, Av. Professor Dr. Orlando Marques de Paiva, 87, 05508-270 São Paulo, SP, Brazil.
| | - Paloma O Tonietti
- Department of Preventive Veterinary Medicine and Animal Health, College of Veterinary Medicine, University of São Paulo, Av. Professor Dr. Orlando Marques de Paiva, 87, 05508-270 São Paulo, SP, Brazil.
| | - Bruna R P Barbosa
- Department of Preventive Veterinary Medicine and Animal Health, College of Veterinary Medicine, University of São Paulo, Av. Professor Dr. Orlando Marques de Paiva, 87, 05508-270 São Paulo, SP, Brazil.
| | - Fabio Gregori
- Department of Preventive Veterinary Medicine and Animal Health, College of Veterinary Medicine, University of São Paulo, Av. Professor Dr. Orlando Marques de Paiva, 87, 05508-270 São Paulo, SP, Brazil.
| |
Collapse
|
31
|
Delogu R, Ianiro G, Camilloni B, Fiore L, Ruggeri FM. Unexpected spreading of G12P[8] rotavirus strains among young children in a small area of central Italy. J Med Virol 2015; 87:1292-302. [PMID: 25758365 DOI: 10.1002/jmv.24180] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/02/2015] [Indexed: 11/09/2022]
Abstract
Rotavirus gastroenteritis is associated mainly with the five genotypes G1,3,4,9P[8] and G2P[4] that are common worldwide, but emerging strains including G6, G8, and G12 are also reported sporadically. G12P[8] rotavirus was observed unexpectedly to spread in a limited area of Italy during the rotavirus surveillance season 2012-2013. All strains were genotyped for VP7 and VP4 and subjected to phylogenetic analysis. Amino acid sequences of antigenic regions were compared with vaccine and field strains. G12P[8] strains were detected in the stools of 52 of 69 (75%) children infected with rotavirus in the central Italian region of Umbria. All G12 strains belonged to lineage III, and presented the P[8] genotype. Sequence analysis showed close nucleotide identity of both VP4 and VP7 genes among Umbria G12P[8] strains. The VP7 gene was also similar to other G12 strains circulating in different years and countries, and the VP4 gene was closely related to other local and global P[8] strains possessing different G-types. Overall findings suggest either the introduction and evolution of a G12 VP7 gene into the local Wa-like rotavirus population or the spreading of a strain novel for the area. Comparison of the VP8* and VP7 antigenic regions showed high conservation between the amino acid sequences of Umbria G12P[8] strains, and revealed various substitutions in the VP8* antigenic regions between the Italian G12P[8] strains and RotaTeq™ and Rotarix™ vaccine strains. The sudden and unexpected emergence of G12P[8] rotavirus confirms that these strains have the potential to become a sixth common genotype across the world.
Collapse
Affiliation(s)
- Roberto Delogu
- National Center for Research & Evaluation of Immunobiologicals, Istituto Superiore di Sanità, Rome, Italy
| | - Giovanni Ianiro
- Department of Veterinary Public Health and Food Safety, Istituto Superiore di Sanità, Rome, Italy
| | - Barbara Camilloni
- Department of Experimental Medicine, University of Perugia, Perugia, Italy
| | - Lucia Fiore
- National Center for Research & Evaluation of Immunobiologicals, Istituto Superiore di Sanità, Rome, Italy
| | - Franco Maria Ruggeri
- Department of Veterinary Public Health and Food Safety, Istituto Superiore di Sanità, Rome, Italy
| |
Collapse
|
32
|
Tort LFL, Victoria M, Lizasoain A A, Castells M, Maya L, Gómez MM, Arreseigor E, López P, Cristina J, Leite JPG, Colina R. Molecular epidemiology of group a rotavirus among children admitted to hospital in Salto, Uruguay, 2011-2012: First detection of the emerging genotype G12. J Med Virol 2015; 87:754-63. [DOI: 10.1002/jmv.24123] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/11/2014] [Indexed: 12/13/2022]
Affiliation(s)
| | - Matías Victoria
- Molecular Virology Laboratory, North Regional; University of Republic; Salto Uruguay
| | - Andrés Lizasoain A
- Molecular Virology Laboratory, North Regional; University of Republic; Salto Uruguay
| | - Matías Castells
- Molecular Virology Laboratory, North Regional; University of Republic; Salto Uruguay
| | - Leticia Maya
- Molecular Virology Laboratory, North Regional; University of Republic; Salto Uruguay
| | - Mariela Martínez Gómez
- Laboratory of Comparative and Environmental Virology; Oswaldo Cruz Institute; Rio de Janeiro Brazil
| | | | - Patricia López
- Pediatric Unit of Regional Public Hospital; Salto Uruguay
| | - Juan Cristina
- Molecular Virology Laboratory, Faculty of Sciences; University of Republic; Montevideo Uruguay
| | | | - Rodney Colina
- Molecular Virology Laboratory, North Regional; University of Republic; Salto Uruguay
| |
Collapse
|
33
|
Page AL, Jusot V, Mamaty AA, Adamou L, Kaplon J, Pothier P, Djibo A, Manzo ML, Toure B, Langendorf C, Collard JM, Grais RF. Rotavirus surveillance in urban and rural areas of Niger, April 2010-March 2012. Emerg Infect Dis 2014; 20:573-80. [PMID: 24655441 PMCID: PMC3966376 DOI: 10.3201/eid2004.131328] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Knowledge of rotavirus epidemiology is necessary to make informed decisions about vaccine introduction and to evaluate vaccine impact. During April 2010–March 2012, rotavirus surveillance was conducted among 9,745 children <5 years of age in 14 hospitals/health centers in Niger, where rotavirus vaccine has not been introduced. Study participants had acute watery diarrhea and moderate to severe dehydration, and 20% of the children were enrolled in a nutrition program. Of the 9,745 children, 30.6% were rotavirus positive. Genotyping of a subset of positive samples showed a variety of genotypes during the first year, although G2P[4] predominated. G12 genotypes, including G12P[8], which has emerged as a predominant strain in western Africa, represented >80% of isolates during the second year. Hospitalization and death rates and severe dehydration among rotavirus case-patients did not differ during the 2 years. The emergence of G12P[8] warrants close attention to the characteristics of associated epidemics and possible prevention measures.
Collapse
|
34
|
Durmaz R, Kalaycioglu AT, Acar S, Bakkaloglu Z, Karagoz A, Korukluoglu G, Ertek M, Torunoglu MA. Prevalence of rotavirus genotypes in children younger than 5 years of age before the introduction of a universal rotavirus vaccination program: report of rotavirus surveillance in Turkey. PLoS One 2014; 9:e113674. [PMID: 25437502 PMCID: PMC4249891 DOI: 10.1371/journal.pone.0113674] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2014] [Accepted: 10/29/2014] [Indexed: 02/01/2023] Open
Abstract
Background Group A rotaviruses are the most common causative agent of acute gastroenteritis among children less than 5 years of age throughout the world. This sentinel surveillance study was aimed to obtain baseline data on the rotavirus G and P genotypes across Turkey before the introduction of a universal rotavirus vaccination program. Methods Rotavirus antigen-positive samples were collected from 2102 children less than 5 years of age who attended hospitals participating in the Turkish Rotavirus Surveillance Network. Rotavirus antigen was detected in the laboratories of participating hospitals by commercial serological tests such as latex agglutination, immunochromatographic test or enzyme immunoassay. Rotavirus G and P genotypes were determined by reverse transcription polymerase chain reaction (RT-PCR) using consensus primers detecting the VP7 and VP4 genes, followed by semi-nested type-specific multiplex PCR. Results RT-PCR found rotavirus RNA in 1644 (78.2%) of the samples tested. The highest rate of rotavirus positivity (38.7%) was observed among children in the 13 to 24 month age group, followed by children in the age group of 25 to 36 months (28.3%). A total of eight different G types, six different P types, and 42 different G–P combinations were obtained. Four common G types (G1, G2, G3, and G9) and two common P types (P[8] and P[4]) accounted for 95.1% and 98.8% of the strains, respectively. G9P[8] was the most common G/P combination found in 40.5% of the strains followed by G1P[8] (21.6%), G2P[8] (9.3%), G2P[4] (6.5%), G3P[8] (3.5%), and finally, G4P[8] (3.4%). These six common genotypes included 83.7% of the strains tested in this study. The rate of uncommon genotypes was 14%. Conclusion The majority of the strains analyzed belonged to the G1–G4 and G9 genotypes, suggesting high coverage of current rotavirus vaccines. This study also demonstrates a dramatic increase in G9 genotype across the country.
Collapse
Affiliation(s)
- Riza Durmaz
- Molecular Microbiology Research and Applied Laboratory, Public Health Agency of Turkey, Ankara, Turkey
- Department of Medical Microbiology, Faculty of Medicine Yıldırım Beyazıt University, Ankara, Turkey
- * E-mail:
| | - Atila Taner Kalaycioglu
- Molecular Microbiology Research and Applied Laboratory, Public Health Agency of Turkey, Ankara, Turkey
| | - Sumeyra Acar
- Molecular Microbiology Research and Applied Laboratory, Public Health Agency of Turkey, Ankara, Turkey
| | - Zekiye Bakkaloglu
- Molecular Microbiology Research and Applied Laboratory, Public Health Agency of Turkey, Ankara, Turkey
| | - Alper Karagoz
- Molecular Microbiology Research and Applied Laboratory, Public Health Agency of Turkey, Ankara, Turkey
| | - Gulay Korukluoglu
- Virology Reference Central Laboratory, Public Health Agency of Turkey, Ankara, Turkey
| | - Mustafa Ertek
- Molecular Microbiology Research and Applied Laboratory, Public Health Agency of Turkey, Ankara, Turkey
| | - Mehmet Ali Torunoglu
- Molecular Microbiology Research and Applied Laboratory, Public Health Agency of Turkey, Ankara, Turkey
| | | |
Collapse
|
35
|
Gómez MM, Resque HR, Volotão EDM, Rose TL, Figueira Marques da Silva M, Heylen E, Zeller M, Matthijnssens J, Leite JPG. Distinct evolutionary origins of G12P[8] and G12P[9] group A rotavirus strains circulating in Brazil. INFECTION GENETICS AND EVOLUTION 2014; 28:385-8. [DOI: 10.1016/j.meegid.2014.04.007] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2014] [Revised: 04/04/2014] [Accepted: 04/08/2014] [Indexed: 12/12/2022]
|
36
|
Review of global rotavirus strain prevalence data from six years post vaccine licensure surveillance: is there evidence of strain selection from vaccine pressure? INFECTION GENETICS AND EVOLUTION 2014; 28:446-61. [PMID: 25224179 DOI: 10.1016/j.meegid.2014.08.017] [Citation(s) in RCA: 168] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2014] [Revised: 08/13/2014] [Accepted: 08/14/2014] [Indexed: 11/23/2022]
Abstract
Comprehensive reviews of pre licensure rotavirus strain prevalence data indicated the global importance of six rotavirus genotypes, G1P[8], G2P[4], G3P[8], G4P[8], G9P[8] and G12P[8]. Since 2006, two vaccines, the monovalent Rotarix (RV1) and the pentavalent RotaTeq (RV5) have been available in over 100 countries worldwide. Of these, 60 countries have already introduced either RV1 or RV5 in their national immunization programs. Post licensure vaccine effectiveness is closely monitored worldwide. This review aimed at describing the global changes in rotavirus strain prevalence over time. The genotype distribution of the nearly 47,000 strains that were characterized during 2007-2012 showed similar picture to that seen in the preceding period. An intriguing finding was the transient predominance of heterotypic strains, mainly in countries using RV1. Unusual and novel antigen combinations continue to emerge, including some causing local outbreaks, even in vaccinated populations. In addition, vaccine strains have been found in both vaccinated infants and their contacts and there is evidence for genetic interaction between vaccine and wild-type strains. In conclusion, the post-vaccine introduction strain prevalence data do not show any consistent pattern indicative of selection pressure resulting from vaccine use, although the increased detection rate of heterotypic G2P[4] strains in some countries following RV1 vaccination is unusual and this issue requires further monitoring.
Collapse
|
37
|
Komoto S, Wandera Apondi E, Shah M, Odoyo E, Nyangao J, Tomita M, Wakuda M, Maeno Y, Shirato H, Tsuji T, Ichinose Y, Taniguchi K. Whole genomic analysis of human G12P[6] and G12P[8] rotavirus strains that have emerged in Kenya: identification of porcine-like NSP4 genes. INFECTION GENETICS AND EVOLUTION 2014; 27:277-93. [PMID: 25111611 DOI: 10.1016/j.meegid.2014.08.002] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2014] [Revised: 07/24/2014] [Accepted: 08/01/2014] [Indexed: 02/03/2023]
Abstract
G12 rotaviruses are globally emerging rotavirus strains causing severe childhood diarrhea. However, the whole genomes of only a few G12 strains have been fully sequenced and analyzed, of which only one G12P[4] and one G12P[6] are from Africa. In this study, we sequenced and characterized the complete genomes of three G12 strains (RVA/Human-tc/KEN/KDH633/2010/G12P[6], RVA/Human-tc/KEN/KDH651/2010/G12P[8], and RVA/Human-tc/KEN/KDH684/2010/G12P[6]) identified in three stool specimens from children with acute diarrhea in Kenya, Africa. On whole genomic analysis, all three Kenyan G12 strains were found to have a Wa-like genetic backbone: G12-P[6]-I1-R1-C1-M1-A1-N1-T1-E1-H1 (strains KDH633 and KDH684) and G12-P[8]-I1-R1-C1-M1-A1-N1-T1-E1-H1 (strain KDH651). Phylogenetic analysis showed that most genes of the three strains examined in this study were genetically related to globally circulating human G1, G9, and G12 strains. Of note is that the NSP4 genes of strains KDH633 and KDH684 appeared to be of porcine origin, suggesting the occurrence of reassortment between human and porcine strains. Furthermore, strains KDH633 and KDH684 were very closely related to each other in all the 11 gene segments, indicating derivation of the two strains from a common origin. On the other hand, strain KDH651 consistently formed distinct clusters of 10 of the 11 gene segments (VP1-2, VP4, VP6-7, and NSP1-5), indicating a distinct origin of strain KDH651 from that of strains KDH633 and KDH684. To our knowledge, this is the first report on whole genome-based characterization of G12 strains that have emerged in Kenya. Our observations will provide important insights into the evolutionary dynamics of emerging G12 rotaviruses in Africa.
Collapse
Affiliation(s)
- Satoshi Komoto
- Department of Virology and Parasitology, Fujita Health University School of Medicine, Toyoake, Aichi 470-1192, Japan.
| | - Ernest Wandera Apondi
- Kenya Research Station, Institute of Tropical Medicine (NEKKEN), Nagasaki University, Nairobi 19993-00202, Kenya
| | - Mohammad Shah
- Kenya Research Station, Institute of Tropical Medicine (NEKKEN), Nagasaki University, Nairobi 19993-00202, Kenya
| | - Erick Odoyo
- Kenya Research Station, Institute of Tropical Medicine (NEKKEN), Nagasaki University, Nairobi 19993-00202, Kenya
| | - James Nyangao
- Center for Virus Research, Kenya Medical Research Institute (KEMRI), Nairobi 54840-00200, Kenya
| | - Mayuko Tomita
- Department of Virology and Parasitology, Fujita Health University School of Medicine, Toyoake, Aichi 470-1192, Japan
| | - Mitsutaka Wakuda
- Department of Virology and Parasitology, Fujita Health University School of Medicine, Toyoake, Aichi 470-1192, Japan
| | - Yoshimasa Maeno
- Department of Virology and Parasitology, Fujita Health University School of Medicine, Toyoake, Aichi 470-1192, Japan
| | - Haruko Shirato
- Department of Virology II, National Institute of Infectious Diseases, Musashi-Murayama, Tokyo 208-0011, Japan
| | - Takao Tsuji
- Department of Microbiology, Fujita Health University School of Medicine, Toyoake, Aichi 470-1192, Japan
| | - Yoshio Ichinose
- Kenya Research Station, Institute of Tropical Medicine (NEKKEN), Nagasaki University, Nairobi 19993-00202, Kenya
| | - Koki Taniguchi
- Department of Virology and Parasitology, Fujita Health University School of Medicine, Toyoake, Aichi 470-1192, Japan
| |
Collapse
|
38
|
Mandile MG, Esteban LE, Argüelles MH, Mistchenko A, Glikmann G, Castello AA. Surveillance of group A Rotavirus in Buenos Aires 2008-2011, long lasting circulation of G2P[4] strains possibly linked to massive monovalent vaccination in the region. J Clin Virol 2014; 60:282-9. [PMID: 24875137 DOI: 10.1016/j.jcv.2014.04.022] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2014] [Revised: 03/27/2014] [Accepted: 04/25/2014] [Indexed: 02/05/2023]
Abstract
BACKGROUND Group A rotaviruses (RVA) are the most frequent single etiological agents of severe diarrhea in infants. Since 2006 RVA vaccines have been introduced in national schedules of middle and high income countries with substantial declines in rotavirus associated disease burden. However, surveillance must be maintained to, eventually, detect emerging types or variants selected by the new pressure imposed by vaccination. OBJECTIVES To analyze the molecular epidemiology of group A rotavirus after vaccine introduction in the region in the context of data from more than 15 years of continuous surveillance in Buenos Aires. STUDY DESIGN RVA positive diarrhea samples collected in Buenos Aires from 2008 to 2011 were genotyped by RT-PCR. Selected samples were sequenced to gain insight on evolution of common and globally emerging human RVA strains. RESULTS Lineage III G12P[8] strain emerged in 2008 in Buenos Aires and shared co-dominancy with G3 strains during 2009. An atypical long lasting circulation of G2P[4] strains since 2004 reached rates around 80% in 2011 in Buenos Aires. Sequencing of the VP7 and VP4 genes of representative G2P[4] isolates suggests Brazil as the origin of the 2010-2011 strains. CONCLUSIONS Globally emergent G12 lineage III strains could be established as dominant strains in a very populated area in two years since emergence. In this work it was also shown that the persistence of G2P[4] strains during 8 years could be related to massive immunization with the monovalent vaccine in the region.
Collapse
Affiliation(s)
- Marcelo G Mandile
- Laboratorio de Inmunología y Virología, Universidad Nacional de Quilmes, Roque Sáenz Peña 352, Bernal 1876, Argentina.
| | - Laura E Esteban
- Laboratorio de Inmunología y Virología, Universidad Nacional de Quilmes, Roque Sáenz Peña 352, Bernal 1876, Argentina
| | - Marcelo H Argüelles
- Laboratorio de Inmunología y Virología, Universidad Nacional de Quilmes, Roque Sáenz Peña 352, Bernal 1876, Argentina
| | - Alicia Mistchenko
- Laboratorio de Virología, Hospital de Niños Ricardo Gutiérrez, Sánchez de Bustamante 1330, Buenos Aires 1425, Argentina
| | - Graciela Glikmann
- Laboratorio de Inmunología y Virología, Universidad Nacional de Quilmes, Roque Sáenz Peña 352, Bernal 1876, Argentina
| | - Alejandro A Castello
- Laboratorio de Inmunología y Virología, Universidad Nacional de Quilmes, Roque Sáenz Peña 352, Bernal 1876, Argentina
| |
Collapse
|
39
|
da Silva Soares L, de Fátima Dos Santos Guerra S, do Socorro Lima de Oliveira A, da Silva Dos Santos F, de Fátima Costa de Menezes EM, Mascarenhas JDP, Linhares AC. Diversity of rotavirus strains circulating in Northern Brazil after introduction of a rotavirus vaccine: high prevalence of G3P[6] genotype. J Med Virol 2013; 86:1065-72. [PMID: 24136444 DOI: 10.1002/jmv.23797] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/29/2013] [Indexed: 12/29/2022]
Abstract
Rotavirus A (RVA) is the most common cause of severe acute gastroenteritis in infants and young children worldwide, causing 453,000 deaths annually. In Brazil, the most frequent genotype identified was G1 during almost three decades in the pre-vaccination period; however, after anti-rotavirus vaccine introduction, there was a predominance of G2 genotype. The aim of this study was to determine the G and P genotypes of rotaviruses isolated from children under 5 years of age with acute gastroenteritis in the Northern region of Brazil, and discuss the emergence of G3P[6] genotype. A total of 783 stool specimens were obtained between January 2011 and March 2012. RVA antigen was detected in 33% (272/783) of samples using a commercial enzyme-linked immunosorbent assay and type-specificity was determined by reverse-transcription polymerase chain reaction. The most common binary combination was G2P[4], representing 41% of cases, followed by G3P[6] (15%), G1P[8] (8%), G3P[8] (4%), G9P[8] (3%), and G12P[6] (2%). G3P[6] strains were analyzed further and phylogenetic analysis of VP7 gene showed that G3 strains clustered into lineage I and showed a high degree of amino acid identity with vaccine strain RV3 (95.1-95.6%). For VP4 sequences, G3P[6] clustered into lineage Ia. It was demonstrated by the first time the emergence of unusual genotype G3P[6] in the Amazon region of Brazil. This genotype shares neither VP7 nor VP4 specificity with the used vaccine and may represent a challenge to vaccination strategies. A continuous monitoring of circulating strains is therefore needed during the post-vaccine era in Brazil.
Collapse
Affiliation(s)
- Luana da Silva Soares
- Virology Section, Evandro Chagas Institute, Health Surveillance Secretariat, Brazilian Ministry of Health, Brazil
| | | | | | | | | | | | | |
Collapse
|
40
|
VP8∗P[8] lineages of group A rotaviruses circulating over 20years in Brazil: Proposal of six different sub-lineages for P[8]-3 clade. INFECTION GENETICS AND EVOLUTION 2013; 16:200-5. [DOI: 10.1016/j.meegid.2013.01.004] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2012] [Revised: 11/29/2012] [Accepted: 01/02/2013] [Indexed: 12/12/2022]
|
41
|
Vega CG, Bok M, Vlasova AN, Chattha KS, Gómez-Sebastián S, Nuñez C, Alvarado C, Lasa R, Escribano JM, Garaicoechea LL, Fernandez F, Bok K, Wigdorovitz A, Saif LJ, Parreño V. Recombinant monovalent llama-derived antibody fragments (VHH) to rotavirus VP6 protect neonatal gnotobiotic piglets against human rotavirus-induced diarrhea. PLoS Pathog 2013; 9:e1003334. [PMID: 23658521 PMCID: PMC3642062 DOI: 10.1371/journal.ppat.1003334] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2012] [Accepted: 03/18/2013] [Indexed: 12/22/2022] Open
Abstract
Group A Rotavirus (RVA) is the leading cause of severe diarrhea in children. The aims of the present study were to determine the neutralizing activity of VP6-specific llama-derived single domain nanoantibodies (VHH nanoAbs) against different RVA strains in vitro and to evaluate the ability of G6P[1] VP6-specific llama-derived single domain nanoantibodies (VHH) to protect against human rotavirus in gnotobiotic (Gn) piglets experimentally inoculated with virulent Wa G1P[8] rotavirus. Supplementation of the daily milk diet with 3B2 VHH clone produced using a baculovirus vector expression system (final ELISA antibody -Ab- titer of 4096; virus neutralization -VN- titer of 256) for 9 days conferred full protection against rotavirus associated diarrhea and significantly reduced virus shedding. The administration of comparable levels of porcine IgG Abs only protected 4 out of 6 of the animals from human RVA diarrhea but significantly reduced virus shedding. In contrast, G6P[1]-VP6 rotavirus-specific IgY Abs purified from eggs of hyperimmunized hens failed to protect piglets against human RVA-induced diarrhea or virus shedding when administering similar quantities of Abs. The oral administration of VHH nanoAb neither interfered with the host's isotype profiles of the Ab secreting cell responses to rotavirus, nor induced detectable host Ab responses to the treatment in serum or intestinal contents. This study shows that the oral administration of rotavirus VP6-VHH nanoAb is a broadly reactive and effective treatment against rotavirus-induced diarrhea in neonatal pigs. Our findings highlight the potential value of a broad neutralizing VP6-specific VHH nanoAb as a treatment that can complement or be used as an alternative to the current strain-specific RVA vaccines. Nanobodies could also be scaled-up to develop pediatric medication or functional food like infant milk formulas that might help treat RVA diarrhea. Group A rotavirus (RVA) is the most common cause of severe diarrhea in human infants worldwide. Live-attenuated rotavirus vaccines are available to prevent rotavirus diarrhea in children, although their efficacy in impoverished areas has been questioned, in addition to not being suitable for children suffering from immune deficiencies. Since no rotavirus-specific treatments are available as an alternative, we investigated llama-derived single-chain antibody fragments (VHH) as preventive therapy and a potential treatment option. Gnotobiotic piglets were chosen as an animal model because their gastrointestinal physiology and mucosal immune system resemble that of human infants. We evaluated the broad neutralizing activity of a VHH clone (3B2) to different genotypes of RVA circulating in humans, and tested the efficacy of oral administration of 3B2 VHH as a functional milk to prevent the diarrhea induced by one of the most prevalent human RVA strains (G1P[8]). Supplementation of the milk diet with 3B2 twice a day for 9 days conferred full protection against rotavirus-associated diarrhea and significantly reduced virus shedding in gnotobiotic piglets experimentally inoculated with a human RVA. This study demonstrates the potential application of VHH to prevent rotavirus-induced diarrhea, and suggests that VHHs should be further investigated as a suitable treatment for gastroenteritis.
Collapse
MESH Headings
- Animals
- Antibodies, Monoclonal/genetics
- Antibodies, Monoclonal/immunology
- Antibodies, Monoclonal/pharmacology
- Antibodies, Neutralizing/genetics
- Antibodies, Neutralizing/immunology
- Antibodies, Neutralizing/pharmacology
- Antibodies, Viral/genetics
- Antibodies, Viral/immunology
- Antibodies, Viral/pharmacology
- Antigens, Viral/genetics
- Antigens, Viral/immunology
- Camelids, New World
- Capsid Proteins/antagonists & inhibitors
- Capsid Proteins/genetics
- Capsid Proteins/immunology
- Diarrhea/drug therapy
- Diarrhea/genetics
- Diarrhea/immunology
- Diarrhea/virology
- Humans
- Recombinant Proteins/genetics
- Recombinant Proteins/immunology
- Recombinant Proteins/pharmacology
- Rotavirus/genetics
- Rotavirus/immunology
- Rotavirus Infections/drug therapy
- Rotavirus Infections/genetics
- Rotavirus Infections/immunology
- Rotavirus Infections/virology
- Swine
Collapse
Affiliation(s)
- Celina G. Vega
- Instituto de Virología, Centro de Investigaciones en Ciencias Veterinarias y Agronómicas, INTA Castelar, Buenos Aires, Argentina
| | - Marina Bok
- Instituto de Virología, Centro de Investigaciones en Ciencias Veterinarias y Agronómicas, INTA Castelar, Buenos Aires, Argentina
| | - Anastasia N. Vlasova
- Food Animal Health Research Program, The Ohio Agricultural Research and Development Center, Veterinary Preventive Medicine Department, The Ohio State University, Wooster, Ohio, United States of America
| | - Kuldeep S. Chattha
- Food Animal Health Research Program, The Ohio Agricultural Research and Development Center, Veterinary Preventive Medicine Department, The Ohio State University, Wooster, Ohio, United States of America
| | - Silvia Gómez-Sebastián
- Alternative Gene Expression S.L. (ALGENEX), Centro Empresarial, Parque Científico y Tecnológico de la Universidad Politécnica de Madrid, Campus de Montegancedo, Pozuelo de Alarcón, Madrid, Spain
| | - Carmen Nuñez
- Alternative Gene Expression S.L. (ALGENEX), Centro Empresarial, Parque Científico y Tecnológico de la Universidad Politécnica de Madrid, Campus de Montegancedo, Pozuelo de Alarcón, Madrid, Spain
| | - Carmen Alvarado
- Alternative Gene Expression S.L. (ALGENEX), Centro Empresarial, Parque Científico y Tecnológico de la Universidad Politécnica de Madrid, Campus de Montegancedo, Pozuelo de Alarcón, Madrid, Spain
| | - Rodrigo Lasa
- Alternative Gene Expression S.L. (ALGENEX), Centro Empresarial, Parque Científico y Tecnológico de la Universidad Politécnica de Madrid, Campus de Montegancedo, Pozuelo de Alarcón, Madrid, Spain
| | - José M. Escribano
- Departamento de Biotecnología. Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Madrid, Spain
| | - Lorena L. Garaicoechea
- Instituto de Virología, Centro de Investigaciones en Ciencias Veterinarias y Agronómicas, INTA Castelar, Buenos Aires, Argentina
| | - Fernando Fernandez
- Instituto de Virología, Centro de Investigaciones en Ciencias Veterinarias y Agronómicas, INTA Castelar, Buenos Aires, Argentina
| | - Karin Bok
- Caliciviruses Section, Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, Maryland, United States of America
| | - Andrés Wigdorovitz
- Instituto de Virología, Centro de Investigaciones en Ciencias Veterinarias y Agronómicas, INTA Castelar, Buenos Aires, Argentina
| | - Linda J. Saif
- Food Animal Health Research Program, The Ohio Agricultural Research and Development Center, Veterinary Preventive Medicine Department, The Ohio State University, Wooster, Ohio, United States of America
- * E-mail: (LJS); (VP)
| | - Viviana Parreño
- Instituto de Virología, Centro de Investigaciones en Ciencias Veterinarias y Agronómicas, INTA Castelar, Buenos Aires, Argentina
- * E-mail: (LJS); (VP)
| |
Collapse
|
42
|
Kang G, Desai R, Arora R, Chitamabar S, Naik TN, Krishnan T, Deshpande J, Gupte MD, Venkatasubramaniam S, Gentsch JR, Parashar UD, Mathew A, Anita, Ramani S, Sowmynarayanan TV, Moses PD, Agarwal I, Simon A, Bose A, Arora R, Chhabra P, Fadnis P, Bhatt J, Shetty SJ, Saxena VK, Mathur M, Jadhav A, Roy S, Mukherjee A, Singh NB. Diversity of circulating rotavirus strains in children hospitalized with diarrhea in India, 2005-2009. Vaccine 2013; 31:2879-83. [PMID: 23624096 DOI: 10.1016/j.vaccine.2013.04.030] [Citation(s) in RCA: 83] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2013] [Revised: 04/07/2013] [Accepted: 04/09/2013] [Indexed: 02/04/2023]
Abstract
BACKGROUND India accounts for 22% of the 453,000 global rotavirus deaths among children <5 years annually. The Indian Rotavirus Strain Surveillance Network provides clinicians and public health partners with valuable rotavirus disease surveillance data. Our analysis offers policy-makers an update on rotavirus disease burden with emphasis on regional shifts in rotavirus strain epidemiology in India. METHODS Children <5 years requiring hospitalization for acute gastroenteritis were selected from 10 representative hospitals in 7 cities throughout India between November 2005 through June 2009. We used a modified World Health Organization protocol for rotavirus surveillance; stool specimens were collected and tested for rotavirus using enzyme immunoassay and reverse-transcription polymerase chain reaction. RESULTS A total of 7285 stool specimens collected were tested for rotavirus, among which 2899 (40%) were positive for rotavirus. Among the 2899 rotavirus detections, a G-type could not be determined for 662 (23%) and more than one G type was detected in 240 (8%). Of 1997 (69%) patients with only one G-type, the common types were G1 (25%), G2 (21%), G9 (13%), and G12 (10%). The proportion of rotavirus infections attributed to G12 infections rose from 8% to 39% in the Northern region and from 8% to 24% in the Western region. CONCLUSIONS This study highlights the large, ongoing burden of rotavirus disease in India, as well as interesting regional shifts in rotavirus strain epidemiology, including an increasing detection of G12 rotavirus strains in some regions. While broad heterotypic protection from rotavirus vaccination is expected based on pre- and post-licensure data from other settings, effectiveness assessments and rotavirus strain monitoring after vaccine introduction will be important.
Collapse
|
43
|
Bagchi P, Nandi S, Chattopadhyay S, Bhowmick R, Halder UC, Nayak MK, Kobayashi N, Chawla-Sarkar M. Identification of common human host genes involved in pathogenesis of different rotavirus strains: an attempt to recognize probable antiviral targets. Virus Res 2012; 169:144-53. [PMID: 22846921 DOI: 10.1016/j.virusres.2012.07.021] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2012] [Revised: 07/19/2012] [Accepted: 07/20/2012] [Indexed: 11/30/2022]
Abstract
Although two rotavirus vaccines have been licensed and approved by WHO and FDA; other parallel therapeutic strategies are needed to reduce the mortality and morbidity of rotavirus induced diarrhea worldwide. Since rotaviruses utilize the host cell machinery for their replication, study was initiated to identify host proteins which positively regulate rotavirus infection. To overcome the possible variations in host response due to existence of large variety of genotypes and human-animal reassortants, the total gene expression profile of HT29 cells infected with either simian (SA11) or bovine (A5-13) or human (Wa) rotavirus strains was analyzed using genome microarrays. Even though cells infected with human strain revealed some differences compared to the viruses of animal origin, 131 genes were similarly induced by all three strains. Genes involved in innate immune response, stress response, apoptosis and protein metabolism were induced by all viral strains. Results were validated by immunoblotting or RT-PCR. Role of some host genes in rotavirus infection was analyzed by using specific siRNAs.
Collapse
Affiliation(s)
- Parikshit Bagchi
- Division of Virology, National Institute of Cholera and Enteric Diseases, P-33, CIT Road, Scheme-XM, Beliaghata, Kolkata 700010, India
| | | | | | | | | | | | | | | |
Collapse
|
44
|
Rotavirus genotypes in children in the Basque Country (North of Spain): rapid and intense emergence of the G12[P8] genotype. Epidemiol Infect 2012; 141:868-74. [PMID: 22873952 DOI: 10.1017/s0950268812001306] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Between July 2009 and June 2011, rotavirus was detected in 507 of 4597 episodes of acute gastroenteritis in children aged <3 years in Gipuzkoa (Basque Country, Spain), of which the G-type was determined in 458 (90·3%). During the annual seasonal epidemic of 2010-2011, the unusual G-type 12 was predominant, causing 65% (145/223) of cases of rotavirus gastroenteritis. All the G12 strains were clustered in lineage III and were preferentially associated with P-type 8. This epidemic was characterized by broad geographical distribution (rural and urban) and, over 7 months, affected both infants and children, the most frequently affected being children between 4 and 24 months. Of children with rotavirus G12, 16% required hospital admission, the admission rate in children aged <2 years being 20·7 cases/10 000 children. The sudden emergence and predominance of G12 rotaviruses documented in this winter outbreak suggest that they may soon become a major human rotavirus genotype.
Collapse
|