1
|
Gorjipour F, Bohloolighashghaei S, Sotoudeheian M, Pazoki Toroudi H. Fetal adnexa-derived allogeneic mesenchymal stem cells for cardiac regeneration: the future trend of cell-based therapy for age-related adverse conditions. Hum Cell 2025; 38:61. [PMID: 39998714 DOI: 10.1007/s13577-025-01190-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Accepted: 02/17/2025] [Indexed: 02/27/2025]
Abstract
Heart failure is known as the leading cause of mortality and morbidity in adults, not only in USA but worldwide. Since the world's population is aging, the burden of cardiovascular disorders is increasing. Mesenchymal stem/stromal cells (MSCs) from a patient's bone marrow or other tissues have been widely used as the primary source of stem cells for cellular cardiomyoplasty. The incongruencies that exist between various cell-therapy approaches for cardiac diseases could be attributed to variations in cell processing methods, quality of the process, and cell donors. Off-the-shelf preparations of MSCs, enabled by batch processing of the cells and controlled cell processing factories in regulated facilities, may offer opportunities to overcome these problems. In this study, for the first time, we focused on the fetal membranes and childbirth byproducts as a promising source of cells for regenerative medicine. While many studies have described the advantages of cells derived from these organs, their advantage as a source of younger cells has not been sufficiently covered by the literature. Thus, herein, we highlight challenges that may arise from the impairment of the regenerative capacity of MSCs due to donor age and how allograft cells from fetal adnexa can be a promising substitute for the aged patients' stem cells for myocardial regeneration. Moreover, obstacles to the use of off-the-shelf cell-therapy preparations in regenerative medicine are briefly summarized here.
Collapse
Affiliation(s)
- Fazel Gorjipour
- Physiology Research Center, Iran University of Medical Sciences, Tehran, Iran
| | | | | | - Hamidreza Pazoki Toroudi
- Physiology Research Center, Iran University of Medical Sciences, Tehran, Iran.
- Department of Physiology, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
2
|
Guda T, Stukel Shah JM, Lundquist BD, Macaitis JM, Pérez ML, Pfau-Cloud MR, Beltran FO, Schmitt CW, Corbin EM, Grunlan MA, Lien W, Wang HC, Burdette AJ. An In Vivo Assessment of Different Mesenchymal Stromal Cell Tissue Types and Their Differentiation State on a Shape Memory Polymer Scaffold for Bone Regeneration. J Biomed Mater Res B Appl Biomater 2024; 112:e35516. [PMID: 39607370 DOI: 10.1002/jbm.b.35516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 10/16/2024] [Accepted: 11/16/2024] [Indexed: 11/29/2024]
Abstract
A combined biomaterial and cell-based solution to heal critical size bone defects in the craniomaxillofacial area is a promising alternative therapeutic option to improve upon autografting, the current gold standard. A shape memory polymer (SMP) scaffold, composed of biodegradable poly(ε-caprolactone) and coated with bioactive polydopamine, was evaluated with mesenchymal stromal cells (MSCs) derived from adipose (ADSC), bone marrow (BMSC), or umbilical cord (UCSC) tissue in their undifferentiated state or pre-differentiated toward osteoblasts for bone healing in a rat calvarial defect model. Pre-differentiating ADSCs and UCSCs resulted in higher new bone volume fraction (15.69% ± 1.64%) compared to empty (i.e., untreated) defects and scaffold-only (i.e., unseeded) groups (4.41% ± 1.11%). Notably, only differentiated UCSCs exhibited a significant increase in new bone volume, surpassing both undifferentiated UCSCs and unseeded scaffolds. Further, differentiated ADSCs and UCSCs had significantly higher trabecular numbers than their undifferentiated counterparts, unseeded scaffolds, and untreated defects. Although the mineral density regenerated within the unseeded scaffold surpassed that achieved with cell seeding, the connectivity of this bone was diminished, as the regenerated tissue confined itself to the spherical morphology of the scaffold pores. The SMP scaffold alone, with undifferentiated BMSCs, with undifferentiated and differentiated ADSCs, and differentiated UCSCs (29.72 ± 1.49 N) demonstrated significant osseointegration compared to empty defects (14.34 ± 2.21 N) after 12 weeks of healing when assessed by mechanical push-out testing. Based on these results and tissue availability to obtain the cells, pre-differentiated ADSCs and UCSCs emerge as particularly promising candidates when paired with the SMP scaffold for repairing critical size bone defects in the craniofacial skeleton.
Collapse
Affiliation(s)
- Teja Guda
- Department of Biomedical Engineering and Chemical Engineering, University of Texas San Antonio, San Antonio, Texas, USA
| | | | | | | | - Mística Lozano Pérez
- Department of Biomedical Engineering and Chemical Engineering, University of Texas San Antonio, San Antonio, Texas, USA
| | - Michaela R Pfau-Cloud
- Department of Biomedical Engineering, Texas A&M University, College Station, Texas, USA
| | - Felipe O Beltran
- Department of Materials Science & Engineering, Texas A&M University, College Station, Texas, USA
| | - Connie W Schmitt
- Air Force Research Laboratory, 711th Human Performance Wing, Airman Systems Directorate, Bioeffects Division, Veterinary Science Branch, San Antonio, Texas, USA
| | - Emily M Corbin
- Air Force Research Laboratory, 711th Human Performance Wing, Airman Systems Directorate, Bioeffects Division, Veterinary Science Branch, San Antonio, Texas, USA
| | - Melissa A Grunlan
- Department of Biomedical Engineering, Texas A&M University, College Station, Texas, USA
- Department of Materials Science & Engineering, Texas A&M University, College Station, Texas, USA
- Department of Chemistry, Texas A&M University, College Station, Texas, USA
| | - Wen Lien
- USAF Dental Research & Consultation Service, San Antonio, USA
| | - Heuy-Ching Wang
- Naval Medical Research Unit San Antonio, San Antonio, Texas, USA
| | | |
Collapse
|
3
|
Pal D, Das P, Roy S, Mukherjee P, Halder S, Ghosh D, Nandi SK. Recent trends of stem cell therapies in the management of orthopedic surgical challenges. Int J Surg 2024; 110:6330-6344. [PMID: 38716973 PMCID: PMC11487011 DOI: 10.1097/js9.0000000000001524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Accepted: 04/14/2024] [Indexed: 10/20/2024]
Abstract
Emerged health-related problems especially with increasing population and with the wider occurrence of these issues have always put the utmost concern and led medicine to outgrow its usual mode of treatment, to achieve better outcomes. Orthopedic interventions are one of the most concerning hitches, requiring advancement in several issues, that show complications with conventional approaches. Advanced studies have been undertaken to address the issue, among which stem cell therapy emerged as a better area of growth. The capacity of the stem cells to renovate themselves and adapt into different cell types made it possible to implement its use as a regenerative slant. Harvesting the stem cells, particularly mesenchymal stem cells (MSCs) is easier and can be further grown in vitro . In this review, we have discussed orthopedic-related issues including bone defects and fractures, nonunions, ligament and tendon injuries, degenerative changes, and associated conditions, which require further approaches to execute better outcomes, and the advanced strategies that can be tagged along with various ways of application of MSCs. It aims to objectify the idea of stem cells, with a major focus on the application of MSCs from different sources in various orthopedic interventions. It also discusses the limitations, and future scopes for further approaches in the field of regenerative medicine. The involvement of MSCs may transition the procedures in orthopedic interventions from predominantly surgical substitution and reconstruction to bio-regeneration and prevention. Nevertheless, additional improvements and evaluations are required to explore the effectiveness and safety of mesenchymal stem cell treatment in orthopedic regenerative medicine.
Collapse
Affiliation(s)
| | - Pratik Das
- Department of Veterinary Surgery and Radiology
| | - Subhasis Roy
- Department of Veterinary Clinical Complex, West Bengal University of Animal and Fishery Sciences, Kolkata, West Bengal
| | - Prasenjit Mukherjee
- Department of Veterinary Clinical Complex, West Bengal University of Animal and Fishery Sciences, Kolkata, West Bengal
| | | | | | | |
Collapse
|
4
|
Lyu Z, Xin M, Oyston DR, Xue T, Kang H, Wang X, Wang Z, Li Q. Cause and consequence of heterogeneity in human mesenchymal stem cells: Challenges in clinical application. Pathol Res Pract 2024; 260:155354. [PMID: 38870711 DOI: 10.1016/j.prp.2024.155354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 04/25/2024] [Accepted: 05/14/2024] [Indexed: 06/15/2024]
Abstract
Human mesenchymal stem cells (hMSCs) are mesoderm-derived adult stem cells with self-proliferation capacity, pluripotent differentiation potency, and excellent histocompatibility. These advantages make hMSCs a promising tool in clinical application. However, the majority of clinical trials using hMSC therapy for diverse human diseases do not achieve expectations, despite the prospective pre-clinical outcomes in animal models. This is partly attributable to the intrinsic heterogeneity of hMSCs. In this review, the cause of heterogeneity in hMSCs is systematically discussed at multiple levels, including isolation methods, cultural conditions, donor-to-donor variation, tissue sources, intra-tissue subpopulations, etc. Additionally, the effect of hMSCs heterogeneity on the contrary role in tumor progression and immunomodulation is also discussed. The attempts to understand the cellular heterogeneity of hMSCs and its consequences are important in supporting and improving therapeutic strategies for hMSCs.
Collapse
Affiliation(s)
- Zhao Lyu
- Department of Clinical Laboratory, Xi'an International Medical Center Hospital, Xi'an, Shaanxi, China
| | - Miaomiao Xin
- Assisted Reproductive Center, Women's & Children's Hospital of Northwest, Xi'an, Shaanxi, China; University of South Bohemia in Ceske Budejovice, Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Research Institute of Fish Culture and Hydrobiology, Vodnany, Czech Republic
| | - Dale Reece Oyston
- Department of Evolution, Ecology and Behaviour, University of Liverpool, Liverpool, UK
| | - Tingyu Xue
- Department of Clinical Laboratory, Xi'an International Medical Center Hospital, Xi'an, Shaanxi, China
| | - Hong Kang
- Department of Clinical Laboratory, Xi'an International Medical Center Hospital, Xi'an, Shaanxi, China
| | - Xiangling Wang
- Department of Clinical Laboratory, Xi'an International Medical Center Hospital, Xi'an, Shaanxi, China
| | - Zheng Wang
- Medical Center of Hematology, the Second Affiliated Hospital, Army Medical University, Chongqing, Sichuan, China.
| | - Qian Li
- Changsha Medical University, Changsha, Hunan, China.
| |
Collapse
|
5
|
Ghufran H, Azam M, Mehmood A, Umair M, Baig MT, Tasneem S, Butt H, Riazuddin S. Adipose Tissue and Umbilical Cord Tissue: Potential Sources of Mesenchymal Stem Cells for Liver Fibrosis Treatment. J Clin Exp Hepatol 2024; 14:101364. [PMID: 38449506 PMCID: PMC10912848 DOI: 10.1016/j.jceh.2024.101364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Accepted: 02/11/2024] [Indexed: 03/08/2024] Open
Abstract
Background/Aims Mesenchymal stem cells (MSCs) are potential alternatives for liver fibrosis treatment; however, their optimal sources remain uncertain. This study compares the ex-vivo expansion characteristics of MSCs obtained from adipose tissue (AT) and umbilical cord (UC) and assesses their therapeutic potential for liver fibrosis treatment. Methods Since MSCs from early to mid-passage numbers (P2-P6) are preferable for cellular therapy, we investigated the growth kinetics of AT-MSCs and UC-MSCs up to P6 and evaluated their therapeutic effects in a rat model of liver fibrosis induced by diethylnitrosamine. Results Results from the expansion studies demonstrated that both cell types exhibited bona fide characteristics of MSCs, including surface antigens, pluripotent gene expression, and differentiation potential. However, AT-MSCs demonstrated a shorter doubling time (58.2 ± 7.3 vs. 82.3 ± 4.3 h; P < 0.01) and a higher population doubling level (10.1 ± 0.7 vs. 8.2 ± 0.3; P < 0.01) compared to UC-MSCs, resulting in more cellular yield (230 ± 9.0 vs. 175 ± 13.2 million) in less time. Animal studies demonstrated that both MSC types significantly reduced liver fibrosis (P < 0.05 vs. the control group) while also improving liver function and downregulating fibrosis-associated gene expression. Conclusion AT-MSCs and UC-MSCs effectively reduce liver fibrosis. However, adipose cultures display an advantage by yielding a higher number of MSCs in a shorter duration, rendering them a viable choice for scenarios requiring immediate single-dose administration, often encountered in clinical settings.
Collapse
Affiliation(s)
- Hafiz Ghufran
- National Centre of Excellence in Molecular Biology, University of the Punjab, 87-West Canal Bank Road, Lahore, Pakistan
| | - Maryam Azam
- National Centre of Excellence in Molecular Biology, University of the Punjab, 87-West Canal Bank Road, Lahore, Pakistan
| | - Azra Mehmood
- National Centre of Excellence in Molecular Biology, University of the Punjab, 87-West Canal Bank Road, Lahore, Pakistan
| | - Muhammad Umair
- National Centre of Excellence in Molecular Biology, University of the Punjab, 87-West Canal Bank Road, Lahore, Pakistan
| | - Maria T. Baig
- National Centre of Excellence in Molecular Biology, University of the Punjab, 87-West Canal Bank Road, Lahore, Pakistan
| | - Saba Tasneem
- National Centre of Excellence in Molecular Biology, University of the Punjab, 87-West Canal Bank Road, Lahore, Pakistan
| | - Hira Butt
- National Centre of Excellence in Molecular Biology, University of the Punjab, 87-West Canal Bank Road, Lahore, Pakistan
| | - Sheikh Riazuddin
- Jinnah Burn and Reconstructive Surgery Centre, Allama Iqbal Medical College, Lahore, Pakistan
| |
Collapse
|
6
|
Taherian M, Bayati P, Mojtabavi N. Stem cell-based therapy for fibrotic diseases: mechanisms and pathways. Stem Cell Res Ther 2024; 15:170. [PMID: 38886859 PMCID: PMC11184790 DOI: 10.1186/s13287-024-03782-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Accepted: 06/04/2024] [Indexed: 06/20/2024] Open
Abstract
Fibrosis is a pathological process, that could result in permanent scarring and impairment of the physiological function of the affected organ; this condition which is categorized under the term organ failure could affect various organs in different situations. The involvement of the major organs, such as the lungs, liver, kidney, heart, and skin, is associated with a high rate of morbidity and mortality across the world. Fibrotic disorders encompass a broad range of complications and could be traced to various illnesses and impairments; these could range from simple skin scars with beauty issues to severe rheumatologic or inflammatory disorders such as systemic sclerosis as well as idiopathic pulmonary fibrosis. Besides, the overactivation of immune responses during any inflammatory condition causing tissue damage could contribute to the pathogenic fibrotic events accompanying the healing response; for instance, the inflammation resulting from tissue engraftment could cause the formation of fibrotic scars in the grafted tissue, even in cases where the immune system deals with hard to clear infections, fibrotic scars could follow and cause severe adverse effects. A good example of such a complication is post-Covid19 lung fibrosis which could impair the life of the affected individuals with extensive lung involvement. However, effective therapies that halt or slow down the progression of fibrosis are missing in the current clinical settings. Considering the immunomodulatory and regenerative potential of distinct stem cell types, their application as an anti-fibrotic agent, capable of attenuating tissue fibrosis has been investigated by many researchers. Although the majority of the studies addressing the anti-fibrotic effects of stem cells indicated their potent capabilities, the underlying mechanisms, and pathways by which these cells could impact fibrotic processes remain poorly understood. Here, we first, review the properties of various stem cell types utilized so far as anti-fibrotic treatments and discuss the challenges and limitations associated with their applications in clinical settings; then, we will summarize the general and organ-specific mechanisms and pathways contributing to tissue fibrosis; finally, we will describe the mechanisms and pathways considered to be employed by distinct stem cell types for exerting anti-fibrotic events.
Collapse
Affiliation(s)
- Marjan Taherian
- Department of Immunology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
- Immunology Research Center, Institute of Immunology and Infectious Diseases, Iran University of Medical Sciences, Tehran, Iran
| | - Paria Bayati
- Department of Immunology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
- Immunology Research Center, Institute of Immunology and Infectious Diseases, Iran University of Medical Sciences, Tehran, Iran
| | - Nazanin Mojtabavi
- Department of Immunology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran.
- Immunology Research Center, Institute of Immunology and Infectious Diseases, Iran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
7
|
Rajput SN, Naeem BK, Ali A, Salim A, Khan I. Expansion of human umbilical cord derived mesenchymal stem cells in regenerative medicine. World J Stem Cells 2024; 16:410-433. [PMID: 38690517 PMCID: PMC11056638 DOI: 10.4252/wjsc.v16.i4.410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 02/01/2024] [Accepted: 03/18/2024] [Indexed: 04/25/2024] Open
Abstract
BACKGROUND Stem cells are undifferentiated cells that possess the potential for self-renewal with the capacity to differentiate into multiple lineages. In humans, their limited numbers pose a challenge in fulfilling the necessary demands for the regeneration and repair of damaged tissues or organs. Studies suggested that mesenchymal stem cells (MSCs), necessary for repair and regeneration via transplantation, require doses ranging from 10 to 400 million cells. Furthermore, the limited expansion of MSCs restricts their therapeutic application. AIM To optimize a novel protocol to achieve qualitative and quantitative expansion of MSCs to reach the targeted number of cells for cellular transplantation and minimize the limitations in stem cell therapy protocols. METHODS Human umbilical cord (hUC) tissue derived MSCs were obtained and re-cultured. These cultured cells were subjected to the following evaluation procedures: Immunophenotyping, immunocytochemical staining, trilineage differentiation, population doubling time and number, gene expression markers for proliferation, cell cycle progression, senescence-associated β-galactosidase assay, human telomerase reverse transcriptase (hTERT) expression, mycoplasma, cytomegalovirus and endotoxin detection. RESULTS Analysis of pluripotent gene markers Oct4, Sox2, and Nanog in recultured hUC-MSC revealed no significant differences. The immunophenotypic markers CD90, CD73, CD105, CD44, vimentin, CD29, Stro-1, and Lin28 were positively expressed by these recultured expanded MSCs, and were found negative for CD34, CD11b, CD19, CD45, and HLA-DR. The recultured hUC-MSC population continued to expand through passage 15. Proliferative gene expression of Pax6, BMP2, and TGFb1 showed no significant variation between recultured hUC-MSC groups. Nevertheless, a significant increase (P < 0.001) in the mitotic phase of the cell cycle was observed in recultured hUC-MSCs. Cellular senescence markers (hTERT expression and β-galactosidase activity) did not show any negative effect on recultured hUC-MSCs. Additionally, quality control assessments consistently confirmed the absence of mycoplasma, cytomegalovirus, and endotoxin contamination. CONCLUSION This study proposes the development of a novel protocol for efficiently expanding stem cell population. This would address the growing demand for larger stem cell doses needed for cellular transplantation and will significantly improve the feasibility of stem cell based therapies.
Collapse
Affiliation(s)
- Shafiqa Naeem Rajput
- Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Sindh, Pakistan
| | - Bushra Kiran Naeem
- Surgical Unit 4, Dr. Ruth KM Pfau Civil Hospital, Karachi 74400, Pakistan
| | - Anwar Ali
- Department of Physiology, University of Karachi, Karachi 75270, Pakistan
| | - Asmat Salim
- Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Sindh, Pakistan
| | - Irfan Khan
- Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Sindh, Pakistan
- Center for Regenerative Medicine and Stem Cells Research, and Department of Ophthalmology and Visual Sciences, The Aga Khan University, Karachi 74800, Sindh, Pakistan.
| |
Collapse
|
8
|
Zhou Z, Zhang X, Wang S, Wang X, Mao J. A Powerful Tool in the Treatment of Myocardial Ischemia-Reperfusion Injury: Natural and Nanoscale Modified Small Extracellular Vesicles Derived from Mesenchymal Stem Cells. Int J Nanomedicine 2023; 18:8099-8112. [PMID: 38164265 PMCID: PMC10758182 DOI: 10.2147/ijn.s443716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Accepted: 12/12/2023] [Indexed: 01/03/2024] Open
Abstract
Myocardial ischemia-reperfusion injury (MI/RI) constitutes a pivotal determinant impacting the long-term prognosis of individuals afflicted by ischemic cardiomyopathy subsequent to reperfusion therapy. Stem cells have garnered extensive application within the realm of MI/RI investigation, yielding tangible outcomes. Stem cell therapy encounters certain challenges in its application owing to the complexities associated with stem cell acquisition, a diminished homing rate, and a brief in vivo lifespan. Small extracellular vesicles (sEV) originating from mesenchymal stem cells (MSCs) have been demonstrated to possess the benefits of abundant availability, reduced immunogenicity, and a diminished tumorigenic incidence. They can exert their effects on damaged organs, improving injuries by transporting a lot of constituents, including proteins, RNA, lipid droplets, and more. This phenomenon has garnered substantial attention in the context of MI/RI treatment. Simultaneously, MSC-derived sEV (MSC-sEV) can exhibit enhanced therapeutic advantages through bioengineering modifications, biomaterial incorporation, and natural drug interventions. Within this discourse, we shall appraise the utilization of MSC-sEV and their derivatives in the context of MI/RI treatment, aiming to offer valuable insights for future research endeavors related to MI/RI.
Collapse
Affiliation(s)
- Zhou Zhou
- Cardiovascular Department, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine/National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, 300381, People’s Republic of China
- Graduate School, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, People’s Republic of China
| | - Xuan Zhang
- Cardiovascular Department, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine/National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, 300381, People’s Republic of China
| | - Shuai Wang
- Cardiovascular Department, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine/National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, 300381, People’s Republic of China
| | - Xianliang Wang
- Cardiovascular Department, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine/National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, 300381, People’s Republic of China
| | - Jingyuan Mao
- Cardiovascular Department, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine/National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, 300381, People’s Republic of China
| |
Collapse
|
9
|
Kim GY, Choi GT, Park J, Lee J, Do JT. Comparative Analysis of Porcine Adipose- and Wharton's Jelly-Derived Mesenchymal Stem Cells. Animals (Basel) 2023; 13:2947. [PMID: 37760347 PMCID: PMC10525484 DOI: 10.3390/ani13182947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 09/08/2023] [Accepted: 09/15/2023] [Indexed: 09/29/2023] Open
Abstract
Mesenchymal stem cells (MSCs) are promising candidates for tissue regeneration, cell therapy, and cultured meat research owing to their ability to differentiate into various lineages including adipocytes, chondrocytes, and osteocytes. As MSCs display different characteristics depending on the tissue of origin, the appropriate cells need to be selected according to the purpose of the research. However, little is known of the unique properties of MSCs in pigs. In this study, we compared two types of porcine mesenchymal stem cells (MSCs) isolated from the dorsal subcutaneous adipose tissue (adipose-derived stem cells (ADSCs)) and Wharton's jelly of the umbilical cord (Wharton's jelly-derived mesenchymal stem cells (WJ-MSCs)) of 1-day-old piglets. The ADSCs displayed a higher proliferation rate and more efficient differentiation potential into adipogenic and chondrogenic lineages than that of WJ-MSCs; conversely, WJ-MSCs showed superior differentiation capacity towards osteogenic lineages. In early passages, ADSCs displayed higher proliferation rates and mitochondrial energy metabolism (measured based on the oxygen consumption rate) compared with that of WJ-MSCs, although these distinctions diminished in late passages. This study broadens our understanding of porcine MSCs and provides insights into their potential applications in animal clinics and cultured meat science.
Collapse
Affiliation(s)
- Ga Yeon Kim
- Department of Stem Cell and Regenerative Biotechnology, KU Institute of Technology, Konkuk University, Seoul 05029, Republic of Korea; (G.Y.K.); (G.T.C.); (J.P.)
- 3D Tissue Culture Research Center, Konkuk University, Seoul 05029, Republic of Korea
| | - Gyu Tae Choi
- Department of Stem Cell and Regenerative Biotechnology, KU Institute of Technology, Konkuk University, Seoul 05029, Republic of Korea; (G.Y.K.); (G.T.C.); (J.P.)
- 3D Tissue Culture Research Center, Konkuk University, Seoul 05029, Republic of Korea
| | - Jinryong Park
- Department of Stem Cell and Regenerative Biotechnology, KU Institute of Technology, Konkuk University, Seoul 05029, Republic of Korea; (G.Y.K.); (G.T.C.); (J.P.)
- 3D Tissue Culture Research Center, Konkuk University, Seoul 05029, Republic of Korea
| | - Jeongeun Lee
- Department of Agricultural Convergency Technology, Jeonbuk National University, Jeonju 54896, Republic of Korea;
| | - Jeong Tae Do
- Department of Stem Cell and Regenerative Biotechnology, KU Institute of Technology, Konkuk University, Seoul 05029, Republic of Korea; (G.Y.K.); (G.T.C.); (J.P.)
- 3D Tissue Culture Research Center, Konkuk University, Seoul 05029, Republic of Korea
| |
Collapse
|
10
|
Cuesta-Gomez N, Medina-Ruiz L, Graham GJ, Campbell JDM. IL-6 and TGF-β-Secreting Adoptively-Transferred Murine Mesenchymal Stromal Cells Accelerate Healing of Psoriasis-like Skin Inflammation and Upregulate IL-17A and TGF-β. Int J Mol Sci 2023; 24:10132. [PMID: 37373278 PMCID: PMC10298958 DOI: 10.3390/ijms241210132] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 06/05/2023] [Accepted: 06/10/2023] [Indexed: 06/29/2023] Open
Abstract
Mesenchymal stromal cells (MSC) show promise as cellular therapeutics. Psoriasis is a chronic inflammatory disease affecting the skin and the joints. Injury, trauma, infection and medications can trigger psoriasis by disrupting epidermal keratinocyte proliferation and differentiation, which activates the innate immune system. Pro-inflammatory cytokine secretion drives a T helper 17 response and an imbalance of regulatory T cells. We hypothesized that MSC adoptive cellular therapy could immunomodulate and suppress the effector T cell hyperactivation that underlies the disease. We used the imiquimod-induced psoriasis-like skin inflammation model to study the therapeutic potential of bone marrow and adipose tissue-derived MSC in vivo. We compared the secretome and the in vivo therapeutic potential of MSC with and without cytokine pre-challenge ("licensing"). The infusion of both unlicensed and licensed MSC accelerated the healing of psoriatic lesions, and reduced epidermal thickness and CD3+ T cell infiltration while promoting the upregulation of IL-17A and TGF-β. Concomitantly, the expression of keratinocyte differentiation markers in the skin was decreased. However, unlicensed MSC promoted the resolution of skin inflammation more efficiently. We show that MSC adoptive therapy upregulates the transcription and secretion of pro-regenerative and immunomodulatory molecules in the psoriatic lesion. Accelerated healing is associated with the secretion of TGF-β and IL-6 in the skin and MSC drives the production of IL-17A and restrains T-cell-mediated pathology.
Collapse
Affiliation(s)
- Nerea Cuesta-Gomez
- Chemokine Research Group, Institute of Infection, Immunity and Inflammation, University of Glasgow, 120 University Place, Glasgow G12 8TA, UK; (N.C.-G.)
| | - Laura Medina-Ruiz
- Chemokine Research Group, Institute of Infection, Immunity and Inflammation, University of Glasgow, 120 University Place, Glasgow G12 8TA, UK; (N.C.-G.)
| | - Gerard J. Graham
- Chemokine Research Group, Institute of Infection, Immunity and Inflammation, University of Glasgow, 120 University Place, Glasgow G12 8TA, UK; (N.C.-G.)
| | - John D. M. Campbell
- Chemokine Research Group, Institute of Infection, Immunity and Inflammation, University of Glasgow, 120 University Place, Glasgow G12 8TA, UK; (N.C.-G.)
- Tissues, Cells and Advanced Therapeutics, The Jack Copland Centre, Scottish National Blood Transfusion Service, Currie EH14 4AP, UK
| |
Collapse
|
11
|
Takamiya S, Kawabori M, Fujimura M. Stem Cell Therapies for Intracerebral Hemorrhage: Review of Preclinical and Clinical Studies. Cell Transplant 2023; 32:9636897231158153. [PMID: 36823970 PMCID: PMC9969479 DOI: 10.1177/09636897231158153] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/25/2023] Open
Abstract
Despite recent developments in the treatments for ischemic stroke, such as tissue plasminogen activator (t-PA) and thrombectomy, effective therapies for intracerebral hemorrhage (ICH) remain scarce. Stem cell therapies have attracted considerable attention owing to their potential neuro-regenerative ability; preclinical and clinical studies have been conducted to explore strategies for achieving functional recovery following ICH. In this review, we summarize the findings of preclinical studies on stem cell therapies of ICH, with a focus on different animal models, stem cell sources, transplantation methods, and their potential mechanisms of action. We also provide an overview of data from clinical trials to discuss the current status and future perspectives. Understanding the effectiveness and limitations of stem cell therapy and the future prospects could expand the applications of this novel therapeutic approach for ICH.
Collapse
Affiliation(s)
- Soichiro Takamiya
- Department of Neurosurgery, Hokkaido University Hospital, Sapporo, Japan
| | - Masahito Kawabori
- Department of Neurosurgery, Hokkaido University Hospital, Sapporo, Japan
| | - Miki Fujimura
- Department of Neurosurgery, Hokkaido University Hospital, Sapporo, Japan
| |
Collapse
|
12
|
Hamel KM, King CT, Cavalier MB, Liimatta KQ, Rozanski GL, King TA, Lam M, Bingham GC, Byrne CE, Xing D, Collins-Burow BM, Burow ME, Belgodere JA, Bratton MR, Bunnell BA, Martin EC. Breast Cancer-Stromal Interactions: Adipose-Derived Stromal/Stem Cell Age and Cancer Subtype Mediated Remodeling. Stem Cells Dev 2022; 31:604-620. [PMID: 35579936 PMCID: PMC9595652 DOI: 10.1089/scd.2021.0279] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Accepted: 05/16/2022] [Indexed: 10/18/2022] Open
Abstract
Adipose tissue is characterized as an endocrine organ that acts as a source of hormones and paracrine factors. In diseases such as cancer, endocrine and paracrine signals from adipose tissue contribute to cancer progression. Young individuals with estrogen receptor-alpha positive (ER-α+) breast cancer (BC) have an increased resistance to endocrine therapies, suggesting that alternative estrogen signaling is activated within these cells. Despite this, the effects of stromal age on the endocrine response in BC are not well defined. To identify differences between young and aged ER-α+ breast tumors, RNA sequencing data were obtained from The Cancer Genome Atlas. Analysis revealed enrichment of matrix and paracrine factors in young (≤40 years old) patients compared to aged (≥65 years old) tumor samples. Adipose-derived stromal/stem cells (ASCs) from noncancerous lipoaspirate of young and aged donors were evaluated for alterations in matrix production and paracrine secreted factors to determine if the tumor stroma could alter estrogen signaling. Young and aged ASCs demonstrated comparable proliferation, differentiation, and matrix production, but exhibited differences in the expression levels of inflammatory cytokines (Interferon gamma, interleukin [IL]-8, IL-10, Tumor necrosis factor alpha, IL-2, and IL-6). Conditioned media (CM)-based experiments showed that young ASC donor age elevated endocrine response in ER-α+ BC cell lines. MCF-7 ER-α+ BC cell line treated with secreted factors from young ASCs had enhanced ER-α regulated genes (PGR and SDF-1) compared to MCF-7 cells treated with aged ASC CM. Western blot analysis demonstrated increased activation levels of p-ER ser-167 in the MCF-7 cell line treated with young ASC secreted factors. To determine if ER-α+ BC cells heightened the cytokine release in ASCs, ASCs were stimulated with MCF-7-derived CM. Results demonstrated no change in growth factors or cytokines when treated with the ER-α+ secretome. In contrast to ER-α+ CM, the ER-α negative MDA-MB-231 derived CM demonstrated increased stimulation of pro-inflammatory cytokines in ASCs. While there was no observed change in the release of selected paracrine factors, MCF-7 cells did induce matrix production and a pro-adipogenic lineage commitment. The adipogenesis was evident by increased collagen content through Sirius Red/Fast Green Collagen stain, lipid accumulation evident by Oil Red O stain, and significantly increased expression in PPARγ mRNA expression. The data from this study provide evidence suggesting more of a subtype-dependent than an age-dependent difference in stromal response to BC, suggesting that this signaling is not heightened by reciprocal signals from ER-α+ BC cell lines. These results are important in understanding the mechanisms of estrogen signaling and the dynamic and reciprocal nature of cancer cell-stromal cell crosstalk that can lead to tumor heterogeneity and variance in response to therapy.
Collapse
Affiliation(s)
- Katie M. Hamel
- Department of Biological Engineering, Louisiana State University, Baton Rouge, Louisiana, USA
| | - Connor T. King
- Department of Biological Engineering, Louisiana State University, Baton Rouge, Louisiana, USA
| | - Maryn B. Cavalier
- Department of Biological Engineering, Louisiana State University, Baton Rouge, Louisiana, USA
| | - Kara Q. Liimatta
- Department of Biological Engineering, Louisiana State University, Baton Rouge, Louisiana, USA
| | - Grace L. Rozanski
- Department of Biological Engineering, Louisiana State University, Baton Rouge, Louisiana, USA
| | - Timothy A. King
- Department of Biological Engineering, Louisiana State University, Baton Rouge, Louisiana, USA
| | - Meggie Lam
- Department of Biological Engineering, Louisiana State University, Baton Rouge, Louisiana, USA
| | - Grace C. Bingham
- Department of Biological Engineering, Louisiana State University, Baton Rouge, Louisiana, USA
| | - C. Ethan Byrne
- Department of Biological Engineering, Louisiana State University, Baton Rouge, Louisiana, USA
| | - Diensn Xing
- Department of Biological Engineering, Louisiana State University, Baton Rouge, Louisiana, USA
| | - Bridgette M. Collins-Burow
- Section of Hematology and Medical Oncology, Department of Medicine, Tulane University School of Medicine, New Orleans, Louisiana, USA
| | - Matthew E. Burow
- Section of Hematology and Medical Oncology, Department of Medicine, Tulane University School of Medicine, New Orleans, Louisiana, USA
| | - Jorge A. Belgodere
- Department of Biological Engineering, Louisiana State University, Baton Rouge, Louisiana, USA
| | | | - Bruce A. Bunnell
- Department of Microbiology, Immunology and Genetics, University of North Texas Health Sciences Center, Fort Worth, Texas, USA
| | - Elizabeth C. Martin
- Department of Biological Engineering, Louisiana State University, Baton Rouge, Louisiana, USA
| |
Collapse
|
13
|
Sekkin Eser M, Ulutas Ugur Y, Tanacan A, Gurbuz Hekimoglu R, Cakar AN, Beksac MS. Evaluation of umbilical cord immune cells in pregnancies with autoimmune disorders and/or methylenetetrahydrofolate reductase polymorphisms. J Perinat Med 2022; 50:910-925. [PMID: 35344642 DOI: 10.1515/jpm-2021-0593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Accepted: 02/10/2022] [Indexed: 11/15/2022]
Abstract
OBJECTIVES To evaluate umbilical cord immune cells in pregnancies with autoimmune disorders (AID) and/or methylenetetrahydrofolate reductase (MTHFR) polymorphisms. METHODS Umbilical cords were obtained from seven AID women without MTHFR polymorphisms, eight with AID and MTHFR polymorphisms, nine with MTHFR polymorphisms, and eight with neither. Umbilical cords were assessed immunohistologcally by anti-CD4, anti-CD8, anti-CD14, anti-CD19, anti-CD21, and anti-CD56 antibodies in six umbilical cord zones: 1) arterial wall 2) periarterial zone 3) venous wall 4) perivenous zone 5) intervascular zone, and 6) subamniotic zone. RESULTS AIDs and MTHFR polymorphisms had an effect on the number and composition of CD4+ cells in the venous wall. The presence of a MTHFR polymorphism may affect the number and morphology of CD4+ cells in the subamniotic zone. CD8+ cell distribution is substantially influenced by the presence of maternal risk factors. The co-existence of AID with MTHFR polymorphism has a prominent effect on the number and morphology of CD14+ cells, especially in the arterial wall. CD19+ cells were only observed in the control group in the venous wall, perivenous zone, and intervascular zone. CD21+ cells were only observed in the arterial wall of the control group and the intervascular zone of the AID group with different morphologic features. The number and morphology of CD56+ cells is prominently affected by the presence of maternal risk factors. CONCLUSIONS Umbilical cord stem cell and immune cell composition may be affected by the presence of risk factors like MTHFR polymorphisms and/or AID.
Collapse
Affiliation(s)
- Miray Sekkin Eser
- Department of Histology & Embryology, Hacettepe University, Ankara, Turkey
| | - Yesim Ulutas Ugur
- Department of Histology & Embryology, Lokman Hekim University, Ankara, Turkey
| | - Atakan Tanacan
- Division of Perinatology, Department of Obstetrics and Gynecology, Hacettepe University, Ankara, Turkey.,Perinatology Clinic, Turkish Ministry of Health, Ankara City Hospital, Ankara, Turkey
| | - Rumeysa Gurbuz Hekimoglu
- Department of Histology & Embryology, Hacettepe University, Ankara, Turkey.,Department of Histology & Embryology, Bezmialem Vakıf University, İstanbul, Turkey
| | - Ayse Nur Cakar
- Department of Histology & Embryology, Hacettepe University, Ankara, Turkey.,Department of Histology & Embryology, TOBB University, Ankara, Turkey
| | - Mehmet Sinan Beksac
- Department of Obstetrics and Gynecology, Division of Perinatology, Hacettepe University, Ankara, Turkey
| |
Collapse
|
14
|
Ju Y, Yi L, Li C, Wang T, Zhang W, Chai W, Yin X, Weng T. Comparison of biological characteristics of human adipose- and umbilical cord- derived mesenchymal stem cells and their effects on delaying the progression of osteoarthritis in a rat model. Acta Histochem 2022; 124:151911. [DOI: 10.1016/j.acthis.2022.151911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 05/19/2022] [Accepted: 05/22/2022] [Indexed: 11/25/2022]
|
15
|
Sun Z, Gu P, Xu H, Zhao W, Zhou Y, Zhou L, Zhang Z, Wang W, Han R, Chai X, An S. Human Umbilical Cord Mesenchymal Stem Cells Improve Locomotor Function in Parkinson’s Disease Mouse Model Through Regulating Intestinal Microorganisms. Front Cell Dev Biol 2022; 9:808905. [PMID: 35127723 PMCID: PMC8810651 DOI: 10.3389/fcell.2021.808905] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Accepted: 12/10/2021] [Indexed: 12/18/2022] Open
Abstract
Parkinson’s disease (PD) is a progressive neurological disorder characterized by loss of neurons that synthesize dopamine, and subsequent impaired movement. Umbilical cord mesenchymal stem cells (UC-MSCs) exerted neuroprotection effects in a rodent model of PD. However, the mechanism underlying UC-MSC-generated neuroprotection was not fully elucidated. In the present study, we found that intranasal administration of UC-MSCs significantly alleviated locomotor deficits and rescued dopaminergic neurons by inhibiting neuroinflammation in a PD mouse model induced by 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP, a toxic agent which selectively destroys nigrostriatal neurons but does not affect dopaminergic neurons elsewhere). Furthermore, UC-MSC treatment altered gut microbiota composition characterized by decreased phylum Proteobacteria, class Gammaproteobacteria, family Enterobacteriaceae, and genus Escherichia-Shigella. In addition, the neurotransmitter dopamine in the striatum and 5-hydroxytryptamine in the colon were also modulated by UC-MSCs. Meanwhile, UC-MSCs significantly maintained intestinal goblet cells, which secrete mucus as a mechanical barrier against pathogens. Furthermore, UC-MSCs alleviate the level of TNF-α and IL-6 as well as the conversion of NF-κB expression in the colon, indicating that inflammatory responses were blocked by UC-MSCs. PICRUSt showed that some pathways including bacterial invasion of epithelial cells, fluorobenzoate degradation, and pathogenic Escherichia coli infection were significantly reversed by UC-MSCs. These data suggest that the beneficial effects were detected following UC-MSC intranasal transplantation in MPTP-treated mice. There is a possible neuroprotective role of UC-MSCs in MPTP-induced PD mice by cross talk between the brain and gut.
Collapse
Affiliation(s)
- Zhengqin Sun
- Department of Neurology, The First Hospital of Hebei Medical University, Shijiazhuang, China
- Hebei Provincial Engineering Laboratory of Plant Bioreactor Preparation Technology, Shijiazhuang, China
| | - Ping Gu
- Department of Neurology, The First Hospital of Hebei Medical University, Shijiazhuang, China
| | - Hongjun Xu
- Hebei Provincial Engineering Laboratory of Plant Bioreactor Preparation Technology, Shijiazhuang, China
- Research Center, Hebei University of Chinese Medicine, Shijiazhuang, China
- College of Integrated Chinese and Western Medicine, Hebei University of Chinese Medicine, Shijiazhuang, China
| | - Wei Zhao
- Hebei Provincial Engineering Laboratory of Plant Bioreactor Preparation Technology, Shijiazhuang, China
- Research Center, Hebei University of Chinese Medicine, Shijiazhuang, China
- College of Integrated Chinese and Western Medicine, Hebei University of Chinese Medicine, Shijiazhuang, China
- Affiliated Hospital of Hebei University of Engineering, Handan, China
| | - Yongjie Zhou
- Hebei Provincial Engineering Laboratory of Plant Bioreactor Preparation Technology, Shijiazhuang, China
- Research Center, Hebei University of Chinese Medicine, Shijiazhuang, China
- College of Integrated Chinese and Western Medicine, Hebei University of Chinese Medicine, Shijiazhuang, China
| | - Luyang Zhou
- Hebei Provincial Engineering Laboratory of Plant Bioreactor Preparation Technology, Shijiazhuang, China
- Research Center, Hebei University of Chinese Medicine, Shijiazhuang, China
- College of Integrated Chinese and Western Medicine, Hebei University of Chinese Medicine, Shijiazhuang, China
| | - Zhongxia Zhang
- Department of Neurology, The First Hospital of Hebei Medical University, Shijiazhuang, China
- Hebei Provincial Engineering Laboratory of Plant Bioreactor Preparation Technology, Shijiazhuang, China
| | - Wenting Wang
- Department of Neurology, The First Hospital of Hebei Medical University, Shijiazhuang, China
| | - Rui Han
- Department of Neurology, The First Hospital of Hebei Medical University, Shijiazhuang, China
| | - Xiqing Chai
- Department of Neurology, The First Hospital of Hebei Medical University, Shijiazhuang, China
- *Correspondence: Xiqing Chai, ; Shengjun An,
| | - Shengjun An
- Hebei Provincial Engineering Laboratory of Plant Bioreactor Preparation Technology, Shijiazhuang, China
- Research Center, Hebei University of Chinese Medicine, Shijiazhuang, China
- College of Integrated Chinese and Western Medicine, Hebei University of Chinese Medicine, Shijiazhuang, China
- *Correspondence: Xiqing Chai, ; Shengjun An,
| |
Collapse
|
16
|
Mantripragada VP, Kaplevatsky R, Bova WA, Boehm C, Obuchowski NA, Midura RJ, Muschler GF. Influence of Glucose Concentration on Colony-Forming Efficiency and Biological Performance of Primary Human Tissue-Derived Progenitor Cells. Cartilage 2021; 13:95S-106S. [PMID: 32100548 PMCID: PMC8804831 DOI: 10.1177/1947603520906605] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
OBJECTIVE Glucose concentrations used in current cell culture methods are a significant departure from physiological glucose levels. The study focuses on comparing the effects of glucose concentrations on primary human progenitors (connective tissue progenitors [CTPs]) used for cartilage repair. DESIGN Cartilage- (Outerbridge grade 1, 2, 3; superficial and deep zone cartilage), infrapatellar fatpad-, synovium-, and periosteum-derived cells were obtained from 63 patients undergoing total knee arthroplasty and cultured simultaneously in fresh chondrogenic media containing 25 mM glucose (HGL) or 5 mM glucose (NGL) for pairwise comparison. Automated ASTM-based quantitative image analysis was used to determine colony-forming efficiency (CFE), effective proliferation rates (EPR), and sulfated-proteoglycan (GAG-ECM) staining of the CTPs across tissue sources. RESULTS HGL resulted in increased cell cultures with CFE = 0 compared with NGL in all tissue sources (P = 0.049). The CFE in NGL was higher than HGL for superficial cartilage (P < 0.001), and contrary for synovium-derived CTPs (P = 0.046) when CFE > 0. EPR of the CTPs did not differ between the media in the 6-day assay time period (P = 0.082). The GAG-ECM area of the CTPs and their progeny was increased in presence of HGL (P = 0.027). CONCLUSION Glucose concentration is critical to progenitor's physiology and should be taken into account in the setting of protocols for clinical or in vitro cell expansion strategies.
Collapse
Affiliation(s)
- Venkata P. Mantripragada
- Department of Biomedical Engineering,
Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA,Venkata P. Mantripragada, Department of
Biomedical Engineering, Lerner Research Institute, Cleveland Clinic, 9500 Euclid
Avenue, ND3-30, Cleveland, OH 44195, USA.
| | | | - Wes A. Bova
- Department of Biomedical Engineering,
Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Cynthia Boehm
- Department of Biomedical Engineering,
Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Nancy A. Obuchowski
- Department of Quantitative Health
Science, Cleveland Clinic, Cleveland, OH, USA
| | - Ronald J. Midura
- Department of Biomedical Engineering,
Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
| | - George F. Muschler
- Department of Biomedical Engineering,
Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA,Department of Orthopedic Surgery,
Cleveland Clinic, Cleveland, OH, USA
| |
Collapse
|
17
|
Wang L, Zhang Y, Zhong J, Zhang Y, Zhou S, Xu C. Mesenchymal Stem Cell Therapy for Acetaminophen-Related Liver Injury: A Systematic Review and Meta-Analysis of Experimental Studies in Vivo. Curr Stem Cell Res Ther 2021; 17:825-838. [PMID: 34620060 DOI: 10.2174/1574888x16666211007092055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2021] [Revised: 04/22/2021] [Accepted: 05/24/2021] [Indexed: 12/09/2022]
Abstract
OBJECTIVE The efficacy of mesenchymal stem cell (MSC) therapy in acetaminophen-induced liver injury has been investigated in animal experiments, but individual studies with a small sample size cannot be used to draw a clear conclusion. Therefore, we conducted a systematic review and meta-analysis of preclinical studies to explore the potential of using MSCs in acetaminophen-induced liver injury. METHODS Eight databases were searched for studies reporting the effects of MSCs on acetaminophen hepatoxicity. The Preferred Reporting Items for Systematic Reviews and Meta-analyses (PRISMA) guidelines were used. SYRCLE's risk of bias tool for animal studies was applied to assess the methodological quality. A meta-analysis was performed by using RevMan 5.4 and STATA/SE 16.0 software. RESULTS Eleven studies involving 159 animals were included according to PRISMA statement guidelines. Significant associations were found for MSCs with the levels of alanine transaminase (ALT) (standardized mean difference (SMD) - 2.58, p < 0.0001), aspartate aminotransferase (AST) (SMD - 1.75, p = 0.001), glutathione (GSH) (SMD 3.7, p < 0.0001), superoxide dismutase (SOD) (SMD 1.86, p = 0.022), interleukin 10 (IL-10) (SMD 5.14, p = 0.0002) and tumor necrosis factor-α (TNF-α) (SMD - 4.48, p = 0.011) compared with those in the control group. The subgroup analysis showed that the tissue source of MSCs significantly affected the therapeutic efficacy (p < 0.05). CONCLUSION Our meta-analysis results demonstrate that MSCs could be a potential treatment for acetaminophen-related liver injury.
Collapse
Affiliation(s)
- Li Wang
- Department of Obstetrics and Gynecology, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou. China
| | - Yiwen Zhang
- Department of Obstetrics and Gynecology, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou. China
| | - Jiajun Zhong
- Clinical Research Institute, The First Affiliated Hospital of Jinan University, Guangzhou. China
| | - Yuan Zhang
- Department of Obstetrics and Gynecology, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou. China
| | - Shuisheng Zhou
- Department of Obstetrics and Gynecology, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou. China
| | - Chengfang Xu
- Department of Obstetrics and Gynecology, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou. China
| |
Collapse
|
18
|
Calcat-i-Cervera S, Sanz-Nogués C, O'Brien T. When Origin Matters: Properties of Mesenchymal Stromal Cells From Different Sources for Clinical Translation in Kidney Disease. Front Med (Lausanne) 2021; 8:728496. [PMID: 34616756 PMCID: PMC8488400 DOI: 10.3389/fmed.2021.728496] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Accepted: 08/19/2021] [Indexed: 12/14/2022] Open
Abstract
Advanced therapy medicinal products (ATMPs) offer new prospects to improve the treatment of conditions with unmet medical needs. Kidney diseases are a current major health concern with an increasing global prevalence. Chronic renal failure appears after many years of impairment, which opens a temporary window to apply novel therapeutic approaches to delay or halt disease progression. The immunomodulatory, anti-inflammatory, and pro-regenerative properties of mesenchymal stromal cells (MSCs) have sparked interest for their use in cell-based regenerative therapies. Currently, several early-phase clinical trials have been completed and many are ongoing to explore MSC safety and efficacy in a wide range of nephropathies. However, one of the current roadblocks to the clinical translation of MSC therapies relates to the lack of standardization and harmonization of MSC manufacturing protocols, which currently hinders inter-study comparability. Studies have shown that cell culture processing variables can have significant effects on MSC phenotype and functionality, and these are highly variable across laboratories. In addition, heterogeneity within MSC populations is another obstacle. Furthermore, MSCs may be isolated from several sources which adds another variable to the comparative assessment of outcomes. There is now a growing body of literature highlighting unique and distinctive properties of MSCs according to the tissue origin, and that characteristics such as donor, age, sex and underlying medical conditions may alter the therapeutic effect of MSCs. These variables must be taken into consideration when developing a cell therapy product. Having an optimal scale-up strategy for MSC manufacturing is critical for ensuring product quality while minimizing costs and time of production, as well as avoiding potential risks. Ideally, optimal scale-up strategies must be carefully considered and identified during the early stages of development, as making changes later in the bioprocess workflow will require re-optimization and validation, which may have a significant long-term impact on the cost of the therapy. This article provides a summary of important cell culture processing variables to consider in the scale-up of MSC manufacturing as well as giving a comprehensive review of tissue of origin-specific biological characteristics of MSCs and their use in current clinical trials in a range of renal pathologies.
Collapse
Affiliation(s)
| | | | - Timothy O'Brien
- Regenerative Medicine Institute (REMEDI), CÚRAM, Biomedical Science Building, National University of Ireland, Galway, Ireland
| |
Collapse
|
19
|
Yang D, Zhang M, Liu K. Tissue engineering to treat pelvic organ prolapse. JOURNAL OF BIOMATERIALS SCIENCE-POLYMER EDITION 2021; 32:2118-2143. [PMID: 34313549 DOI: 10.1080/09205063.2021.1958184] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
Abstract
Pelvic organ prolapse (POP) is a frequent chronic illness, which seriously affects women's living quality. In recent years, tissue engineering has made superior progress in POP treatment, and biological scaffolds have received considerable attention. Nevertheless, pelvic floor reconstruction still faces severe challenges, including the construction of ideal scaffolds, the selection of optimal seed cells, and growth factors. This paper summarizes the recent progress of pelvic floor reconstruction in tissue engineering, and discusses the problems that need to be further considered and solved to provide references for the further development of this field.
Collapse
Affiliation(s)
- Deyu Yang
- Department of Biopharmaceutics, College of Food Science and Technology, Shanghai Ocean University, Shanghai, P.R. China
| | - Min Zhang
- Department of Biopharmaceutics, College of Food Science and Technology, Shanghai Ocean University, Shanghai, P.R. China
| | - Kehai Liu
- Department of Biopharmaceutics, College of Food Science and Technology, Shanghai Ocean University, Shanghai, P.R. China
| |
Collapse
|
20
|
Rahmani-Moghadam E, Zarrin V, Mahmoodzadeh A, Owrang M, Talaei-Khozani T. Comparison of the Characteristics of Breast Milk-derived Stem Cells with the Stem Cells Derived from the Other Sources: A Comparative Review. Curr Stem Cell Res Ther 2021; 17:71-90. [PMID: 34161214 DOI: 10.2174/1574888x16666210622125309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 03/14/2021] [Accepted: 03/28/2021] [Indexed: 11/22/2022]
Abstract
Breast milk (BrM) not only supplies nutrition, but it also contains a diverse population of cells. It has been estimated that up to 6% of the cells in human milk possess the characteristics of mesenchymal stem cells (MSC). Available data also indicate that these cells are multipotent and capable of self-renewal and differentiation with other cells. In this review, we have compared different characteristics, such as CD markers, differentiation capacity, and morphology of stem cells, derived from human breast milk (hBr-MSC) with human bone marrow (hBMSC), Wharton's jelly (WJMSC), and human adipose tissue (hADMSC). Through the literature review, it was revealed that human breast milk-derived stem cells specifically express a group of cell surface markers, including CD14, CD31, CD45, and CD86. Importantly, a group of markers, CD13, CD29, CD44, CD105, CD106, CD146, and CD166, were identified, which were common in the four sources of stem cells. WJMSC, hBMSC, hADMSC, and hBr-MSC are potently able to differentiate into the mesoderm, ectoderm, and endoderm cell lineages. The ability of hBr-MSCs todifferentiate into the neural stem cells, neurons, adipocyte, hepatocyte, chondrocyte, osteocyte, and cardiomyocytes has made these cells a promising source of stem cells in regenerative medicine, while isolation of stem cells from the commonly used sources, such as bone marrow, requires invasive procedures. Although autologous breast milk-derived stem cells are an accessible source for women who are in the lactation period, breast milk can be considered as a source of stem cells with high differentiation potential without any ethical concern.
Collapse
Affiliation(s)
- Ebrahim Rahmani-Moghadam
- Department of Anatomical sciences, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Vahideh Zarrin
- Laboratory for Stem Cell Research, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Amir Mahmoodzadeh
- Medical Biology Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Marzieh Owrang
- Department of Anatomical sciences, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Tahereh Talaei-Khozani
- Department of Anatomical sciences, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
21
|
Cao Y, Yan J, Liu H. [Clinical research progress of mesenchymal stem cells in treatment of chronic wounds]. ZHONGGUO XIU FU CHONG JIAN WAI KE ZA ZHI = ZHONGGUO XIUFU CHONGJIAN WAIKE ZAZHI = CHINESE JOURNAL OF REPARATIVE AND RECONSTRUCTIVE SURGERY 2021; 35:496-501. [PMID: 33855836 DOI: 10.7507/1002-1892.202011009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Objective To review the clinical research progress of mesenchymal stem cells (MSCs) in the treatment of chronic wounds. Methods The literature related to the chronic wound repair with MSCs at home and abroad in recent years was extensively reviewed, and the possible mechanism of MSCs in the treatment of chronic wounds, as well as its application and existing problems were summarized. Results MSCs can participate in all aspects of chronic wound healing to promote wound healing, and has shown broad application prospects in clinical trials. MSCs commonly used in clinical research include bone marrow-derived MSCs, adipose-derived tissue MSCs, and umbilical cord-derived MSCs. Conclusion MSCs treatment is a promising strategy for the chronic wounds, but there are still many problems in its widespread clinical application that require further research.
Collapse
Affiliation(s)
- Yingxuan Cao
- Department of Plastic Surgery, the First Affiliated Hospital of Jinan University, Innovative Technology Research Institute of Tissue Repair and Regeneration, Key Laboratory of Regenerative Medicine, Ministry of Education, Guangzhou Guangdong, 510630, P.R.China
| | - Jianxin Yan
- Department of Plastic Surgery, the First Affiliated Hospital of Jinan University, Innovative Technology Research Institute of Tissue Repair and Regeneration, Key Laboratory of Regenerative Medicine, Ministry of Education, Guangzhou Guangdong, 510630, P.R.China
| | - Hongwei Liu
- Department of Plastic Surgery, the First Affiliated Hospital of Jinan University, Innovative Technology Research Institute of Tissue Repair and Regeneration, Key Laboratory of Regenerative Medicine, Ministry of Education, Guangzhou Guangdong, 510630, P.R.China
| |
Collapse
|
22
|
Yang S, Liu P, Jiang Y, Wang Z, Dai H, Wang C. Therapeutic Applications of Mesenchymal Stem Cells in Idiopathic Pulmonary Fibrosis. Front Cell Dev Biol 2021; 9:639657. [PMID: 33768094 PMCID: PMC7985078 DOI: 10.3389/fcell.2021.639657] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Accepted: 02/15/2021] [Indexed: 12/17/2022] Open
Abstract
Idiopathic pulmonary fibrosis (IPF) is an interstitial disease of unknown etiology characterized by progressive pulmonary fibrosis. Pirfenidone and nintedanib are the only drugs that can prolong the time to disease progression, slow down the decline in lung function, and prolong survival. However, they do not offer a cure and are associated with tolerability issues. The pluripotency of mesenchymal stem cells (MSCs) and their ability to regulate immunity, inhibit inflammation, and promote epithelial tissue repair highlight the promise of MSC therapy for treating interstitial lung disease. However, optimal protocols are lacking for multi-parameter selection in MSC therapy. This review summarizes preclinical studies on MSC transplantation for the treatment of interstitial lung disease and clinical studies with known results. An analysis of relevant factors for the optimization of treatment plans is presented, including MSCs with different sources, administration routes and timing, dosages, frequencies, and pretreatments with MSCs. This review proposes an optimized plan for guiding the design of future clinical research to identify therapeutic options for this complex disease.
Collapse
Affiliation(s)
- Shengnan Yang
- Department of Pulmonary and Critical Care Medicine, Center of Respiratory Medicine, China-Japan Friendship Hospital, Beijing, China.,National Center for Respiratory Medicine, Beijing, China.,Institute of Respiratory Medicine, Chinese Academy of Medical Sciences, Beijing, China.,National Clinical Research Center for Respiratory Diseases, Beijing, China.,WHO Collaborating Centre for Tobacco Cessation and Respiratory Diseases Prevention, Beijing, China.,Harbin Medical University, Harbin, China
| | - Peipei Liu
- Department of Pulmonary and Critical Care Medicine, Center of Respiratory Medicine, China-Japan Friendship Hospital, Beijing, China.,Graduate School of Peking Union Medical College, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yale Jiang
- School of Medicine, Tsinghua University, Beijing, China
| | - Zai Wang
- Institute of Clinical Medical Sciences, China-Japan Friendship Hospital, Beijing, China
| | - Huaping Dai
- Department of Pulmonary and Critical Care Medicine, Center of Respiratory Medicine, China-Japan Friendship Hospital, Beijing, China.,National Center for Respiratory Medicine, Beijing, China.,Institute of Respiratory Medicine, Chinese Academy of Medical Sciences, Beijing, China.,National Clinical Research Center for Respiratory Diseases, Beijing, China.,WHO Collaborating Centre for Tobacco Cessation and Respiratory Diseases Prevention, Beijing, China
| | - Chen Wang
- Department of Pulmonary and Critical Care Medicine, Center of Respiratory Medicine, China-Japan Friendship Hospital, Beijing, China.,National Center for Respiratory Medicine, Beijing, China.,Institute of Respiratory Medicine, Chinese Academy of Medical Sciences, Beijing, China.,National Clinical Research Center for Respiratory Diseases, Beijing, China.,WHO Collaborating Centre for Tobacco Cessation and Respiratory Diseases Prevention, Beijing, China.,Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|
23
|
Hendawy H, Uemura A, Ma D, Namiki R, Samir H, Ahmed MF, Elfadadny A, El-Husseiny HM, Chieh-Jen C, Tanaka R. Tissue Harvesting Site Effect on the Canine Adipose Stromal Vascular Fraction Quantity and Quality. Animals (Basel) 2021; 11:ani11020460. [PMID: 33572472 PMCID: PMC7916364 DOI: 10.3390/ani11020460] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 01/28/2021] [Accepted: 02/05/2021] [Indexed: 02/03/2023] Open
Abstract
Simple Summary Adipose stromal vascular fraction (SVF) cells are freshly isolated non-cultured mesenchymal stem cells, which have been recently applied in the treatment of several musculoskeletal inflammatory conditions in dogs. However, the best adipose tissue (AT) sampling site is still challenging. This study first addressed the ideal AT harvesting site in canines ranging between middle and old age, the most susceptible age to chronic musculoskeletal problems. Our results showed that the peri-ovarian region is the best AT harvesting site, which yields high amounts of SVF cells with enough adipose-derived stem cells. These data may help the further set-up of cell-based regenerative therapies at the preclinical and experimental level in canines. Abstract Mesenchymal stem cells (MSCs) constitute a great promise for regenerative therapy, but these cells are difficultly recovered in large amounts. A potent alternative is the stromal vascular fraction (SVF), non-cultured MSCs, separated from adipose tissue (AT). We aim to evaluate AT harvesting site effect on the SVF cells’ quantity and quality in dogs. Subcutaneous abdominal fat, falciform ligament and peri-ovarian fat were sampled. After SVF isolation, the trypan blue exclusion test and a hemocytometer were used to assess the cell viability and cellular yield. SVF cells were labeled for four surface antigenic markers, clusters of differentiation CD90, CD44, CD29, and CD45, and then examined by flow cytometry. Semi-quantitative RT-PCR was used to evaluate the gene expression of the former markers in addition to OCT-4 and CD34. SVF cells in the peri-ovarian AT recorded the highest viability% (99.63 ± 0.2%), as well as a significantly higher cellular yield (36.87 ± 19.6 × 106 viable cells/gm fat, p < 0.001) and a higher expression of adipose-derived mesenchymal stem cells AD-MSCs surface markers than that of other sites. SVF cells from the peri-ovarian site revealed a higher expression of MSC markers (CD90, CD44, and CD29) and OCT-4 compared to the other sites, with weak CD45 and CD34 expressions. The positive OCT-4 expression demonstrated the pluripotency of SVF cells isolated from different sites. To conclude, the harvesting site is a strong determinant of SVF cells’ quantity and quality, and the peri-ovarian site could be the best AT sampling site in dogs.
Collapse
Affiliation(s)
- Hanan Hendawy
- Laboratory of Veterinary Surgery, Tokyo University of Agriculture and Technology, Tokyo 183-8509, Japan; (H.H.); (A.U.); (D.M.); (R.N.); (H.M.E.-H.); (C.C.-J.)
- Department of Veterinary Surgery, Faculty of Veterinary Medicine, Suez Canal University, Ismailia 41522, Egypt;
| | - Akiko Uemura
- Laboratory of Veterinary Surgery, Tokyo University of Agriculture and Technology, Tokyo 183-8509, Japan; (H.H.); (A.U.); (D.M.); (R.N.); (H.M.E.-H.); (C.C.-J.)
| | - Danfu Ma
- Laboratory of Veterinary Surgery, Tokyo University of Agriculture and Technology, Tokyo 183-8509, Japan; (H.H.); (A.U.); (D.M.); (R.N.); (H.M.E.-H.); (C.C.-J.)
| | - Ryosuke Namiki
- Laboratory of Veterinary Surgery, Tokyo University of Agriculture and Technology, Tokyo 183-8509, Japan; (H.H.); (A.U.); (D.M.); (R.N.); (H.M.E.-H.); (C.C.-J.)
| | - Haney Samir
- Department of Theriogenology, Faculty of Veterinary Medicine, Cairo University, Giza 12211, Egypt;
- Laboratory of Veterinary Physiology, Department of Veterinary Medicine, Tokyo University of Agriculture and Technology, Tokyo 183-8509, Japan
| | - Mahmoud F. Ahmed
- Department of Veterinary Surgery, Faculty of Veterinary Medicine, Suez Canal University, Ismailia 41522, Egypt;
| | - Ahmed Elfadadny
- Department of Animal Medicine, Faculty of Veterinary Medicine, Damanhur University, Damanhur, El-Beheira 22511, Egypt;
| | - Hussein M. El-Husseiny
- Laboratory of Veterinary Surgery, Tokyo University of Agriculture and Technology, Tokyo 183-8509, Japan; (H.H.); (A.U.); (D.M.); (R.N.); (H.M.E.-H.); (C.C.-J.)
- Department of Surgery, Anesthesiology, and Radiology, Faculty of Veterinary Medicine, Benha University, Elqaliobiya 13736, Egypt
| | - Cheng Chieh-Jen
- Laboratory of Veterinary Surgery, Tokyo University of Agriculture and Technology, Tokyo 183-8509, Japan; (H.H.); (A.U.); (D.M.); (R.N.); (H.M.E.-H.); (C.C.-J.)
| | - Ryou Tanaka
- Laboratory of Veterinary Surgery, Tokyo University of Agriculture and Technology, Tokyo 183-8509, Japan; (H.H.); (A.U.); (D.M.); (R.N.); (H.M.E.-H.); (C.C.-J.)
- Correspondence: ; Tel.: +81-042-367-5904
| |
Collapse
|
24
|
Shi W, Xin Q, Yuan R, Yuan Y, Cong W, Chen K. Neovascularization: The Main Mechanism of MSCs in Ischemic Heart Disease Therapy. Front Cardiovasc Med 2021; 8:633300. [PMID: 33575274 PMCID: PMC7870695 DOI: 10.3389/fcvm.2021.633300] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Accepted: 01/05/2021] [Indexed: 12/17/2022] Open
Abstract
Mesenchymal stem cell (MSC) transplantation after myocardial infarction (MI) has been shown to effectively limit the infarct area in numerous clinical and preclinical studies. However, the primary mechanism associated with this activity in MSC transplantation therapy remains unclear. Blood supply is fundamental for the survival of myocardial tissue, and the formation of an efficient vascular network is a prerequisite for blood flow. The paracrine function of MSCs, which is throughout the neovascularization process, including MSC mobilization, migration, homing, adhesion and retention, regulates angiogenesis and vasculogenesis through existing endothelial cells (ECs) and endothelial progenitor cells (EPCs). Additionally, MSCs have the ability to differentiate into multiple cell lineages and can be mobilized and migrate to ischemic tissue to differentiate into ECs, pericytes and smooth muscle cells in some degree, which are necessary components of blood vessels. These characteristics of MSCs support the view that these cells improve ischemic myocardium through angiogenesis and vasculogenesis. In this review, the results of recent clinical and preclinical studies are discussed to illustrate the processes and mechanisms of neovascularization in ischemic heart disease.
Collapse
Affiliation(s)
- Weili Shi
- Laboratory of Cardiovascular Diseases, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China.,National Clinical Research Center for Chinese Medicine Cardiology, Beijing, China
| | - Qiqi Xin
- Laboratory of Cardiovascular Diseases, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China.,National Clinical Research Center for Chinese Medicine Cardiology, Beijing, China
| | - Rong Yuan
- Laboratory of Cardiovascular Diseases, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China.,National Clinical Research Center for Chinese Medicine Cardiology, Beijing, China
| | - Yahui Yuan
- Laboratory of Cardiovascular Diseases, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China.,National Clinical Research Center for Chinese Medicine Cardiology, Beijing, China
| | - Weihong Cong
- Laboratory of Cardiovascular Diseases, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China.,National Clinical Research Center for Chinese Medicine Cardiology, Beijing, China
| | - Keji Chen
- Laboratory of Cardiovascular Diseases, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China.,National Clinical Research Center for Chinese Medicine Cardiology, Beijing, China
| |
Collapse
|
25
|
Fričová D, Korchak JA, Zubair AC. Challenges and translational considerations of mesenchymal stem/stromal cell therapy for Parkinson's disease. NPJ Regen Med 2020; 5:20. [PMID: 33298940 PMCID: PMC7641157 DOI: 10.1038/s41536-020-00106-y] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Accepted: 08/31/2020] [Indexed: 12/12/2022] Open
Abstract
Parkinson's disease (PD) is the second most common neurodegenerative disease characterized by the progressive loss of dopaminergic neurons in the substantia nigra pars compacta and the presence of Lewy bodies, which gives rise to motor and non-motor symptoms. Unfortunately, current therapeutic strategies for PD merely treat the symptoms of the disease, only temporarily improve the patients' quality of life, and are not sufficient for completely alleviating the symptoms. Therefore, cell-based therapies have emerged as a novel promising therapeutic approach in PD treatment. Mesenchymal stem/stromal cells (MSCs) have arisen as a leading contender for cell sources due to their regenerative and immunomodulatory capabilities, limited ethical concerns, and low risk of tumor formation. Although several studies have shown that MSCs have the potential to mitigate the neurodegenerative pathology of PD, variabilities in preclinical and clinical trials have resulted in inconsistent therapeutic outcomes. In this review, we strive to highlight the sources of variability in studies using MSCs in PD therapy, including MSC sources, the use of autologous or allogenic MSCs, dose, delivery methods, patient factors, and measures of clinical outcome. Available evidence indicates that while the use of MSCs in PD has largely been promising, conditions need to be standardized so that studies can be effectively compared with one another and experimental designs can be improved upon, such that this body of science can continue to move forward.
Collapse
Affiliation(s)
- Dominika Fričová
- Department of Laboratory Medicine and Pathology and Center for Regenerative Medicine, Mayo Clinic, Jacksonville, FL, USA
- Institute of Neuroimmunology, Slovak Academy of Sciences, Bratislava, Slovak Republic
| | - Jennifer A Korchak
- Department of Laboratory Medicine and Pathology and Center for Regenerative Medicine, Mayo Clinic, Jacksonville, FL, USA
| | - Abba C Zubair
- Department of Laboratory Medicine and Pathology and Center for Regenerative Medicine, Mayo Clinic, Jacksonville, FL, USA.
| |
Collapse
|
26
|
Rajbhandari S, Beppu M, Takagi T, Nakano-Doi A, Nakagomi N, Matsuyama T, Nakagomi T, Yoshimura S. Ischemia-Induced Multipotent Stem Cells Isolated from Stroke Patients Exhibit Higher Neurogenic Differentiation Potential than Bone Marrow-Derived Mesenchymal Stem Cells. Stem Cells Dev 2020; 29:994-1006. [PMID: 32515302 DOI: 10.1089/scd.2020.0031] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Perivascular areas of the brain harbor multipotent stem cells. We recently demonstrated that after a stroke, brain pericytes exhibit features of multipotent stem cells. Moreover, these ischemia-induced multipotent stem cells (iSCs) are present within ischemic areas of the brain of patients diagnosed with stroke. Although increasing evidence shows that iSCs have traits similar to those of mesenchymal stem cells (MSCs), the phenotypic similarities and differences between iSCs and MSCs remain unclear. In this study, we used iSCs extracted from stroke patients (h-iSCs) and compared their neurogenic potential with that of human MSCs (h-MSCs) in vitro. Microarray analysis, fluorescence-activated cell sorting, immunohistochemistry, and multielectrode array were performed to compare the characteristics of h-iSCs and h-MSCs. Although h-iSCs and h-MSCs had similar gene expression profiles, the percentage expressing the neural stem/progenitor cell marker nestin was significantly higher in h-iSCs than in h-MSCs. Consistent with these findings, h-iSCs, but not h-MSCs, differentiated into electrophysiologically functional neurons. In contrast, although both h-iSCs and h-MSCs were able to differentiate into several mesodermal lineages, including adipocytes, osteocytes, and chondrocytes, the potential of h-iSCs to differentiate into adipocytes and osteocytes was relatively low. These results suggest that compared with h-MSCs, h-iSCs predominantly exhibit neural rather than mesenchymal lineages. In addition, these results indicate that h-iSCs have the potential to repair the injured brain of patients with stroke by directly differentiating into neuronal lineages.
Collapse
Affiliation(s)
| | - Mikiya Beppu
- Department of Neurosurgery, Hyogo College of Medicine, Nishinomiya, Japan
| | - Toshinori Takagi
- Department of Neurosurgery, Hyogo College of Medicine, Nishinomiya, Japan
| | - Akiko Nakano-Doi
- Institute for Advanced Medical Sciences, Departments of Hyogo College of Medicine, Nishinomiya, Japan.,Therapeutic Progress in Brain Diseases and Hyogo College of Medicine, Nishinomiya, Japan
| | - Nami Nakagomi
- Surgical Pathology, Hyogo College of Medicine, Nishinomiya, Japan
| | - Tomohiro Matsuyama
- Therapeutic Progress in Brain Diseases and Hyogo College of Medicine, Nishinomiya, Japan
| | - Takayuki Nakagomi
- Institute for Advanced Medical Sciences, Departments of Hyogo College of Medicine, Nishinomiya, Japan.,Therapeutic Progress in Brain Diseases and Hyogo College of Medicine, Nishinomiya, Japan
| | - Shinichi Yoshimura
- Department of Neurosurgery, Hyogo College of Medicine, Nishinomiya, Japan.,Institute for Advanced Medical Sciences, Departments of Hyogo College of Medicine, Nishinomiya, Japan
| |
Collapse
|
27
|
Butt G, Hussain I, Ahmad FJ, Choudhery MS. Stromal vascular fraction-enriched platelet-rich plasma therapy reverses the effects of androgenetic alopecia. J Cosmet Dermatol 2020; 19:1078-1085. [PMID: 31541565 DOI: 10.1111/jocd.13149] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2019] [Revised: 05/14/2019] [Accepted: 08/21/2019] [Indexed: 02/05/2023]
Abstract
BACKGROUND Since antiquity, humans have been trying to devise remedies to cure androgenetic alopecia (AGA). These efforts include use of oral and topical concoctions and hair transplant strategies. As AGA affects people of all colors and creed, there has been a continuous effort to find a magic bullet against AGA. Unfortunately, to date, all the strategies to negate AGA effects have limitations and thus require new treatment options. AIM To evaluate the efficacy of use of stromal vascular fraction (SVF) in androgenetic alopecia patients. METHODS Stromal vascular fraction was obtained by enzymatic digestion of autologous adipose tissue. The patients were divided into two groups, that is, platelet-rich plasma (PRP) group and SVF-PRP group. In PRP group, only PRP was injected, while in SVF-PRP group a mixture of PRP and SVF was injected in affected scalp areas. After two sessions (4 weeks apart), the patients in both groups were assessed and analyzed using various parameters. RESULTS Mean hair density in PRP group was increased from 52.44 hair/cm2 to 63.72 hair/cm2 (21.51% increase); while in SVF-PRP group, it was 37.66 hair/cm2 before treatment and 57.11 hair/cm2 after SVF-PRP therapy (51.64% increase). Percentage reduction in pull test was more significant in SVF-PRP group (80.78 ± 5.84) as compared to PRP group (34.01 ± 22.44). The physician and patient assessment scores also indicated a significant improvement in SVF-PRP group. CONCLUSION A combined SVF-PRP therapy reversed effects of AGA more efficiently as compared to PRP therapy alone.
Collapse
Affiliation(s)
- Ghazala Butt
- Department of Dermatology, King Edward Medical University/Mayo Hospital, Lahore, Pakistan
| | - Ijaz Hussain
- Department of Dermatology, King Edward Medical University/Mayo Hospital, Lahore, Pakistan
| | - Fridoon Jawad Ahmad
- Department of Biomedical Sciences, King Edward Medical University, Lahore, Pakistan
| | - Mahmood S Choudhery
- Tissue Engineering and Regenerative Medicine Laboratory, Department of Biomedical Sciences, King Edward Medical University, Lahore, Pakistan
| |
Collapse
|
28
|
Ashfaq R, Mehmood A, Ramzan A, Hussain I, Tarar MN, Riazuddin S. Antioxidant pretreatment enhances umbilical cord derived stem cells survival in response to thermal stress in vitro. Regen Med 2020; 15:1441-1453. [PMID: 32339058 DOI: 10.2217/rme-2019-0090] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Aim: Pretreatment of stem cells with antioxidants accelerates their ability to counter oxidative stress and is associated with the overall therapeutic outcome of their transplantation. Material & methods: Wharton Jelly derived mesenchymal stem cells (WJMSCs) were cultured and pretreated with various doses of antioxidants; Vitamin C (Vit C), Vitamin E (Vit E), Vitamin D3 (Vit D3) and their Cocktail, followed by exposure to in vitro heat injury. Assessment of WJMSCs survival, paracrine release, in vitro wound healing and expression of angiogenic and survival markers was conducted. Results: The results displayed an enhanced survival of WJMSCs especially in the case of Cocktail priming. Conclusion: Our data suggest that antioxidant pretreatment of WJMSCs strengthens the endurance of the cells, within stress conditions.
Collapse
Affiliation(s)
- Ramla Ashfaq
- Centre of Excellence in Molecular Biology (CEMB), 87-West Canal Bank Road, University of the Punjab, Lahore, Pakistan
| | - Azra Mehmood
- Centre of Excellence in Molecular Biology (CEMB), 87-West Canal Bank Road, University of the Punjab, Lahore, Pakistan
| | - Amna Ramzan
- Centre of Excellence in Molecular Biology (CEMB), 87-West Canal Bank Road, University of the Punjab, Lahore, Pakistan
| | - Intzar Hussain
- Department of Ophthalmology, Services Institute of Medical Sciences, Lahore, Pakistan
| | - Moazzam Nazeer Tarar
- Department of Dermatology, Jinnah Burn & Reconstructive Surgery Centre, Lahore, Pakistan
| | - Sheikh Riazuddin
- Centre of Excellence in Molecular Biology (CEMB), 87-West Canal Bank Road, University of the Punjab, Lahore, Pakistan.,Department of Dermatology, Jinnah Burn & Reconstructive Surgery Centre, Lahore, Pakistan
| |
Collapse
|
29
|
Petrenko Y, Vackova I, Kekulova K, Chudickova M, Koci Z, Turnovcova K, Kupcova Skalnikova H, Vodicka P, Kubinova S. A Comparative Analysis of Multipotent Mesenchymal Stromal Cells derived from Different Sources, with a Focus on Neuroregenerative Potential. Sci Rep 2020; 10:4290. [PMID: 32152403 PMCID: PMC7062771 DOI: 10.1038/s41598-020-61167-z] [Citation(s) in RCA: 123] [Impact Index Per Article: 24.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2019] [Accepted: 02/04/2020] [Indexed: 02/07/2023] Open
Abstract
Multipotent mesenchymal stromal cells (MSCs) can be considered an accessible therapeutic tool for regenerative medicine. Here, we compared the growth kinetics, immunophenotypic and immunomodulatory properties, gene expression and secretome profile of MSCs derived from human adult bone marrow (BM-MSCs), adipose tissue (AT-MSCs) and Wharton’s jelly (WJ-MSCs) cultured in clinically-relevant conditions, with the focus on the neuroregenerative potential. All the cell types were positive for CD10/CD29/CD44/CD73/CD90/CD105/HLA-ABC and negative for CD14/CD45/CD235a/CD271/HLA-DR/VEGFR2 markers, but they differed in the expression of CD34/CD133/CD146/SSEA-4/MSCA-1/CD271/HLA-DR markers. BM-MSCs displayed the highest immunomodulatory activity compared to AT- and WJ-MSCs. On the other hand, BM-MSCs secreted the lower content and had the lower gene expression of neurotrophic growth factors compared to other cell lines, which may be caused by the higher sensitivity of BM-MSCs to nutrient limitations. Despite the differences in growth factor secretion, the MSC secretome derived from all cell sources had a pronounced neurotrophic potential to stimulate the neurite outgrowth of DRG-neurons and reduce the cell death of neural stem/progenitor cells after H2O2 treatment. Overall, our study provides important information for the transfer of basic MSC research towards clinical-grade manufacturing and therapeutic applications.
Collapse
Affiliation(s)
- Yuriy Petrenko
- Institute of Experimental Medicine of the Czech Academy of Sciences, Videnska 1083, 14220, Prague, Czech Republic.
| | - Irena Vackova
- Institute of Experimental Medicine of the Czech Academy of Sciences, Videnska 1083, 14220, Prague, Czech Republic
| | - Kristyna Kekulova
- Institute of Experimental Medicine of the Czech Academy of Sciences, Videnska 1083, 14220, Prague, Czech Republic.,2nd Medical Faculty, Charles University, V Uvalu 84, 15006, Prague, Czech Republic
| | - Milada Chudickova
- Institute of Experimental Medicine of the Czech Academy of Sciences, Videnska 1083, 14220, Prague, Czech Republic
| | - Zuzana Koci
- Institute of Experimental Medicine of the Czech Academy of Sciences, Videnska 1083, 14220, Prague, Czech Republic
| | - Karolina Turnovcova
- Institute of Experimental Medicine of the Czech Academy of Sciences, Videnska 1083, 14220, Prague, Czech Republic
| | - Helena Kupcova Skalnikova
- Institute of Animal Physiology and Genetics of the Czech Academy of Sciences, Rumburska 89, 277 21, Libechov, Czech Republic
| | - Petr Vodicka
- Institute of Animal Physiology and Genetics of the Czech Academy of Sciences, Rumburska 89, 277 21, Libechov, Czech Republic
| | - Sarka Kubinova
- Institute of Experimental Medicine of the Czech Academy of Sciences, Videnska 1083, 14220, Prague, Czech Republic.
| |
Collapse
|
30
|
Awais S, Balouch SS, Riaz N, Choudhery MS. Human Dental Pulp Stem Cells Exhibit Osteogenic Differentiation Potential. Open Life Sci 2020; 15:229-236. [PMID: 33987479 PMCID: PMC8114786 DOI: 10.1515/biol-2020-0023] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Accepted: 12/11/2019] [Indexed: 02/05/2023] Open
Abstract
Bone regeneration after trauma, pathologic and surgical procedures is considered a major medical challenge. Due to limitations in using conventional approaches, cell based regenerative strategies may provide an alternative option to address such issues. In the current study, we sought to determine the osteogenic potential of dental pulp stem cells (DPSCs) isolated from impacted 3rd molars. DPSCs were isolated from human dental pulp tissue (n=6) using explant culture. Growth characteristics of DPSCs were determined using plating efficiency, and the number and time of population doublings. After characterization, DPSCs were induced to differentiate into osteoblasts and were assessed using polymerase chain reactions (PCR) and histological analysis. Results indicated that DPSCs can be isolated from impacted human third molars, and that DPSCs exhibited typical fibroblastic morphology and excellent proliferative potential. In addition, morphological changes, histological analysis and expression of lineage specific genes confirmed osteogenic differentiation of DPSCs. In conclusion, DPSCs isolated from impacted 3rd molars have high proliferative potential and ability to differentiate into osteoblasts.
Collapse
Affiliation(s)
- Sadia Awais
- Department of Oral and Maxillofacial Surgery, King Edward medical University, Lahore, Pakistan
| | - Samira Shabbir Balouch
- Department of Oral and Maxillofacial Surgery, King Edward medical University, Lahore, Pakistan
| | - Nabeela Riaz
- Department of Oral and Maxillofacial Surgery, King Edward medical University, Lahore, Pakistan
| | - Mahmood S Choudhery
- Tissue Engineering and Regenerative Medicine Laboratory, Department of Biomedical Sciences, King Edward Medical University, Lahore, Pakistan
- E-mail:
| |
Collapse
|
31
|
Liu AM, Chen BL, Yu LT, Liu T, Shi LL, Yu PP, Qu YB, So KF, Zhou LB. Human adipose tissue- and umbilical cord-derived stem cells: which is a better alternative to treat spinal cord injury? Neural Regen Res 2020; 15:2306-2317. [PMID: 32594054 PMCID: PMC7749492 DOI: 10.4103/1673-5374.284997] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Multiple types of stem cells have been proposed for the treatment of spinal cord injury, but their comparative information remains elusive. In this study, a rat model of T10 contusion spinal cord injury was established by the impactor method. Human umbilical cord-derived mesenchymal stem cells (UCMSCs) or human adipose tissue-derived mesenchymal stem cells (ADMSCs) (2.5 μL/injection site, 1 × 105 cells/μL) was injected on rostral and caudal of the injury segment on the ninth day after injury. Rats injected with mesenchymal stem cell culture medium were used as controls. Our results show that although transplanted UCMSCs and ADMSCs failed to differentiate into neurons or glial cells in vivo, both significantly improved motor and sensory function. After spinal cord injury, UCMSCs and ADMSCs similarly promoted spinal neuron survival and axonal regeneration, decreased glial scar and lesion cavity formation, and reduced numbers of active macrophages. Bio-Plex analysis of spinal samples showed a specific increase of interleukin-10 and decrease of tumor necrosis factor α in the ADMSC group, as well as a downregulation of macrophage inflammatory protein 3α in both UCMSC and ADMSC groups at 3 days after cell transplantation. Upregulation of interleukin-10 and interleukin-13 was observed in both UCMSC and ADMSC groups at 7 days after cell transplantation. Isobaric tagging for relative and absolute quantitation proteomics analyses showed that UCMSCs and ADMSCs induced changes of multiple genes related to axonal regeneration, neurotrophy, and cell apoptosis in common and specific manners. In conclusion, UCMSC and ADMSC transplants yielded quite similar contributions to motor and sensory recovery after spinal cord injury via anti-inflammation and improved axonal growth. However, there were some differences in cytokine and gene expression induced by these two types of transplanted cells. Animal experiments were approved by the Laboratory Animal Ethics Committee at Jinan University (approval No. 20180228026) on February 28, 2018, and the application of human stem cells was approved by the Medical Ethics Committee of Medical College of Jinan University of China (approval No. 2016041303) on April 13, 2016.
Collapse
Affiliation(s)
- Ai-Mei Liu
- Guangdong-Hongkong-Macau Institute of CNS Regeneration, Ministry of Education CNS Regeneration Collaborative Joint Laboratory, Jinan University, Guangzhou, Guangdong Province, China
| | - Bo-Li Chen
- Guangdong-Hongkong-Macau Institute of CNS Regeneration, Ministry of Education CNS Regeneration Collaborative Joint Laboratory, Jinan University, Guangzhou, Guangdong Province, China
| | - Ling-Tai Yu
- Guangdong-Hongkong-Macau Institute of CNS Regeneration, Ministry of Education CNS Regeneration Collaborative Joint Laboratory, Jinan University, Guangzhou, Guangdong Province, China
| | - Tao Liu
- Guangdong-Hongkong-Macau Institute of CNS Regeneration, Ministry of Education CNS Regeneration Collaborative Joint Laboratory, Jinan University, Guangzhou, Guangdong Province, China
| | - Ling-Ling Shi
- Guangdong-Hongkong-Macau Institute of CNS Regeneration, Ministry of Education CNS Regeneration Collaborative Joint Laboratory, Jinan University, Guangzhou, Guangdong Province, China
| | - Pan-Pan Yu
- Guangdong-Hongkong-Macau Institute of CNS Regeneration, Ministry of Education CNS Regeneration Collaborative Joint Laboratory, Jinan University, Guangzhou, Guangdong Province, China
| | - Yi-Bo Qu
- Guangdong-Hongkong-Macau Institute of CNS Regeneration, Ministry of Education CNS Regeneration Collaborative Joint Laboratory, Jinan University, Guangzhou, Guangdong Province; Co-innovation Center of Neuroregeneration, Nantong University, Nantong, Jiangsu Province, China
| | - Kwok-Fai So
- Guangdong-Hongkong-Macau Institute of CNS Regeneration, Ministry of Education CNS Regeneration Collaborative Joint Laboratory, Jinan University; Guangzhou Regenerative Medicine and Health Guangdong Laboratory, Guangzhou, Guangdong Province; Co-innovation Center of Neuroregeneration, Nantong University, Nantong, Jiangsu Province, China
| | - Li-Bing Zhou
- Guangdong-Hongkong-Macau Institute of CNS Regeneration, Ministry of Education CNS Regeneration Collaborative Joint Laboratory, Jinan University; Guangzhou Regenerative Medicine and Health Guangdong Laboratory, Guangzhou, Guangdong Province; Co-innovation Center of Neuroregeneration, Nantong University, Nantong, Jiangsu Province, China
| |
Collapse
|
32
|
Yang C, Chen Y, Zhong L, You M, Yan Z, Luo M, Zhang B, Yang B, Chen Q. Homogeneity and heterogeneity of biological characteristics in mesenchymal stem cells from human umbilical cords and exfoliated deciduous teeth. Biochem Cell Biol 2019; 98:415-425. [PMID: 31794246 DOI: 10.1139/bcb-2019-0253] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Mesenchymal stem cells (MSCs) have proven powerful potential for cell-based therapy both in regenerative medicine and disease treatment. Human umbilical cords and exfoliated deciduous teeth are the main sources of MSCs with no donor injury or ethical issues. The goal of this study was to investigate the differences in the biological characteristics of human umbilical cord mesenchymal stem cells (UCMSCs) and stem cells from human exfoliated deciduous teeth (SHEDs). UCMSCs and SHEDs were identified by flow cytometry. The proliferation, differentiation, migration, chemotaxis, paracrine, immunomodulatory, neurite growth-promoting capabilities, and acetaldehyde dehydrogenase (ALDH) activity were comparatively studied between these two MSCs in vitro. The results showed that both SHEDs and UCMSCs expressed cell surface markers characteristic of MSCs. Furthermore, SHEDs exhibited better capacity for proliferation, migration, promotion of neurite growth, and chondrogenic differentiation. Meanwhile, UCMSCs showed more outstanding adipogenic differentiation and chemotaxy. Additionally, there were no significant differences in osteogenic differentiation, immunomodulatory capacity, and the proportion of ALDHBright compartment. Our findings indicate that although both UCMSCs and SHEDs are mesenchymal stem cells and presented some similar biological characteristics, they also have differences in many aspects, which might be helpful for developing future clinical cellular therapies.
Collapse
Affiliation(s)
- Chao Yang
- Stem Cells and Regenerative Medicine Research Center, Sichuan Stem Cell Bank/Sichuan Neo-life Stem Cell Biotech Inc., Chengdu, China
| | - Yu Chen
- Stem Cells and Regenerative Medicine Research Center, Sichuan Stem Cell Bank/Sichuan Neo-life Stem Cell Biotech Inc., Chengdu, China
| | - Liwu Zhong
- Stem Cells and Regenerative Medicine Research Center, Sichuan Stem Cell Bank/Sichuan Neo-life Stem Cell Biotech Inc., Chengdu, China
| | - Min You
- Stem Cells and Regenerative Medicine Research Center, Sichuan Stem Cell Bank/Sichuan Neo-life Stem Cell Biotech Inc., Chengdu, China
| | - Zhiling Yan
- Department of Stomatology, Chengdu Women's and Children's Central Hospital, Chengdu, China
| | - Maowen Luo
- Stem Cells and Regenerative Medicine Research Center, Sichuan Stem Cell Bank/Sichuan Neo-life Stem Cell Biotech Inc., Chengdu, China
| | - Bo Zhang
- Stem Cells and Regenerative Medicine Research Center, Sichuan Stem Cell Bank/Sichuan Neo-life Stem Cell Biotech Inc., Chengdu, China
| | - Benyanzi Yang
- Stem Cells and Regenerative Medicine Research Center, Sichuan Stem Cell Bank/Sichuan Neo-life Stem Cell Biotech Inc., Chengdu, China
| | - Qiang Chen
- Stem Cells and Regenerative Medicine Research Center, Sichuan Stem Cell Bank/Sichuan Neo-life Stem Cell Biotech Inc., Chengdu, China.,Center for Stem Cell Research & Application, Institute of Blood Transfusion, Chinese Academy of Medical Sciences and Peking Union Medical College, Chengdu, China
| |
Collapse
|
33
|
Yuan X, Han L, Lin H, Guo Z, Huang Y, Li S, Long T, Tang W, Tian W, Long J. The role of antimiR-26a-5p/biphasic calcium phosphate in repairing rat femoral defects. Int J Mol Med 2019; 44:857-870. [PMID: 31257525 PMCID: PMC6658005 DOI: 10.3892/ijmm.2019.4249] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Accepted: 06/19/2019] [Indexed: 12/15/2022] Open
Abstract
Although miRNAs have been implicated in the osteogenic differentiation of stem cells, their role in bone repair and reconstruction in tissue‑engineered bone grafts remains unclear. We previously reported that microRNA (miR)‑26a‑5p inhibited the osteogenic differentiation of adipose‑derived mesenchymal stem cells (ADSCs), and that antimiR‑26a‑5p exerted the opposite effect. In the present study, the role of miR‑26a‑5p‑ and antimiR‑26a‑5p‑modified ADSCs combined with biphasic calcium phosphate (BCP) scaffolds was evaluated in a rat femur defect model. The aim of the present study was to improve the understanding of the role of miR‑26a‑5p in bone regeneration in vivo, as well as to provide a new method to optimize the osteogenic ability of BCPs. ADSCs were infected with Lv‑miR‑26a‑5p, Lv‑miR‑NC, Lv‑antimiR‑26a‑5p or Lv‑antimiR‑NC respectively, and then combined with BCP scaffolds to repair rat femoral defects. Using X‑rays, micro‑computed tomography and histology at 2, 4, and 8 weeks postoperatively, the quantity and rate of bone regeneration were analyzed, revealing that they were the highest in animals treated with antimiR‑26a‑5p and the lowest in the miR‑26a‑5p treatment group. The expression levels of osteocalcin, collagen I, Runt‑related transcription factor 2, Wnt family member 5A and calmodulin‑dependent protein kinase II proteins were positively correlated with the bone formation rate. Taken together, the present results demonstrated that miR‑26a‑5p inhibited bone formation while antimiR‑26a‑5p accelerated bone formation via the Wnt/Ca2+ signaling pathway. Therefore, antimiR‑26a‑5p‑modified ADSCs combined with BCP scaffolds may be used to construct an effective tissue‑engineering bone graft for bone repair and reconstruction.
Collapse
Affiliation(s)
- Xiaoyan Yuan
- The State Key Laboratory of Oral Diseases, Sichuan University, Chengdu, Sichuan 610041
- Department of Aesthetic Medicine, The Second People's Hospital of Chengdu, Chengdu, Sichuan 610017
| | - Lu Han
- The State Key Laboratory of Oral Diseases, Sichuan University, Chengdu, Sichuan 610041
- Department of Oral and Maxillofacial Surgery, West China College of Stomatology, Sichuan University, Chengdu, Sichuan 610041
| | - Hai Lin
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, Sichuan 610064, P.R. China
| | - Zeyou Guo
- The State Key Laboratory of Oral Diseases, Sichuan University, Chengdu, Sichuan 610041
- Department of Oral and Maxillofacial Surgery, West China College of Stomatology, Sichuan University, Chengdu, Sichuan 610041
| | - Yanling Huang
- The State Key Laboratory of Oral Diseases, Sichuan University, Chengdu, Sichuan 610041
| | - Shasha Li
- The State Key Laboratory of Oral Diseases, Sichuan University, Chengdu, Sichuan 610041
| | - Ting Long
- The State Key Laboratory of Oral Diseases, Sichuan University, Chengdu, Sichuan 610041
| | - Wei Tang
- Department of Oral and Maxillofacial Surgery, West China College of Stomatology, Sichuan University, Chengdu, Sichuan 610041
| | - Weidong Tian
- The State Key Laboratory of Oral Diseases, Sichuan University, Chengdu, Sichuan 610041
| | - Jie Long
- The State Key Laboratory of Oral Diseases, Sichuan University, Chengdu, Sichuan 610041
- Department of Oral and Maxillofacial Surgery, West China College of Stomatology, Sichuan University, Chengdu, Sichuan 610041
| |
Collapse
|
34
|
Han Y, Li X, Zhang Y, Han Y, Chang F, Ding J. Mesenchymal Stem Cells for Regenerative Medicine. Cells 2019; 8:E886. [PMID: 31412678 PMCID: PMC6721852 DOI: 10.3390/cells8080886] [Citation(s) in RCA: 669] [Impact Index Per Article: 111.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Revised: 08/05/2019] [Accepted: 08/06/2019] [Indexed: 02/06/2023] Open
Abstract
In recent decades, the biomedical applications of mesenchymal stem cells (MSCs) have attracted increasing attention. MSCs are easily extracted from the bone marrow, fat, and synovium, and differentiate into various cell lineages according to the requirements of specific biomedical applications. As MSCs do not express significant histocompatibility complexes and immune stimulating molecules, they are not detected by immune surveillance and do not lead to graft rejection after transplantation. These properties make them competent biomedical candidates, especially in tissue engineering. We present a brief overview of MSC extraction methods and subsequent potential for differentiation, and a comprehensive overview of their preclinical and clinical applications in regenerative medicine, and discuss future challenges.
Collapse
Affiliation(s)
- Yu Han
- Department of Orthopedics, The Second Hospital of Jilin University, 218 Ziqiang Street, Changchun 130041, China
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun 130022, China
| | - Xuezhou Li
- Department of Orthopedics, The Second Hospital of Jilin University, 218 Ziqiang Street, Changchun 130041, China
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun 130022, China
| | - Yanbo Zhang
- Department of Orthopedics, China-Japan Union Hospital of Jilin University, 126 Xiantai Street, Changchun 130033, China.
| | - Yuping Han
- Department of Urology, China-Japan Union Hospital of Jilin University, 126 Xiantai Street, Changchun 130033, China.
| | - Fei Chang
- Department of Orthopedics, The Second Hospital of Jilin University, 218 Ziqiang Street, Changchun 130041, China.
| | - Jianxun Ding
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun 130022, China
| |
Collapse
|
35
|
Choudhery MS. Commentary in Response to "Discussion: Unfiltered Nanofat Injections Rejuvenate Postburn Scars of Face". Ann Plast Surg 2019; 83:119-120. [PMID: 30973351 DOI: 10.1097/sap.0000000000001838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Affiliation(s)
- Mahmood S Choudhery
- Department of Biomedical Sciences King Edward Medical University Lahore, Pakistan
| |
Collapse
|
36
|
Bian X, Ma K, Zhang C, Fu X. Therapeutic angiogenesis using stem cell-derived extracellular vesicles: an emerging approach for treatment of ischemic diseases. Stem Cell Res Ther 2019; 10:158. [PMID: 31159859 PMCID: PMC6545721 DOI: 10.1186/s13287-019-1276-z] [Citation(s) in RCA: 92] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Ischemic diseases, which are caused by a reduction of blood supply that results in reduced oxygen transfer and nutrient uptake, are becoming the leading cause of disabilities and deaths. Therapeutic angiogenesis is key for the treatment of these diseases. Stem cells have been used in animal models and clinical trials to treat various ischemic diseases. Recently, the efficacy of stem cell therapy has increasingly been attributed to exocrine functions, particularly extracellular vesicles. Extracellular vesicles are thought to act as intercellular communication vehicles to transport informational molecules including proteins, mRNA, microRNAs, DNA fragments, and lipids. Studies have demonstrated that extracellular vesicles promote angiogenesis in cellular experiments and animal models. Herein, recent reports on the use of extracellular vesicles for therapeutic angiogenesis during ischemic diseases are presented and discussed. We believe that extracellular vesicles-based therapeutics will be an ideal treatment method for patients with ischemic diseases.
Collapse
Affiliation(s)
- Xiaowei Bian
- Tianjin Medical University, No. 22, Qixiangtai Road, Heping District, Tianjin, 300070, People's Republic of China.,Key Laboratory of Tissue Repair and Regeneration of PLA and Beijing Key Research Laboratory of Skin Injury, Repair and Regeneration, Fourth Medical Center of General Hospital of PLA, 100048, Beijing, People's Republic of China
| | - Kui Ma
- Key Laboratory of Tissue Repair and Regeneration of PLA and Beijing Key Research Laboratory of Skin Injury, Repair and Regeneration, Fourth Medical Center of General Hospital of PLA, 100048, Beijing, People's Republic of China
| | - Cuiping Zhang
- Key Laboratory of Tissue Repair and Regeneration of PLA and Beijing Key Research Laboratory of Skin Injury, Repair and Regeneration, Fourth Medical Center of General Hospital of PLA, 100048, Beijing, People's Republic of China.
| | - Xiaobing Fu
- Key Laboratory of Tissue Repair and Regeneration of PLA and Beijing Key Research Laboratory of Skin Injury, Repair and Regeneration, Fourth Medical Center of General Hospital of PLA, 100048, Beijing, People's Republic of China.
| |
Collapse
|
37
|
Cofano F, Boido M, Monticelli M, Zenga F, Ducati A, Vercelli A, Garbossa D. Mesenchymal Stem Cells for Spinal Cord Injury: Current Options, Limitations, and Future of Cell Therapy. Int J Mol Sci 2019; 20:ijms20112698. [PMID: 31159345 PMCID: PMC6600381 DOI: 10.3390/ijms20112698] [Citation(s) in RCA: 226] [Impact Index Per Article: 37.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Revised: 05/29/2019] [Accepted: 05/30/2019] [Indexed: 12/14/2022] Open
Abstract
Spinal cord injury (SCI) constitutes an inestimable public health issue. The most crucial phase in the pathophysiological process of SCI concerns the well-known secondary injury, which is the uncontrolled and destructive cascade occurring later with aberrant molecular signaling, inflammation, vascular changes, and secondary cellular dysfunctions. The use of mesenchymal stem cells (MSCs) represents one of the most important and promising tested strategies. Their appeal, among the other sources and types of stem cells, increased because of their ease of isolation/preservation and their properties. Nevertheless, encouraging promise from preclinical studies was followed by weak and conflicting results in clinical trials. In this review, the therapeutic role of MSCs is discussed, together with their properties, application, limitations, and future perspectives.
Collapse
Affiliation(s)
- Fabio Cofano
- Department of Neuroscience "Rita Levi Montalcini", Neurosurgery Unit, University of Turin, 10126 Turin, Italy.
| | - Marina Boido
- Department of Neuroscience "Rita Levi Montalcini", Neuroscience Institute "Cavalieri Ottolenghi", University of Turin, Consorzio Istituto Nazionale di Neuroscienze, 10043 Orbassano, Italy.
| | - Matteo Monticelli
- Department of Neuroscience "Rita Levi Montalcini", Neurosurgery Unit, University of Turin, 10126 Turin, Italy.
| | - Francesco Zenga
- Department of Neuroscience "Rita Levi Montalcini", Neurosurgery Unit, University of Turin, 10126 Turin, Italy.
| | - Alessandro Ducati
- Department of Neuroscience "Rita Levi Montalcini", Neurosurgery Unit, University of Turin, 10126 Turin, Italy.
| | - Alessandro Vercelli
- Department of Neuroscience "Rita Levi Montalcini", Neuroscience Institute "Cavalieri Ottolenghi", University of Turin, Consorzio Istituto Nazionale di Neuroscienze, 10043 Orbassano, Italy.
| | - Diego Garbossa
- Department of Neuroscience "Rita Levi Montalcini", Neurosurgery Unit, University of Turin, 10126 Turin, Italy.
| |
Collapse
|
38
|
Characterization of Human Mesenchymal Stem Cells from Different Tissues and Their Membrane Encasement for Prospective Transplantation Therapies. BIOMED RESEARCH INTERNATIONAL 2019; 2019:6376271. [PMID: 30941369 PMCID: PMC6421008 DOI: 10.1155/2019/6376271] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/17/2018] [Revised: 01/07/2019] [Accepted: 02/18/2019] [Indexed: 01/09/2023]
Abstract
Human mesenchymal stem cells can be isolated from various organs and are in studies on therapeutic cell transplantation. Positive clinical outcomes of transplantations have been attributed to both the secretion of cytokines and growth factors as well as the fusion of donor cells with that of the host. We compared human mesenchymal stem cells from six different tissues for their transplantation-relevant potential. Furthermore, for prospective allogenic transplantation we developed a semipermeable hollow-fiber membrane enclosure, which would prevent cell fusion, would provide an immune barrier, and would allow for easy removal of donor cells from patients after recovery. We investigated human mesenchymal stem cells from adipose tissue, amniotic tissue, bone marrow, chorionic tissue, liver, and umbilical cord. We compared their multilineage differentiation potential, secretion of growth factors, and the expression of genes and surface markers. We found that although the expression of typical mesenchymal stem cell-associated gene THY1 and surface markers CD90 and CD73 were mostly similar between mesenchymal stem cells from different donor sites, their expression of lineage-specific genes, secretion of growth factors, multilineage differentiation potential, and other surface markers were considerably different. The encasement of mesenchymal stem cells in fibers affected the various mesenchymal stem cells differently depending on their donor site. Conclusively, mesenchymal stem cells isolated from different tissues were not equal, which should be taken into consideration when deciding for optimal sourcing for therapeutic transplantation. The encasement of mesenchymal stem cells into semipermeable membranes could provide a physical immune barrier, preventing cell fusion.
Collapse
|
39
|
Adam EN, Janes J, Lowney R, Lambert J, Thampi P, Stromberg A, MacLeod JN. Chondrogenic differentiation potential of adult and fetal equine cell types. Vet Surg 2019; 48:375-387. [PMID: 30801754 DOI: 10.1111/vsu.13183] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2018] [Revised: 12/13/2018] [Accepted: 01/04/2019] [Indexed: 12/19/2022]
Abstract
OBJECTIVE To determine the chondrogenic potential of cells derived from interzone tissue, the normal progenitor of articular cartilage during fetal development, compared to that of adult bone marrow-derived and adipose-derived mesenchymal cell isolates. The objective of this study was to compare the chondrogenic potential of fetal musculoskeletal progenitor cells to adult cell types, which are currently used therapeutically to facilitate joint cartilage repair in equine clinical practice. The hypothesis tested was that cells derived from interzone tissue have a chondrogenic potential that exceeds that of adult bone marrow-derived and adipose-derived mesenchymal cell isolates. STUDY DESIGN In vitro study. ANIMALS Six young adult horses (15-17 months of age) and 6 equine fetuses aged 45-46 days of gestation. METHODS Three-dimensional pellet cultures were established under chondrogenic conditions with fresh, primary cells isolated from adult (articular cartilage, bone marrow, adipose, dermis) and fetal (interzone, skeletal anlagen cartilage, dermis) tissues. Cellular morphology, pellet architecture, and proteoglycan synthesis were assessed in the pellet cultures. Steady state levels of ACAN (aggrecan core protein), COL2A1 (collagen type II), and COL1A1 (collagen type I) messenger RNA (mRNA) were compared among these cell types as pellet cultures and monolayer cultures. RESULTS Adult articular chondrocytes, fetal interzone cells, and fetal anlage cells generated the largest pellets under these chondrogenic culture conditions. Pellets derived from adult articular chondrocytes and fetal anlage cells had the highest scores on a neocartilage grading scale. Fetal anlage and adult articular chondrocyte pellets had low steady-state levels of COL1A mRNA but high COL2A1 expression. Anlage chondrocyte pellets also had the highest expression of ACAN. CONCLUSION Adult articular chondrocytes, fetal interzone cells, and fetal anlage chondrocytes exhibited the highest chondrogenic potential. In this study, adult adipose-derived cells exhibited very limited chondrogenesis, and bone marrow-derived cells had limited and variable chondrogenic potential. CLINICAL SIGNIFICANCE Additional investigation of the high chondrogenic potential of fetal interzone cells and anlage chondrocytes to advance cell-based therapies in diarthrodial joints is warranted.
Collapse
Affiliation(s)
- Emma N Adam
- Gluck Equine Research Center, Department of Veterinary Sciences, University of Kentucky, Lexington, KY
| | - Jennifer Janes
- Gluck Equine Research Center, Department of Veterinary Sciences, University of Kentucky, Lexington, KY
| | - Rachael Lowney
- Gluck Equine Research Center, Department of Veterinary Sciences, University of Kentucky, Lexington, KY
| | - Joshua Lambert
- Department of Statistics, University of Kentucky, Lexington, KY
| | - Parvathy Thampi
- Gluck Equine Research Center, Department of Veterinary Sciences, University of Kentucky, Lexington, KY
| | | | - James N MacLeod
- Gluck Equine Research Center, Department of Veterinary Sciences, University of Kentucky, Lexington, KY
| |
Collapse
|
40
|
Mahmood R, Mehmood A, Choudhery MS, Awan SJ, Khan SN, Riazuddin S. Human neonatal stem cell-derived skin substitute improves healing of severe burn wounds in a rat model. Cell Biol Int 2019; 43:147-157. [PMID: 30443955 DOI: 10.1002/cbin.11072] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2018] [Accepted: 11/11/2018] [Indexed: 02/05/2023]
Abstract
Conventional approaches can repair minor skin injuries; however, severe burn injuries require innovative approaches for efficient and better wound repair. Recent studies indicate that stem cell-based regenerative therapies can restore severe damaged skin both structurally and functionally. The current study aims to evaluate the wound healing potential of skin substitute derived from human neonatal stem cells (hNSCs) using a severe burn injury rat model. Amniotic epithelial cells (AECs) and mesenchymal stem cells (MSCs) were isolated from placenta (a source of neonatal stem cells) by explant culture method. After characterization, AECs and umbilical cord-MSCs were differentiated into keratinocyte and fibroblasts, respectively. Morphological changes, and expression of corresponding keratinocyte and fibroblast specific markers were used to verify differentiation into respective lineage. A skin substitute was developed by mixing hNSCs-derived skin cells (hNSCs-SCs) in plasma for transplantation in a rat model of severe burn injury. Results indicated that placenta-derived AECs and MSCs were efficiently differentiated into skin cells, that is, keratinocytes and fibroblasts, respectively, as indicated by morphological changes, immunostaining, and polymerase chain reaction analysis. Further, transplantation of hNSCs-SCs seeded in plasma significantly improved basic skin architecture, re-epithelization rate, and wound healing concurrent with reduced apoptosis. In conclusion, neonatal stem cell-derived skin substitute efficiently improved severe burn wounds in a rat model of burn injury. Unique properties of placenta-derived stem cells make them superlative candidates for the development of "off-the-shelf" artificial skin substitutes for future use.
Collapse
Affiliation(s)
- Ruhma Mahmood
- National Center of Excellence in Molecular Biology (CEMB), University of the Punjab, Lahore, Pakistan
- Allama Iqbal Medical College, University of Health Sciences, Lahore, Pakistan
| | - Azra Mehmood
- National Center of Excellence in Molecular Biology (CEMB), University of the Punjab, Lahore, Pakistan
| | - Mahmood S Choudhery
- National Center of Excellence in Molecular Biology (CEMB), University of the Punjab, Lahore, Pakistan
| | - Sana Javaid Awan
- National Center of Excellence in Molecular Biology (CEMB), University of the Punjab, Lahore, Pakistan
| | - Shaheen N Khan
- National Center of Excellence in Molecular Biology (CEMB), University of the Punjab, Lahore, Pakistan
| | - Sheikh Riazuddin
- National Center of Excellence in Molecular Biology (CEMB), University of the Punjab, Lahore, Pakistan
- Allama Iqbal Medical College, University of Health Sciences, Lahore, Pakistan
| |
Collapse
|
41
|
Bashir MM, Sohail M, Ahmad FJ, Choudhery MS. Preenrichment with Adipose Tissue-Derived Stem Cells Improves Fat Graft Retention in Patients with Contour Deformities of the Face. Stem Cells Int 2019; 2019:5146594. [PMID: 31827528 PMCID: PMC6886337 DOI: 10.1155/2019/5146594] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Revised: 08/08/2019] [Accepted: 08/30/2019] [Indexed: 02/05/2023] Open
Abstract
Quick absorption of adipose tissue grafts makes the outcomes less satisfactory for clinical applications. In the current study, adipose tissue grafts were mixed with adipose tissue-derived stem cells (ASCs) to improve retention of adipose tissue grafts and to make the clinical outcomes of fat grafting more reliable. Adipose tissue was either injected alone (conventional group) or mixed with ASCs (stem cell group) before injection. In both groups, adipose tissue was injected at the site of contour throughout layers of tissues till visual clinical symmetry with the opposite side was achieved. The volume of injected fat graft was measured after 72 hours and 6 months using a B-mode ultrasound device connected with a 12 MH frequency probe. The percentage reduction in the volume of injected fat, physician satisfaction scores (Ph-SCs), and patient satisfaction scores (P-SCs) were also recorded. After 6 months, there was significantly lower fat absorption in the stem cell group as compared to the conventional group. Mean physician and patient satisfaction scores were significantly improved in the stem cell group. No significant adverse effects were noted in any patient. Significantly lower absorption of graft due to the use of ASCs improves the clinical outcomes of conventional fat grafting for contour deformities of the face. The current preenrichment strategy is noninvasive, safe and can be applied to other diseases that require major tissue augmentation such as breast surgery. This trial is registered with NCT02494752.
Collapse
Affiliation(s)
- Muhammad M. Bashir
- 1Plastic Surgery Department, King Edward Medical University/Mayo Hospital, Lahore, Pakistan
| | - Muhammad Sohail
- 1Plastic Surgery Department, King Edward Medical University/Mayo Hospital, Lahore, Pakistan
| | - Fridoon J. Ahmad
- 2Tissue Engineering and Regenerative Medicine Laboratory, Department of Biomedical Sciences, King Edward Medical University, Lahore, Pakistan
| | - Mahmood S. Choudhery
- 2Tissue Engineering and Regenerative Medicine Laboratory, Department of Biomedical Sciences, King Edward Medical University, Lahore, Pakistan
| |
Collapse
|
42
|
Human Adipose Mesenchymal Stem Cells Show More Efficient Angiogenesis Promotion on Endothelial Colony-Forming Cells than Umbilical Cord and Endometrium. Stem Cells Int 2018; 2018:7537589. [PMID: 30651736 PMCID: PMC6311802 DOI: 10.1155/2018/7537589] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2018] [Revised: 09/11/2018] [Accepted: 09/23/2018] [Indexed: 01/08/2023] Open
Abstract
Angiogenesis is a complicated process in which perivascular cells play important roles. Multipotent mesenchymal stem/stromal cells (MSCs) from distinct tissues have been proved to be proangiogenic and share functional properties and gene expression profiles with perivascular cells. However, different tissues derived MSCs may exhibit different potential for clinical applications. Accordingly, comparative studies on different MSCs are essential. Here, we characterized MSCs from adipose (ADSCs), umbilical cord (UCMSCs), and endometrium (EMSCs) in terms of the surface antigen expression, differentiation ability, and the ability of angiogenesis promotion on endothelial colony-forming cells (ECFCs) both in vitro and in vivo. No significant differences in immunophenotype and differentiation were observed. In addition, three types of MSCs all located around tubular-like structures formed by ECFCs in coculture system on matrigel. But ECFCs seeded on ADSCs monolayer formed more organized capillary-like network than that on UCMSCs or EMSCs. When suspended with ECFCs in matrigel and implanted into nude mice, ADSCs promoted more functional vessel formation after 7 days. Moreover, in murine hindlimb ischemia model, cotransplantation of ECFCs with ADSCs was significantly superior to UCMSCs and EMSCs in promoting perfusion recovery and limb salvage. Furthermore, ADSC-conditioned medium (CM) contained more proangiogenic factors (such as vascular endothelial growth factor-A, platelet-derived growth factor BB, and basic fibroblast growth factor) and less inhibitory factor (such as thrombospondin-1), when compared with UCMSC-CM and EMSC-CM. And ADSC-CM more durably stabilized the vascular-like structures formed by ECFCs on matrigel and promoted ECFCs migration more efficiently. In summary, MSCs from adipose show significantly efficient promotion on angiogenesis both in vitro and in vivo than UCMSCs and EMSCs. Hence, ADSCs may be recommended as a more suitable source for treating hindlimb ischemia.
Collapse
|
43
|
Park JS, Kim HK, Kang EY, Cho R, Oh YM. Potential Therapeutic Strategy in Chronic Obstructive Pulmonary Disease Using Pioglitazone-Augmented Wharton's Jelly-Derived Mesenchymal Stem Cells. Tuberc Respir Dis (Seoul) 2018; 82:158-165. [PMID: 30302955 PMCID: PMC6435932 DOI: 10.4046/trd.2018.0044] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Revised: 06/20/2018] [Accepted: 07/17/2018] [Indexed: 02/06/2023] Open
Abstract
Background A recent study reported that mesenchymal stem cells possess potential cellular therapeutic properties for treating patients with chronic obstructive pulmonary disease, which is characterized by emphysema. We examined the potential therapeutic effect of Wharton's Jelly-derived mesenchymal stem cells (WJMSCs), following pretreatment with pioglitazone, in lung regeneration mouse emphysema models. Methods We used two mouse emphysema models, an elastase-induced model and a cigarette smoke-induced model. We intravenously injected WJMSCs (1×104/mouse) to mice, pretreated or not, with pioglitazone for 7 days. We measured the emphysema severity by mean linear intercepts (MLI) analysis using lung histology. Results Pioglitazone pretreated WJMSCs (pioWJMSCs) were associated with greater lung regeneration than non-augmented WJMSCs in the two mouse emphysema models. In the elastase-induced emphysema model, the MLIs were 59.02±2.42 µm (n=6), 72.80±2.87 µm (n=6), for pioWJMSCs injected mice, and non-augmented WJMSCs injected mice, respectively (p<0.01). Both pioWJMSCs and non-augmented WJMSCs showed regenerative effects in the cigarette smoke emphysema model (MLIs were 41.25±0.98 [n=6] for WJMSCs and38.97±0.61 µm [n=6] for pioWJMSCs) compared to smoking control mice (51.65±1.36 µm, n=6). The mean improvement of MLI appeared numerically better in pioWJMSCs than in non-augmented WJMSCs injected mice, but the difference did not reach the level of statistical significance (p=0.071). Conclusion PioWJMSCs may produce greater lung regeneration, compared to non-augmented WJMSCs, in a mouse emphysema model.
Collapse
Affiliation(s)
| | - Hyun Kuk Kim
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Inje University Haeundae Paik Hospital, Busan, Korea
| | | | | | - Yeon Mok Oh
- Asan Institute for Life Sciences, Seoul, Korea.,Department of Pulmonary and Critical Care Medicine, University of Ulsan College of Medicine, Seoul, Korea.,Department of Pulmonary and Critical Care Medicine, Asan Medical Center, Seoul, Korea.
| |
Collapse
|
44
|
Wang Z, Sun D. Adipose-Derived Mesenchymal Stem Cells: A New Tool for the Treatment of Renal Fibrosis. Stem Cells Dev 2018; 27:1406-1411. [PMID: 30032706 DOI: 10.1089/scd.2017.0304] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
As chronic kidney disease progresses, kidney tissue inevitably undergoes cell loss, accumulation of extracellular matrix, and kidney tissue fibrosis, eventually leading to end-stage renal disease. With the continuous innovation of cell therapy technology, mesenchymal stem cells are used in numerous fields, including cardiovascular diseases, diabetes, and kidney tissue injury repair. Adipose-derived mesenchymal stem cells (AMSCs), a type of pluripotent stem cells, have the potential for self-renewal and proliferation with low immunogenicity and significant anti-inflammatory properties. AMSCs can promote impaired cell regeneration and remodeling in renal lesions, thus avoiding further worsening of renal disease and even blocking or reversing the process of renal fibrosis. In this review, we discuss the mechanisms involved in the treatment of renal fibrosis with AMSCs and summarize the potential hazards that may exist in cell therapy.
Collapse
Affiliation(s)
- Zhuojun Wang
- 1 Department of Nephrology, Affiliated Hospital of Xuzhou Medical University , Xuzhou, China
| | - Dong Sun
- 1 Department of Nephrology, Affiliated Hospital of Xuzhou Medical University , Xuzhou, China .,2 Department of Internal Medicine and Diagnostics, Xuzhou Medical University , Xuzhou, China
| |
Collapse
|
45
|
Feng ZQ, Yan K, Shi C, Xu X, Wang T, Li R, Dong W, Zheng J. Neurogenic differentiation of adipose derived stem cells on graphene-based mat. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2018; 90:685-692. [PMID: 29853140 DOI: 10.1016/j.msec.2018.05.019] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2017] [Revised: 03/06/2018] [Accepted: 05/04/2018] [Indexed: 12/27/2022]
Abstract
Adipose derived stem cells (ADSCs) have been proved as an abundant and accessible cell source with the ability to differentiate into neuron-like cells. However, the low differentiation efficiency puts forward an important challenge to practical applications in clinic. Considering of the good biocompatibility of graphene-based materials and the potential interaction between graphene and cells mentioned in previous studies, herein, we investigated the effect of graphene oxide (GO) and reduced graphene oxide (rGO) mats on neurogenic differentiation of the ADSCs. We demonstrated the excellent capabilities of graphene-based mats, especially GO to support the neural differentiation of ADSCs. By comparing the observation under an optical microscope and fluorescence microscope, the conversion rate of neuron-like cells reached about 90%. We consider that GO mat is better for promoting the differentiation of ADSCs into neuron-like cells, which compared to rGO based platforms. Meanwhile, we made an analysis of the mechanism by which graphene induced the differentiation of ADSCs to neuron-like cells. The data obtained here highlight the effect of GO mat on neurogenic differentiation of ADSCs and implicate the potential of graphene-based materials in application of neural tissue engineering for the limited self-repair capability of nerve cells.
Collapse
Affiliation(s)
- Zhang-Qi Feng
- School of Chemical Engineering, Nanjing University of Science and Technology, 200 Xiao Ling Wei, Nanjing 210094, China; Department of Chemical and Biomolecular Engineering, The University of Akron, Akron, OH 44325, USA; State Key Laboratory of Bioelectronics, Southeast University, Nanjing 210096, China.
| | - Ke Yan
- School of Chemical Engineering, Nanjing University of Science and Technology, 200 Xiao Ling Wei, Nanjing 210094, China
| | - Chuanmei Shi
- School of Chemical Engineering, Nanjing University of Science and Technology, 200 Xiao Ling Wei, Nanjing 210094, China
| | - Xuran Xu
- School of Chemical Engineering, Nanjing University of Science and Technology, 200 Xiao Ling Wei, Nanjing 210094, China
| | - Ting Wang
- State Key Laboratory of Bioelectronics, Southeast University, Nanjing 210096, China
| | - Ruitao Li
- School of Mechanical Engineering, Jiang Su University, 301 Xuefu Road, Zhenjiang, Jiangsu Province 212013, China
| | - Wei Dong
- School of Chemical Engineering, Nanjing University of Science and Technology, 200 Xiao Ling Wei, Nanjing 210094, China
| | - Jie Zheng
- Department of Chemical and Biomolecular Engineering, The University of Akron, Akron, OH 44325, USA
| |
Collapse
|
46
|
Araújo AB, Furlan JM, Salton GD, Schmalfuss T, Röhsig LM, Silla LMR, Passos EP, Paz AH. Isolation of human mesenchymal stem cells from amnion, chorion, placental decidua and umbilical cord: comparison of four enzymatic protocols. Biotechnol Lett 2018; 40:989-998. [PMID: 29619744 DOI: 10.1007/s10529-018-2546-z] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2017] [Accepted: 03/27/2018] [Indexed: 01/02/2023]
Abstract
OBJECTIVE To compare four enzymatic protocols for mesenchymal stem cells (MSCs) isolation from amniotic (A-MSC) and chorionic (C-MSC) membranes, umbilical cord (UC-MSC) and placental decidua (D-MSC) in order to define a robust, practical and low-cost protocol for each tissue. RESULTS A-MSCs and UC-MSCs could be isolated from all samples using trypsin/collagenase-based protocols; C-MSCs could be isolated from all samples with collagenase- and trypsin/collagenase-based protocols; D-MSCs were isolated from all samples exclusively with a collagenase-based protocol. CONCLUSIONS The trypsin-only protocol was least efficient; the collagenase-only protocol was best for C-MSCs and D-MSCs; the combination of trypsin and collagenase was best for UC-MSCs and none of tested protocols was adequate for A-MSCs isolation.
Collapse
Affiliation(s)
- A B Araújo
- Cryobiology Unit and Umbilical Cord Blood Bank, Hemotherapy Service, Hospital de Clínicas de Porto Alegre, Ramiro Barcelos, 2350, 90035-903, Porto Alegre, Rio Grande do Sul, Brazil. .,Federal University of Rio Grande do Sul, Porto Alegre, Brazil. .,Hospital de Clínicas de Porto Alegre, Ramiro Barcelos, 2350, 90035-903, Porto Alegre, Rio Grande do Sul, Brazil.
| | - J M Furlan
- Cryobiology Unit and Umbilical Cord Blood Bank, Hemotherapy Service, Hospital de Clínicas de Porto Alegre, Ramiro Barcelos, 2350, 90035-903, Porto Alegre, Rio Grande do Sul, Brazil
| | - G D Salton
- Cryobiology Unit and Umbilical Cord Blood Bank, Hemotherapy Service, Hospital de Clínicas de Porto Alegre, Ramiro Barcelos, 2350, 90035-903, Porto Alegre, Rio Grande do Sul, Brazil
| | - T Schmalfuss
- Cryobiology Unit and Umbilical Cord Blood Bank, Hemotherapy Service, Hospital de Clínicas de Porto Alegre, Ramiro Barcelos, 2350, 90035-903, Porto Alegre, Rio Grande do Sul, Brazil
| | - L M Röhsig
- Cryobiology Unit and Umbilical Cord Blood Bank, Hemotherapy Service, Hospital de Clínicas de Porto Alegre, Ramiro Barcelos, 2350, 90035-903, Porto Alegre, Rio Grande do Sul, Brazil
| | - L M R Silla
- Cellular Technology and Therapy Center, Hospital de Clínicas de Porto Alegre, Ramiro Barcelos, 2350, 90035-903, Porto Alegre, Rio Grande do Sul, Brazil
| | - E P Passos
- Federal University of Rio Grande do Sul, Porto Alegre, Brazil.,Hospital de Clínicas de Porto Alegre, Ramiro Barcelos, 2350, 90035-903, Porto Alegre, Rio Grande do Sul, Brazil
| | - A H Paz
- Federal University of Rio Grande do Sul, Porto Alegre, Brazil.,Hospital de Clínicas de Porto Alegre, Ramiro Barcelos, 2350, 90035-903, Porto Alegre, Rio Grande do Sul, Brazil
| |
Collapse
|
47
|
Corrêa NCR, Kuligovski C, Paschoal ACC, Abud APR, Rebelatto CLK, Leite LMB, Senegaglia AC, Dallagiovanna B, Aguiar AMD. Human adipose-derived stem cells (ADSC) and human periodontal ligament stem cells (PDLSC) as cellular substrates of a toxicity prediction assay. Regul Toxicol Pharmacol 2018; 92:75-82. [DOI: 10.1016/j.yrtph.2017.11.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2017] [Revised: 11/07/2017] [Accepted: 11/08/2017] [Indexed: 01/08/2023]
|
48
|
Mahmood R, Shaukat M, S Choudhery M. Biological properties of mesenchymal stem cells derived from adipose tissue, umbilical cord tissue and bone marrow. ACTA ACUST UNITED AC 2018. [DOI: 10.3934/celltissue.2018.2.78] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
49
|
Fatima Q, Choudhry N, Choudhery MS. Umbilical Cord Tissue Derived Mesenchymal Stem Cells can Differentiate into Skin Cells. Open Life Sci 2018; 13:544-552. [PMID: 33817125 PMCID: PMC7874732 DOI: 10.1515/biol-2018-0065] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2018] [Accepted: 10/31/2018] [Indexed: 02/05/2023] Open
Abstract
Autologous skin grafts are used to treat severe burn wounds, however, the availability of adequate donor sites makes this option less practical. Recently, stem cells have been used successfully in tissue engineering and in regenerative medicine. The current study aims to differentiate umbilical cord tissue derived mesenchymal stem cells (CT-MSCs) into skin cells (fibroblasts and keratinocytes) for use to treat severe burn wounds. After isolation, MSCs were characterized and their growth characteristics were determined. The cells were induced to differentiate into fibroblasts and keratinocytes using respective induction medium. Results indicated that CT-MSCs were spindle shaped, plastic adherent and positive for CD29, CD44, CD73, CD90 markers. CT-MSCs also showed high proliferative potential as indicated by cumulative population doubling, doubling time and plating efficiency. The MSCs were successfully differentiated into fibroblast and keratinocytes as indicated by morphological changes and expression of lineage specific genes. We propose that these differentiated skin cells which are derived from CT-MSCs can thus be used for the development of bioengineered skin; however, further studies are required to evaluate the utility of these substitutes.
Collapse
Affiliation(s)
- Qandeel Fatima
- Tissue Engineering and Regenerative Medicine Laboratory, Department of Biomedical Sciences, King Edward Medical University, Lahore, Pakistan
| | - Nakhshab Choudhry
- Department of Biochemistry, King Edward Medical University, Lahore, Pakistan
| | - Mahmood S Choudhery
- Tissue Engineering and Regenerative Medicine Laboratory, Department of Biomedical Sciences, King Edward Medical University, Lahore, Pakistan
- E-mail:
| |
Collapse
|
50
|
Di Cesare Mannelli L, Tenci B, Micheli L, Vona A, Corti F, Zanardelli M, Lapucci A, Clemente AM, Failli P, Ghelardini C. Adipose-derived stem cells decrease pain in a rat model of oxaliplatin-induced neuropathy: Role of VEGF-A modulation. Neuropharmacology 2017; 131:166-175. [PMID: 29241656 DOI: 10.1016/j.neuropharm.2017.12.020] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2017] [Revised: 12/07/2017] [Accepted: 12/09/2017] [Indexed: 01/22/2023]
Abstract
Oxaliplatin therapy of colorectal cancer induces a dose-dependent neuropathic syndrome in 50% of patients. Pharmacological treatments may offer limited relief; scientific efforts are needed for new therapeutic approaches. Therefore we evaluated in a preclinical setting the pain relieving properties of mesenchymal stem cells and its secretome. Rat adipose stem cells (rASCs) were administered in a rat model of oxaliplatin-induced neuropathy. A single intravenous injection of rASCs reduced oxaliplatin-dependent mechanical hypersensitivity to noxious and non-noxious stimuli taking effect 1 h after administration, peaking 6 h thereafter and lasting 5 days. Cell-conditioned medium was ineffective. Repeated rASCs injections every 5 days relieved pain each time with a comparable effect. Labeled rASCs were detected in the bloodstream 1 and 3 h after administration and found in the liver 24 h thereafter. In oxaliplatin-treated rats, the plasma concentration of vascular endothelial growth factor (pan VEGF-A) was increased while the isoform VEGF165b was upregulated in the spinal cord. Both alterations were reverted by rASCs. The anti-VEGF-A monoclonal antibody bevacizumab (intraperitoneally) reduced oxaliplatin-dependent pain. Studying the peripheral and central role of VEGF165b in pain, we determined that the intraplantar and intrathecal injection of the growth factor induced a pro-algesic effect. In the oxaliplatin neuropathy model, the intrathecal infusion of bevacizumab, anti-rat VEGF165b antibody and rASCs reduced pain. Adult adipose mesenchymal stem cells could represent a novel approach in the treatment of neuropathic pain. The regulation of VEGF-A is suggested as an effective mechanism in the complex response orchestrated by stem cells against neuropathy.
Collapse
Affiliation(s)
- Lorenzo Di Cesare Mannelli
- Department of Neuroscience, Psychology, Drug Research and Child Health - NEUROFARBA - Pharmacology and Toxicology Section, University of Florence, Florence, Italy.
| | - Barbara Tenci
- Department of Neuroscience, Psychology, Drug Research and Child Health - NEUROFARBA - Pharmacology and Toxicology Section, University of Florence, Florence, Italy
| | - Laura Micheli
- Department of Neuroscience, Psychology, Drug Research and Child Health - NEUROFARBA - Pharmacology and Toxicology Section, University of Florence, Florence, Italy
| | - Alessia Vona
- Department of Neuroscience, Psychology, Drug Research and Child Health - NEUROFARBA - Pharmacology and Toxicology Section, University of Florence, Florence, Italy
| | - Francesca Corti
- Department of Neuroscience, Psychology, Drug Research and Child Health - NEUROFARBA - Pharmacology and Toxicology Section, University of Florence, Florence, Italy
| | - Matteo Zanardelli
- Department of Neuroscience, Psychology, Drug Research and Child Health - NEUROFARBA - Pharmacology and Toxicology Section, University of Florence, Florence, Italy
| | - Andrea Lapucci
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | - Ann Maria Clemente
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | - Paola Failli
- Department of Neuroscience, Psychology, Drug Research and Child Health - NEUROFARBA - Pharmacology and Toxicology Section, University of Florence, Florence, Italy
| | - Carla Ghelardini
- Department of Neuroscience, Psychology, Drug Research and Child Health - NEUROFARBA - Pharmacology and Toxicology Section, University of Florence, Florence, Italy
| |
Collapse
|