1
|
Shan Y, Zhang M, Tao E, Wang J, Wei N, Lu Y, Liu Q, Hao K, Zhou F, Wang G. Pharmacokinetic characteristics of mesenchymal stem cells in translational challenges. Signal Transduct Target Ther 2024; 9:242. [PMID: 39271680 PMCID: PMC11399464 DOI: 10.1038/s41392-024-01936-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 07/04/2024] [Accepted: 07/23/2024] [Indexed: 09/15/2024] Open
Abstract
Over the past two decades, mesenchymal stem/stromal cell (MSC) therapy has made substantial strides, transitioning from experimental clinical applications to commercial products. MSC therapies hold considerable promise for treating refractory and critical conditions such as acute graft-versus-host disease, amyotrophic lateral sclerosis, and acute respiratory distress syndrome. Despite recent successes in clinical and commercial applications, MSC therapy still faces challenges when used as a commercial product. Current detection methods have limitations, leaving the dynamic biodistribution, persistence in injured tissues, and ultimate fate of MSCs in patients unclear. Clarifying the relationship between the pharmacokinetic characteristics of MSCs and their therapeutic effects is crucial for patient stratification and the formulation of precise therapeutic regimens. Moreover, the development of advanced imaging and tracking technologies is essential to address these clinical challenges. This review provides a comprehensive analysis of the kinetic properties, key regulatory molecules, different fates, and detection methods relevant to MSCs and discusses concerns in evaluating MSC druggability from the perspective of integrating pharmacokinetics and efficacy. A better understanding of these challenges could improve MSC clinical efficacy and speed up the introduction of MSC therapy products to the market.
Collapse
Affiliation(s)
- Yunlong Shan
- Key Laboratory of Drug Metabolism and Pharmacokinetics, Haihe Laboratory of Cell Ecosystem, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China.
| | - Mengying Zhang
- Key Laboratory of Drug Metabolism and Pharmacokinetics, Haihe Laboratory of Cell Ecosystem, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China
| | - Enxiang Tao
- Key Laboratory of Drug Metabolism and Pharmacokinetics, Haihe Laboratory of Cell Ecosystem, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China
| | - Jing Wang
- Jiangsu Renocell Biotech Co. Ltd., Nanjing, China
| | - Ning Wei
- Key Laboratory of Drug Metabolism and Pharmacokinetics, Haihe Laboratory of Cell Ecosystem, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China
- Jiangsu Renocell Biotech Co. Ltd., Nanjing, China
| | - Yi Lu
- Key Laboratory of Drug Metabolism and Pharmacokinetics, Haihe Laboratory of Cell Ecosystem, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China
| | - Qing Liu
- Jiangsu Renocell Biotech Co. Ltd., Nanjing, China
| | - Kun Hao
- Key Laboratory of Drug Metabolism and Pharmacokinetics, Haihe Laboratory of Cell Ecosystem, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China.
| | - Fang Zhou
- Key Laboratory of Drug Metabolism and Pharmacokinetics, Haihe Laboratory of Cell Ecosystem, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China.
| | - Guangji Wang
- Key Laboratory of Drug Metabolism and Pharmacokinetics, Haihe Laboratory of Cell Ecosystem, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China.
| |
Collapse
|
2
|
Mamachan M, Sharun K, Banu SA, Muthu S, Pawde AM, Abualigah L, Maiti SK. Mesenchymal stem cells for cartilage regeneration: Insights into molecular mechanism and therapeutic strategies. Tissue Cell 2024; 88:102380. [PMID: 38615643 DOI: 10.1016/j.tice.2024.102380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 03/15/2024] [Accepted: 04/09/2024] [Indexed: 04/16/2024]
Abstract
The use of mesenchymal stem cells (MSCs) in cartilage regeneration has gained significant attention in regenerative medicine. This paper reviews the molecular mechanisms underlying MSC-based cartilage regeneration and explores various therapeutic strategies to enhance the efficacy of MSCs in this context. MSCs exhibit multipotent capabilities and can differentiate into various cell lineages under specific microenvironmental cues. Chondrogenic differentiation, a complex process involving signaling pathways, transcription factors, and growth factors, plays a pivotal role in the successful regeneration of cartilage tissue. The chondrogenic differentiation of MSCs is tightly regulated by growth factors and signaling pathways such as TGF-β, BMP, Wnt/β-catenin, RhoA/ROCK, NOTCH, and IHH (Indian hedgehog). Understanding the intricate balance between these pathways is crucial for directing lineage-specific differentiation and preventing undesirable chondrocyte hypertrophy. Additionally, paracrine effects of MSCs, mediated by the secretion of bioactive factors, contribute significantly to immunomodulation, recruitment of endogenous stem cells, and maintenance of chondrocyte phenotype. Pre-treatment strategies utilized to potentiate MSCs, such as hypoxic conditions, low-intensity ultrasound, kartogenin treatment, and gene editing, are also discussed for their potential to enhance MSC survival, differentiation, and paracrine effects. In conclusion, this paper provides a comprehensive overview of the molecular mechanisms involved in MSC-based cartilage regeneration and outlines promising therapeutic strategies. The insights presented contribute to the ongoing efforts in optimizing MSC-based therapies for effective cartilage repair.
Collapse
Affiliation(s)
- Merlin Mamachan
- Division of Surgery, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, Uttar Pradesh, India
| | - Khan Sharun
- Division of Surgery, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, Uttar Pradesh, India; Graduate Institute of Medicine, Yuan Ze University, Taoyuan, Taiwan.
| | - S Amitha Banu
- Division of Surgery, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, Uttar Pradesh, India
| | - Sathish Muthu
- Department of Biotechnology, Faculty of Engineering, Karpagam Academy of Higher Education, Coimbatore, Tamil Nadu, India; Orthopaedic Research Group, Coimbatore, Tamil Nadu, India; Department of Orthopaedics, Government Medical College, Kaur, Tamil Nadu, India
| | - Abhijit M Pawde
- Division of Surgery, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, Uttar Pradesh, India
| | - Laith Abualigah
- Artificial Intelligence and Sensing Technologies (AIST) Research Center, University of Tabuk, Tabuk 71491, Saudi Arabia; Hourani Center for Applied Scientific Research, Al-Ahliyya Amman University, Amman 19328, Jordan; Computer Science Department, Al al-Bayt University, Mafraq 25113, Jordan; MEU Research Unit, Middle East University, Amman 11831, Jordan; Department of Electrical and Computer Engineering, Lebanese American University, Byblos 13-5053, Lebanon; Applied Science Research Center, Applied Science Private University, Amman 11931, Jordan; School of Engineering and Technology, Sunway University Malaysia, Petaling Jaya 27500, Malaysia
| | - Swapan Kumar Maiti
- Division of Surgery, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, Uttar Pradesh, India
| |
Collapse
|
3
|
Simon CG, Bozenhardt EH, Celluzzi CM, Dobnik D, Grant ML, Lakshmipathy U, Nebel T, Peltier L, Ratcliffe A, Sherley JL, Stacey GN, Taghizadeh RR, Tan EHP, Vessillier S. Mechanism of action, potency and efficacy: considerations for cell therapies. J Transl Med 2024; 22:416. [PMID: 38698408 PMCID: PMC11067168 DOI: 10.1186/s12967-024-05179-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Accepted: 04/05/2024] [Indexed: 05/05/2024] Open
Abstract
One of the most challenging aspects of developing advanced cell therapy products (CTPs) is defining the mechanism of action (MOA), potency and efficacy of the product. This perspective examines these concepts and presents helpful ways to think about them through the lens of metrology. A logical framework for thinking about MOA, potency and efficacy is presented that is consistent with the existing regulatory guidelines, but also accommodates what has been learned from the 27 US FDA-approved CTPs. Available information regarding MOA, potency and efficacy for the 27 FDA-approved CTPs is reviewed to provide background and perspective. Potency process and efficacy process charts are introduced to clarify and illustrate the relationships between six key concepts: MOA, potency, potency test, efficacy, efficacy endpoint and efficacy endpoint test. Careful consideration of the meaning of these terms makes it easier to discuss the challenges of correlating potency test results with clinical outcomes and to understand how the relationships between the concepts can be misunderstood during development and clinical trials. Examples of how a product can be "potent but not efficacious" or "not potent but efficacious" are presented. Two example applications of the framework compare how MOA is assessed in cell cultures, animal models and human clinical trials and reveals the challenge of establishing MOA in humans. Lastly, important considerations for the development of potency tests for a CTP are discussed. These perspectives can help product developers set appropriate expectations for understanding a product's MOA and potency, avoid unrealistic assumptions and improve communication among team members during the development of CTPs.
Collapse
Affiliation(s)
- Carl G Simon
- Biosystems and Biomaterials Division, National Institute of Standards and Technology (NIST), Gaithersburg, MD, USA.
| | - Erich H Bozenhardt
- United Therapeutics Corporation, Regenerative Medicine Operations, Research Triangle Park, NC, USA
| | - Christina M Celluzzi
- Association for the Advancement of Blood and Biotherapies (AABB), Bethesda, MD, USA
| | - David Dobnik
- Niba Labs, Ljubljana, Slovenia
- National Institute of Biology, Ljubljana, Slovenia
| | - Melanie L Grant
- Department of Pediatrics, Children's Healthcare of Atlanta, Marcus Center for Cellular and Gene Therapies, Correlative Studies Laboratory, Emory University School of Medicine, Atlanta, GA, USA
| | - Uma Lakshmipathy
- Pharma Services, Science and Technology, Thermo Fisher Scientific, San Diego, CA, USA
| | - Thiana Nebel
- Medical Education, Sports Medicine and Orthobiologics, Medical Sales Institute, San Diego, CA, USA
| | - Linda Peltier
- Cellular Therapy Lab, Research Institute of McGill University Health Center, Montreal, QC, Canada
| | | | | | - Glyn N Stacey
- International Stem Cell Banking Initiative, Barley, Herts, UK
- National Stem Cell Resource Centre, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- Beijing Institute for Stem Cells and Regenerative Medicine, Chinese Academy of Sciences, Beijing, China
| | | | - Eddie H P Tan
- Cell and Gene Therapy Facility, Health Sciences Authority, Singapore, Singapore
| | - Sandrine Vessillier
- Science, Research and Innovation Group, Biotherapeutics and Advanced Therapies Division, Medicines and Healthcare Products Regulatory Agency, South Mimms, Hertfordshire, UK
| |
Collapse
|
4
|
Sadeghi S, Nimtz L, Niebergall-Roth E, Norrick A, Hägele S, Vollmer L, Esterlechner J, Frank MH, Ganss C, Scharffetter-Kochanek K, Kluth MA. Potency assay to predict the anti-inflammatory capacity of a cell therapy product for macrophage-driven diseases: overcoming the challenges of assay development and validation. Cytotherapy 2024; 26:512-523. [PMID: 38441512 PMCID: PMC11065629 DOI: 10.1016/j.jcyt.2024.02.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 01/22/2024] [Accepted: 02/12/2024] [Indexed: 04/04/2024]
Abstract
BACKGROUND Given the high level of product complexity and limited regulatory guidance, designing and implementing appropriate potency assays is often the most challenging part of establishing a quality control testing matrix for a cell-based medicinal product. Among the most elusive tasks are the selection of suitable read-out parameters, the development of assay designs that most closely model the pathophysiological conditions, and the validation of the methods. Here we describe these challenges and how they were addressed in developing an assay that measures the anti-inflammatory potency of mesenchymal stromal cells (MSCs) in an M1 macrophage-dominated inflammatory environment. METHODS An in vitro inflammation model was established by coculturing skin-derived ABCB5+ MSCs with THP-1 monocyte-derived M1-polarized macrophages. Readout was the amount of interleukin 1 receptor antagonist (IL-1RA) secreted by the MSCs in the coculture, measured by an enzyme-linked immunosorbent assay. RESULTS IL-1RA was quantified with guideline-concordant selectivity, accuracy and precision over a relevant concentration range. Consistent induction of the macrophage markers CD36 and CD80 indicated successful macrophage differentiation and M1 polarization of THP-1 cells, which was functionally confirmed by release of proinflammatory tumor necrosis factor α. Testing a wide range of MSC/macrophage ratios revealed the optimal ratio for near-maximal stimulation of MSCs to secrete IL-1RA, providing absolute maximum levels per individual MSC that can be used for future comparison with clinical efficacy. Batch release testing of 71 consecutively manufactured MSC batches showed a low overall failure rate and a high comparability between donors. CONCLUSIONS We describe the systematic development and validation of a therapeutically relevant, straightforward, robust and reproducible potency assay to measure the immunomodulatory capacity of MSCs in M1 macrophage-driven inflammation. The insights into the challenges and how they were addressed may also be helpful to developers of potency assays related to other cellular functions and clinical indications.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Markus H Frank
- Department of Dermatology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA; Harvard Stem Cell Institute, Harvard University, Cambridge, Massachusetts, USA; Transplant Research Program, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts, USA; School of Medical and Health Sciences, Edith Cowan University, Perth, Western Australia, Australia
| | | | | | | |
Collapse
|
5
|
Xu L, Min H, Saha A, Gunaratne A, Schwartzman J, Parrott R, Kurtzberg J, Filiano AJ. Mesenchymal stromal cells suppress microglial activation and tumor necrosis factor production. Cytotherapy 2024; 26:185-193. [PMID: 38054911 DOI: 10.1016/j.jcyt.2023.11.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 11/03/2023] [Accepted: 11/16/2023] [Indexed: 12/07/2023]
Abstract
BACKGROUND AIMS White matter diseases are commonly associated with microglial activation and neuroinflammation. Mesenchymal stromal cells (MSCs) have immunomodulatory properties and thus have the potential to be developed as cell therapy for white matter disease. MSCs interact with resident macrophages to alter the trajectory of inflammation; however, the impact MSCs have on central nervous system macrophages and the effect this has on the progression of white matter disease are unclear. METHODS In this study, we utilized numerous assays of varying complexity to model different aspects of white matter disease. These assays ranged from an in vivo spinal cord acute demyelination model to a simple microglial cell line activation assay. Our goal was to investigate the influence of human umbilical cord tissue MSCs on the activation of microglia. RESULTS MSCs reduced the production of tumor necrosis factor (TNF) by microglia and decreased demyelinated lesions in the spinal cord after acute focal injury. To determine if MSCs could directly suppress the activation of microglia and to develop an efficient potency assay, we utilized isolated primary microglia from mouse brains and the Immortalized MicroGlial Cell Line (IMG). MSCs suppressed the activation of microglia and the release of TNF after stimulation with lipopolysaccharide, a toll-like receptor agonist. CONCLUSIONS In this study, we demonstrated that MSCs altered the immune response after acute injury in the spinal cord. In numerous assays, MSCs suppressed activation of microglia and release of the pro-inflammatory cytokine TNF. Of these assays, IMG could be standardized and used as an effective potency assay to determine the efficacy of MSCs for treating white matter disease or other neuroinflammatory conditions associated with microglial activation.
Collapse
Affiliation(s)
- Li Xu
- Marcus Center for Cellular Cures, Duke University, Durham, North Carolina, USA
| | - Hyunjung Min
- Marcus Center for Cellular Cures, Duke University, Durham, North Carolina, USA
| | - Arjun Saha
- Marcus Center for Cellular Cures, Duke University, Durham, North Carolina, USA
| | - Aruni Gunaratne
- Marcus Center for Cellular Cures, Duke University, Durham, North Carolina, USA; Department of Pediatrics, Duke University, Durham, North Carolina, USA
| | | | - Roberta Parrott
- Marcus Center for Cellular Cures, Duke University, Durham, North Carolina, USA
| | - Joanne Kurtzberg
- Marcus Center for Cellular Cures, Duke University, Durham, North Carolina, USA; Department of Pediatrics, Duke University, Durham, North Carolina, USA
| | - Anthony J Filiano
- Marcus Center for Cellular Cures, Duke University, Durham, North Carolina, USA; Department of Neurosurgery, Duke University, Durham, North Carolina, USA; Department of Integrative Immunobiology, Duke University, Durham, North Carolina, USA; Department of Pathology, Duke University, Durham, North Carolina, USA.
| |
Collapse
|
6
|
Zhou Y, Li Y, Wang H, Sun H, Su J, Fan Y, Xing W, Fu J. Mesenchymal Stem Cells Target Gastric Cancer and Deliver Epirubicin via Tunneling Nanotubes for Enhanced Chemotherapy. Curr Stem Cell Res Ther 2024; 19:1402-1413. [PMID: 38173205 DOI: 10.2174/011574888x287102240101060146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 12/18/2023] [Accepted: 12/26/2023] [Indexed: 01/05/2024]
Abstract
BACKGROUND A reduced effective local concentration significantly contributes to the unsatisfactory therapeutic results of epirubicin in gastric cancer. Mesenchymal stem cells exhibit targeted chemotaxis towards solid tumors and form tunneling nanotubes with tumor cells, facilitating the delivery of various substances. This study demonstrates the novelty of mesenchymal stem cells in releasing epirubicin into gastric cancer cells through tunneling nanotubes. OBJECTIVE Epirubicin delivery to gastric cancer cells using mesenchymal stem cells. METHODS In vitro transwell migration assays, live cell tracking, and in vivo targeting assays were used to demonstrate the chemotaxis of mesenchymal stem cells towards gastric cancer. We verified the targeted chemotaxis of mesenchymal stem cells towards gastric cancer cells and the epirubicin loading ability using a high-content imaging system (Equipment type:Operetta CLS). Additionally, tunneling nanotube formation and the targeted release of epirubicin-loaded mesenchymal stem cells co-cultured with gastric cancer cells through mesenchymal stem cell-tunneling nanotubes into gastric cancer cells was observed using Operetta CLS. RESULTS Mesenchymal stem cells demonstrated targeted chemotaxis towards gastric cancer, with effective epirubicin loading and tolerance. Co-culturing induced tunneling nanotube formation between these cells. Epirubicin-loaded mesenchymal stem cells were released into gastric cancer cells through tunneling nanotubes, significantly increasing their non-viability compared to the negative control group (p < 0.05). CONCLUSIONS We identified a novel approach for precisely targeting epirubicin release in gastric cancer cells. Therefore, mesenchymal stem cell-tunneling nanotubes could serve as a potential tool for targeted delivery of drugs, enhancing their chemotherapeutic effects in cancer cells.
Collapse
Affiliation(s)
- Yali Zhou
- Cuiying Biomedical Research Center, The Second Hospital & Clinical Medical School, Lanzhou University, Lanzhou, 730030, China
| | - Yumin Li
- Key Laboratory of Digestive System Tumors, The Second Hospital & Clinical Medical School, Lanzhou University, Lanzhou, 730030, China
| | - Haibin Wang
- Cuiying Biomedical Research Center, The Second Hospital & Clinical Medical School, Lanzhou University, Lanzhou, 730030, China
| | - Haolin Sun
- Cuiying Biomedical Research Center, The Second Hospital & Clinical Medical School, Lanzhou University, Lanzhou, 730030, China
| | - Jing Su
- Cuiying Biomedical Research Center, The Second Hospital & Clinical Medical School, Lanzhou University, Lanzhou, 730030, China
| | - Yaqiong Fan
- Cuiying Biomedical Research Center, The Second Hospital & Clinical Medical School, Lanzhou University, Lanzhou, 730030, China
| | - Wei Xing
- Cuiying Biomedical Research Center, The Second Hospital & Clinical Medical School, Lanzhou University, Lanzhou, 730030, China
| | - Jie Fu
- Department of General Surgery, The Second Hospital & Clinical Medical School, Lanzhou University, Lanzhou, 730030, China
| |
Collapse
|
7
|
Wang J, Donohoe E, Canning A, Moosavizadeh S, Buckley F, Brennan MÁ, Ryan AE, Ritter T. Immunomodulatory function of licensed human bone marrow mesenchymal stromal cell-derived apoptotic bodies. Int Immunopharmacol 2023; 125:111096. [PMID: 37871378 DOI: 10.1016/j.intimp.2023.111096] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 10/02/2023] [Accepted: 10/18/2023] [Indexed: 10/25/2023]
Abstract
BACKGROUND Mesenchymal stromal cells (MSCs) show great potential for immunomodulatory and anti-inflammatory treatments. Clinical trials have been performed for the treatment of Type 1 diabetes, graft-versus-host disease and organ transplantation, which offer a promise of MSCs as an immunomodulatory therapy. Nevertheless, their unstable efficacy and immunogenicity concerns present challenges to clinical translation. It has emerged that the MSC-derived secretome, which includes secreted proteins, exosomes, apoptotic bodies (ABs) and other macromolecules, may have similar therapeutic effects to parent MSCs. Among all of the components of the MSC-derived secretome, most interest thus far has been garnered by exosomes for their therapeutic potential. However, since MSCs were reported to undergo apoptosis after in vivo transplantation and release ABs, we speculated as to whether ABs have immunomodulatory effects. In this study, cytokine licensing was used to enhance the immunomodulatory potency of MSCs and ABs derived from licensed MSCs in vitro were isolated to explore their immunomodulatory effects as an effective non-viable cell therapy. RESULTS IFN-γ and IFN-γ/TGF-β1 licensing enhanced the immunomodulatory effect of MSCs on T cell proliferation. Further, TGF-β1 and IFN-γ licensing strengthened the immunomodulatory effect of MSC on reducing the TNF-α and IL-1β expression by M1 macrophage-like THP-1 cells. Additionally, we discovered the immunomodulatory effect mediated by MSC-derived apoptotic bodies. Licensing impacted the uptake of ABs by recipient immune cells and importantly altered their phenotypes. CONCLUSION ABs derived from IFN-γ/TGF-β1-licensed apoptotic MSCs significantly inhibited T cell proliferation, induced more regulatory T cells, and maintained immunomodulatory T cells but reduced pro-inflammatory T cells.
Collapse
Affiliation(s)
- Jiemin Wang
- Regenerative Medicine Institute, School of Medicine, University of Galway, Galway, Ireland
| | - Ellen Donohoe
- Regenerative Medicine Institute, School of Medicine, University of Galway, Galway, Ireland
| | - Aoife Canning
- Regenerative Medicine Institute, School of Medicine, University of Galway, Galway, Ireland
| | - Seyedmohammad Moosavizadeh
- Regenerative Medicine Institute, School of Medicine, University of Galway, Galway, Ireland; CURAM Centre for Research in Medical Devices, University of Galway, Galway, Ireland
| | - Fiona Buckley
- Regenerative Medicine Institute, School of Medicine, University of Galway, Galway, Ireland; Biomedical Engineering, School of Engineering, University of Galway, Galway, Ireland
| | - Meadhbh Á Brennan
- Regenerative Medicine Institute, School of Medicine, University of Galway, Galway, Ireland; CURAM Centre for Research in Medical Devices, University of Galway, Galway, Ireland
| | - Aideen E Ryan
- Regenerative Medicine Institute, School of Medicine, University of Galway, Galway, Ireland; CURAM Centre for Research in Medical Devices, University of Galway, Galway, Ireland; Discipline of Pharmacology and Therapeutics, School of Medicine, University of Galway, Galway, Ireland
| | - Thomas Ritter
- Regenerative Medicine Institute, School of Medicine, University of Galway, Galway, Ireland; CURAM Centre for Research in Medical Devices, University of Galway, Galway, Ireland.
| |
Collapse
|
8
|
Torrents S, del Moral AE, Codinach M, Rodríguez L, Querol S, Vives J. Optimized reagents for immunopotency assays on mesenchymal stromal cells for clinical use. Immunol Res 2023; 71:725-734. [PMID: 37120479 PMCID: PMC10148700 DOI: 10.1007/s12026-023-09385-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Accepted: 04/18/2023] [Indexed: 05/01/2023]
Abstract
Multipotent mesenchymal stromal cells (MSC) offer new therapeutic opportunities based on their ability to modulate an imbalanced immune system. Immunomodulatory potency is typically demonstrated in vitro by measuring the presence of surrogate markers (i.e., indoleamine-2,3-dioxygenase, IDO; tumor necrosis factor receptor type 1, TNFR1) and/or functional assays in co-cultures (i.e., inhibition of lymphoproliferation, polarization of macrophages). However, the biological variability of reagents used in the latter type of assays leads to unreliable and difficult to reproduce data therefore making cross-comparison between batches difficult, both at the intra- and inter-laboratory levels. Herein, we describe a set of experiments aiming at the definition and validation of reliable biological reagents as a first step towards standardization of a potency assay. This approach is based on the co-culture of Wharton's jelly (WJ)-derived MSC and cryopreserved pooled peripheral blood mononuclear cells. Altogether, we successfully defined a robust and reproducible immunopotency assay based on previously described methods incorporating substantial improvements such as cryopreservation of multiple vials of pooled peripheral blood mononuclear cells (PBMC) from 5 individual donors that enable a number of tests with same reagents, also reducing waste of PBMC from individual donors and therefore contributing to a more efficient and ethical method to use substances of human origin (SoHO). The new methodology was successfully validated using 11 batches of clinical grade MSC,WJ. Methods described here contribute to minimize PBMC donor variability while reducing costs, streamlining assay setup and convenience and laying the foundations for harmonization of biological reagents usage in standardized immunopotency assays for MSC. HIGHLIGHTS: • The use of pools of peripheral blood mononuclear cells (PBMCs) in potency assays contributes to robust and reproducible results, which is key in the assessment of mesenchymal stroma cells (MSC) potency for batch release. • Cryopreservation of PBMCs does not impact negatively on their activation and proliferation abilities. • Cryopreserved pools of PBMC constitutes convenient off-the-shelf reagents for potency assays. • Cryopreservation of pooled PBMCs from multiple donors is a way to reduce waste of donated PBMC and its associated costs, as well as reducing the impact of individual donor variability of substances of human origin (SoHO).
Collapse
Affiliation(s)
- Sílvia Torrents
- Banc de Sang i Teixits, Edifici Dr. Frederic Duran i Jordà, Passeig Taulat, 116, 08005 Barcelona, Spain
- Transfusion Medicine Group, Vall d’Hebron Research Institute, Universitat Autònoma de Barcelona, Passeig de La Vall d’Hebron 129-139, 08035 Barcelona, Spain
| | - Andrés Escudero del Moral
- Banc de Sang i Teixits, Edifici Dr. Frederic Duran i Jordà, Passeig Taulat, 116, 08005 Barcelona, Spain
| | - Margarita Codinach
- Banc de Sang i Teixits, Edifici Dr. Frederic Duran i Jordà, Passeig Taulat, 116, 08005 Barcelona, Spain
- Transfusion Medicine Group, Vall d’Hebron Research Institute, Universitat Autònoma de Barcelona, Passeig de La Vall d’Hebron 129-139, 08035 Barcelona, Spain
| | - Luciano Rodríguez
- Banc de Sang i Teixits, Edifici Dr. Frederic Duran i Jordà, Passeig Taulat, 116, 08005 Barcelona, Spain
- Transfusion Medicine Group, Vall d’Hebron Research Institute, Universitat Autònoma de Barcelona, Passeig de La Vall d’Hebron 129-139, 08035 Barcelona, Spain
| | - Sergi Querol
- Banc de Sang i Teixits, Edifici Dr. Frederic Duran i Jordà, Passeig Taulat, 116, 08005 Barcelona, Spain
- Transfusion Medicine Group, Vall d’Hebron Research Institute, Universitat Autònoma de Barcelona, Passeig de La Vall d’Hebron 129-139, 08035 Barcelona, Spain
| | - Joaquim Vives
- Banc de Sang i Teixits, Edifici Dr. Frederic Duran i Jordà, Passeig Taulat, 116, 08005 Barcelona, Spain
- Musculoskeletal Tissue Engineering Group, Vall d’Hebron Research Institute (VHIR), Universitat Autònoma de Barcelona, Passeig de La Vall d’Hebron 129-139, 08035 Barcelona, Spain
- Departament de Medicina, Universitat Autònoma de Barcelona, Passeig de La Vall d’Hebron 129-139, 08035 Barcelona, Spain
| |
Collapse
|
9
|
Herzig MC, Christy BA, Montgomery RK, Cantu-Garza C, Barrera GD, Lee JH, Mucha N, Talackine JR, Abaasah IA, Bynum JA, Cap AP. Short-term assays for mesenchymal stromal cell immunosuppression of T-lymphocytes. Front Immunol 2023; 14:1225047. [PMID: 37822938 PMCID: PMC10562633 DOI: 10.3389/fimmu.2023.1225047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Accepted: 08/31/2023] [Indexed: 10/13/2023] Open
Abstract
Introduction Trauma patients are susceptible to coagulopathy and dysfunctional immune responses. Mesenchymal stromal cells (MSCs) are at the forefront of the cellular therapy revolution with profound immunomodulatory, regenerative, and therapeutic potential. Routine assays to assess immunomodulation activity examine MSC effects on proliferation of peripheral blood mononuclear cells (PBMCs) and take 3-7 days. Assays that could be done in a shorter period of time would be beneficial to allow more rapid comparison of different MSC donors. The studies presented here focused on assays for MSC suppression of mitogen-stimulated PBMC activation in time frames of 24 h or less. Methods Three potential assays were examined-assays of apoptosis focusing on caspase activation, assays of phosphatidyl serine externalization (PS+) on PBMCs, and measurement of tumor necrosis factor alpha (TNFα) levels using rapid ELISA methods. All assays used the same initial experimental conditions: cryopreserved PBMCs from 8 to 10 pooled donors, co-culture with and without MSCs in 96-well plates, and PBMC stimulation with mitogen for 2-72 h. Results Suppression of caspase activity in activated PBMCs by incubation with MSCs was not robust and was only significant at times after 24 h. Monitoring PS+ of live CD3+ or live CD4+/CD3+ mitogen-activated PBMCs was dose dependent, reproducible, robust, and evident at the earliest time point taken, 2 h, although no increase in the percentage of PS+ cells was seen with time. The ability of MSC in co-culture to suppress PBMC PS+ externalization compared favorably to two concomitant assays for MSC co-culture suppression of PBMC proliferation, at 72 h by ATP assay, or at 96 h by fluorescently labeled protein signal dilution. TNFα release by mitogen-activated PBMCs was dose dependent, reproducible, robust, and evident at the earliest time point taken, with accumulating signal over time. However, suppression levels with MSC co-culture was reliably seen only after 24 h. Discussion Takeaways from these studies are as follows: (1) while early measures of PBMC activation is evident at 2-6 h, immunosuppression was only reliably detected at 24 h; (2) PS externalization at 24 h is a surrogate assay for MSC immunomodulation; and (3) rapid ELISA assay detection of TNFα release by PBMCs is a robust and sensitive assay for MSC immunomodulation at 24 h.
Collapse
Affiliation(s)
- Maryanne C. Herzig
- Blood and Shock Research, US Army Institute of Surgical Research, Fort Sam Houston, TX, United States
| | - Barbara A. Christy
- Blood and Shock Research, US Army Institute of Surgical Research, Fort Sam Houston, TX, United States
| | - Robbie K. Montgomery
- Blood and Shock Research, US Army Institute of Surgical Research, Fort Sam Houston, TX, United States
| | - Carolina Cantu-Garza
- Blood and Shock Research, US Army Institute of Surgical Research, Fort Sam Houston, TX, United States
| | - Gema D. Barrera
- Blood and Shock Research, US Army Institute of Surgical Research, Fort Sam Houston, TX, United States
| | - Ji H. Lee
- Blood and Shock Research, US Army Institute of Surgical Research, Fort Sam Houston, TX, United States
| | - Nicholas Mucha
- Blood and Shock Research, US Army Institute of Surgical Research, Fort Sam Houston, TX, United States
| | - Jennifer R. Talackine
- Blood and Shock Research, US Army Institute of Surgical Research, Fort Sam Houston, TX, United States
| | - Isaac A. Abaasah
- Blood and Shock Research, US Army Institute of Surgical Research, Fort Sam Houston, TX, United States
| | - James A. Bynum
- Blood and Shock Research, US Army Institute of Surgical Research, Fort Sam Houston, TX, United States
- Department of Surgery, University of Texas, Health Science Center, San Antonio, TX, United States
| | - Andrew P. Cap
- Blood and Shock Research, US Army Institute of Surgical Research, Fort Sam Houston, TX, United States
| |
Collapse
|
10
|
Ren J, Szombath G, Vitale-Cross L, Stroncek DF, Robey PG, Hajdara A, Szalayova I, Mayer B, Martin D, Mezey E, Nemeth K. The Potential Use of THP-1, a Monocytic Leukemia Cell Line, to Predict Immune-Suppressive Potency of Human Bone-Marrow Stromal Cells (BMSCs) In Vitro: A Pilot Study. Int J Mol Sci 2023; 24:13258. [PMID: 37686058 PMCID: PMC10488111 DOI: 10.3390/ijms241713258] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Revised: 08/20/2023] [Accepted: 08/23/2023] [Indexed: 09/10/2023] Open
Abstract
Adoptive transfer of cultured BMSCs was shown to be immune-suppressive in various inflammatory settings. Many factors play a role in the process, but no master regulator of BMSC-driven immunomodulation was identified. Consequently, an assay that might predict BMSC product efficacy is still unavailable. Below, we show that BMSC donor variability can be monitored by IL-10 production of monocytes/macrophages using THP-1 cells (immortalized monocytic leukemia cells) co-cultured with BMSCs. Using a mixed lymphocyte reaction (MLR) assay, we also compared the ability of the different donor BMSCs to suppress T-cell proliferation, another measure of their immune-suppressive ability. We found that the BMSCs from a donor that induced the most IL-10 production were also the most efficient in suppressing T-cell proliferation. Transcriptome studies showed that the most potent BMSC batch also had higher expression of several known key immunomodulatory molecules such as hepatocyte growth factor (HGF), PDL1, and numerous members of the PGE2 pathway, including PTGS1 and TLR4. Multiplex ELISA experiments revealed higher expression of HGF and IL6 by the most potent BMSC donor. Based on these findings, we propose that THP-1 cells may be used to assess BMSC immunosuppressive activity as a product characterization assay.
Collapse
Affiliation(s)
- Jiaqiang Ren
- Center for Cellular Engineering, National Institutes of Health, Bethesda, MD 20892, USA; (J.R.); (D.F.S.)
| | - Gergely Szombath
- Department of Internal Medicine and Hematology, Semmelweis University, 1085 Budapest, Hungary;
- Károly Rácz Doctoral School of Clinical Medicine, Semmelweis University, 1085 Budapest, Hungary
| | - Lynn Vitale-Cross
- Adult Stem Cell Section, National Institutes of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD 20892, USA; (L.V.-C.); (I.S.)
| | - David F. Stroncek
- Center for Cellular Engineering, National Institutes of Health, Bethesda, MD 20892, USA; (J.R.); (D.F.S.)
| | - Pamela G. Robey
- Skeletal Biology Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD 20892, USA;
| | - Anna Hajdara
- Roska Tamás Doctoral School of Sciences and Technology, Faculty of Information Technology and Bionics, Pázmány Péter Catholic University, 1083 Budapest, Hungary;
- Department of Dermatology, Venereology and Dermatooncology, Semmelweis University, 1085 Budapest, Hungary;
| | - Ildiko Szalayova
- Adult Stem Cell Section, National Institutes of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD 20892, USA; (L.V.-C.); (I.S.)
| | - Balazs Mayer
- Department of Dermatology, Venereology and Dermatooncology, Semmelweis University, 1085 Budapest, Hungary;
| | - Daniel Martin
- Genomics and Computational Biology Core, NIDCR, National Institutes of Health, Bethesda, MD 20892, USA;
| | - Eva Mezey
- Adult Stem Cell Section, National Institutes of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD 20892, USA; (L.V.-C.); (I.S.)
| | - Krisztian Nemeth
- Department of Dermatology, Venereology and Dermatooncology, Semmelweis University, 1085 Budapest, Hungary;
| |
Collapse
|
11
|
Rebelatto CLK, Boldrini-Leite LM, Daga DR, Marsaro DB, Vaz IM, Jamur VR, de Aguiar AM, Vieira TB, Furman BP, Aguiar CO, Brofman PRS. Quality Control Optimization for Minimizing Security Risks Associated with Mesenchymal Stromal Cell-Based Product Development. Int J Mol Sci 2023; 24:12955. [PMID: 37629136 PMCID: PMC10455270 DOI: 10.3390/ijms241612955] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 08/09/2023] [Accepted: 08/15/2023] [Indexed: 08/27/2023] Open
Abstract
Mesenchymal stromal cells (MSCs) have been considered a therapeutic strategy in regenerative medicine because of their regenerative and immunomodulatory properties. The translation of MSC-based products has some challenges, such as regulatory and scientific issues. Quality control should be standardized and optimized to guarantee the reproducibility, safety, and efficacy of MSC-based products to be administered to patients. The aim of this study was to develop MSC-based products for use in clinical practice. Quality control assays include cell characterization, cell viability, immunogenicity, and cell differentiation; safety tests such as procoagulant tissue factor (TF), microbiological, mycoplasma, endotoxin, genomic stability, and tumorigenicity tests; and potency tests. The results confirm that the cells express MSC markers; an average cell viability of 96.9%; a low expression of HLA-DR and costimulatory molecules; differentiation potential; a high expression of TF/CD142; an absence of pathogenic microorganisms; negative endotoxins; an absence of chromosomal abnormalities; an absence of genotoxicity and tumorigenicity; and T-lymphocyte proliferation inhibition potential. This study shows the relevance of standardizing the manufacturing process and quality controls to reduce variability due to the heterogeneity between donors. The results might also be useful for the implementation and optimization of new analytical techniques and automated methods to improve safety, which are the major concerns related to MSC-based therapy.
Collapse
Affiliation(s)
- Carmen Lúcia Kuniyoshi Rebelatto
- Core for Cell Technology, School of Medicine, Pontifícia Universidade Católica do Paraná, Curitiba 80215-901, Brazil; (L.M.B.-L.); (D.R.D.); (D.B.M.); (I.M.V.); (V.R.J.); (T.B.V.); (B.P.F.); (C.O.A.); (P.R.S.B.)
- National Institute of Science and Technology for Regenerative Medicine—INCT-REGENERA, Rio de Janeiro 21941-599, Brazil
| | - Lidiane Maria Boldrini-Leite
- Core for Cell Technology, School of Medicine, Pontifícia Universidade Católica do Paraná, Curitiba 80215-901, Brazil; (L.M.B.-L.); (D.R.D.); (D.B.M.); (I.M.V.); (V.R.J.); (T.B.V.); (B.P.F.); (C.O.A.); (P.R.S.B.)
- National Institute of Science and Technology for Regenerative Medicine—INCT-REGENERA, Rio de Janeiro 21941-599, Brazil
| | - Debora Regina Daga
- Core for Cell Technology, School of Medicine, Pontifícia Universidade Católica do Paraná, Curitiba 80215-901, Brazil; (L.M.B.-L.); (D.R.D.); (D.B.M.); (I.M.V.); (V.R.J.); (T.B.V.); (B.P.F.); (C.O.A.); (P.R.S.B.)
- National Institute of Science and Technology for Regenerative Medicine—INCT-REGENERA, Rio de Janeiro 21941-599, Brazil
| | - Daniela Boscaro Marsaro
- Core for Cell Technology, School of Medicine, Pontifícia Universidade Católica do Paraná, Curitiba 80215-901, Brazil; (L.M.B.-L.); (D.R.D.); (D.B.M.); (I.M.V.); (V.R.J.); (T.B.V.); (B.P.F.); (C.O.A.); (P.R.S.B.)
- National Institute of Science and Technology for Regenerative Medicine—INCT-REGENERA, Rio de Janeiro 21941-599, Brazil
| | - Isadora May Vaz
- Core for Cell Technology, School of Medicine, Pontifícia Universidade Católica do Paraná, Curitiba 80215-901, Brazil; (L.M.B.-L.); (D.R.D.); (D.B.M.); (I.M.V.); (V.R.J.); (T.B.V.); (B.P.F.); (C.O.A.); (P.R.S.B.)
- National Institute of Science and Technology for Regenerative Medicine—INCT-REGENERA, Rio de Janeiro 21941-599, Brazil
| | - Valderez Ravaglio Jamur
- Core for Cell Technology, School of Medicine, Pontifícia Universidade Católica do Paraná, Curitiba 80215-901, Brazil; (L.M.B.-L.); (D.R.D.); (D.B.M.); (I.M.V.); (V.R.J.); (T.B.V.); (B.P.F.); (C.O.A.); (P.R.S.B.)
- National Institute of Science and Technology for Regenerative Medicine—INCT-REGENERA, Rio de Janeiro 21941-599, Brazil
| | - Alessandra Melo de Aguiar
- Laboratory of Basic Biology of Stem Cells, Carlos Chagas Institute—Fiocruz-Paraná, Curitiba 81350-010, Brazil;
| | - Thalita Bastida Vieira
- Core for Cell Technology, School of Medicine, Pontifícia Universidade Católica do Paraná, Curitiba 80215-901, Brazil; (L.M.B.-L.); (D.R.D.); (D.B.M.); (I.M.V.); (V.R.J.); (T.B.V.); (B.P.F.); (C.O.A.); (P.R.S.B.)
| | - Bianca Polak Furman
- Core for Cell Technology, School of Medicine, Pontifícia Universidade Católica do Paraná, Curitiba 80215-901, Brazil; (L.M.B.-L.); (D.R.D.); (D.B.M.); (I.M.V.); (V.R.J.); (T.B.V.); (B.P.F.); (C.O.A.); (P.R.S.B.)
| | - Cecília Oliveira Aguiar
- Core for Cell Technology, School of Medicine, Pontifícia Universidade Católica do Paraná, Curitiba 80215-901, Brazil; (L.M.B.-L.); (D.R.D.); (D.B.M.); (I.M.V.); (V.R.J.); (T.B.V.); (B.P.F.); (C.O.A.); (P.R.S.B.)
| | - Paulo Roberto Slud Brofman
- Core for Cell Technology, School of Medicine, Pontifícia Universidade Católica do Paraná, Curitiba 80215-901, Brazil; (L.M.B.-L.); (D.R.D.); (D.B.M.); (I.M.V.); (V.R.J.); (T.B.V.); (B.P.F.); (C.O.A.); (P.R.S.B.)
- National Institute of Science and Technology for Regenerative Medicine—INCT-REGENERA, Rio de Janeiro 21941-599, Brazil
| |
Collapse
|
12
|
Khan S, Mahgoub S, Fallatah N, Lalor PF, Newsome PN. Liver Disease and Cell Therapy: Advances Made and Remaining Challenges. Stem Cells 2023; 41:739-761. [PMID: 37052348 PMCID: PMC10809282 DOI: 10.1093/stmcls/sxad029] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Accepted: 02/27/2023] [Indexed: 04/14/2023]
Abstract
The limited availability of organs for liver transplantation, the ultimate curative treatment for end stage liver disease, has resulted in a growing and unmet need for alternative therapies. Mesenchymal stromal cells (MSCs) with their broad ranging anti-inflammatory and immunomodulatory properties have therefore emerged as a promising therapeutic agent in treating inflammatory liver disease. Significant strides have been made in exploring their biological activity. Clinical application of MSC has shifted the paradigm from using their regenerative potential to one which harnesses their immunomodulatory properties. Reassuringly, MSCs have been extensively investigated for over 30 years with encouraging efficacy and safety data from translational and early phase clinical studies, but questions remain about their utility. Therefore, in this review, we examine the translational and clinical studies using MSCs in various liver diseases and their impact on dampening immune-mediated liver damage. Our key observations include progress made thus far with use of MSCs for clinical use, inconsistency in the literature to allow meaningful comparison between different studies and need for standardized protocols for MSC manufacture and administration. In addition, the emerging role of MSC-derived extracellular vesicles as an alternative to MSC has been reviewed. We have also highlighted some of the remaining clinical challenges that should be addressed before MSC can progress to be considered as therapy for patients with liver disease.
Collapse
Affiliation(s)
- Sheeba Khan
- National Institute for Health Research, Biomedical Research Centre at University Hospitals Birmingham NHS Foundation Trust and the University of Birmingham, Birmingham, West Midlands, UK
- Centre for Liver and Gastrointestinal Research, Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, West Midlands, UK
- Liver Unit, University Hospitals Birmingham NHS Foundation Trust, Birmingham, Birmingham, West Midlands, UK
| | - Sara Mahgoub
- National Institute for Health Research, Biomedical Research Centre at University Hospitals Birmingham NHS Foundation Trust and the University of Birmingham, Birmingham, West Midlands, UK
- Centre for Liver and Gastrointestinal Research, Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, West Midlands, UK
- Liver Unit, University Hospitals Birmingham NHS Foundation Trust, Birmingham, Birmingham, West Midlands, UK
| | - Nada Fallatah
- National Institute for Health Research, Biomedical Research Centre at University Hospitals Birmingham NHS Foundation Trust and the University of Birmingham, Birmingham, West Midlands, UK
- Centre for Liver and Gastrointestinal Research, Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, West Midlands, UK
- Department of Laboratory Medicine, Faculty of Applied Medical Sciences, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Patricia F Lalor
- National Institute for Health Research, Biomedical Research Centre at University Hospitals Birmingham NHS Foundation Trust and the University of Birmingham, Birmingham, West Midlands, UK
- Centre for Liver and Gastrointestinal Research, Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, West Midlands, UK
| | - Philip N Newsome
- National Institute for Health Research, Biomedical Research Centre at University Hospitals Birmingham NHS Foundation Trust and the University of Birmingham, Birmingham, West Midlands, UK
- Centre for Liver and Gastrointestinal Research, Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, West Midlands, UK
- Liver Unit, University Hospitals Birmingham NHS Foundation Trust, Birmingham, Birmingham, West Midlands, UK
| |
Collapse
|
13
|
Van Grouw A, Colonna MB, Maughon TS, Shen X, Larey AM, Moore SG, Yeago C, Fernández FM, Edison AS, Stice SL, Bowles-Welch AC, Marklein RA. Development of a Robust Consensus Modeling Approach for Identifying Cellular and Media Metabolites Predictive of Mesenchymal Stromal Cell Potency. Stem Cells 2023; 41:792-808. [PMID: 37279550 PMCID: PMC10427967 DOI: 10.1093/stmcls/sxad039] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Accepted: 05/03/2023] [Indexed: 06/08/2023]
Abstract
Mesenchymal stromal cells (MSCs) have shown promise in regenerative medicine applications due in part to their ability to modulate immune cells. However, MSCs demonstrate significant functional heterogeneity in terms of their immunomodulatory function because of differences in MSC donor/tissue source, as well as non-standardized manufacturing approaches. As MSC metabolism plays a critical role in their ability to expand to therapeutic numbers ex vivo, we comprehensively profiled intracellular and extracellular metabolites throughout the expansion process to identify predictors of immunomodulatory function (T-cell modulation and indoleamine-2,3-dehydrogenase (IDO) activity). Here, we profiled media metabolites in a non-destructive manner through daily sampling and nuclear magnetic resonance (NMR), as well as MSC intracellular metabolites at the end of expansion using mass spectrometry (MS). Using a robust consensus machine learning approach, we were able to identify panels of metabolites predictive of MSC immunomodulatory function for 10 independent MSC lines. This approach consisted of identifying metabolites in 2 or more machine learning models and then building consensus models based on these consensus metabolite panels. Consensus intracellular metabolites with high predictive value included multiple lipid classes (such as phosphatidylcholines, phosphatidylethanolamines, and sphingomyelins) while consensus media metabolites included proline, phenylalanine, and pyruvate. Pathway enrichment identified metabolic pathways significantly associated with MSC function such as sphingolipid signaling and metabolism, arginine and proline metabolism, and autophagy. Overall, this work establishes a generalizable framework for identifying consensus predictive metabolites that predict MSC function, as well as guiding future MSC manufacturing efforts through identification of high-potency MSC lines and metabolic engineering.
Collapse
Affiliation(s)
- Alexandria Van Grouw
- School of Chemistry and Biochemistry and Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA, USA
| | - Maxwell B Colonna
- Department of Biochemistry & Molecular Biology, Complex Carbohydrate Research Center and Institute of Bioinformatics, University of Georgia, Athens, GA, USA
| | - Ty S Maughon
- School of Chemical, Materials, and Biomedical Engineering, Regenerative Bioscience Center, University of Georgia, Athens, GA, USA
- Regenerative Bioscience Center, Department of Animal and Dairy Sciences, University of Georgia, Athens, GA, USA
| | - Xunan Shen
- Department of Biochemistry & Molecular Biology, Complex Carbohydrate Research Center and Institute of Bioinformatics, University of Georgia, Athens, GA, USA
| | - Andrew M Larey
- School of Chemical, Materials, and Biomedical Engineering, Regenerative Bioscience Center, University of Georgia, Athens, GA, USA
| | - Samuel G Moore
- Systems Mass Spectrometry Core, Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA, USA
| | - Carolyn Yeago
- Marcus Center for Therapeutic Cell Characterization and Manufacturing, Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA, USA
| | - Facundo M Fernández
- School of Chemistry and Biochemistry and Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA, USA
| | - Arthur S Edison
- Department of Biochemistry & Molecular Biology, Complex Carbohydrate Research Center and Institute of Bioinformatics, University of Georgia, Athens, GA, USA
| | - Steven L Stice
- Regenerative Bioscience Center, Department of Animal and Dairy Sciences, University of Georgia, Athens, GA, USA
| | - Annie C Bowles-Welch
- Marcus Center for Therapeutic Cell Characterization and Manufacturing, Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA, USA
| | - Ross A Marklein
- School of Chemical, Materials, and Biomedical Engineering, Regenerative Bioscience Center, University of Georgia, Athens, GA, USA
| |
Collapse
|
14
|
Madrigal M, Fernández PL, Lleonart R, Carreño L, Villalobos Gorday KA, Rodríguez E, de Cupeiro K, Restrepo CM, Rao KSJ, Riordan NH. Comparison of Cost and Potency of Human Mesenchymal Stromal Cell Conditioned Medium Derived from 2- and 3-Dimensional Cultures. Bioengineering (Basel) 2023; 10:930. [PMID: 37627815 PMCID: PMC10451979 DOI: 10.3390/bioengineering10080930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 07/31/2023] [Accepted: 07/31/2023] [Indexed: 08/27/2023] Open
Abstract
Mesenchymal stromal cell (MSC)-derived products, such as trophic factors (MTFs), have anti-inflammatory properties that make them attractive for cell-free treatment. Three-dimensional (3D) culture can enhance these properties, and large-scale expansion using a bioreactor can reduce manufacturing costs. Three lots of MTFs were obtained from umbilical cord MSCs produced by either monolayer culture (Monol MTF) or using a 3D microcarrier in a spinner flask dynamic system (Bioreactor MTF). The resulting MTFs were tested and compared using anti-inflammatory potency assays in two different systems: (1) a phytohemagglutinin-activated peripheral blood mononuclear cell (PBMNC) system and (2) a lipopolysaccharide (LPS)-activated macrophage system. Cytokine expression by macrophages was measured via RT-PCR. The production costs of hypothetical units of anti-inflammatory effects were calculated using the percentage of TNF-α inhibition by MTF exposure. Bioreactor MTFs had a higher inhibitory effect on TNF (p < 0.01) than monolayer MTFs (p < 0.05). The anti-inflammatory effect of Bioreactor MTFs on IL-1β, TNF-α, IL-8, IL-6, and MIP-1 was significantly higher than that of monolayer MTFs. The production cost of 1% inhibition of TNF-α was 11-40% higher using monolayer culture compared to bioreactor-derived MTFs. A 3D dynamic culture was, therefore, able to produce high-quality MTFs, with robust anti-inflammatory properties, more efficiently than monolayer static systems.
Collapse
Affiliation(s)
- Marialaura Madrigal
- MediStem Panama Inc., Panama City 7144, Panama
- Department of Biotechnology, Acharya Nagarjuna University, Guntur 522510, India
- Centro de Biología Celular y Molecular de Enfermedades, Instituto de Investigaciones Científicas y Servicios de Alta Tecnología (INDICASAT-AIP), Panama City 7144, Panama
| | - Patricia L. Fernández
- Centro de Biología Celular y Molecular de Enfermedades, Instituto de Investigaciones Científicas y Servicios de Alta Tecnología (INDICASAT-AIP), Panama City 7144, Panama
| | - Ricardo Lleonart
- Centro de Biología Celular y Molecular de Enfermedades, Instituto de Investigaciones Científicas y Servicios de Alta Tecnología (INDICASAT-AIP), Panama City 7144, Panama
| | | | | | | | | | - Carlos M. Restrepo
- Centro de Biología Celular y Molecular de Enfermedades, Instituto de Investigaciones Científicas y Servicios de Alta Tecnología (INDICASAT-AIP), Panama City 7144, Panama
| | - K. S. Jagannatha Rao
- Department of Biotechnology, Konenru Lakshmaiah Education Foundation (KLEF) deemed to be University, Vaddeswaram 522302, India
| | | |
Collapse
|
15
|
Capelli C, Cuofano C, Pavoni C, Frigerio S, Lisini D, Nava S, Quaroni M, Colombo V, Galli F, Bezukladova S, Panina-Bordignon P, Gaipa G, Comoli P, Cossu G, Martino G, Biondi A, Introna M, Golay J. Potency assays and biomarkers for cell-based advanced therapy medicinal products. Front Immunol 2023; 14:1186224. [PMID: 37359560 PMCID: PMC10288881 DOI: 10.3389/fimmu.2023.1186224] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Accepted: 05/24/2023] [Indexed: 06/28/2023] Open
Abstract
Advanced Therapy Medicinal Products (ATMPs) based on somatic cells expanded in vitro, with or without genetic modification, is a rapidly growing area of drug development, even more so following the marketing approval of several such products. ATMPs are produced according to Good Manufacturing Practice (GMP) in authorized laboratories. Potency assays are a fundamental aspect of the quality control of the end cell products and ideally could become useful biomarkers of efficacy in vivo. Here we summarize the state of the art with regard to potency assays used for the assessment of the quality of the major ATMPs used clinic settings. We also review the data available on biomarkers that may substitute more complex functional potency tests and predict the efficacy in vivo of these cell-based drugs.
Collapse
Affiliation(s)
- Chiara Capelli
- Center of Cellular Therapy “G. Lanzani”, ASST Papa Giovanni XXIII, Bergamo, Italy
| | - Carolina Cuofano
- Center of Cellular Therapy “G. Lanzani”, ASST Papa Giovanni XXIII, Bergamo, Italy
| | - Chiara Pavoni
- Center of Cellular Therapy “G. Lanzani”, ASST Papa Giovanni XXIII, Bergamo, Italy
| | - Simona Frigerio
- Cell Therapy Production Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Daniela Lisini
- Cell Therapy Production Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Sara Nava
- Cell Therapy Production Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Michele Quaroni
- Laboratory of Cell and Gene Therapy Stefano Verri, ASST Monza Ospedale San Gerardo, Monza, Italy
| | - Valentina Colombo
- Laboratory of Cell and Gene Therapy Stefano Verri, ASST Monza Ospedale San Gerardo, Monza, Italy
| | - Francesco Galli
- Division of Cell Matrix Biology & Regenerative Medicine, Faculty of Biology, Medicine and Health (FBMH), University of Manchester, Manchester, United Kingdom
| | - Svetlana Bezukladova
- Università Vita-Salute San Raffaele, Milan, Italy
- IRCCS San Raffaele Hospital, Neuroimmunology Unit, Division of Neuroscience, Milan, Italy
| | - Paola Panina-Bordignon
- Università Vita-Salute San Raffaele, Milan, Italy
- IRCCS San Raffaele Hospital, Neuroimmunology Unit, Division of Neuroscience, Milan, Italy
| | - Giuseppe Gaipa
- Laboratory of Cell and Gene Therapy Stefano Verri, ASST Monza Ospedale San Gerardo, Monza, Italy
| | - Patrizia Comoli
- Pediatric Hematology/Oncology, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | - Giulio Cossu
- Division of Cell Matrix Biology & Regenerative Medicine, Faculty of Biology, Medicine and Health (FBMH), University of Manchester, Manchester, United Kingdom
- Università Vita-Salute San Raffaele, Milan, Italy
| | - Gianvito Martino
- IRCCS San Raffaele Hospital, Neuroimmunology Unit, Division of Neuroscience, Milan, Italy
- Pediatric Hematology/Oncology, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | - Andrea Biondi
- Department of Pediatrics, Fondazione IRCCS San Gerardo dei Tintori, Monza, Italy
- Department of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy
| | - Martino Introna
- Center of Cellular Therapy “G. Lanzani”, ASST Papa Giovanni XXIII, Bergamo, Italy
| | - Josée Golay
- Center of Cellular Therapy “G. Lanzani”, ASST Papa Giovanni XXIII, Bergamo, Italy
| |
Collapse
|
16
|
Yang X, Li Q, Liu W, Zong C, Wei L, Shi Y, Han Z. Mesenchymal stromal cells in hepatic fibrosis/cirrhosis: from pathogenesis to treatment. Cell Mol Immunol 2023; 20:583-599. [PMID: 36823236 PMCID: PMC10229624 DOI: 10.1038/s41423-023-00983-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Accepted: 01/29/2023] [Indexed: 02/25/2023] Open
Abstract
Hepatic fibrosis/cirrhosis is a significant health burden worldwide, resulting in liver failure or hepatocellular carcinoma (HCC) and accounting for many deaths each year. The pathogenesis of hepatic fibrosis/cirrhosis is very complex, which makes treatment challenging. Endogenous mesenchymal stromal cells (MSCs) have been shown to play pivotal roles in the pathogenesis of hepatic fibrosis. Paradoxically, exogenous MSCs have also been used in clinical trials for liver cirrhosis, and their effectiveness has been observed in most completed clinical trials. There are still many issues to be resolved to promote the use of MSCs in the clinic in the future. In this review, we will examine the controversial role of MSCs in the pathogenesis and treatment of hepatic fibrosis/cirrhosis. We also investigated the clinical trials involving MSCs in liver cirrhosis, summarized the parameters that need to be standardized, and discussed how to promote the use of MSCs from a clinical perspective.
Collapse
Affiliation(s)
- Xue Yang
- Department of Tumor Immunology and Gene Therapy Center, Third Affiliated Hospital of Naval Medical University, Shanghai, 200438, China
- Key Laboratory on Signaling Regulation and Targeting Therapy of Liver Cancer, Ministry of Education, Eastern Hepatobiliary Surgery Hospital/National Center for Liver Cancer, Naval Medical University, Shanghai, 200438, China
- The Third Affiliated Hospital of Soochow University, Institutes for Translational Medicine, State Key Laboratory of Radiation Medicine and Protection, Key Laboratory of Stem Cells and Medical Biomaterials of Jiangsu Province, Medical College of Soochow University, Soochow University, Suzhou, 215000, China
- Department of Experimental Medicine, TOR, University of Rome Tor Vergata, 00133, Rome, Italy
| | - Qing Li
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Wenting Liu
- Department of Tumor Immunology and Gene Therapy Center, Third Affiliated Hospital of Naval Medical University, Shanghai, 200438, China
- Key Laboratory on Signaling Regulation and Targeting Therapy of Liver Cancer, Ministry of Education, Eastern Hepatobiliary Surgery Hospital/National Center for Liver Cancer, Naval Medical University, Shanghai, 200438, China
| | - Chen Zong
- Department of Tumor Immunology and Gene Therapy Center, Third Affiliated Hospital of Naval Medical University, Shanghai, 200438, China
- Key Laboratory on Signaling Regulation and Targeting Therapy of Liver Cancer, Ministry of Education, Eastern Hepatobiliary Surgery Hospital/National Center for Liver Cancer, Naval Medical University, Shanghai, 200438, China
| | - Lixin Wei
- Department of Tumor Immunology and Gene Therapy Center, Third Affiliated Hospital of Naval Medical University, Shanghai, 200438, China
- Key Laboratory on Signaling Regulation and Targeting Therapy of Liver Cancer, Ministry of Education, Eastern Hepatobiliary Surgery Hospital/National Center for Liver Cancer, Naval Medical University, Shanghai, 200438, China
| | - Yufang Shi
- The Third Affiliated Hospital of Soochow University, Institutes for Translational Medicine, State Key Laboratory of Radiation Medicine and Protection, Key Laboratory of Stem Cells and Medical Biomaterials of Jiangsu Province, Medical College of Soochow University, Soochow University, Suzhou, 215000, China.
- Department of Experimental Medicine, TOR, University of Rome Tor Vergata, 00133, Rome, Italy.
| | - Zhipeng Han
- Department of Tumor Immunology and Gene Therapy Center, Third Affiliated Hospital of Naval Medical University, Shanghai, 200438, China.
- Key Laboratory on Signaling Regulation and Targeting Therapy of Liver Cancer, Ministry of Education, Eastern Hepatobiliary Surgery Hospital/National Center for Liver Cancer, Naval Medical University, Shanghai, 200438, China.
| |
Collapse
|
17
|
Wang J, Metheny L. Umbilical cord blood derived cellular therapy: advances in clinical development. Front Oncol 2023; 13:1167266. [PMID: 37274288 PMCID: PMC10232824 DOI: 10.3389/fonc.2023.1167266] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Accepted: 05/04/2023] [Indexed: 06/06/2023] Open
Abstract
While cord blood (CB) is primarily utilized in allogeneic hematopoietic cell transplantation (HCT), the development of novel cell therapy products from CB is a growing and developing field. Compared to adult blood, CB is characterized by a higher percentage of hematopoietic stem cells (HSCs) and progenitor cells, less mature immune cells that retain a high capacity of proliferation, and stronger immune tolerance that requires less stringent HLA-matching when used in the allogenic setting. Given that CB is an FDA regulated product and along with its unique cellular composition, CB lends itself as a readily available and safe starting material for the development of off-the-shelf cell therapies. Moreover, non-hematologic cells such as mesenchymal stem cell (MSCs) residing in CB or CB tissue also have potential in regenerative medicine and inflammatory and autoimmune conditions. In this review, we will focus on recent clinical development on CB-derived cellular therapies in the field of oncology, including T-cell therapies such as chimeric antigen receptor (CAR) T-cells, regulatory T-cells, and virus-specific T-cells; NK-cell therapies, such as NK cell engagers and CAR NK-cells; CB-HCT and various modifications; as well as applications of MSCs in HCT.
Collapse
|
18
|
Tian CM, Zhang Y, Yang MF, Xu HM, Zhu MZ, Yao J, Wang LS, Liang YJ, Li DF. Stem Cell Therapy in Inflammatory Bowel Disease: A Review of Achievements and Challenges. J Inflamm Res 2023; 16:2089-2119. [PMID: 37215379 PMCID: PMC10199681 DOI: 10.2147/jir.s400447] [Citation(s) in RCA: 18] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Accepted: 05/03/2023] [Indexed: 05/24/2023] Open
Abstract
Inflammatory bowel disease (IBD), including Crohn's disease (CD) and ulcerative colitis (UC), is a group of chronic inflammatory diseases of the gastrointestinal tract. Repeated inflammation can lead to complications, such as intestinal fistula, obstruction, perforation, and bleeding. Unfortunately, achieving durable remission and mucosal healing (MH) with current treatments is difficult. Stem cells (SCs) have the potential to modulate immunity, suppress inflammation, and have anti-apoptotic and pro-angiogenic effects, making them an ideal therapeutic strategy to target chronic inflammation and intestinal damage in IBD. In recent years, hematopoietic stem cells (HSCs) and adult mesenchymal stem cells (MSCs) have shown efficacy in treating IBD. In addition, numerous clinical trials have evaluated the efficiency of MSCs in treating the disease. This review summarizes the current research progress on the safety and efficacy of SC-based therapy for IBD in both preclinical models and clinical trials. We discuss potential mechanisms of SC therapy, including tissue repair, paracrine effects, and the promotion of angiogenesis, immune regulation, and anti-inflammatory effects. We also summarize current SC engineering strategies aimed at enhancing the immunosuppressive and regenerative capabilities of SCs for treating intestinal diseases. Additionally, we highlight current limitations and future perspectives of SC-related therapy for IBD.
Collapse
Affiliation(s)
- Cheng-Mei Tian
- Department of Gastroenterology, Shenzhen People’s Hospital (The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, Guangdong, People’s Republic of China
- Department of Emergency, Shenzhen People’s Hospital (The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, Guangdong, People’s Republic of China
| | - Yuan Zhang
- Department of Medical Administration, Huizhou Institute of Occupational Diseases Control and Prevention, Huizhou, Guangdong, People’s Republic of China
| | - Mei-Feng Yang
- Department of Hematology, Yantian District People’s Hospital, Shenzhen, Guangdong, People’s Republic of China
| | - Hao-Ming Xu
- Department of Gastroenterology and Hepatology, Guangzhou Digestive Disease Center, Guangzhou First People’s Hospital, School of Medicine, South China University of Technology, Guangzhou, Guangdong, People’s Republic of China
| | - Min-Zheng Zhu
- Department of Gastroenterology and Hepatology, The Second Affiliated Hospital, School of Medicine, South China University of Technology, Guangzhou, Guangdong, People’s Republic of China
| | - Jun Yao
- Department of Gastroenterology, Shenzhen People’s Hospital (The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, Guangdong, People’s Republic of China
| | - Li-Sheng Wang
- Department of Gastroenterology, Shenzhen People’s Hospital (The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, Guangdong, People’s Republic of China
| | - Yu-Jie Liang
- Department of Child and Adolescent Psychiatry, Shenzhen Kangning Hospital, Shenzhen, Guangdong, People’s Republic of China
| | - De-Feng Li
- Department of Gastroenterology, Shenzhen People’s Hospital (The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, Guangdong, People’s Republic of China
| |
Collapse
|
19
|
Wang H, Jiang HY, Zhang YX, Jin HY, Fei BY, Jiang JL. Mesenchymal stem cells transplantation for perianal fistulas: a systematic review and meta-analysis of clinical trials. Stem Cell Res Ther 2023; 14:103. [PMID: 37101285 PMCID: PMC10134595 DOI: 10.1186/s13287-023-03331-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Accepted: 04/06/2023] [Indexed: 04/28/2023] Open
Abstract
BACKGROUND Perianal fistulas, characterised as granulomatous inflammation of fistulas around the anal canal, are associated with significant morbidity resulting in a negative impact on quality of life and a tremendous burden to the healthcare system. Treatment of anal fistulas usually consists of anal surgery; however, results of closure rates are not satisfactory especially with complex perianal fistulas, after which many patients may suffer from anal incontinence. Recently, the administration of mesenchymal stem cells (MSCs) has shown promising efficacy. Herein, we aim to explore whether MSCs are effective for complex perianal fistulas and if they have either short-term, medium-term, long-term or over-long-term efficacy. Additionally, we want to elucidate whether factors such as drug dosage, MSC source, cell type, and disease aetiology influence treatment efficacy. We searched four online databases and analysed data based on information within the clinical trials registry. The outcomes of eligible trials were analysed with Review Manager 5.4.1. Relative risk and related 95% confidence interval were calculated to compare the effect between the MSCs and control groups. In addition, the Cochrane risk of bias tool was applied to evaluate the bias risk of eligible studies. Meta-analyses showed that therapy with MSCs was superior to conventional treatment for complex perianal fistulas in short-, long- and over-long-term follow-up phases. However, there was no statistical difference in treatment efficacy in the medium term between the two methods. Subgroup meta-analyses showed factors including cell type, cell source and cell dosage were superior compared to the control, but there was no significant difference between different experimental groups of those factors. Besides, local MSCs therapy has shown more promising results for fistulas as a result of Crohn's Disease (CD). Although we tend to maintain that MSCs therapy is effective for cryptoglandular fistulas equally, more studies are needed to confirm this conclusion in the future. SHORT CONCLUSION MSCs Transplantation could be a new therapeutic method for complex perianal fistulas of both cryptoglandular and CD origin showing high efficacy in the short-term to over-long-term phases, as well as high efficacy in sustained healing. The difference in cell types, cell sources and cell dosages did not influence MSCs' efficacy.
Collapse
Affiliation(s)
- H Wang
- Scientific Research Center, China-Japan Union Hospital of Jilin University, Changchun, China
| | - H Y Jiang
- Life Spring AKY Pharmaceuticals, Changchun, China
| | - Y X Zhang
- Changchun University of Chinese Medicine, Changchun, China
| | - H Y Jin
- Department of Gastrointestinal Colorectal Surgery, China-Japan Union Hospital of Jilin University, Changchun, China
| | - B Y Fei
- Department of Gastrointestinal Colorectal Surgery, China-Japan Union Hospital of Jilin University, Changchun, China.
| | - J L Jiang
- Scientific Research Center, China-Japan Union Hospital of Jilin University, Changchun, China.
| |
Collapse
|
20
|
Marino LS, Nithya TG, Julius A. Lyophilized human platelet lysate as a supplementation in the culture of umbilical cord derived mesenchymal stem cells. Tissue Cell 2023; 82:102092. [PMID: 37075679 DOI: 10.1016/j.tice.2023.102092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 03/26/2023] [Accepted: 04/11/2023] [Indexed: 04/21/2023]
Abstract
Mesenchymal stem cells (MSCs) are being used in clinical trials given their proliferative potential, immunomodulatory effects, and their pro-angiogenic, anti-apoptotic, and anti-fibrotic properties. Umbilical cord tissue is an excellent source of MSCs. Iron-fortified calf serum is being used to culture MSCs as an alternative to fetal bovine serum since it is relatively inexpensive. Fetal calf serum is fortified with iron since calves are often fed a low-iron diet. However, the use of iron-fortified calf serum is still problematic since it is xenogeneic. Lately, human platelet lysate is being used for the culture of human cells. To increase its shelf life, human platelet lysate was lyophilized and used for culturing human umbilical cord tissue mesenchymal stem cells (hUCT-MSCs). This study compares the culture of hUCT-MSCs with either iron-fortified calf serum or lyophilized human platelet lysate (LHPL). Trilineage differentiation potential (for chondrogenesis, adipogenesis, or osteogenesis) was assessed and immunomodulatory properties of hUCT-MSC were studied using the Mixed Lymphocyte Reaction (MLR) to detect inhibition of the proliferation of lymphocytes. This study concludes the potency of LHPL as the best alternative to Iron-Fortified Calf Serum (IFCS) for culture expansion of hUCT-MSC. hUCT-MSC cultured with LHPL display characteristic surface markers and have the capacity for trilineage differentiation.
Collapse
Affiliation(s)
- Lincy Shiny Marino
- Department of Biotechnology, College of Science and Humanities, SRM Institute of Science and Technology, Kattankulathur, Chennai - 603203, Tamil Nadu, India
| | - Thirumullaivoyal Gnanasekaran Nithya
- Department of Biochemistry, College of Science and Humanities, SRM Institute of Science and Technology, Kattankulathur, Chennai - 603203, Tamil Nadu, India.
| | - Angeline Julius
- Centre for Materials Engineering and Regenerative Medicine, Bharath Institute of Higher Education and Research, Chennai - 600126, Tamil Nadu, India
| |
Collapse
|
21
|
Damianos A, Sammour I. Barriers in translating stem cell therapies for neonatal diseases. Semin Perinatol 2023; 47:151731. [PMID: 36990922 DOI: 10.1016/j.semperi.2023.151731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 03/31/2023]
Abstract
Over the last 20 years, stem cells of varying origin and their associated secretome have been investigated as a therapeutic option for a myriad of neonatal models of disease, with very promising results. Despite the devastating nature of some of these disorders, translation of the preclinical evidence to the bedside has been slow. In this review, we explore the existing clinical evidence for stem cell therapies in neonates, highlight the barriers faced by researchers and suggest potential solutions to move the field forward.
Collapse
Affiliation(s)
- Andreas Damianos
- Cincinnati Children's Hospital, University of Cincinnati, Cincinnati, Ohio
| | - Ibrahim Sammour
- Riley Hospital for Children, Indiana University, Indianapolis, USA.
| |
Collapse
|
22
|
Torrents S, Grau-Vorster M, Vives J. Illustrative Potency Assay Examples from Approved Therapies. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2023; 1420:139-149. [PMID: 37258788 DOI: 10.1007/978-3-031-30040-0_9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Advanced therapy medicinal products (ATMP) encompass a new type of drugs resulting from the manipulation of genes, cells, and tissues to generate innovative medicinal entities with tailored pharmaceutical activity. Definition of suitable potency tests for product release are challenging in this context, in which the active ingredient is composed of living cells and the mechanism of action often is poorly understood. In this chapter, we present and discuss actual potency assays used for the release of representative commercial ATMP from each category of products (namely, KYMRIAH® (tisagenlecleucel), Holoclar® (limbal epithelial stem cells), and PROCHYMAL®/RYONCIL™ (remestemcel-L)). We also examine concerns related to the biological relevance of selected potency assays and challenges ahead for harmonization and broader implementation in compliance with current quality standards and regulatory guidelines.
Collapse
Affiliation(s)
- Sílvia Torrents
- Banc de Sang i Teixits, Edifici Dr. Frederic Duran i Jordà, Barcelona, Spain
- Transfusion Medicine group, Vall d'Hebron Research Institute, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Marta Grau-Vorster
- Banc de Sang i Teixits, Edifici Dr. Frederic Duran i Jordà, Barcelona, Spain
- Transfusion Medicine group, Vall d'Hebron Research Institute, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Joaquim Vives
- Banc de Sang i Teixits, Edifici Dr. Frederic Duran i Jordà, Barcelona, Spain.
- Musculoskeletal Tissue Engineering Group, Vall d'Hebron Research Institute (VHIR), Universitat Autònoma de Barcelona, Barcelona, Spain.
- Departament de Medicina, Universitat Autònoma de Barcelona, Barcelona, Spain.
| |
Collapse
|
23
|
Vonk LA. Potency Assay Considerations for Cartilage Repair, Osteoarthritis and Use of Extracellular Vesicles. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2023; 1420:59-80. [PMID: 37258784 DOI: 10.1007/978-3-031-30040-0_5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Articular cartilage covers the ends of bones in synovial joints acting as a shock absorber that helps movement of bones. Damage of the articular cartilage needs treatment as it does not repair itself and the damage can progress to osteoarthritis. In osteoarthritis all the joint tissues are involved with characteristic progressive cartilage degradation and inflammation. Autologous chondrocyte implantation is a well-proven cell-based treatment for cartilage defects, but a main downside it that it requires two surgeries. Multipotent, aka mesenchymal stromal cell (MSC)-based cartilage repair has gained attention as it can be used as a one-step treatment. It is proposed that a combination of immunomodulatory and regenerative capacities make MSC attractive for the treatment of osteoarthritis. Furthermore, since part of the paracrine effects of MSCs are attributed to extracellular vesicles (EVs), small membrane enclosed particles secreted by cells, EVs are currently being widely investigated for their potential therapeutic effects. Although MSCs have entered clinical cartilage treatments and EVs are used in in vivo efficacy studies, not much attention has been given to determine their potency and to the development of potency assays. This chapter provides considerations and suggestions for the development of potency assays for the use of MSCs and MSC-EVs for the treatment of cartilage defects and osteoarthritis.
Collapse
Affiliation(s)
- Lucienne A Vonk
- Department of Orthopaedics, University Medical Center Utrecht, Utrecht, The Netherlands.
| |
Collapse
|
24
|
Porter AP, Pirlot BM, Dyer K, Uwazie CC, Nguyen J, Turner C, Rajan D, Hematti P, Chinnadurai R. Conglomeration of T- and B-Cell Matrix Responses Determines the Potency of Human Bone Marrow Mesenchymal Stromal Cells. Stem Cells 2022; 40:1134-1148. [PMID: 36056823 DOI: 10.1093/stmcls/sxac064] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Accepted: 08/26/2022] [Indexed: 01/04/2023]
Abstract
Cell manufacturing facilities need to define the potency of mesenchymal stromal cells (MSCs) as cellular therapeutics in advanced clinical trials or marketing approval. Since MSCs' mechanism of action in humans is not well defined, more than a single functional property of MSCs needs to be captured as a surrogate measure of potency utilizing assay matrix technologies. However, the current limitation is the sole investigation of MSC-mediated T-cell suppression as a surrogate measure of potency. We investigated the effect of MSCs on B-cell matrix responses to be incorporated into the assay matrix potency analytical system. Our results demonstrate that MSCs inhibit B-cell differentiation and block pan-antibody secretion upon activation of B cells in the PBMCs. In contrast, MSCs are inferior in blocking B-cell matrix responses when purified B cells are used. Mechanistic analysis has demonstrated that MSC-mediated inhibition of B-cell matrix responses is non-contact dependent and Tryptophan metabolic pathway plays a major role, akin to the mechanism of MSC-mediated T-cell suppression. MSCs also inhibit both T-cell and B-cell responses when both of these lymphoid populations are concurrently activated in the PBMCs. Secretome analysis of MSC and T/B cell-activated PBMC cocultures identified direct and inverse correlative matrix signatures between humoral antibody isotypes and secretory molecules. The current analysis of the combined and concomitant investigation of T-cell and B-cell matrix responses fulfills the potency assay matrix strategy by incorporating MSCs' interaction with more than a single inflammatory immune responder.
Collapse
Affiliation(s)
- Amanda P Porter
- Department of Biomedical Sciences, Mercer University School of Medicine, Savannah, GA, USA
| | - Bonnie M Pirlot
- Department of Biomedical Sciences, Mercer University School of Medicine, Savannah, GA, USA
| | - Kalyn Dyer
- Department of Biomedical Sciences, Mercer University School of Medicine, Savannah, GA, USA
| | - Crystal C Uwazie
- Department of Biomedical Sciences, Mercer University School of Medicine, Savannah, GA, USA
| | - Jimmy Nguyen
- Department of Biomedical Sciences, Mercer University School of Medicine, Savannah, GA, USA
| | - Caitlin Turner
- Department of Biomedical Sciences, Mercer University School of Medicine, Savannah, GA, USA
| | - Devi Rajan
- Department of Biomedical Sciences, Mercer University School of Medicine, Savannah, GA, USA
| | - Peiman Hematti
- Department of Medicine, University of Wisconsin Madison, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, USA
| | - Raghavan Chinnadurai
- Department of Biomedical Sciences, Mercer University School of Medicine, Savannah, GA, USA
| |
Collapse
|
25
|
Hansen SB, Højgaard LD, Kastrup J, Ekblond A, Follin B, Juhl M. Optimizing an immunomodulatory potency assay for Mesenchymal Stromal Cell. Front Immunol 2022; 13:1085312. [PMID: 36578497 PMCID: PMC9791065 DOI: 10.3389/fimmu.2022.1085312] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Accepted: 11/25/2022] [Indexed: 12/14/2022] Open
Abstract
The expeditious progress of Mesenchymal Stromal Cells (MSC) for therapeutic intervention calls for means to compare differences in potency of cell products. The differences may be attributed to innumerable sources including tissue origin, production methods, or even between batches. While the immunomodulatory potential of MSC is recognized and well-documented by an expansive body of evidence, the methodologies and findings vary markedly. In this study, we utilized flowcytometric analysis of lymphocyte proliferation based on cryopreserved peripheral blood mononuclear cells for quantification of the inhibitory effect of MSC. Technical aspects of fluorescent staining and cryopreservation of peripheral blood mononuclear cells were evaluated to obtain optimal results and increase feasibility. A range of common specific and unspecific mitogens was titrated to identify the conditions, in which the effects of Adipose tissue-derived Stromal Cells (ASC; a type of MSC) were most pronounced. Specific stimulation by antibody-mediated activation of CD3 and CD28 via TransAct and Dynabeads lead to substantial proliferation of lymphocytes, which was inhibited by ASC. These results were closely mirrored when applying unspecific stimulation in form of phytohemagglutinin (PHA), but not concanavalin A or pokeweed mitogen. The mixed lymphocyte reaction is a common assay which exploits alloreactivity between donors. While arguably more physiologic, the output of the assay often varies substantially, and the extent of proliferation is limited since the frequency of alloreactive cells is low, as opposed to the mitogens. To heighten the proliferative response and robustness, combinations of 2-5 donors were tested. Maximum proliferation was observed when combining 4 or more donors, which was efficiently suppressed by ASC. Several desirable and unfavorable traits can be attributed to the tested stimuli in the form of keywords. The importance of these traits should be scored on a laboratory-level to identify the ideal mitogen. In our case the ranking listed PHA as the most suited candidate. Developing robust assays is no trivial feat. By disclosing the full methodological framework in the present study, we hope to aid others in establishing functional metrics on the road to potency assays.
Collapse
Affiliation(s)
- Stine Bangsgaard Hansen
- Cell2Cure, Cardiology Stem Cell Centre, The Heart Centre, University Hospital Rigshospitalet, Copenhagen, Denmark
| | - Lisbeth Drozd Højgaard
- Cell2Cure, Cardiology Stem Cell Centre, The Heart Centre, University Hospital Rigshospitalet, Copenhagen, Denmark
| | - Jens Kastrup
- Cell2Cure, Cardiology Stem Cell Centre, The Heart Centre, University Hospital Rigshospitalet, Copenhagen, Denmark
- Cell2Cure, Birkerød, Denmark
| | - Annette Ekblond
- Cell2Cure, Cardiology Stem Cell Centre, The Heart Centre, University Hospital Rigshospitalet, Copenhagen, Denmark
- Cell2Cure, Birkerød, Denmark
| | - Bjarke Follin
- Cell2Cure, Cardiology Stem Cell Centre, The Heart Centre, University Hospital Rigshospitalet, Copenhagen, Denmark
| | - Morten Juhl
- Cell2Cure, Cardiology Stem Cell Centre, The Heart Centre, University Hospital Rigshospitalet, Copenhagen, Denmark
| |
Collapse
|
26
|
Wang Y, Fang J, Liu B, Shao C, Shi Y. Reciprocal regulation of mesenchymal stem cells and immune responses. Cell Stem Cell 2022; 29:1515-1530. [DOI: 10.1016/j.stem.2022.10.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 09/19/2022] [Accepted: 10/04/2022] [Indexed: 11/06/2022]
|
27
|
Lam J, Lee B, Yu J, Kwee BJ, Kim Y, Kim J, Choi Y, Yoon JS, Kim Y, Baek K, Jeon NL, Sung KE. A microphysiological system-based potency bioassay for the functional quality assessment of mesenchymal stromal cells targeting vasculogenesis. Biomaterials 2022; 290:121826. [DOI: 10.1016/j.biomaterials.2022.121826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 09/20/2022] [Accepted: 09/24/2022] [Indexed: 11/02/2022]
|
28
|
Novel Potency Assay for MSC Secretome-Based Treatment of Idiopathic Male Infertility Employed Leydig Cells and Revealed Vascular Endothelial Growth Factor as a Promising Potency Marker. Int J Mol Sci 2022; 23:ijms23169414. [PMID: 36012677 PMCID: PMC9409465 DOI: 10.3390/ijms23169414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 08/11/2022] [Accepted: 08/18/2022] [Indexed: 12/02/2022] Open
Abstract
Idiopathic male infertility is a highly prevalent diagnosis in developed countries with no specific treatment options. Although empirical medical treatment is widely used to restore male fertility, its efficacy remains limited and inconclusively proven. Therefore, the development of novel therapeutic approaches in this field is a high-priority task. Since the failure of testicular microenvironment components might be involved in the pathogenesis of idiopathic male infertility, application of mesenchymal stromal cells (MSCs) as well as the MSC secretome is worth considering. Previously, we showed that the intratesticular injection of MSCs or the MSC secretome led to the recovery of spermatogenesis at least through replenishing the testicular microenvironment and its maintenance by MSC-secreted paracrine factors. However, the clinical use of such products has been limited to single trials to date. This may be due to the lack of relevant potency tests reflecting mechanisms of action of the MSC secretome in male infertility models. Based on the presumptive MSC secretome mode of action on the testicular microenvironment, we suggest a novel approach to test the potential efficacy of the MSC secretome for idiopathic male infertility treatment. It represents a potency assay based on evaluation of testosterone production by isolated Leydig cells. We demonstrated that the MSC secretome stimulated testosterone secretion by Leydig cells in vitro. We then hypothesized that among the major factors of the MSC secretome, vascular endothelial growth factor (VEGF) could be responsible for the observed effects, which we confirmed by the revealed correlation between the extent of stimulated testosterone production and VEGF concentration in the MSC secretome. The pilot results obtained from the doxorubicin-induced male infertility murine model also indicate the important impact of VEGF in the MSC secretome’s regenerative effects. Utilizing VEGF as a surrogate factor, a novel approach to study the potency of MSC secretome-based products for idiopathic male infertility treatment is suggested. Further validation is required for its implementation into the biopharmaceutical manufacturing process.
Collapse
|
29
|
Practical Considerations for Translating Mesenchymal Stromal Cell-Derived Extracellular Vesicles from Bench to Bed. Pharmaceutics 2022; 14:pharmaceutics14081684. [PMID: 36015310 PMCID: PMC9414392 DOI: 10.3390/pharmaceutics14081684] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 08/08/2022] [Accepted: 08/10/2022] [Indexed: 11/16/2022] Open
Abstract
Extracellular vesicles (EVs) derived from mesenchymal stromal cells (MSCs) have shown potential for the treatment of tendon and ligament injuries. This approach can eliminate the need to transplant live cells to the human body, thereby reducing issues related to the maintenance of cell viability and stability and potential erroneous differentiation of transplanted cells to bone or tumor. Despite these advantages, there are practical issues that need to be considered for successful clinical application of MSC-EV-based products in the treatment of tendon and ligament injuries. This review aims to discuss the general and tissue-specific considerations for manufacturing MSC-EVs for clinical translation. Specifically, we will discuss Good Manufacturing Practice (GMP)-compliant manufacturing and quality control (parent cell source, culture conditions, concentration method, quantity, identity, purity and impurities, sterility, potency, reproducibility, storage and formulation), as well as safety and efficacy issues. Special considerations for applying MSC-EVs, such as their compatibility with arthroscopy for the treatment of tendon and ligament injuries, are also highlighted.
Collapse
|
30
|
Lipat AJ, Cottle C, Pirlot BM, Mitchell J, Pando B, Helmly B, Kosko J, Rajan D, Hematti P, Chinnadurai R. Chemokine Assay Matrix Defines the Potency of Human Bone Marrow Mesenchymal Stromal Cells. Stem Cells Transl Med 2022; 11:971-986. [PMID: 35881077 PMCID: PMC9492268 DOI: 10.1093/stcltm/szac050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Accepted: 06/20/2022] [Indexed: 11/12/2022] Open
Abstract
Potency analysis of mesenchymal stromal cells (MSCs) is required for their use in advanced clinical trials. Assay matrix strategy evaluating more than a single property of MSCs is an emerging strategy in potency analysis. Here we developed an assay matrix approach focusing on the secretory chemokine responses of MSCs using multiplex analytical method. MSCs’ innate fitness in secreting matrix of chemokines is correlated with their metabolic fitness in differential degrees. In addition, innately secreting chemokines are correlated among themselves in a unique pattern. MSC’s matrix chemokine responses to exogenous stimulation of IFNγ and/or TNFα are distinct. However, the combination of IFNγ and TNFα is superior than individual stimulations in eliciting robust and broad matrix chemokine responses of MSCs. Correlation matrix analysis has identified that chemokine responses to IFNγ and/or TNFα display unique correlative secretion patterns. MSC and peripheral blood mononuclear cells coculture analysis has identified the correlation matrix responses of chemokines that predicted immune suppression. In addition, MSC-mediated blocking of T-cell proliferation predominantly correlates with chemokines in an inverse manner. Knockdown of chemokines has demonstrated that MSC-sourced inherent chemokines do not actively play a role in T-cell suppression and thus are the bystander predictors of T-cell suppression. The present analysis of MSC’s matrix chemokine responses can be deployed in the advanced potency analysis of MSCs.
Collapse
Affiliation(s)
- Ariel Joy Lipat
- Department of Biomedical Sciences, Mercer University School of Medicine, Savannah, GA, USA
| | - Chasen Cottle
- Department of Biomedical Sciences, Mercer University School of Medicine, Savannah, GA, USA
| | - Bonnie M Pirlot
- Department of Biomedical Sciences, Mercer University School of Medicine, Savannah, GA, USA
| | - James Mitchell
- Diagnostic Radiology, Memorial Health University Medical Center, Savannah, GA, USA
| | - Brian Pando
- Diagnostic Radiology, Memorial Health University Medical Center, Savannah, GA, USA
| | - Brian Helmly
- Diagnostic Radiology, Memorial Health University Medical Center, Savannah, GA, USA
| | - Joanna Kosko
- Department of Pathology, Memorial Health University Medical Center, Savannah, GA, USA
| | - Devi Rajan
- Department of Biomedical Sciences, Mercer University School of Medicine, Savannah, GA, USA
| | - Peiman Hematti
- Department of Medicine, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, USA
| | - Raghavan Chinnadurai
- Department of Biomedical Sciences, Mercer University School of Medicine, Savannah, GA, USA
| |
Collapse
|
31
|
Wiese DM, Wood CA, Ford BN, Braid LR. Cytokine Activation Reveals Tissue-Imprinted Gene Profiles of Mesenchymal Stromal Cells. Front Immunol 2022; 13:917790. [PMID: 35924240 PMCID: PMC9341285 DOI: 10.3389/fimmu.2022.917790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Accepted: 06/10/2022] [Indexed: 11/30/2022] Open
Abstract
Development of standardized metrics to support manufacturing and regulatory approval of mesenchymal stromal cell (MSC) products is confounded by heterogeneity of MSC populations. Many reports describe fundamental differences between MSCs from various tissues and compare unstimulated and activated counterparts. However, molecular information comparing biological profiles of activated MSCs across different origins and donors is limited. To better understand common and source-specific mechanisms of action, we compared the responses of 3 donor populations each of human umbilical cord (UC) and bone marrow (BM) MSCs to TNF-α, IL-1β or IFN-γ. Transcriptome profiles were analysed by microarray and select secretome profiles were assessed by multiplex immunoassay. Unstimulated (resting) UC and BM-MSCs differentially expressed (DE) 174 genes. Signatures of TNF-α-stimulated BM and UC-MSCs included 45 and 14 new DE genes, respectively, while all but 7 of the initial 174 DE genes were expressed at comparable levels after licensing. After IL-1β activation, only 5 of the 174 DE genes remained significantly different, while 6 new DE genes were identified. IFN-γ elicited a robust transcriptome response from both cell types, yet nearly all differences (171/174) between resting populations were attenuated. Nine DE genes predominantly corresponding to immunogenic cell surface proteins emerged as a BM-MSC signature of IFN-γ activation. Changes in protein synthesis of select analytes correlated modestly with transcript levels. The dynamic responses of licensed MSCs documented herein, which attenuated heterogeneity between unstimulated populations, provide new insight into common and source-imprinted responses to cytokine activation and can inform strategic development of meaningful, standardized assays.
Collapse
Affiliation(s)
| | | | - Barry N. Ford
- Defence Research and Development Canada Suffield Research Centre, Casualty Management Section, Medicine Hat, AB, Canada
| | - Lorena R. Braid
- Aurora BioSolutions Inc., Medicine Hat, AB, Canada
- Simon Fraser University, Department of Molecular Biology and Biochemistry, Burnaby, BC, Canada
- *Correspondence: Lorena R. Braid, ;
| |
Collapse
|
32
|
Fernández-Santos ME, Garcia-Arranz M, Andreu EJ, García-Hernández AM, López-Parra M, Villarón E, Sepúlveda P, Fernández-Avilés F, García-Olmo D, Prosper F, Sánchez-Guijo F, Moraleda JM, Zapata AG. Optimization of Mesenchymal Stromal Cell (MSC) Manufacturing Processes for a Better Therapeutic Outcome. Front Immunol 2022; 13:918565. [PMID: 35812460 PMCID: PMC9261977 DOI: 10.3389/fimmu.2022.918565] [Citation(s) in RCA: 39] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Accepted: 05/10/2022] [Indexed: 12/20/2022] Open
Abstract
MSCs products as well as their derived extracellular vesicles, are currently being explored as advanced biologics in cell-based therapies with high expectations for their clinical use in the next few years. In recent years, various strategies designed for improving the therapeutic potential of mesenchymal stromal cells (MSCs), including pre-conditioning for enhanced cytokine production, improved cell homing and strengthening of immunomodulatory properties, have been developed but the manufacture and handling of these cells for their use as advanced therapy medicinal products (ATMPs) remains insufficiently studied, and available data are mainly related to non-industrial processes. In the present article, we will review this topic, analyzing current information on the specific regulations, the selection of living donors as well as MSCs from different sources (bone marrow, adipose tissue, umbilical cord, etc.), in-process quality controls for ensuring cell efficiency and safety during all stages of the manual and automatic (bioreactors) manufacturing process, including cryopreservation, the use of cell banks, handling medicines, transport systems of ATMPs, among other related aspects, according to European and US legislation. Our aim is to provide a guide for a better, homogeneous manufacturing of therapeutic cellular products with special reference to MSCs.
Collapse
Affiliation(s)
- Maria Eugenia Fernández-Santos
- Cardiology Department, HGU Gregorio Marañón. GMP-ATMPs Production Unit, Instituto de Investigación Sanitaria Gregorio Marañón (IiSGM). Complutense University, CIBER Cardiovascular (CIBERCV), ISCIII, Madrid, Spain
- Platform GMP Units from TerCel and TERAV Networks. RETIC TerCel & RICORS TERAV, ISCIII, Madrid, Spain
| | - Mariano Garcia-Arranz
- Platform GMP Units from TerCel and TERAV Networks. RETIC TerCel & RICORS TERAV, ISCIII, Madrid, Spain
- New Therapies Laboratory, Health Research Institute-Fundación Jiménez Díaz University Hospital (IIS-FJD). Surgery Department, Autonoma University of Madrid, Madrid, Spain
| | - Enrique J. Andreu
- Platform GMP Units from TerCel and TERAV Networks. RETIC TerCel & RICORS TERAV, ISCIII, Madrid, Spain
- Hematology Department and Cell Therapy Area, Clínica Universidad de Navarra. CIBEROC and IDISNA, Pamplona, Spain
| | - Ana Maria García-Hernández
- Platform GMP Units from TerCel and TERAV Networks. RETIC TerCel & RICORS TERAV, ISCIII, Madrid, Spain
- Hematopoietic Transplant and Cellular Therapy Unit, Instituto Murciano de Investigación Biosanitaria IMIB-Arrixaca, Virgen de la Arrixaca University Hospital, University of Murcia, Murcia, Spain
| | - Miriam López-Parra
- Platform GMP Units from TerCel and TERAV Networks. RETIC TerCel & RICORS TERAV, ISCIII, Madrid, Spain
- Cell Therapy Area and Hematology Department, IBSAL-University Hospital of Salamanca, University of Salamanca, Salamanca, Spain
| | - Eva Villarón
- Platform GMP Units from TerCel and TERAV Networks. RETIC TerCel & RICORS TERAV, ISCIII, Madrid, Spain
- Cell Therapy Area and Hematology Department, IBSAL-University Hospital of Salamanca, University of Salamanca, Salamanca, Spain
| | - Pilar Sepúlveda
- Platform GMP Units from TerCel and TERAV Networks. RETIC TerCel & RICORS TERAV, ISCIII, Madrid, Spain
- Regenerative Medicine and Heart Transplantation Unit, Instituto de Investigación Sanitaria La Fe, Valencia, Spain
| | - Francisco Fernández-Avilés
- Cardiology Department, HGU Gregorio Marañón. GMP-ATMPs Production Unit, Instituto de Investigación Sanitaria Gregorio Marañón (IiSGM). Complutense University, CIBER Cardiovascular (CIBERCV), ISCIII, Madrid, Spain
- Platform GMP Units from TerCel and TERAV Networks. RETIC TerCel & RICORS TERAV, ISCIII, Madrid, Spain
| | - Damian García-Olmo
- Platform GMP Units from TerCel and TERAV Networks. RETIC TerCel & RICORS TERAV, ISCIII, Madrid, Spain
- New Therapies Laboratory, Health Research Institute-Fundación Jiménez Díaz University Hospital (IIS-FJD). Surgery Department, Autonoma University of Madrid, Madrid, Spain
| | - Felipe Prosper
- Platform GMP Units from TerCel and TERAV Networks. RETIC TerCel & RICORS TERAV, ISCIII, Madrid, Spain
- Hematology Department and Cell Therapy Area, Clínica Universidad de Navarra. CIBEROC and IDISNA, Pamplona, Spain
| | - Fermin Sánchez-Guijo
- Platform GMP Units from TerCel and TERAV Networks. RETIC TerCel & RICORS TERAV, ISCIII, Madrid, Spain
- Cell Therapy Area and Hematology Department, IBSAL-University Hospital of Salamanca, University of Salamanca, Salamanca, Spain
| | - Jose M. Moraleda
- Platform GMP Units from TerCel and TERAV Networks. RETIC TerCel & RICORS TERAV, ISCIII, Madrid, Spain
- Hematopoietic Transplant and Cellular Therapy Unit, Instituto Murciano de Investigación Biosanitaria IMIB-Arrixaca, Virgen de la Arrixaca University Hospital, University of Murcia, Murcia, Spain
| | - Agustin G. Zapata
- Platform GMP Units from TerCel and TERAV Networks. RETIC TerCel & RICORS TERAV, ISCIII, Madrid, Spain
- Department of Cell Biology, Complutense University, Madrid, Spain
- *Correspondence: Maria Eugenia Fernández-Santos, ; Agustin G. Zapata,
| |
Collapse
|
33
|
Wiese DM, Wood CA, Braid LR. From Vial to Vein: Crucial Gaps in Mesenchymal Stromal Cell Clinical Trial Reporting. Front Cell Dev Biol 2022; 10:867426. [PMID: 35493074 PMCID: PMC9043315 DOI: 10.3389/fcell.2022.867426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Accepted: 03/07/2022] [Indexed: 11/17/2022] Open
Abstract
Retrospective analysis of clinical trial outcomes is a vital exercise to facilitate efficient translation of cellular therapies. These analyses are particularly important for mesenchymal stem/stromal cell (MSC) products. The exquisite responsiveness of MSCs, which makes them attractive candidates for immunotherapies, is a double-edged sword; MSC clinical trials result in inconsistent outcomes that may correlate with underlying patient biology or procedural differences at trial sites. Here we review 45 North American MSC clinical trial results published between 2015 and 2021 to assess whether these reports provide sufficient information for retrospective analysis. Trial reports routinely specify the MSC tissue source, autologous or allogeneic origin and administration route. However, most methodological aspects related to cell preparation and handling immediately prior to administration are under-reported. Clinical trial reports inconsistently provide information about cryopreservation media composition, delivery vehicle, post-thaw time and storage until administration, duration of infusion, and pre-administration viability or potency assessments. In addition, there appears to be significant variability in how cell products are formulated, handled or assessed between trials. The apparent gaps in reporting, combined with high process variability, are not sufficient for retrospective analyses that could potentially identify optimal cell preparation and handling protocols that correlate with successful intra- and inter-trial outcomes. The substantial preclinical data demonstrating that cell handling affects MSC potency highlights the need for more comprehensive clinical trial reporting of MSC conditions from expansion through delivery to support development of globally standardized protocols to efficiently advance MSCs as commercial products.
Collapse
Affiliation(s)
| | | | - Lorena R. Braid
- Aurora BioSolutions Inc., Medicine Hat, AB, Canada
- Simon Fraser University, Burnaby, BC, Canada
- *Correspondence: Lorena R. Braid, ,
| |
Collapse
|
34
|
Farge D, Loisel S, Resche-Rigon M, Lansiaux P, Colmegna I, Langlais D, Charles C, Pugnet G, Maria ATJ, Chatelus E, Martin T, Hachulla E, Kheav VD, Lambert NC, Wang H, Michonneau D, Martinaud C, Sensebé L, Cras A, Tarte K. Safety and preliminary efficacy of allogeneic bone marrow-derived multipotent mesenchymal stromal cells for systemic sclerosis: a single-centre, open-label, dose-escalation, proof-of-concept, phase 1/2 study. THE LANCET RHEUMATOLOGY 2022. [DOI: 10.1016/s2665-9913(21)00326-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
35
|
Mebarki M, Iglicki N, Marigny C, Abadie C, Nicolet C, Churlaud G, Maheux C, Boucher H, Monsel A, Menasché P, Larghero J, Faivre L, Cras A. Development of a human umbilical cord-derived mesenchymal stromal cell-based advanced therapy medicinal product to treat immune and/or inflammatory diseases. Stem Cell Res Ther 2021; 12:571. [PMID: 34774107 PMCID: PMC8590372 DOI: 10.1186/s13287-021-02637-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Accepted: 10/25/2021] [Indexed: 12/12/2022] Open
Abstract
Background Umbilical cord-derived mesenchymal stromal cells (UC-MSCs) revealed their key role in immune regulation, offering promising therapeutic perspectives for immune and inflammatory diseases. We aimed to develop a production process of an UC-MSC-based product and then to characterize UC-MSC properties and immunomodulatory activities in vitro, related to their clinical use and finally, to transfer this technology to a good manufacturing practice (GMP) compliant facility, to manufacture an advanced therapy medicinal product (ATMP). Methods Fifteen human umbilical cords (UCs) were collected to develop the production process. Three batches of UC-MSCs from a single donor were characterized at basal state and after in vitro pro-inflammatory stimulation by interferon-γ (IFNγ) and tumor necrosis factor-α (TNFα). Proliferation, immunophenotype, activation markers’ expression and the inhibition of T cell proliferation were assessed. Finally, this technology was transferred to a GMP-compliant facility to manufacture an UC-MSC-based ATMP, from a single donor, using the explant method followed by the establishment of master and work cell stocks. Results Twelve UCs were processed successfully allowing to isolate UC-MSCs with doubling time and population doubling remaining stable until passage 4. CD90, CD105, CD73, CD44, CD29, CD166 expression was positive; CD14, CD45, CD31, HLA-DR, CD40, CD80 and CD86 expression was negative, while CD146 and HLA-ABC expression was heterogeneous. Cell morphology, proliferation and immunophenotype were not modified by inflammatory treatment. Indoleamine 2,3-dioxygenase (IDO) expression was significantly induced by IFNγ and IFNγ + TNFα versus non-treated cells. Intercellular adhesion molecule-1 (ICAM-1) and vascular cell adhesion molecule 1 (VCAM-1) expression was induced significantly after priming. T cell proliferation was significantly decreased in the presence of UC-MSCs in a dose-dependent manner. This inhibitory effect was improved by IFNγ or IFNγ + TNFα, at UC-MSCs:PBMC ratio 1:10 and 1:30, whereas only IFNγ allowed to decrease significantly T cell proliferation at ratio 1:100. The manufacturing process of the UC-MSC-based ATMP was qualified and authorized by the French regulatory agency for clinical use (NCT04333368). Conclusion This work allowed to develop an investigational UC-MSC-based ATMP authorized for clinical use. Our results showed that an inflammatory environment preserves the biological properties of UC-MSCs with an improvement of their immunomodulatory functions. Supplementary Information The online version contains supplementary material available at 10.1186/s13287-021-02637-7.
Collapse
Affiliation(s)
- Miryam Mebarki
- INSERM Centre d'investigation Clinique de Biothérapies CBT501, AP-HP, Hôpital Saint-Louis, Unité de Thérapie Cellulaire, 75010, Paris, France. .,INSERM U976, Université de Paris, 75010, Paris, France. .,Faculté de Pharmacie, Université de Paris, 75006, Paris, France.
| | | | - Céline Marigny
- INSERM Centre d'investigation Clinique de Biothérapies CBT501, AP-HP, Hôpital Saint-Louis, Unité de Thérapie Cellulaire, 75010, Paris, France
| | - Camille Abadie
- INSERM Centre d'investigation Clinique de Biothérapies CBT501, AP-HP, Hôpital Saint-Louis, Unité de Thérapie Cellulaire, 75010, Paris, France
| | - Claire Nicolet
- INSERM Centre d'investigation Clinique de Biothérapies CBT501, AP-HP, Hôpital Saint-Louis, Unité de Thérapie Cellulaire, 75010, Paris, France
| | - Guillaume Churlaud
- AP-HP, Hôpital Saint-Louis, Centre MEARY de Thérapie Cellulaire Et Génique, 75010, Paris, France
| | - Camille Maheux
- AP-HP, Hôpital Saint-Louis, Centre MEARY de Thérapie Cellulaire Et Génique, 75010, Paris, France
| | - Hélène Boucher
- AP-HP, Hôpital Saint-Louis, Centre MEARY de Thérapie Cellulaire Et Génique, 75010, Paris, France
| | - Antoine Monsel
- Unité de Soins Intensifs Et Département de Biothérapies, inflammation et immunopathologie, AP-HP, Hôpital La Pitié-Salpêtrière, 75013, Paris, France.,INSERM UMR-S 959, Université Sorbonne, 75012, Paris, France
| | - Philippe Menasché
- Département de Chirurgie Cardiovasculaire, AP-HP, Hôpital Européen Georges Pompidou, 75015, Paris, France
| | - Jérôme Larghero
- INSERM Centre d'investigation Clinique de Biothérapies CBT501, AP-HP, Hôpital Saint-Louis, Unité de Thérapie Cellulaire, 75010, Paris, France.,INSERM U976, Université de Paris, 75010, Paris, France.,AP-HP, Hôpital Saint-Louis, Centre MEARY de Thérapie Cellulaire Et Génique, 75010, Paris, France
| | - Lionel Faivre
- INSERM Centre d'investigation Clinique de Biothérapies CBT501, AP-HP, Hôpital Saint-Louis, Unité de Thérapie Cellulaire, 75010, Paris, France.,INSERM U976, Université de Paris, 75010, Paris, France
| | - Audrey Cras
- INSERM Centre d'investigation Clinique de Biothérapies CBT501, AP-HP, Hôpital Saint-Louis, Unité de Thérapie Cellulaire, 75010, Paris, France. .,INSERM UMR1140, Université de Paris, 75006, Paris, France. .,Faculté de Pharmacie, Université de Paris, 75006, Paris, France.
| |
Collapse
|
36
|
Andrews SH, Klinker MW, Bauer SR, Marklein RA. Morphological landscapes from high content imaging reveal cytokine priming strategies that enhance mesenchymal stromal cell immunosuppression. Biotechnol Bioeng 2021; 119:361-375. [PMID: 34716713 DOI: 10.1002/bit.27974] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 09/23/2021] [Accepted: 10/15/2021] [Indexed: 12/22/2022]
Abstract
Successful clinical translation of mesenchymal stromal cell (MSC) products has not been achieved in the United States and may be in large part due to MSC functional heterogeneity. Efforts have been made to identify "priming" conditions that produce MSCs with consistent immunomodulatory function; however, challenges remain with predicting and understanding how priming impacts MSC behavior. The purpose of this study was to develop a high throughput, image-based approach to assess MSC morphology in response to combinatorial priming treatments and establish morphological profiling as an effective approach to screen the effect of manufacturing changes (i.e., priming) on MSC immunomodulation. We characterized the morphological response of multiple MSC lines/passages to an array of Interferon-gamma (IFN-γ) and tumor necrosis factor-⍺ (TNF-⍺) priming conditions, as well as the effects of priming on MSC modulation of activated T cells and MSC secretome. Although considerable functional heterogeneity, in terms of T-cell suppression, was observed between different MSC lines and at different passages, this heterogeneity was significantly reduced with combined IFN-γ/TNF-⍺ priming. The magnitude of this change correlated strongly with multiple morphological features and was also reflected by MSC secretion of immunomodulatory factors, for example, PGE2, ICAM-1, and CXCL16. Overall, this study further demonstrates the ability of priming to enhance MSC function, as well as the ability of morphology to better understand MSC heterogeneity and predict changes in function due to manufacturing.
Collapse
Affiliation(s)
- Seth H Andrews
- School of Chemical, Materials and Biomedical Engineering, University of Georgia, Athens, Georgia, USA.,Regenerative Bioscience Center, University of Georgia, Athens, Georgia, USA
| | - Matthew W Klinker
- Division of Cellular and Gene Therapies, Center for Biologics Evaluation and Research, US Food and Drug Administration, Silver Spring, Maryland, USA
| | - Steven R Bauer
- Division of Cellular and Gene Therapies, Center for Biologics Evaluation and Research, US Food and Drug Administration, Silver Spring, Maryland, USA
| | - Ross A Marklein
- School of Chemical, Materials and Biomedical Engineering, University of Georgia, Athens, Georgia, USA.,Regenerative Bioscience Center, University of Georgia, Athens, Georgia, USA
| |
Collapse
|
37
|
Maughon TS, Shen X, Huang D, Michael AOA, Shockey WA, Andrews SH, McRae JM, Platt MO, Fernández FM, Edison AS, Stice SL, Marklein RA. Metabolomics and cytokine profiling of mesenchymal stromal cells identify markers predictive of T-cell suppression. Cytotherapy 2021; 24:137-148. [PMID: 34696960 DOI: 10.1016/j.jcyt.2021.08.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Revised: 08/02/2021] [Accepted: 08/17/2021] [Indexed: 01/22/2023]
Abstract
BACKGROUND AIMS Mesenchymal stromal cells (MSCs) have shown great promise in the field of regenerative medicine, as many studies have shown that MSCs possess immunomodulatory function. Despite this promise, no MSC therapies have been licensed by the Food and Drug Administration. This lack of successful clinical translation is due in part to MSC heterogeneity and a lack of critical quality attributes. Although MSC indoleamine 2,3-dioxygnease (IDO) activity has been shown to correlate with MSC function, multiple predictive markers may be needed to better predict MSC function. METHODS Three MSC lines (two bone marrow-derived, one induced pluripotent stem cell-derived) were expanded to three passages. At the time of harvest for each passage, cell pellets were collected for nuclear magnetic resonance (NMR) and ultra-performance liquid chromatography mass spectrometry (MS), and media were collected for cytokine profiling. Harvested cells were also cryopreserved for assessing function using T-cell proliferation and IDO activity assays. Linear regression was performed on functional data against NMR, MS and cytokines to reduce the number of important features, and partial least squares regression (PLSR) was used to obtain predictive markers of T-cell suppression based on variable importance in projection scores. RESULTS Significant functional heterogeneity (in terms of T-cell suppression and IDO activity) was observed between the three MSC lines, as were donor-dependent differences based on passage. Omics characterization revealed distinct differences between cell lines using principal component analysis. Cell lines separated along principal component one based on tissue source (bone marrow-derived versus induced pluripotent stem cell-derived) for NMR, MS and cytokine profiles. PLSR modeling of important features predicted MSC functional capacity with NMR (R2 = 0.86), MS (R2 = 0.83), cytokines (R2 = 0.70) and a combination of all features (R2 = 0.88). CONCLUSIONS The work described here provides a platform for identifying markers for predicting MSC functional capacity using PLSR modeling that could be used as release criteria and guide future manufacturing strategies for MSCs and other cell therapies.
Collapse
Affiliation(s)
- Ty S Maughon
- School of Chemical, Materials, and Biomedical Engineering, University of Georgia, Athens, Georgia, USA; Regenerative Bioscience Center, University of Georgia, Athens, Georgia, USA
| | - Xunan Shen
- Complex Carbohydrate Research Center and Institute of Bioinformatics, University of Georgia, Athens, Georgia, USA
| | - Danning Huang
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, Georgia, USA
| | - Adeola O Adebayo Michael
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, Georgia, USA; Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, Georgia, USA
| | - W Andrew Shockey
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, Georgia, USA; Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, Georgia, USA
| | - Seth H Andrews
- School of Chemical, Materials, and Biomedical Engineering, University of Georgia, Athens, Georgia, USA; Regenerative Bioscience Center, University of Georgia, Athens, Georgia, USA
| | - Jon M McRae
- Regenerative Bioscience Center, University of Georgia, Athens, Georgia, USA
| | - Manu O Platt
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, Georgia, USA; Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, Georgia, USA
| | - Facundo M Fernández
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, Georgia, USA; Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, Georgia, USA
| | - Arthur S Edison
- Complex Carbohydrate Research Center and Institute of Bioinformatics, University of Georgia, Athens, Georgia, USA
| | - Steven L Stice
- Regenerative Bioscience Center, University of Georgia, Athens, Georgia, USA; Department of Animal and Dairy Sciences, University of Georgia, Athens, Georgia, USA.
| | - Ross A Marklein
- School of Chemical, Materials, and Biomedical Engineering, University of Georgia, Athens, Georgia, USA; Regenerative Bioscience Center, University of Georgia, Athens, Georgia, USA.
| |
Collapse
|
38
|
Chen HH, Chen YC, Yu SN, Lai WL, Shen YS, Shen PC, Lin SH, Chang CH, Lee SM. Infrapatellar fat pad-derived mesenchymal stromal cell product for treatment of knee osteoarthritis: a first-in-human study with evaluation of the potency marker. Cytotherapy 2021; 24:72-85. [PMID: 34696962 DOI: 10.1016/j.jcyt.2021.08.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 08/16/2021] [Accepted: 08/22/2021] [Indexed: 12/21/2022]
Abstract
BACKGROUND AIMS Infrapatellar fat pad-derived mesenchymal stromal cells (IFP-MSCs) have not yet been used in a human clinical trial. In this open-label phase 1 study, patients with knee osteoarthritis (OA) received a single intra-articular injection of autologous IFP-MSCs. Safety was assessed through physical examination of the knee joint, vital signs, laboratory tests and adverse events. Efficacy was evaluated with regard to pain and function using questionnaires, x-ray and magnetic resonance imaging (MRI). Indoleamine-2,3-dioxygenase (IDO) expression in IFP-MSCs primed with interferon gamma was used as an in vitro potency measurement in investigating the correlations of clinical outcomes. METHODS Twelve patients with symptomatic knee OA were recruited. IFP adipose tissue was harvested from each patient's knee through surgical excision for IFP-MSC manufacturing. Cryopreserved IFP-MSCs (5 × 107 cells) were injected into the knee joint immediately after thawing. RESULTS No significant adverse events were observed. Patients who received IFP-MSCs exhibited clinically significant pain and functional improvement at 48-week follow-up. The MRI Osteoarthritis Knee Score average was also significantly reduced from 100.2 before injection to 85.0 at 48 weeks after injection. The IDO expression of the primed IFP-MSCs of the 12 patients was correlated with clinical outcomes after injection. CONCLUSIONS A single intra-articular injection of IFP-MSCs appears to be a safe therapy for treating knee OA and may improve disease symptoms. IDO measurement of primed IFP-MSCs has potential as a potency marker of MSC products for immunomodulatory therapy.
Collapse
Affiliation(s)
- Hung-Hsuan Chen
- Research and Development Department, EMO Biomedicine Corporation, New Taipei City, Taiwan
| | - Yu-Chun Chen
- Department of Chemical Engineering, National United University, Miaoli City, Taiwan
| | - San-Ni Yu
- Research and Development Department, EMO Biomedicine Corporation, New Taipei City, Taiwan
| | - Wan-Ling Lai
- Research and Development Department, EMO Biomedicine Corporation, New Taipei City, Taiwan
| | - Yi-Shan Shen
- Department of Orthopedic Surgery, Far Eastern Memorial Hospital, New Taipei City, Taiwan; Department of Biomedical Engineering, National Taiwan University, Taipei City, Taiwan
| | - Pei-Chun Shen
- Research and Development Department, EMO Biomedicine Corporation, New Taipei City, Taiwan
| | - Siao-Han Lin
- Research and Development Department, EMO Biomedicine Corporation, New Taipei City, Taiwan
| | - Chih-Hung Chang
- Department of Orthopedic Surgery, Far Eastern Memorial Hospital, New Taipei City, Taiwan; Graduate School of Biotechnology and Bioengineering, Yuan Ze University, Taoyuan City, Taiwan
| | - Shing-Mou Lee
- Research and Development Department, EMO Biomedicine Corporation, New Taipei City, Taiwan.
| |
Collapse
|
39
|
Mesenchymal Stromal Cells: an Antimicrobial and Host-Directed Therapy for Complex Infectious Diseases. Clin Microbiol Rev 2021; 34:e0006421. [PMID: 34612662 DOI: 10.1128/cmr.00064-21] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
There is an urgent need for new antimicrobial strategies for treating complex infections and emerging pathogens. Human mesenchymal stromal cells (MSCs) are adult multipotent cells with antimicrobial properties, mediated through direct bactericidal activity and modulation of host innate and adaptive immune cells. More than 30 in vivo studies have reported on the use of human MSCs for the treatment of infectious diseases, with many more studies of animal MSCs in same-species models of infection. MSCs demonstrate potent antimicrobial effects against the major classes of human pathogens (bacteria, viruses, fungi, and parasites) across a wide range of infection models. Mechanistic studies have yielded important insight into their immunomodulatory and bactericidal activity, which can be enhanced through various forms of preconditioning. MSCs are being investigated in over 80 clinical trials for difficult-to-treat infectious diseases, including sepsis and pulmonary, intra-abdominal, cutaneous, and viral infections. Completed trials consistently report MSCs to be safe and well tolerated, with signals of efficacy against some infectious diseases. Although significant obstacles must be overcome to produce a standardized, affordable, clinical-grade cell therapy, these studies suggest that MSCs may have particular potential as an adjunct therapy in complex or resistant infections.
Collapse
|
40
|
Wruck W, Graffmann N, Spitzhorn LS, Adjaye J. Human Induced Pluripotent Stem Cell-Derived Mesenchymal Stem Cells Acquire Rejuvenation and Reduced Heterogeneity. Front Cell Dev Biol 2021; 9:717772. [PMID: 34604216 PMCID: PMC8481886 DOI: 10.3389/fcell.2021.717772] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Accepted: 08/17/2021] [Indexed: 12/20/2022] Open
Abstract
Despite the uniform selection criteria for the isolation of human mesenchymal stem cells (MSCs), considerable heterogeneity exists which reflects the distinct tissue origins and differences between individuals with respect to their genetic background and age. This heterogeneity is manifested by the variabilities seen in the transcriptomes, proteomes, secretomes, and epigenomes of tissue-specific MSCs. Here, we review literature on different aspects of MSC heterogeneity including the role of epigenetics and the impact of MSC heterogeneity on therapies. We then combine this with a meta-analysis of transcriptome data from distinct MSC subpopulations derived from bone marrow, adipose tissue, cruciate, tonsil, kidney, umbilical cord, fetus, and induced pluripotent stem cells derived MSCs (iMSCs). Beyond that, we investigate transcriptome differences between tissue-specific MSCs and pluripotent stem cells. Our meta-analysis of numerous MSC-related data sets revealed markers and associated biological processes characterizing the heterogeneity and the common features of MSCs from various tissues. We found that this heterogeneity is mainly related to the origin of the MSCs and infer that microenvironment and epigenetics are key drivers. The epigenomes of MSCs alter with age and this has a profound impact on their differentiation capabilities. Epigenetic modifications of MSCs are propagated during cell divisions and manifest in differentiated cells, thus contributing to diseased or healthy phenotypes of the respective tissue. An approach used to reduce heterogeneity caused by age- and tissue-related epigenetic and microenvironmental patterns is the iMSC concept: iMSCs are MSCs generated from induced pluripotent stem cells (iPSCs). During iMSC generation epigenetic and chromatin remodeling result in a gene expression pattern associated with rejuvenation thus allowing to overcome age-related shortcomings (e.g., limited differentiation and proliferation capacity). The importance of the iMSC concept is underlined by multiple clinical trials. In conclusion, we propose the use of rejuvenated iMSCs to bypass tissue- and age-related heterogeneity which are associated with native MSCs.
Collapse
Affiliation(s)
- Wasco Wruck
- Medical Faculty, Institute for Stem Cell Research and Regenerative Medicine, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Nina Graffmann
- Medical Faculty, Institute for Stem Cell Research and Regenerative Medicine, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Lucas-Sebastian Spitzhorn
- Medical Faculty, Institute for Stem Cell Research and Regenerative Medicine, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - James Adjaye
- Medical Faculty, Institute for Stem Cell Research and Regenerative Medicine, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| |
Collapse
|
41
|
Matrix biophysical cues direct mesenchymal stromal cell functions in immunity. Acta Biomater 2021; 133:126-138. [PMID: 34365041 DOI: 10.1016/j.actbio.2021.07.075] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 07/14/2021] [Accepted: 07/30/2021] [Indexed: 12/25/2022]
Abstract
Hydrogels have been used to design synthetic matrices that capture salient features of matrix microenvironments to study and control cellular functions. Recent advances in understanding of both extracellular matrix biology and biomaterial design have shown that biophysical cues are powerful mediators of cell biology, especially that of mesenchymal stromal cells (MSCs). MSCs have been tested in many clinical trials because of their ability to modulate immune cells in different pathological conditions. While roles of biophysical cues in MSC biology have been studied in the context of multilineage differentiation, their significance in regulating immunomodulatory functions of MSCs is just beginning to be elucidated. This review first describes design principles behind how biophysical cues in native microenvironments influence the ability of MSCs to regulate immune cell production and functions. We will then discuss how biophysical cues can be leveraged to optimize cell isolation, priming, and delivery, which can help improve the success of MSC therapy for immunomodulation. Finally, a perspective is presented on how implementing biophysical cues in MSC potency assay can be important in predicting clinical outcomes. STATEMENT OF SIGNIFICANCE: Stromal cells of mesenchymal origin are known to direct immune cell functions in vivo by secreting paracrine mediators. This property has been leveraged in developing mesenchymal stromal cell (MSC)-based therapeutics by adoptive transfer to treat immunological rejection and tissue injuries, which have been tested in over one thousand clinical trials to date, but with mixed success. Advances in biomaterial design have enabled precise control of biophysical cues based on how stromal cells interact with the extracellular matrix in microenvironments in situ. Investigators have begun to use this approach to understand how different matrix biophysical parameters, such as fiber orientation, porosity, dimensionality, and viscoelasticity impact stromal cell-mediated immunomodulation. The insights gained from this effort can potentially be used to precisely define the microenvironmental cues for isolation, priming, and delivery of MSCs, which can be tailored based on different disease indications for optimal therapeutic outcomes.
Collapse
|
42
|
Carreras-Sánchez I, López-Fernández A, Rojas-Márquez R, Vélez R, Aguirre M, Vives J. Derivation of Mesenchymal Stromal Cells from Ovine Umbilical Cord Wharton's Jelly. Curr Protoc 2021; 1:e18. [PMID: 33484488 DOI: 10.1002/cpz1.18] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
The methods described herein allow for the isolation and expansion of fibroblastic-like ovine Wharton's jelly-derived mesenchymal stromal cells (oWJ-MSC) that, similarly to their human counterparts, adhere to standard plastic surfaces in culture; show a mesenchymal profile for specific surface antigens (i.e., positive for CD44 and CD166); and lack expression of endothelial (CD31) and hematopoietic (CD45) markers as well as major histocompatibility complex (MHC) class-II. Homogeneous cell cultures result from a two-phase bioprocess design that starts with the isolation of mesenchymal stromal cells (MSC) from the Wharton's jelly of ovine umbilical cords up to a first step of cryopreservation. The second phase allows for further expansion of ovine WJ-MSC up to sufficient numbers for further studies. Overall, this methodology encompasses a 2-week bioprocess design that encompasses two cell culture passages ensuring sufficient cells for the generation of a Master Cell Bank. Further thawing and scale expansion results in large quantities of oWJ-MSC that can be readily used in proof of efficacy and safety studies in the preclinical development stage of the development of cell-based medicines. © 2021 Wiley Periodicals LLC. Basic Protocol 1: Isolation and expansion of ovine mesenchymal stromal cells from Wharton's jelly of the umbilical cord Basic Protocol 2: Characterization of ovine mesenchymal stromal cells Basic Protocol 3: Growth profile determination of ovine mesenchymal stromal cells from Wharton's jelly.
Collapse
Affiliation(s)
- Irene Carreras-Sánchez
- Servei de Teràpia Cel·lular, Banc de Sang i Teixits, Edifici Dr. Frederic Duran i Jordà, Passeig Taulat, Barcelona, Spain.,Musculoskeletal Tissue Engineering Group, Vall d'Hebron Research Institute (VHIR), Universitat Autònoma de Barcelona, Passeig de la Vall d'Hebron, Barcelona, Spain
| | - Alba López-Fernández
- Servei de Teràpia Cel·lular, Banc de Sang i Teixits, Edifici Dr. Frederic Duran i Jordà, Passeig Taulat, Barcelona, Spain.,Musculoskeletal Tissue Engineering Group, Vall d'Hebron Research Institute (VHIR), Universitat Autònoma de Barcelona, Passeig de la Vall d'Hebron, Barcelona, Spain
| | - Raquel Rojas-Márquez
- Servei de Teràpia Cel·lular, Banc de Sang i Teixits, Edifici Dr. Frederic Duran i Jordà, Passeig Taulat, Barcelona, Spain.,Musculoskeletal Tissue Engineering Group, Vall d'Hebron Research Institute (VHIR), Universitat Autònoma de Barcelona, Passeig de la Vall d'Hebron, Barcelona, Spain
| | - Roberto Vélez
- Musculoskeletal Tissue Engineering Group, Vall d'Hebron Research Institute (VHIR), Universitat Autònoma de Barcelona, Passeig de la Vall d'Hebron, Barcelona, Spain
| | - Màrius Aguirre
- Musculoskeletal Tissue Engineering Group, Vall d'Hebron Research Institute (VHIR), Universitat Autònoma de Barcelona, Passeig de la Vall d'Hebron, Barcelona, Spain
| | - Joaquim Vives
- Servei de Teràpia Cel·lular, Banc de Sang i Teixits, Edifici Dr. Frederic Duran i Jordà, Passeig Taulat, Barcelona, Spain.,Musculoskeletal Tissue Engineering Group, Vall d'Hebron Research Institute (VHIR), Universitat Autònoma de Barcelona, Passeig de la Vall d'Hebron, Barcelona, Spain.,Departament de Medicina, Universitat Autònoma de Barcelona, Passeig de la Vall d'Hebron, Barcelona, Spain
| |
Collapse
|
43
|
Lechanteur C, Briquet A, Bettonville V, Baudoux E, Beguin Y. MSC Manufacturing for Academic Clinical Trials: From a Clinical-Grade to a Full GMP-Compliant Process. Cells 2021; 10:1320. [PMID: 34073206 PMCID: PMC8227789 DOI: 10.3390/cells10061320] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 05/18/2021] [Accepted: 05/21/2021] [Indexed: 12/12/2022] Open
Abstract
Following European regulation 1394/2007, mesenchymal stromal cell (MSCs) have become an advanced therapy medicinal product (ATMP) that must be produced following the good manufacturing practice (GMP) standards. We describe the upgrade of our existing clinical-grade MSC manufacturing process to obtain GMP certification. Staff organization, premises/equipment qualification and monitoring, raw materials management, starting materials, technical manufacturing processes, quality controls, and the release, thawing and infusion were substantially reorganized. Numerous studies have been carried out to validate cultures and demonstrate the short-term stability of fresh or thawed products, as well their stability during long-term storage. Detailed results of media simulation tests, validation runs and early MSC batches are presented. We also report the validation of a new variant of the process aiming to prepare fresh MSCs for the treatment of specific lesions of Crohn's disease by local injection. In conclusion, we have successfully ensured the adaptation of our clinical-grade MSC production process to the GMP requirements. The GMP manufacturing of MSC products is feasible in the academic setting for a limited number of batches with a significant cost increase, but moving to large-scale production necessary for phase III trials would require the involvement of industrial partners.
Collapse
Affiliation(s)
- Chantal Lechanteur
- Laboratory of Cell and Gene Therapy, Department of Hematology, CHU of Liège, 4000 Liège, Belgium; (A.B.); (V.B.); (E.B.); (Y.B.)
| | - Alexandra Briquet
- Laboratory of Cell and Gene Therapy, Department of Hematology, CHU of Liège, 4000 Liège, Belgium; (A.B.); (V.B.); (E.B.); (Y.B.)
| | - Virginie Bettonville
- Laboratory of Cell and Gene Therapy, Department of Hematology, CHU of Liège, 4000 Liège, Belgium; (A.B.); (V.B.); (E.B.); (Y.B.)
| | - Etienne Baudoux
- Laboratory of Cell and Gene Therapy, Department of Hematology, CHU of Liège, 4000 Liège, Belgium; (A.B.); (V.B.); (E.B.); (Y.B.)
| | - Yves Beguin
- Laboratory of Cell and Gene Therapy, Department of Hematology, CHU of Liège, 4000 Liège, Belgium; (A.B.); (V.B.); (E.B.); (Y.B.)
- Division of Hematology, Department of Medicine, CHU of Liège, University of Liège, 4000 Liège, Belgium
| |
Collapse
|
44
|
Intracellular delivery of trehalose renders mesenchymal stromal cells viable and immunomodulatory competent after cryopreservation. Cytotechnology 2021; 73:391-411. [PMID: 33875905 PMCID: PMC8047578 DOI: 10.1007/s10616-021-00465-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Accepted: 03/19/2021] [Indexed: 12/04/2022] Open
Abstract
Trehalose is a nontoxic disaccharide and a promising cryoprotection agent for medically applicable cells. In this study, the efficiency of combining trehalose with reversible electroporation for cryopreservation of two types of human mesenchymal stromal cells was investigated: adipose-derived stromal cells, and umbilical-cord-derived stromal cells. Comparable results to standard dimethyl sulfoxide cryopreservation protocols were achieved, even without extensive electroporation parameters and protocol optimization. The presence of high extracellular trehalose resulted in comparable cell viabilities without and with electroporation. According to the determination of trehalose concentrations, 250 mM extracellular trehalose resulting in, 20 mM to 50 mM intracellular trehalose were sufficient for successful cryopreservation of cells. With electroporation, higher (i.e. 50 mM to 90 mM) intracellular trehalose was achieved after cryopreservation, although cell survival was not improved significantly. To evaluate the impact of electroporation and cryopreservation on cells, stress and immune-activation-related gene expression were analyzed. Electroporation and/or cryopreservation resulted in increased SOD2 and HSPA1A expression. Despite the increased stress response, the high up-regulation by mesenchymal stromal cells of immunomodulatory genes in the inflammatory environment was not affected. Highest expression was seen for the IDO1 and TSG6 genes. In conclusion, cryopreservation of mesenchymal stromal cells in trehalose results in comparable characteristics to their cryopreservation using dimethyl sulfoxide.
Collapse
|
45
|
Strategies to Potentiate Paracrine Therapeutic Efficacy of Mesenchymal Stem Cells in Inflammatory Diseases. Int J Mol Sci 2021; 22:ijms22073397. [PMID: 33806241 PMCID: PMC8037333 DOI: 10.3390/ijms22073397] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 03/23/2021] [Accepted: 03/23/2021] [Indexed: 02/06/2023] Open
Abstract
Mesenchymal stem cells (MSCs) have been developed as cell therapeutics for various immune disorders using their immunoregulatory properties mainly exerted by their paracrine functions. However, variation among cells from different donors, as well as rapid clearance after transplantation have impaired the uniform efficacy of MSCs and limited their application. Recently, several strategies to overcome this limitation have been suggested and proven in pre-clinical settings. Therefore, in this review article, we will update the knowledge on bioengineering strategies to improve the immunomodulatory functions of MSCs, including genetic modification and physical engineering.
Collapse
|
46
|
Ragni E, Papait A, Perucca Orfei C, Silini AR, Colombini A, Viganò M, Libonati F, Parolini O, de Girolamo L. Amniotic membrane-mesenchymal stromal cells secreted factors and extracellular vesicle-miRNAs: Anti-inflammatory and regenerative features for musculoskeletal tissues. Stem Cells Transl Med 2021; 10:1044-1062. [PMID: 33656805 PMCID: PMC8235131 DOI: 10.1002/sctm.20-0390] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Revised: 12/17/2020] [Accepted: 01/18/2021] [Indexed: 12/11/2022] Open
Abstract
Human amniotic membrane‐derived mesenchymal stromal cells (hAMSCs) are easily obtained in large quantities and free from ethical concerns. Promising therapeutic results for both hAMSCs and their secreted factors (secretome) were described by several in vitro and preclinical studies, often for treatment of orthopedic disorders such as osteoarthritis (OA) and tendinopathy. For clinical translation of the hAMSC secretome as cell‐free therapy, a detailed characterization of hAMSC‐secreted factors is mandatory. Herein, we tested the presence of 200 secreted factors and 754 miRNAs in extracellular vesicles (EVs). Thirty‐seven cytokines/chemokines were identified at varying abundance, some of which involved in both chemotaxis and homeostasis of inflammatory cells and in positive remodeling of extracellular matrix, often damaged in tendinopathy and OA. We also found 336 EV‐miRNAs, 51 of which accounted for more than 95% of the genetic message. A focused analysis based on miRNAs related to OA and tendinopathy showed that most abundant EV‐miRNAs are teno‐ and chondro‐protective, able to induce M2 macrophage polarization, inhibit inflammatory T cells, and promote Treg. Functional analysis on IL‐1β treated tenocytes and chondrocytes resulted in downregulation of inflammation‐associated genes. Overall, presence of key regulatory molecules and miRNAs explain the promising therapeutic results of hAMSCs and their secretome for treatment of musculoskeletal conditions and are a groundwork for similar studies in other pathologies. Furthermore, identified molecules will pave the way for future studies aimed at more sharply predicting disease‐targeted clinical efficacy, as well as setting up potency and release assays to fingerprint clinical‐grade batches of whole secretome or purified components.
Collapse
Affiliation(s)
- Enrico Ragni
- IRCCS Istituto Ortopedico Galeazzi, Laboratorio di Biotecnologie Applicate all'Ortopedia, Milan, Italy
| | - Andrea Papait
- Centro di Ricerca E. Menni, Fondazione Poliambulanza Istituto Ospedaliero, Brescia, Italy.,Department of Life Science and Public Health, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Carlotta Perucca Orfei
- IRCCS Istituto Ortopedico Galeazzi, Laboratorio di Biotecnologie Applicate all'Ortopedia, Milan, Italy
| | - Antonietta Rosa Silini
- Centro di Ricerca E. Menni, Fondazione Poliambulanza Istituto Ospedaliero, Brescia, Italy
| | - Alessandra Colombini
- IRCCS Istituto Ortopedico Galeazzi, Laboratorio di Biotecnologie Applicate all'Ortopedia, Milan, Italy
| | - Marco Viganò
- IRCCS Istituto Ortopedico Galeazzi, Laboratorio di Biotecnologie Applicate all'Ortopedia, Milan, Italy
| | - Francesca Libonati
- IRCCS Istituto Ortopedico Galeazzi, Laboratorio di Biotecnologie Applicate all'Ortopedia, Milan, Italy
| | - Ornella Parolini
- Department of Life Science and Public Health, Università Cattolica del Sacro Cuore, Rome, Italy.,Fondazione Policlinico Universitario "Agostino Gemelli" IRCCS, Rome, Italy
| | - Laura de Girolamo
- IRCCS Istituto Ortopedico Galeazzi, Laboratorio di Biotecnologie Applicate all'Ortopedia, Milan, Italy
| |
Collapse
|
47
|
Wright A, Arthaud-Day ML, Weiss ML. Therapeutic Use of Mesenchymal Stromal Cells: The Need for Inclusive Characterization Guidelines to Accommodate All Tissue Sources and Species. Front Cell Dev Biol 2021; 9:632717. [PMID: 33665190 PMCID: PMC7921162 DOI: 10.3389/fcell.2021.632717] [Citation(s) in RCA: 64] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Accepted: 01/07/2021] [Indexed: 12/12/2022] Open
Abstract
Following their discovery over 50 years ago, mesenchymal stromal cells (MSCs) have become one of the most studied cellular therapeutic products by both academia and industry due to their regenerative potential and immunomodulatory properties. The promise of MSCs as a therapeutic modality has been demonstrated by preclinical data yet has not translated to consistent, successful clinical trial results in humans. Despite the disparities across the field, MSC shareholders are unified under one common goal-to use MSCs as a therapeutic modality to improve the quality of life for those suffering from a malady in which the standard of care is suboptimal or no longer effective. Currently, there is no Food and Drug Administration (FDA)-approved MSC therapy on the market in the United States although several MSC products have been granted regulatory approval in other countries. In this review, we intend to identify hurdles that are impeding therapeutic progress and discuss strategies that may aid in accomplishing this universal goal of widespread therapeutic use.
Collapse
Affiliation(s)
- Adrienne Wright
- Department of Anatomy and Physiology, Kansas State University, Manhattan, KS, United States
| | - Marne L Arthaud-Day
- Department of Management, Kansas State University, Manhattan, KS, United States
| | - Mark L Weiss
- Department of Anatomy and Physiology, Kansas State University, Manhattan, KS, United States.,Midwest Institute of Comparative Stem Cell Biotechnology, Kansas State University, Manhattan, KS, United States
| |
Collapse
|
48
|
Engineered microtissues for the bystander therapy against cancer. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2021; 121:111854. [PMID: 33579487 DOI: 10.1016/j.msec.2020.111854] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Revised: 12/24/2020] [Accepted: 12/28/2020] [Indexed: 12/28/2022]
Abstract
Thymidine kinase expressing human adipose mesenchymal stem cells (TK-hAMSCs) in combination with ganciclovir (GCV) are an effective platform for antitumor bystander therapy in mice models. However, this strategy requires multiple TK-hAMSCs administrations and a substantial number of cells. Therefore, for clinical translation, it is necessary to find a biocompatible scaffold providing TK-hAMSCs retention in the implantation site against their rapid wash-out. We have developed a microtissue (MT) composed by TKhAMSCs and a scaffold made of polylactic acid microparticles and cell-derived extracellular matrix deposited by hAMSCs. The efficacy of these MTs as vehicles for TK-hAMSCs/GCV bystander therapy was evaluated in a rodent model of human prostate cancer. Subcutaneously implanted MTs were integrated in the surrounding tissue, allowing neovascularization and maintenance of TK-hAMSCs viability. Furthermore, MTs implanted beside tumors allowed TK-hAMSCs migration towards tumor cells and, after GCV administration, inhibited tumor growth. These results indicate that TK-hAMSCs-MTs are promising cell reservoirs for clinical use of therapeutic MSCs in bystander therapies.
Collapse
|
49
|
Efficacy and Safety of Mesenchymal Stem Cells in Treatment of Complex Perianal Fistulas: A Meta-Analysis. Stem Cells Int 2020; 2020:8816737. [PMID: 33299423 PMCID: PMC7704209 DOI: 10.1155/2020/8816737] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2020] [Revised: 09/30/2020] [Accepted: 10/31/2020] [Indexed: 12/15/2022] Open
Abstract
Complex perianal fistula is a highly debilitating and difficult to treat condition. Local mesenchymal stem cell (MSC) therapy for perianal fistula has shown considerable promise but still remains controversial. Therefore, we performed the meta-analysis to evaluate the efficacy and safety of local MSC therapy for complex perianal fistula. PubMed and Embase databases were searched for published randomized clinical trials (RCTs) that reported local MSC therapy for complex perianal fistulas. The effectiveness and safety data analysis was conducted using RevMan5.3. Subgroup analyses were performed based on the characteristics of the studies. Seven RCTs with 730 participants were included. Local MSC treatment showed significantly higher healing rate (HR) of perianal fistulas compared to control (odds ratio (OR) = 2.03; 95% confidence interval (CI) 1.50, 2.74; P < 0.00001). MSCs combined with fibrin glue therapy can improve the HR compared with fibrin glue alone (OR = 3.27; 95% CI 1.15, 9.28; P = 0.03). Subgroup analyses showed that local therapy can improve the HR in patients with perianal fistulas associated with Crohn's disease (CD) (OR = 2.05; 95% CI 1.41, 3.00; P = 0.0002) and cryptoglandular origin (no-Crohn) (OR = 2.98; 95% CI 0.86, 10.29; P = 0.08). The pooled OR for studies that combined reepithelialization of the external opening with pelvic magnetic resonance imaging (MRI) to evaluate the healing of fistulas was 1.77 (95% CI 1.28, 2.45; P = 0.0006). The pooled OR for studies where fistula healing was defined as complete reepithelialization of external openings was 5.92 (95% CI 1.34, 26.15; P = 0.02). Both autologous MSCs (OR = 3.19; 95% CI 1.05, 9.65; P = 0.04) and allogeneic MSCs (OR = 1.97; 95% CI 1.34, 2.91; P = 0.0006) can obtain higher HR for perianal fistula compared with control. The adipose-derived MSC group can obtain higher HR than the control group (OR = 2.29; 95% CI 1.38, 3.79; P = 0.001). There were no significant differences in adverse events (AEs) (OR = 1.06; 95% CI 0.71, 1.59; P = 0.77). None of the adverse events was judged to be related to MSCs. Our study supported that local MSC therapy alone or combined with fibrin glue is safe and efficacious for complex perianal fistula. In the future, more RCTs are needed to confirm this conclusion.
Collapse
|
50
|
Tavridou A, Rogers D, Bonelli M, Schiel A, Hidalgo-Simon A. Towards a better use of scientific advice for developers of advanced therapies. Br J Clin Pharmacol 2020; 87:2459-2464. [PMID: 33237580 PMCID: PMC8247399 DOI: 10.1111/bcp.14672] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 11/13/2020] [Accepted: 11/19/2020] [Indexed: 11/28/2022] Open
Abstract
Scientific advice (SA) is an important tool offered by regulators to help developers generate robust evidence on a medicine's benefits and risks. Drawing on accumulated experience and looking at the SA provided by the European Medicines Agency in 2018 to advanced therapy medicinal products originally developed by public bodies, we discuss most commonly raised issues and the complexity and timings of the questions posed. Earlier and more frequent SA could help advanced therapy medicinal product developers to pre‐empt delays at the marketing authorisation stage. Carefully addressing quality and nonclinical issues before entering the pivotal phase of development will clear the path for a smooth clinical development and successful marketing authorisation.
Collapse
Affiliation(s)
- Anna Tavridou
- Scientific Advice Office, Human Medicines Division, European Medicines Agency, Amsterdam, The Netherlands
| | - Dolca Rogers
- Pharmaceutical Quality Office, Human Medicines Division, European Medicines Agency, Amsterdam, The Netherlands
| | - Milton Bonelli
- Scientific Advice Office, Human Medicines Division, European Medicines Agency, Amsterdam, The Netherlands
| | - Anja Schiel
- Regulatory and Pharmacoeconomic Statistics, Norwegian Medicines Agency (NoMA), Norway.,Chair of Scientific Advice Working Party (SAWP), European Medicines Agency, Amsterdam, The Netherlands
| | - Ana Hidalgo-Simon
- Head of Advanced Therapies, Human Medicines Division, European Medicines Agency, Amsterdam, The Netherlands
| |
Collapse
|