1
|
Mayani H. Umbilical Cord Blood Hematopoietic Cells: From Biology to Hematopoietic Transplants and Cellular Therapies. Arch Med Res 2024; 55:103042. [PMID: 39003965 DOI: 10.1016/j.arcmed.2024.103042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 06/13/2024] [Accepted: 07/03/2024] [Indexed: 07/16/2024]
Abstract
Umbilical cord blood (UCB) is a rich source of hematopoietic stem and progenitor cells that are biologically superior to their adult counterparts. UCB cells can be stored for several years without compromising their numbers or function. Today, public and private UCB banks have been established in several countries around the world. After 35 years since the first UCB transplant (UCBT), more than 50,000 UCBTs have been performed worldwide. In pediatric patients, UCBT is comparable to or superior to bone marrow transplantation. In adult patients, UCB can be an alternative source of hematopoietic cells when an HLA-matched unrelated adult donor is not available and when a transplant is urgently needed. Delayed engraftment (due to reduced absolute numbers of hematopoietic cells) and higher costs have led many medical institutions not to consider UCB as a first-line cell source for hematopoietic transplants. As a result, the use of UCB as a source of hematopoietic stem and progenitor cells for transplantation has declined over the past decade. Several approaches are being investigated to make UCBTs more efficient, including improving the homing capabilities of primitive UCB cells and increasing the number of hematopoietic cells to be infused. Several of these approaches have already been applied in the clinic with promising results. UCB also contains immune effector cells, including monocytes and various lymphocyte subsets, which, together with stem and progenitor cells, are excellent candidates for the development of cellular therapies for hematological and non-hematological diseases.
Collapse
Affiliation(s)
- Hector Mayani
- Oncology Research Unit, National Medical Center, Mexican Institute of Social Security, Mexico City, Mexico.
| |
Collapse
|
2
|
Bradbury AM, Bagel J, Swain G, Miyadera K, Pesayco JP, Assenmacher CA, Brisson B, Hendricks I, Wang XH, Herbst Z, Pyne N, Odonnell P, Shelton GD, Gelb M, Hackett N, Szabolcs P, Vite CH, Escolar M. Combination HSCT and intravenous AAV-mediated gene therapy in a canine model proves pivotal for translation of Krabbe disease therapy. Mol Ther 2024; 32:44-58. [PMID: 37952085 PMCID: PMC10787152 DOI: 10.1016/j.ymthe.2023.11.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 10/28/2023] [Accepted: 11/09/2023] [Indexed: 11/14/2023] Open
Abstract
Hematopoietic stem cell transplantation (HSCT) is the only approved treatment for presymptomatic infantile globoid cell leukodystrophy (GLD [Krabbe disease]). However, correction of disease is not complete, and outcomes remain poor. Herein we evaluated HSCT, intravenous (IV) adeno-associated virus rh10 vector (AAVrh10) gene therapy, and combination HSCT + IV AAVrh10 in the canine model of GLD. While HSCT alone resulted in no increase in survival as compared with untreated GLD dogs (∼16 weeks of age), combination HSCT + IV AAVrh10 at a dose of 4E13 genome copies (gc)/kg resulted in delayed disease progression and increased survival beyond 1 year of age. A 5-fold increase in AAVrh10 dose to 2E14 gc/kg, in combination with HSCT, normalized neurological dysfunction up to 2 years of age. IV AAVrh10 alone resulted in an average survival to 41.2 weeks of age. In the peripheral nervous system, IV AAVrh10 alone or in addition to HSCT normalized nerve conduction velocity, improved ultrastructure, and normalized GALC enzyme activity and psychosine concentration. In the central nervous system, only combination therapy at the highest dose was able to restore galactosylceramidase activity and psychosine concentrations to within the normal range. These data have now guided clinical translation of systemic AAV gene therapy as an addition to HSCT (NCT04693598, NCT05739643).
Collapse
Affiliation(s)
- Allison M Bradbury
- Department of Clinical Sciences and Advanced Medicine, University of Pennsylvania School of Veterinary Medicine, Philadelphia, PA 19104, USA; Abigail Wexner Research Institute, Center for Gene Therapy, Nationwide Children's Hospital, Columbus, OH 43215, USA; Department of Pediatrics, The Ohio State University Wexner Medical Center, Columbus, OH 43215, USA.
| | - Jessica Bagel
- Department of Clinical Sciences and Advanced Medicine, University of Pennsylvania School of Veterinary Medicine, Philadelphia, PA 19104, USA
| | - Gary Swain
- Department of Clinical Sciences and Advanced Medicine, University of Pennsylvania School of Veterinary Medicine, Philadelphia, PA 19104, USA
| | - Keiko Miyadera
- Department of Clinical Sciences and Advanced Medicine, University of Pennsylvania School of Veterinary Medicine, Philadelphia, PA 19104, USA
| | - Jill P Pesayco
- Department of Pathology, School of Medicine, University of California San Diego, La Jolla, CA 92161, USA
| | - Charles-Antoine Assenmacher
- Comparative Pathology Core, Department of Pathobiology, University of Pennsylvania School of Veterinary Medicine, Philadelphia, PA 19104, USA
| | - Becky Brisson
- Department of Clinical Sciences and Advanced Medicine, University of Pennsylvania School of Veterinary Medicine, Philadelphia, PA 19104, USA
| | - Ian Hendricks
- Department of Clinical Sciences and Advanced Medicine, University of Pennsylvania School of Veterinary Medicine, Philadelphia, PA 19104, USA
| | - Xiao H Wang
- Department of Pediatrics, University of Pittsburgh, Pittsburgh, PA 15224, USA
| | - Zachary Herbst
- Department of Chemistry, University of Washington, Seattle, WA 98195, USA
| | - Nettie Pyne
- Abigail Wexner Research Institute, Center for Gene Therapy, Nationwide Children's Hospital, Columbus, OH 43215, USA
| | - Patricia Odonnell
- Department of Clinical Sciences and Advanced Medicine, University of Pennsylvania School of Veterinary Medicine, Philadelphia, PA 19104, USA
| | - G Diane Shelton
- Department of Pathology, School of Medicine, University of California San Diego, La Jolla, CA 92161, USA
| | - Michael Gelb
- Department of Chemistry, University of Washington, Seattle, WA 98195, USA
| | - Neil Hackett
- Neil Hackett Consulting, New York, NY 10003, USA
| | - Paul Szabolcs
- Department of Pathology, School of Medicine, University of California San Diego, La Jolla, CA 92161, USA
| | - Charles H Vite
- Department of Clinical Sciences and Advanced Medicine, University of Pennsylvania School of Veterinary Medicine, Philadelphia, PA 19104, USA
| | - Maria Escolar
- Department of Pediatrics, University of Pittsburgh, Pittsburgh, PA 15224, USA; Forge Biologics, Grove City, OH 43123, USA
| |
Collapse
|
3
|
Nowacki JC, Fields AM, Fu MM. Emerging cellular themes in leukodystrophies. Front Cell Dev Biol 2022; 10:902261. [PMID: 36003149 PMCID: PMC9393611 DOI: 10.3389/fcell.2022.902261] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Accepted: 06/30/2022] [Indexed: 11/18/2022] Open
Abstract
Leukodystrophies are a broad spectrum of neurological disorders that are characterized primarily by deficiencies in myelin formation. Clinical manifestations of leukodystrophies usually appear during childhood and common symptoms include lack of motor coordination, difficulty with or loss of ambulation, issues with vision and/or hearing, cognitive decline, regression in speech skills, and even seizures. Many cases of leukodystrophy can be attributed to genetic mutations, but they have diverse inheritance patterns (e.g., autosomal recessive, autosomal dominant, or X-linked) and some arise from de novo mutations. In this review, we provide an updated overview of 35 types of leukodystrophies and focus on cellular mechanisms that may underlie these disorders. We find common themes in specialized functions in oligodendrocytes, which are specialized producers of membranes and myelin lipids. These mechanisms include myelin protein defects, lipid processing and peroxisome dysfunction, transcriptional and translational dysregulation, disruptions in cytoskeletal organization, and cell junction defects. In addition, non-cell-autonomous factors in astrocytes and microglia, such as autoimmune reactivity, and intercellular communication, may also play a role in leukodystrophy onset. We hope that highlighting these themes in cellular dysfunction in leukodystrophies may yield conceptual insights on future therapeutic approaches.
Collapse
|
4
|
Hematopoietic stem cell transplant for Hurler syndrome: does using bone marrow or umbilical cord blood make a difference? Blood Adv 2022; 6:6023-6027. [PMID: 35476057 PMCID: PMC9699938 DOI: 10.1182/bloodadvances.2022007212] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Accepted: 04/04/2022] [Indexed: 12/14/2022] Open
|
5
|
Serum Cytokine Profile, Beta-Hexosaminidase A Enzymatic Activity and GM 2 Ganglioside Levels in the Plasma of a Tay-Sachs Disease Patient after Cord Blood Cell Transplantation and Curcumin Administration: A Case Report. Life (Basel) 2021; 11:life11101007. [PMID: 34685379 PMCID: PMC8539434 DOI: 10.3390/life11101007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 09/17/2021] [Accepted: 09/20/2021] [Indexed: 11/17/2022] Open
Abstract
Tay-Sachs disease (TSD) is a progressive neurodegenerative disorder that occurs due to a deficiency of a β hexosaminidase A (HexA) enzyme, resulting in the accumulation of GM2 gangliosides. In this work, we analyzed the effect of umbilical cord blood cell transplantation (UCBCT) and curcumin administration on the course of the disease in a patient with adult TSD. The patient’s serum cytokine profile was determined using multiplex analysis. The level of GM2 gangliosides in plasma was determined using mass spectrometry. The enzymatic activity of HexA in the plasma of the patient was assessed using a fluorescent substrate assay. The HexA α-subunit (HexA) concentration was determined using ELISA. It was shown that both UCBCT and curcumin administration led to a change in the patient’s cytokine profile. The UCBCT resulted in an increase in the concentration of HexA in the patient’s serum and in an improvement in the patient’s neurological status. However, neither UCBCT nor curcumin were able to alter HexA activity and the level of GM2 in patient’s plasma. The data obtained indicate that UCBCT and curcumin administration can alter the immunity of a patient with TSD, reduce the level of inflammatory cytokines and thereby improve the patient’s condition.
Collapse
|
6
|
Köse S, Aerts-Kaya F, Uçkan Çetinkaya D, Korkusuz P. Stem Cell Applications in Lysosomal Storage Disorders: Progress and Ongoing Challenges. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1347:135-162. [PMID: 33977438 DOI: 10.1007/5584_2021_639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Lysosomal storage disorders (LSDs) are rare inborn errors of metabolism caused by defects in lysosomal function. These diseases are characterized by accumulation of completely or partially degraded substrates in the lysosomes leading to cellular dysfunction of the affected cells. Currently, enzyme replacement therapies (ERTs), treatments directed at substrate reduction (SRT), and hematopoietic stem cell (HSC) transplantation are the only treatment options for LSDs, and the effects of these treatments depend strongly on the type of LSD and the time of initiation of treatment. However, some of the LSDs still lack a durable and curative treatment. Therefore, a variety of novel treatments for LSD patients has been developed in the past few years. However, despite significant progress, the efficacy of some of these treatments remains limited because these therapies are often initiated after irreversible organ damage has occurred.Here, we provide an overview of the known effects of LSDs on stem cell function, as well as a synopsis of available stem cell-based cell and gene therapies that have been/are being developed for the treatment of LSDs. We discuss the advantages and disadvantages of use of hematopoietic stem cell (HSC), mesenchymal stem cell (MSC), and induced pluripotent stem cell (iPSC)-related (gene) therapies. An overview of current research data indicates that when stem cell and/or gene therapy applications are used in combination with existing therapies such as ERT, SRT, and chaperone therapies, promising results can be achieved, showing that these treatments may result in alleviation of existing symptoms and/or prevention of progression of the disease. All together, these studies offer some insight in LSD stem cell biology and provide a hopeful perspective for the use of stem cells. Further development and improvement of these stem cell (gene) combination therapies may greatly improve the current treatment options and outcomes of patients with a LSD.
Collapse
Affiliation(s)
- Sevil Köse
- Department of Medical Biology, Faculty of Medicine, Atilim University, Ankara, Turkey
| | - Fatima Aerts-Kaya
- Department of Stem Cell Sciences, Hacettepe University Graduate School of Health Sciences, Ankara, Turkey.,Hacettepe University Center for Stem Cell Research and Development (PEDI-STEM), Ankara, Turkey
| | - Duygu Uçkan Çetinkaya
- Hacettepe University Faculty of Medicine, Department of Pediatrics, Division of Hematology, Hacettepe University Center for Stem Cell Research and Development (PEDI-STEM), Ankara, Turkey.,Department of Stem Cell Sciences, Hacettepe University Graduate School of Health Sciences, Ankara, Turkey
| | - Petek Korkusuz
- Department of Histology and Embryology, Hacettepe University Faculty of Medicine, Ankara, Turkey.
| |
Collapse
|
7
|
Bradbury AM, Bagel JH, Nguyen D, Lykken EA, Pesayco Salvador J, Jiang X, Swain GP, Assenmacher CA, Hendricks IJ, Miyadera K, Hess RS, Ostrager A, ODonnell P, Sands MS, Ory DS, Shelton GD, Bongarzone ER, Gray SJ, Vite CH. Krabbe disease successfully treated via monotherapy of intrathecal gene therapy. J Clin Invest 2021; 130:4906-4920. [PMID: 32773406 DOI: 10.1172/jci133953] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Accepted: 06/04/2020] [Indexed: 02/06/2023] Open
Abstract
Globoid cell leukodystrophy (GLD; Krabbe disease) is a progressive, incurable neurodegenerative disease caused by deficient activity of the hydrolytic enzyme galactosylceramidase (GALC). The ensuing cytotoxic accumulation of psychosine results in diffuse central and peripheral nervous system (CNS, PNS) demyelination. Presymptomatic hematopoietic stem cell transplantation (HSCT) is the only treatment for infantile-onset GLD; however, clinical outcomes of HSCT recipients often remain poor, and procedure-related morbidity is high. There are no effective therapies for symptomatic patients. Herein, we demonstrate in the naturally occurring canine model of GLD that presymptomatic monotherapy with intrathecal AAV9 encoding canine GALC administered into the cisterna magna increased GALC enzyme activity, normalized psychosine concentration, improved myelination, and attenuated inflammation in both the CNS and PNS. Moreover, AAV-mediated therapy successfully prevented clinical neurological dysfunction, allowing treated dogs to live beyond 2.5 years of age, more than 7 times longer than untreated dogs. Furthermore, we found that a 5-fold lower dose resulted in an attenuated form of disease, indicating that sufficient dosing is critical. Finally, postsymptomatic therapy with high-dose AAV9 also significantly extended lifespan, signifying a treatment option for patients for whom HSCT is not applicable. If translatable to patients, these findings would improve the outcomes of patients treated either pre- or postsymptomatically.
Collapse
Affiliation(s)
- Allison M Bradbury
- Department of Clinical Sciences and Advanced Medicine, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Jessica H Bagel
- Department of Clinical Sciences and Advanced Medicine, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Duc Nguyen
- Department of Anatomy and Cell Biology, College of Medicine, University of Illinois at Chicago, Chicago, Illinois, USA
| | - Erik A Lykken
- Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Jill Pesayco Salvador
- Department of Pathology, School of Medicine, University of California San Diego, La Jolla, California, USA
| | - Xuntian Jiang
- Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Gary P Swain
- Department of Clinical Sciences and Advanced Medicine, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Charles A Assenmacher
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Ian J Hendricks
- Department of Clinical Sciences and Advanced Medicine, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Keiko Miyadera
- Department of Clinical Sciences and Advanced Medicine, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Rebecka S Hess
- Department of Clinical Sciences and Advanced Medicine, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Arielle Ostrager
- Department of Clinical Sciences and Advanced Medicine, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Patricia ODonnell
- Department of Clinical Sciences and Advanced Medicine, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Mark S Sands
- Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Daniel S Ory
- Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, USA
| | - G Diane Shelton
- Department of Pathology, School of Medicine, University of California San Diego, La Jolla, California, USA
| | - Ernesto R Bongarzone
- Department of Anatomy and Cell Biology, College of Medicine, University of Illinois at Chicago, Chicago, Illinois, USA
| | - Steven J Gray
- Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Charles H Vite
- Department of Clinical Sciences and Advanced Medicine, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| |
Collapse
|
8
|
Klein J, Baker NC, Foil DH, Zorn KM, Urbina F, Puhl AC, Ekins S. Using Bibliometric Analysis and Machine Learning to Identify Compounds Binding to Sialidase-1. ACS OMEGA 2021; 6:3186-3193. [PMID: 33553934 PMCID: PMC7860073 DOI: 10.1021/acsomega.0c05591] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Accepted: 01/05/2021] [Indexed: 05/20/2023]
Abstract
Rare diseases impact hundreds of millions of individuals worldwide. However, few therapies exist to treat the rare disease population because financial resources are limited, the number of patients affected is low, bioactivity data is often nonexistent, and very few animal models exist to support preclinical development efforts. Sialidosis is an ultrarare lysosomal storage disorder in which mutations in the NEU1 gene result in the deficiency of the lysosomal enzyme sialidase-1. This enzyme catalyzes the removal of sialic acid moieties from glycoproteins and glycolipids. Therefore, the defective or deficient protein leads to the buildup of sialylated glycoproteins as well as several characteristic symptoms of sialidosis including visual impairment, ataxia, hepatomegaly, dysostosis multiplex, and developmental delay. In this study, we used a bibliometric tool to generate links between lysosomal storage disease (LSD) targets and existing bioactivity data that could be curated in order to build machine learning models and screen compounds in silico. We focused on sialidase as an example, and we used the data curated from the literature to build a Bayesian model which was then used to score compound libraries and rank these molecules for in vitro testing. Two compounds were identified from in vitro testing using microscale thermophoresis, namely sulfameter (K d 2.15 ± 1.02 μM) and mexenone (K d 8.88 ± 4.02 μM), which validated our approach to identifying new molecules binding to this protein, which could represent possible drug candidates that can be evaluated further as potential chaperones for this ultrarare lysosomal disease for which there is currently no treatment. Combining bibliometric and machine learning approaches has the ability to assist in curating small molecule data and model building, respectively, for rare disease drug discovery. This approach also has the capability to identify new compounds that are potential drug candidates.
Collapse
Affiliation(s)
- Jennifer
J. Klein
- Collaborations
Pharmaceuticals, Inc., 840 Main Campus Drive, Lab 3510, Raleigh, North Carolina 27606, United States
| | - Nancy C. Baker
- ParlezChem, 123 W Union Street, Hillsborough, North Carolina 27278, United States
| | - Daniel H. Foil
- Collaborations
Pharmaceuticals, Inc., 840 Main Campus Drive, Lab 3510, Raleigh, North Carolina 27606, United States
| | - Kimberley M. Zorn
- Collaborations
Pharmaceuticals, Inc., 840 Main Campus Drive, Lab 3510, Raleigh, North Carolina 27606, United States
| | - Fabio Urbina
- Collaborations
Pharmaceuticals, Inc., 840 Main Campus Drive, Lab 3510, Raleigh, North Carolina 27606, United States
| | - Ana C. Puhl
- Collaborations
Pharmaceuticals, Inc., 840 Main Campus Drive, Lab 3510, Raleigh, North Carolina 27606, United States
| | - Sean Ekins
- Collaborations
Pharmaceuticals, Inc., 840 Main Campus Drive, Lab 3510, Raleigh, North Carolina 27606, United States
| |
Collapse
|
9
|
Poletto E, Baldo G, Gomez-Ospina N. Genome Editing for Mucopolysaccharidoses. Int J Mol Sci 2020; 21:E500. [PMID: 31941077 PMCID: PMC7014411 DOI: 10.3390/ijms21020500] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Revised: 01/08/2020] [Accepted: 01/09/2020] [Indexed: 02/07/2023] Open
Abstract
Genome editing holds the promise of one-off and potentially curative therapies for many patients with genetic diseases. This is especially true for patients affected by mucopolysaccharidoses as the disease pathophysiology is amenable to correction using multiple approaches. Ex vivo and in vivo genome editing platforms have been tested primarily on MSPI and MPSII, with in vivo approaches having reached clinical testing in both diseases. Though we still await proof of efficacy in humans, the therapeutic tools established for these two diseases should pave the way for other mucopolysaccharidoses. Herein, we review the current preclinical and clinical development studies, using genome editing as a therapeutic approach for these diseases. The development of new genome editing platforms and the variety of genetic modifications possible with each tool provide potential applications of genome editing for mucopolysaccharidoses, which vastly exceed the potential of current approaches. We expect that in a not-so-distant future, more genome editing-based strategies will be established, and individual diseases will be treated through multiple approaches.
Collapse
Affiliation(s)
- Edina Poletto
- Gene Therapy Center, Hospital de Clinicas de Porto Alegre, Porto Alegre 90035-007, Brazil; (E.P.); (G.B.)
- Post-Graduate Program in Genetics and Molecular Biology, Universidade Federal do Rio Grande do Sul, Porto Alegre 91501-970, Brazil
| | - Guilherme Baldo
- Gene Therapy Center, Hospital de Clinicas de Porto Alegre, Porto Alegre 90035-007, Brazil; (E.P.); (G.B.)
- Post-Graduate Program in Genetics and Molecular Biology, Universidade Federal do Rio Grande do Sul, Porto Alegre 91501-970, Brazil
| | | |
Collapse
|
10
|
Gupta AO, Wagner JE. Umbilical Cord Blood Transplants: Current Status and Evolving Therapies. Front Pediatr 2020; 8:570282. [PMID: 33123504 PMCID: PMC7567024 DOI: 10.3389/fped.2020.570282] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/07/2020] [Accepted: 08/26/2020] [Indexed: 12/16/2022] Open
Abstract
Hematopoietic cell transplants using stem cells from umbilical cord blood are used worldwide for the treatment of malignant and non-malignant disorders. Transplant procedures from this stem cell source have shown promising outcomes in successfully treating various hematologic, immunologic, malignant, and inherited metabolic disorders. Rapid availability of these stem cells is an important advantage over other unrelated donor transplants, especially in situations where waiting can adversely affect the prognosis. The umbilical cord blood is rich in CD34+ stem cells, though with a limited cell dose and usually takes longer to engraft. Limitations around this have been addressed by in vivo and ex vivo expansion techniques as well as enhanced engraftment kinetics. Development of adoptive immunotherapy using other components of umbilical cord blood such as regulatory T cells, virus-specific T cells, and natural killer cells has further transformed the field and enhanced the utility of umbilical cord blood unit.
Collapse
Affiliation(s)
- Ashish O Gupta
- Division of Pediatric Blood and Marrow Transplant, Department of Pediatrics, University of Minnesota, Minneapolis, MN, United States
| | - John E Wagner
- Division of Pediatric Blood and Marrow Transplant, Department of Pediatrics, University of Minnesota, Minneapolis, MN, United States
| |
Collapse
|
11
|
Querol S, Samarkanova D. Rapid review: next generation of cord blood banks; transplantation and beyond. Transfusion 2019; 59:3048-3050. [PMID: 31373684 DOI: 10.1111/trf.15466] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2019] [Accepted: 06/09/2019] [Indexed: 12/13/2022]
Abstract
Cord blood (CB) is a medicinal product of human origin with unique cellular properties such as the presence of multipotent stem cells, naive immune cells, and fetal blood components. CB transplantation provides high rate of donor chimerism, and a good balance of graft-versus-host (GVH) and graft-versus-leukemia (GVL) effects. Use of CB for transplantation has decreased in recent years as haplo-identical stem cell transplants have achieved similar short-term clinical outcomes. For most patients, however, the optimal stem cell source remains unclear. CB inventories can be used as a starting material to develop new cellular medicines, and units with low cellular content can be converted to produce blood components like platelet-rich plasma and red blood cell (RBC) units for special indications.
Collapse
Affiliation(s)
- Sergio Querol
- Cell Therapy Services, Banc de Sang i Teixits, Barcelona, Spain
| | | |
Collapse
|
12
|
Tancini B, Buratta S, Sagini K, Costanzi E, Delo F, Urbanelli L, Emiliani C. Insight into the Role of Extracellular Vesicles in Lysosomal Storage Disorders. Genes (Basel) 2019; 10:genes10070510. [PMID: 31284546 PMCID: PMC6679199 DOI: 10.3390/genes10070510] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Revised: 06/26/2019] [Accepted: 06/30/2019] [Indexed: 01/08/2023] Open
Abstract
Extracellular vesicles (EVs) have received increasing attention over the last two decades. Initially, they were considered as just a garbage disposal tool; however, it has progressively become clear that their protein, nucleic acid (namely miRNA and mRNA), and lipid contents have signaling functions. Besides, it has been established that cells release different types of vesicular structures for which characterization is still in its infancy. Many stress conditions, such as hypoxia, senescence, and oncogene activation have been associated with the release of higher levels of EVs. Further, evidence has shown that autophagic–lysosomal pathway abnormalities also affect EV release. In fact, in neurodegenerative diseases characterized by the accumulation of toxic proteins, although it has not become clear to what extent the intracellular storage of undigested materials itself has beneficial/adverse effects, these proteins have also been shown to be released extracellularly via EVs. Lysosomal storage disorders (LSDs) are characterized by accumulation of undigested substrates within the endosomal–lysosomal system, due either to genetic mutations in lysosomal proteins or to treatment with pharmacological agents. Here, we review studies investigating the role of lysosomal and autophagic dysfunction on the release of EVs, with a focus on studies exploring the release of EVs in LSD models of both genetic and pharmacological origin. A better knowledge of EV-releasing pathways activated in lysosomal stress conditions will provide information on the role of EVs in both alleviating intracellular storage of undigested materials and spreading the pathology to the neighboring tissue.
Collapse
Affiliation(s)
- Brunella Tancini
- Department of Chemistry, Biology and Biotechnology, University of Perugia, Via del Giochetto, 06123 Perugia, Italy
| | - Sandra Buratta
- Department of Chemistry, Biology and Biotechnology, University of Perugia, Via del Giochetto, 06123 Perugia, Italy
| | - Krizia Sagini
- Department of Chemistry, Biology and Biotechnology, University of Perugia, Via del Giochetto, 06123 Perugia, Italy
| | - Eva Costanzi
- Department of Chemistry, Biology and Biotechnology, University of Perugia, Via del Giochetto, 06123 Perugia, Italy
| | - Federica Delo
- Department of Chemistry, Biology and Biotechnology, University of Perugia, Via del Giochetto, 06123 Perugia, Italy
| | - Lorena Urbanelli
- Department of Chemistry, Biology and Biotechnology, University of Perugia, Via del Giochetto, 06123 Perugia, Italy.
| | - Carla Emiliani
- Department of Chemistry, Biology and Biotechnology, University of Perugia, Via del Giochetto, 06123 Perugia, Italy.
- Centro di Eccellenza sui Materiali Innovativi Nanostrutturati (CEMIN), University of Perugia, Via del Giochetto, 06123 Perugia, Italy.
| |
Collapse
|
13
|
Abstract
Lysosomal storage diseases (LSDs) are a group of over 70 diseases that are characterized by lysosomal dysfunction, most of which are inherited as autosomal recessive traits. These disorders are individually rare but collectively affect 1 in 5,000 live births. LSDs typically present in infancy and childhood, although adult-onset forms also occur. Most LSDs have a progressive neurodegenerative clinical course, although symptoms in other organ systems are frequent. LSD-associated genes encode different lysosomal proteins, including lysosomal enzymes and lysosomal membrane proteins. The lysosome is the key cellular hub for macromolecule catabolism, recycling and signalling, and defects that impair any of these functions cause the accumulation of undigested or partially digested macromolecules in lysosomes (that is, 'storage') or impair the transport of molecules, which can result in cellular damage. Consequently, the cellular pathogenesis of these diseases is complex and is currently incompletely understood. Several LSDs can be treated with approved, disease-specific therapies that are mostly based on enzyme replacement. However, small-molecule therapies, including substrate reduction and chaperone therapies, have also been developed and are approved for some LSDs, whereas gene therapy and genome editing are at advanced preclinical stages and, for a few disorders, have already progressed to the clinic.
Collapse
|
14
|
Bradbury AM, Rafi MA, Bagel JH, Brisson BK, Marshall MS, Pesayco Salvador J, Jiang X, Swain GP, Prociuk ML, ODonnell PA, Fitzgerald C, Ory DS, Bongarzone ER, Shelton GD, Wenger DA, Vite CH. AAVrh10 Gene Therapy Ameliorates Central and Peripheral Nervous System Disease in Canine Globoid Cell Leukodystrophy (Krabbe Disease). Hum Gene Ther 2018; 29:785-801. [PMID: 29316812 PMCID: PMC6066194 DOI: 10.1089/hum.2017.151] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2017] [Accepted: 01/07/2018] [Indexed: 12/13/2022] Open
Abstract
Globoid cell leukodystrophy (GLD), or Krabbe disease, is an inherited, neurologic disorder that results from deficiency of a lysosomal enzyme, galactosylceramidase. Most commonly, deficits of galactosylceramidase result in widespread central and peripheral nervous system demyelination and death in affected infants typically by 2 years of age. Hematopoietic stem-cell transplantation is the current standard of care in children diagnosed prior to symptom onset. However, disease correction is incomplete. Herein, the first adeno-associated virus (AAV) gene therapy experiments are presented in a naturally occurring canine model of GLD that closely recapitulates the clinical disease progression, neuropathological alterations, and biochemical abnormalities observed in human patients. Adapted from studies in twitcher mice, GLD dogs were treated by combination intravenous and intracerebroventricular injections of AAVrh10 to target both the peripheral and central nervous systems. Combination of intravenous and intracerebroventricular AAV gene therapy had a clear dose response and resulted in delayed onset of clinical signs, extended life-span, correction of biochemical defects, and attenuation of neuropathology. For the first time, therapeutic effect has been established in the canine model of GLD by targeting both peripheral and central nervous system impairments with potential clinical implications for GLD patients.
Collapse
Affiliation(s)
- Allison M. Bradbury
- Department of Clinical Sciences and Advanced Medicine, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Mohammed A. Rafi
- Department of Neurology, Sidney Kimmel College of Medicine, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Jessica H. Bagel
- Department of Clinical Sciences and Advanced Medicine, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Becky K. Brisson
- Department of Clinical Sciences and Advanced Medicine, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Michael S. Marshall
- Department of Anatomy and Cell Biology, College of Medicine, University of Illinois, Chicago, Illinois
| | - Jill Pesayco Salvador
- Department of Pathology, School of Medicine, Comparative Neuromuscular Laboratory, University of California, San Diego, La Jolla, California
| | - Xuntain Jiang
- Diabetic Cardiovascular Disease Center, Washington University School of Medicine, St. Louis, Missouri
| | - Gary P. Swain
- Department of Clinical Sciences and Advanced Medicine, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Maria L. Prociuk
- Department of Clinical Sciences and Advanced Medicine, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Patricia A. ODonnell
- Department of Clinical Sciences and Advanced Medicine, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Caitlin Fitzgerald
- Department of Clinical Sciences and Advanced Medicine, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Daniel S. Ory
- Diabetic Cardiovascular Disease Center, Washington University School of Medicine, St. Louis, Missouri
| | - Ernesto R. Bongarzone
- Department of Anatomy and Cell Biology, College of Medicine, University of Illinois, Chicago, Illinois
- Departamento de Química Biologica, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Argentina
| | - G. Diane Shelton
- Department of Pathology, School of Medicine, Comparative Neuromuscular Laboratory, University of California, San Diego, La Jolla, California
| | - David A. Wenger
- Department of Neurology, Sidney Kimmel College of Medicine, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Charles H. Vite
- Department of Clinical Sciences and Advanced Medicine, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| |
Collapse
|
15
|
Tang X, Fang J, Yu J, Li Z, Chen J, Sun X, Zhu Y, Hu S, Qin M, Tang Y, Luan Z. Clinical outcomes of unrelated cord blood transplantation in children with malignant and non-malignant diseases: Multicenter experience in China. Pediatr Transplant 2018; 22. [PMID: 29239497 DOI: 10.1111/petr.13090] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 11/01/2017] [Indexed: 01/12/2023]
Abstract
This multicenter retrospective study included 184 children with malignant and non-malignant diseases who underwent UCBT between January 1998 and August 2012. The malignant disease group included 101 children with ALL, AML, CML, JMML, and MDS, and the non-malignant disease group included 83 children with PID, β-thalassemia, IMD BMF, and HLH. The median duration to neutrophil and platelet engraftment was 16 and 35 days in the malignant disease group vs 15 and 38 days in the non-malignant disease group. The cumulative incidence of grade II-IV aGVHD and cGVHD was 25.6% and 13.5% in the malignant disease group vs 19.7% and 11.1% in the non-malignant disease group, respectively. The median duration and cumulative incidence of neutrophil and platelet engraftment, and the cumulative incidence of grade II-IV aGVHD and cGVHD were similar between the two groups. Of the 184 pediatric patients, 114 patients survived during a median follow-up period of 14 months (range 4-138). The 5-year OS and DFS were not statistically different between the two groups (56.3% and 46.1% in malignant disease group vs 68.5% and 52.8% in non-malignant disease group). The above results indicate that UCB is a viable source for HSCT for children with malignant or non-malignant diseases, especially in urgent cases.
Collapse
Affiliation(s)
| | - Jianpei Fang
- Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Jie Yu
- Children's Hospital of Chongqing Medical University, Chongqing, China
| | | | - Jing Chen
- Shanghai Children's Medical Center, Shanghai, China
| | - Xin Sun
- Guangzhou Women and Children Medical Center, Guangzhou, China
| | - Yiping Zhu
- West China Second University Hospital/West China Women's and Children's Hospital, Chengdu, China
| | - Shaoyan Hu
- Soochow University Affiliated Children's Hospital, Suzhou, China
| | | | - Yongmin Tang
- Zhe Jiang University School of Medicine Children Hospital, Hangzhou, China
| | - Zuo Luan
- Navy General Hospital, Beijing, China
| |
Collapse
|
16
|
van den Broek BTA, Page K, Paviglianiti A, Hol J, Allewelt H, Volt F, Michel G, Diaz MA, Bordon V, O'Brien T, Shaw PJ, Kenzey C, Al-Seraihy A, van Hasselt PM, Gennery AR, Gluckman E, Rocha V, Ruggeri A, Kurtzberg J, Boelens JJ. Early and late outcomes after cord blood transplantation for pediatric patients with inherited leukodystrophies. Blood Adv 2018; 2:49-60. [PMID: 29344584 PMCID: PMC5761624 DOI: 10.1182/bloodadvances.2017010645] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2017] [Accepted: 11/28/2017] [Indexed: 12/15/2022] Open
Abstract
Leukodystrophies (LD) are devastating inherited disorders leading to rapid neurological deterioration and premature death. Hematopoietic stem cell transplantation (HSCT) can halt disease progression for selected LD. Cord blood is a common donor source for transplantation of these patients because it is rapidly available and can be used without full HLA matching. However, precise recommendations allowing care providers to identify patients who benefit from HSCT are lacking. In this study, we define risk factors and describe the early and late outcomes of 169 patients with globoid cell leukodystrophy, X-linked adrenoleukodystrophy, and metachromatic leukodystrophy undergoing cord blood transplantation (CBT) at an European Society for Blood and Marrow Transplantation center or at Duke University Medical Center from 1996 to 2013. Factors associated with higher overall survival (OS) included presymptomatic status (77% vs 49%; P = .006), well-matched (≤1 HLA mismatch) CB units (71% vs 54%; P = .009), and performance status (PS) of >80 vs <60 or 60 to 80 (69% vs 32% and 55%, respectively; P = .003). For patients with PS≤60 (n = 20) or 60 to 80 (n = 24) pre-CBT, only 4 (9%) showed improvement. Of the survivors with PS >80 pre-CBT, 50% remained stable, 20% declined to 60 to 80, and 30% to <60. Overall, an encouraging OS was found for LD patients after CBT, especially for those who are presymptomatic before CBT and received adequately dosed grafts. Early identification and fast referral to a specialized center may lead to earlier treatment and, subsequently, to improved outcomes.
Collapse
Affiliation(s)
- Brigitte T A van den Broek
- Blood and Marrow Transplantation Program
- Laboratory for Translational Immunology, and
- Sylvia Toth Center for Multidisciplinary Follow Up After Hematopoietic Cell Transplantation, UMC Utrecht, Utrecht, The Netherlands
| | - Kristin Page
- Pediatric Blood and Marrow Transplantation Program, Duke University Medical Center, Durham, NC
| | | | | | - Heather Allewelt
- Pediatric Blood and Marrow Transplantation Program, Duke University Medical Center, Durham, NC
| | | | | | | | - Victoria Bordon
- Blood and Marrow Transplantation Program, Universiteits Ziekenhuis Gent, Gent, Belgium
| | | | - Peter J Shaw
- Children's Hospital at Westmead, Sydney, Australia
| | | | - Amal Al-Seraihy
- King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - Peter M van Hasselt
- Sylvia Toth Center for Multidisciplinary Follow Up After Hematopoietic Cell Transplantation, UMC Utrecht, Utrecht, The Netherlands
| | - Andrew R Gennery
- Institute of Cellular Medicine, Newcastle University, Newcastle upon Tyne, United Kingdom; and
| | | | | | | | | | - Jaap Jan Boelens
- Blood and Marrow Transplantation Program
- Laboratory for Translational Immunology, and
- Sylvia Toth Center for Multidisciplinary Follow Up After Hematopoietic Cell Transplantation, UMC Utrecht, Utrecht, The Netherlands
| |
Collapse
|
17
|
Bradbury AM, Bagel JH, Jiang X, Swain GP, Prociuk ML, Fitzgerald CA, O'Donnell PA, Braund KG, Ory DS, Vite CH. Clinical, electrophysiological, and biochemical markers of peripheral and central nervous system disease in canine globoid cell leukodystrophy (Krabbe's disease). J Neurosci Res 2017; 94:1007-17. [PMID: 27638585 DOI: 10.1002/jnr.23838] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2016] [Revised: 06/23/2016] [Accepted: 06/23/2016] [Indexed: 11/10/2022]
Abstract
Globoid cell leukodystrophy (GLD), or Krabbe's disease, is a debilitating and always fatal pediatric neurodegenerative disease caused by a mutation in the gene encoding the hydrolytic enzyme galactosylceramidase (GALC). In the absence of GALC, progressive loss of myelin and accumulation of a neurotoxic substrate lead to incapacitating loss of motor and cognitive function and death, typically by 2 years of age. Currently, there is no cure. Recent convincing evidence of the therapeutic potential of combining gene and cell therapies in the murine model of GLD has accelerated the requirement for validated markers of disease to evaluate therapeutic efficacy. Here we demonstrate clinically relevant and quantifiable measures of central (CNS) and peripheral (PNS) nervous system disease progression in the naturally occurring canine model of GLD. As measured by brainstem auditory-evoked response testing, GLD dogs demonstrated a significant increase in I-V interpeak latency and hearing threshold at all time points. Motor nerve conduction velocities (NCVs) in GLD dogs were significantly lower than normal by 12-16 weeks of age, and sensory NCV was significantly lower than normal by 8-12 weeks of age, serving as a sensitive indicator of peripheral nerve dysfunction. Post-mortem histological evaluations confirmed neuroimaging and electrodiagnostic assessments and detailed loss of myelin and accumulation of storage product in the CNS and the PNS. Additionally, cerebrospinal fluid psychosine concentrations were significantly elevated in GLD dogs, demonstrating potential as a biochemical marker of disease. These data demonstrate that CNS and PNS disease progression can be quantified over time in the canine model of GLD with tools identical to those used to assess human patients. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Allison M Bradbury
- Department of Clinical Studies, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania.
| | - Jessica H Bagel
- Department of Clinical Studies, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Xuntian Jiang
- Division of Biology and Biomedical Sciences, Washington University School of Medicine, St. Louis, Missouri
| | - Gary P Swain
- Department of Clinical Studies, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Maria L Prociuk
- Department of Clinical Studies, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Caitlin A Fitzgerald
- Department of Clinical Studies, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Patricia A O'Donnell
- Department of Clinical Studies, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Kyle G Braund
- Veterinary Neurological Consulting Services, Dadeville, Alabama
| | - Daniel S Ory
- Division of Biology and Biomedical Sciences, Washington University School of Medicine, St. Louis, Missouri
| | - Charles H Vite
- Department of Clinical Studies, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| |
Collapse
|
18
|
Sakai N, Otomo T. Challenge of phenotype estimation for optimal treatment of Krabbe disease. J Neurosci Res 2017; 94:1025-30. [PMID: 27638587 DOI: 10.1002/jnr.23914] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2016] [Revised: 07/31/2016] [Accepted: 08/11/2016] [Indexed: 11/08/2022]
Abstract
Krabbe disease is an autosomal recessive, inherited demyelinating disease caused by deficiency of the lysosomal enzyme galactocerebrosidase. It is recognized as one of the predominant genetic diseases showing leukodystrophy from infancy to adulthood. The clinical phenotype and genotype for this disease show considerable variation worldwide, which makes accurate diagnosis difficult. Effective therapy is limited, although hematopoietic stem cell transplantation at an early stage has been established to some extent. We report here the long-term clinical effect on juvenile Krabbe disease for two brothers who underwent hematopoietic stem cell transplantation at an early stage of their disease. We review research into genotype-phenotype correlation for the possibility of early diagnosis at a presymptomatic stage. Medical care for this intractable disease will improve in the near future as a result of the increasing awareness of its molecular pathology and improvements in medical treatment. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Norio Sakai
- Child Healthcare and Genetic Science Laboratory, Division of Health Science, Osaka University Graduate School of Medicine, Osaka, Japan.
| | - Takanobu Otomo
- Department of Genetics, Osaka University Graduate School of Medicine, Osaka, Japan
| |
Collapse
|
19
|
Quality of life of Hurler syndrome patients after successful hematopoietic stem cell transplantation. Blood Adv 2017; 1:2236-2242. [PMID: 29296871 DOI: 10.1182/bloodadvances.2017011387] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2017] [Accepted: 10/11/2017] [Indexed: 11/20/2022] Open
Abstract
Hurler syndrome (HS) is a lysosomal storage disease characterized by multisystem morbidity and death in early childhood. Hematopoietic stem cell transplantation (HSCT) results in long-term survival, although with significant residual disease burden. How this residual disease affects the health-related quality of life is unknown. Therefore, we conducted a multicenter cohort study on functional and psychosocial health and compared the outcomes to normative data using the Child Health Questionnaire and Pediatric Outcomes Data Collection Instrument. Perception of care was evaluated by the Measure of Processes of Care questionnaire. Sixty-three HS patients receiving HSCT with at least 3 years of follow-up after HSCT were included. The influence of potential predictors was analyzed using linear regression analysis, and correlation analysis was performed using Spearman rank correlation. Functional health of transplanted HS patients was significantly diminished compared with normative data (median physical summary z score, -2.4 [range, -3.5 to -1.6]; median global functioning z score, -3.2 [range, -4.8 to -1.8]). Psychosocial health was comparable or only slightly reduced compared with healthy peers (median psychosocial summary z score, 0.15 [range, -0.7 to 0.8]). A higher obtained lysosomal enzyme level post-HSCT predicted for superior functional health. Overall, parents were satisfied with the care received. Functional health of transplanted HS patients appeared significantly more affected than psychosocial health. To improve functional health, the use of only noncarrier donors and striving to achieve full-donor chimerism, both resulting in higher enzyme levels, is advised. Assessing the health-related quality of life could play an important role in evaluating outcomes of HS patients receiving novel (cell) therapies, including autologous gene-transduced HSCT.
Collapse
|
20
|
Azario I, Pievani A, Del Priore F, Antolini L, Santi L, Corsi A, Cardinale L, Sawamoto K, Kubaski F, Gentner B, Bernardo ME, Valsecchi MG, Riminucci M, Tomatsu S, Aiuti A, Biondi A, Serafini M. Neonatal umbilical cord blood transplantation halts skeletal disease progression in the murine model of MPS-I. Sci Rep 2017; 7:9473. [PMID: 28842642 PMCID: PMC5573317 DOI: 10.1038/s41598-017-09958-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2017] [Accepted: 08/01/2017] [Indexed: 12/23/2022] Open
Abstract
Umbilical cord blood (UCB) is a promising source of stem cells to use in early haematopoietic stem cell transplantation (HSCT) approaches for several genetic diseases that can be diagnosed at birth. Mucopolysaccharidosis type I (MPS-I) is a progressive multi-system disorder caused by deficiency of lysosomal enzyme α-L-iduronidase, and patients treated with allogeneic HSCT at the onset have improved outcome, suggesting to administer such therapy as early as possible. Given that the best characterized MPS-I murine model is an immunocompetent mouse, we here developed a transplantation system based on murine UCB. With the final aim of testing the therapeutic efficacy of UCB in MPS-I mice transplanted at birth, we first defined the features of murine UCB cells and demonstrated that they are capable of multi-lineage haematopoietic repopulation of myeloablated adult mice similarly to bone marrow cells. We then assessed the effectiveness of murine UCB cells transplantation in busulfan-conditioned newborn MPS-I mice. Twenty weeks after treatment, iduronidase activity was increased in visceral organs of MPS-I animals, glycosaminoglycans storage was reduced, and skeletal phenotype was ameliorated. This study explores a potential therapy for MPS-I at a very early stage in life and represents a novel model to test UCB-based transplantation approaches for various diseases.
Collapse
Affiliation(s)
- Isabella Azario
- Dulbecco Telethon Institute, Centro Ricerca M. Tettamanti, Department of Pediatrics, University of Milano-Bicocca, Monza, 20900, Italy
| | - Alice Pievani
- Dulbecco Telethon Institute, Centro Ricerca M. Tettamanti, Department of Pediatrics, University of Milano-Bicocca, Monza, 20900, Italy
| | - Federica Del Priore
- Dulbecco Telethon Institute, Centro Ricerca M. Tettamanti, Department of Pediatrics, University of Milano-Bicocca, Monza, 20900, Italy
| | - Laura Antolini
- Centro di Biostatistica per l'epidemiologia clinica, Department of Health Sciences, University of Milano-Bicocca, Monza, 20900, Italy
| | - Ludovica Santi
- Dulbecco Telethon Institute, Centro Ricerca M. Tettamanti, Department of Pediatrics, University of Milano-Bicocca, Monza, 20900, Italy
| | - Alessandro Corsi
- Department of Molecular Medicine, Sapienza University, Rome, 00161, Italy
| | - Lucia Cardinale
- Dulbecco Telethon Institute, Centro Ricerca M. Tettamanti, Department of Pediatrics, University of Milano-Bicocca, Monza, 20900, Italy
| | - Kazuki Sawamoto
- Department of Biomedical Research, Alfred I. duPont Hospital for Children, Wilmington, DE, 19803, USA
| | - Francyne Kubaski
- Department of Biomedical Research, Alfred I. duPont Hospital for Children, Wilmington, DE, 19803, USA.,Department of Biological Sciences, University of Delaware, Newark, DE, 19716, USA
| | - Bernhard Gentner
- San Raffaele Telethon Institute for Gene Therapy (SR-TIGET), San Raffaele Scientific Institute, Milan, 20132, Italy
| | - Maria Ester Bernardo
- San Raffaele Telethon Institute for Gene Therapy (SR-TIGET), San Raffaele Scientific Institute, Milan, 20132, Italy
| | - Maria Grazia Valsecchi
- Centro di Biostatistica per l'epidemiologia clinica, Department of Health Sciences, University of Milano-Bicocca, Monza, 20900, Italy
| | - Mara Riminucci
- Department of Molecular Medicine, Sapienza University, Rome, 00161, Italy
| | - Shunji Tomatsu
- Department of Biomedical Research, Alfred I. duPont Hospital for Children, Wilmington, DE, 19803, USA
| | - Alessandro Aiuti
- San Raffaele Telethon Institute for Gene Therapy (SR-TIGET), San Raffaele Scientific Institute, Milan, 20132, Italy.,Vita Salute San Raffaele University, Milan, 20132, Italy
| | - Andrea Biondi
- Department of Pediatrics, University of Milano-Bicocca, Monza, 20900, Italy
| | - Marta Serafini
- Dulbecco Telethon Institute, Centro Ricerca M. Tettamanti, Department of Pediatrics, University of Milano-Bicocca, Monza, 20900, Italy.
| |
Collapse
|
21
|
Barth AL, de Magalhães TSPC, Reis ABR, de Oliveira ML, Scalco FB, Cavalcanti NC, Silva DSE, Torres DA, Costa AAP, Bonfim C, Giugliani R, Llerena JC, Horovitz DDG. Early hematopoietic stem cell transplantation in a patient with severe mucopolysaccharidosis II: A 7 years follow-up. Mol Genet Metab Rep 2017. [PMID: 28649514 PMCID: PMC5470531 DOI: 10.1016/j.ymgmr.2017.05.010] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Mucopolysaccharidosis type II (MPS II - Hunter syndrome) is an X-linked lysosomal storage disorder caused by a deficiency in the enzyme iduronate-2 sulfatase (I2S), leading to the accumulation of the glycosaminoglycans, affecting multiple organs and systems. Enzyme replacement therapy does not cross the blood brain barrier, limiting results in neurological forms of the disease. Another option of treatment for severe MPS, hematopoietic stem cell transplantation (HSCT) has become the treatment of choice for the severe form of MPS type I, since it can preserve neurocognition when performed early in the course of the disease. To date, only few studies have examined the long-term outcomes of HSCT in patients with MPS II. We describe the seven-year follow-up of a prenatally diagnosed MPS II boy with positive family history of severe MPS form, submitted to HSCT with umbilical cord blood cells at 70 days of age. Engraftment after 30 days revealed mixed chimerism with 79% donor cells; after 7 years engraftment remains at 80%. I2S activity 30 days post-transplant was low in plasma and normal in leukocytes and the same pattern is observed to date. At age 7 years growth charts are normal and he is very healthy, although mild signs of dysostosis multiplex are present, as well as hearing loss. The neuropsychological evaluation (Wechsler Intelligence Scale for Children - Fourth Edition - WISC-IV), disclosed an IQ of 47. Despite this low measured IQ, the patient continues to show improvements in cognitive, language and motor skills, being quite functional. We believe that HSCT is a therapeutic option for MPS II patients with the severe phenotype, as it could preserve neurocognition or even halt neurodegeneration, provided strict selection criteria are followed.
Collapse
Affiliation(s)
- Anneliese L Barth
- Instituto Nacional de Saúde da Mulher, da Criança e do Adolescente Fernandes Figueira - Fiocruz, Rio de Janeiro, Brazil
| | - Tatiana S P C de Magalhães
- Instituto Nacional de Saúde da Mulher, da Criança e do Adolescente Fernandes Figueira - Fiocruz, Rio de Janeiro, Brazil
| | - Ana Beatriz R Reis
- Instituto Nacional de Saúde da Mulher, da Criança e do Adolescente Fernandes Figueira - Fiocruz, Rio de Janeiro, Brazil
| | - Maria Lucia de Oliveira
- Laboratório de Erros Inatos do Metabolismo, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Fernanda B Scalco
- Laboratório de Erros Inatos do Metabolismo, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Nicolette C Cavalcanti
- Instituto Nacional de Saúde da Mulher, da Criança e do Adolescente Fernandes Figueira - Fiocruz, Rio de Janeiro, Brazil
| | - Daniel S E Silva
- Instituto Nacional de Saúde da Mulher, da Criança e do Adolescente Fernandes Figueira - Fiocruz, Rio de Janeiro, Brazil
| | - Danielle A Torres
- Instituto Nacional de Saúde da Mulher, da Criança e do Adolescente Fernandes Figueira - Fiocruz, Rio de Janeiro, Brazil
| | - Alessandra A P Costa
- Instituto Nacional de Saúde da Mulher, da Criança e do Adolescente Fernandes Figueira - Fiocruz, Rio de Janeiro, Brazil
| | - Carmem Bonfim
- Bone Marrow Transplantation Unit, Federal University of Paraná, Curitiba, Brazil
| | - Roberto Giugliani
- Medical Genetics Service, Hospital de Clinicas de Alegre, Porto Alegre, Brazil
| | - Juan C Llerena
- Instituto Nacional de Saúde da Mulher, da Criança e do Adolescente Fernandes Figueira - Fiocruz, Rio de Janeiro, Brazil
| | - Dafne D G Horovitz
- Instituto Nacional de Saúde da Mulher, da Criança e do Adolescente Fernandes Figueira - Fiocruz, Rio de Janeiro, Brazil
| |
Collapse
|
22
|
Emerging therapies for neuropathic lysosomal storage disorders. Prog Neurobiol 2017; 152:166-180. [DOI: 10.1016/j.pneurobio.2016.10.002] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2015] [Revised: 09/29/2016] [Accepted: 10/02/2016] [Indexed: 12/18/2022]
|
23
|
Berglund S, Magalhaes I, Gaballa A, Vanherberghen B, Uhlin M. Advances in umbilical cord blood cell therapy: the present and the future. Expert Opin Biol Ther 2017; 17:691-699. [PMID: 28379044 DOI: 10.1080/14712598.2017.1316713] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
INTRODUCTION Umbilical cord blood (UCB), previously seen as medical waste, is increasingly recognized as a valuable source of cells for therapeutic use. The best-known application is in hematopoietic stem cell transplantation (HSCT), where UCB has become an increasingly important graft source in the 28 years since the first umbilical cord blood transplantation (UCBT) was performed. Recently, UCB has been increasingly investigated as a putative source for adoptive cell therapy. Areas covered: This review covers the advances in umbilical cord blood transplantation (UCBT) to overcome the limitation regarding cellular dose, immunological naivety and additional cell doses such as DLI. It also provides an overview regarding the progress in adoptive cellular therapy using UCB. Expert opinion: UCB has been established as an important source of stem cells for HSCT. Successful strategies to overcome the limitations of UCBT, such as the limited cell numbers and naivety of the cells, are being developed, including novel methods to perform in vitro expansion of progenitor cells, and to improve their homing to the bone marrow. Promising early clinical trials of adoptive therapies with UCB cells, including non-immunological cells, are currently performed for viral infections, malignant diseases and in regenerative medicine.
Collapse
Affiliation(s)
- Sofia Berglund
- a Centre for Allogeneic Stem Cell Transplantation , Karolinska University Hospital , Stockholm , Sweden
| | - Isabelle Magalhaes
- b Department of oncology and Pathology , Karolinska Institutet , Stockholm , Sweden
| | - Ahmed Gaballa
- c Department of Clinical Science, Intervention and Technology , Karolinska Institutet , Stockholm , Sweden
| | - Bruno Vanherberghen
- d Department of Applied Physics , Royal Institute of Technology , Stockholm , Sweden
| | - Michael Uhlin
- c Department of Clinical Science, Intervention and Technology , Karolinska Institutet , Stockholm , Sweden.,d Department of Applied Physics , Royal Institute of Technology , Stockholm , Sweden.,e Department of Immunology/Transfusion Medicine , Karolinska University Hospital , Stockholm , Sweden
| |
Collapse
|
24
|
Wharton’s Jelly Mesenchymal Stromal Cells as a Feeder Layer for the Ex Vivo Expansion of Hematopoietic Stem and Progenitor Cells: a Review. Stem Cell Rev Rep 2016; 13:35-49. [DOI: 10.1007/s12015-016-9702-4] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
25
|
Current Perspective of Stem Cell Therapy in Neurodegenerative and Metabolic Diseases. Mol Neurobiol 2016; 54:7276-7296. [PMID: 27815831 DOI: 10.1007/s12035-016-0217-4] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2016] [Accepted: 10/12/2016] [Indexed: 12/11/2022]
Abstract
Neurodegenerative diseases have been an unsolved riddle for quite a while; to date, there are no proper and effective curative treatments and only palliative and symptomatic treatments are available to treat these illnesses. The absence of therapeutic treatments for neurodegenerative ailments has huge economic hit and strain on the society. Pharmacotherapies and various surgical procedures like deep brain stimulation are being given to the patient, but they are only effective for the symptoms and not for the diseases. This paper reviews the recent studies and development of stem cell therapy for neurodegenerative disorders. Stem cell-based treatment is a promising new way to deal with neurodegenerative diseases. Stem cell transplantation can advance useful recuperation by delivering trophic elements that impel survival and recovery of host neurons in animal models and patients with neurodegenerative maladies. Several mechanisms, for example, substitution of lost cells, cell combination, release of neurotrophic factor, proliferation of endogenous stem cell, and transdifferentiation, may clarify positive remedial results. With the current advancements in the stem cell therapies, a new hope for the cure has come out since they have potential to be a cure for the same. This review compiles stem cell therapy recent conceptions in neurodegenerative and neurometabolic diseases and updates in this field. Graphical Absract ᅟ.
Collapse
|
26
|
Mallhi KK, Smith AR, DeFor TE, Lund TC, Orchard PJ, Miller WP. Allele-Level HLA Matching Impacts Key Outcomes Following Umbilical Cord Blood Transplantation for Inherited Metabolic Disorders. Biol Blood Marrow Transplant 2016; 23:119-125. [PMID: 27989932 DOI: 10.1016/j.bbmt.2016.10.019] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2016] [Accepted: 10/25/2016] [Indexed: 01/06/2023]
Abstract
Allogeneic hematopoietic stem cell transplantation has demonstrated efficacy for numerous inherited metabolic disorders (IMDs). Umbilical cord blood transplant (UCBT) is increasingly used as a graft source in IMDs, but little is known of the impact of cord blood unit (CBU)/recipient HLA allelic disparity on key outcomes following UCBT for IMD. We reviewed outcomes of 106 consecutive first, single UCBTs for IMD at the University of Minnesota with regard to CBU/recipient HLA allelic matching (HLA-A, -B, -C, and -DRB1). The median age at UCBT was 1 year, and 87 patients (82%) received myeloablative conditioning. Primary diagnoses were Hurler syndrome (41%), cerebral adrenoleukodystrophy (35%), metachromatic leukodystrophy/globoid cell leukodystrophy (9%), and other (16%). The 5-year overall survival (OS) for the entire cohort was 70% (95% confidence interval, 59% to 79%). Rates of severe acute and chronic graft-versus-host disease were low (6% for each). CBU/recipient HLA conventional matching was based on antigen-level matching at HLA-A and -B, and on allele-level matching at HLA-DRB1. Of 46 conventional matched UCBTs, 20 (43%) were mismatched at 1 or more alleles. Of 49 conventional 5/6 UCBTs, 30 (61%) were mismatched at ≥2 alleles and 19 (39%) were mismatched at ≥3 alleles. Within the 6/6 conventional match stratum, comparisons of key outcomes between allele-matched and allele-mismatched UCBT were as follows: 5-year OS, 88% versus 42% (P < .01); 1-year engrafted survival (ES) with ≥90% donor chimerism, 73% versus 60% (P = .33); graft failure, 8% versus 30% (P = .05); and transplantation-related mortality (TRM), 8% versus 30% (P = .04). For patients undergoing conventional 5/6 HLA-matched UCBT, better allelic matching was associated with similar outcomes: 5-year OS, 77% versus 74% (P = .72); 1-year ES, 73% versus 47% (P = .06); graft failure, 17% versus 42% (P = .05); and TRM, 10% versus 16% (P = .54). On multivariable analyses, fewer allele-level mismatches within each conventional match stratum continued to predict more favorable outcomes following UCBT. These data provide evidence that allele-level HLA matching considerations within a conventional HLA match stratum may better predict outcomes of interest after UCBT for IMD. Larger studies are warranted to confirm these findings and explore other allele-level HLA match dynamics.
Collapse
Affiliation(s)
- Kanwaldeep K Mallhi
- Division of Pediatric Blood and Marrow Transplant, Department of Pediatrics, University of Minnesota, Minneapolis, Minnesota
| | - Angela R Smith
- Division of Pediatric Blood and Marrow Transplant, Department of Pediatrics, University of Minnesota, Minneapolis, Minnesota
| | - Todd E DeFor
- Biostatistics Core, Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota
| | - Troy C Lund
- Division of Pediatric Blood and Marrow Transplant, Department of Pediatrics, University of Minnesota, Minneapolis, Minnesota
| | - Paul J Orchard
- Division of Pediatric Blood and Marrow Transplant, Department of Pediatrics, University of Minnesota, Minneapolis, Minnesota
| | - Weston P Miller
- Division of Pediatric Blood and Marrow Transplant, Department of Pediatrics, University of Minnesota, Minneapolis, Minnesota.
| |
Collapse
|
27
|
Tomatsu S, Azario I, Sawamoto K, Pievani AS, Biondi A, Serafini M. Neonatal cellular and gene therapies for mucopolysaccharidoses: the earlier the better? J Inherit Metab Dis 2016; 39:189-202. [PMID: 26578156 PMCID: PMC4754332 DOI: 10.1007/s10545-015-9900-2] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/30/2015] [Revised: 10/21/2015] [Accepted: 10/22/2015] [Indexed: 12/03/2022]
Abstract
Mucopolysaccharidoses (MPSs) are a group of lysosomal storage disorders (LSDs). The increasing interest in newborn screening procedures for LSDs underlines the need for alternative cellular and gene therapy approaches to be developed during the perinatal period, supporting the treatment of MPS patients before the onset of clinical signs and symptoms. The rationale for considering these early therapies results from the clinical experience in the treatment of MPSs and other genetic disorders. The normal or gene-corrected hematopoiesis transplanted in patients can produce the missing protein at levels sufficient to improve and/or halt the disease-related abnormalities. However, these current therapies are only partially successful, probably due to the limited efficacy of the protein provided through the hematopoiesis. An alternative explanation is that the time at which the cellular or gene therapy procedures are performed could be too late to prevent pre-existing or progressive organ damage. Considering these aspects, in the last several years, novel cellular and gene therapy approaches have been tested in different animal models at birth, a highly early stage, showing that precocious treatment is critical to prevent long-term pathological consequences. This review provides insights into the state-of-art accomplishments made with neonatal cellular and gene-based therapies and the major barriers that need to be overcome before they can be implemented in the medical community.
Collapse
Affiliation(s)
- Shunji Tomatsu
- Department of Biomedical Research, Alfred I. duPont Institute Hospital for Children, Wilmington, DE, USA.
- Skeletal Dysplasia Lab, Department of Biomedical Research, Nemours/Alfred I. duPont Hospital for Children, 1600 Rockland Rd., Wilmington, DE, 19899-0269, USA.
| | - Isabella Azario
- Dulbecco Telethon Institute at Centro Ricerca M. Tettamanti, Department of Paediatrics, University of Milano-Bicocca, San Gerardo Hospital, via Pergolesi, 33, 20900, Monza, MB, Italy
| | - Kazuki Sawamoto
- Department of Biomedical Research, Alfred I. duPont Institute Hospital for Children, Wilmington, DE, USA
| | - Alice Silvia Pievani
- Dulbecco Telethon Institute at Centro Ricerca M. Tettamanti, Department of Paediatrics, University of Milano-Bicocca, San Gerardo Hospital, via Pergolesi, 33, 20900, Monza, MB, Italy
| | - Andrea Biondi
- Centro Ricerca M. Tettamanti, Department of Paediatrics, University of Milano-Bicocca, Via Pergolesi, 33, Monza, 20900, Italy
| | - Marta Serafini
- Dulbecco Telethon Institute at Centro Ricerca M. Tettamanti, Department of Paediatrics, University of Milano-Bicocca, San Gerardo Hospital, via Pergolesi, 33, 20900, Monza, MB, Italy.
| |
Collapse
|