1
|
Guo X, Yang J. Advances in DNA methylation of imprinted genes and folic acid regulation of growth and development. Epigenomics 2024; 16:1117-1127. [PMID: 39140401 PMCID: PMC11418287 DOI: 10.1080/17501911.2024.2384833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Accepted: 07/22/2024] [Indexed: 08/15/2024] Open
Abstract
DNA methylation is closely related to folate levels and acts as a mechanism linking developmental disorders to chronic diseases. Folic acid supplementation can impact DNA methylation levels of imprinted genes crucial for neonatal development. Imprinted genes are vital for regulating embryonic and postnatal fetal growth. This review summarizes imprinted genes, DNA methylation, folic acid's influence on growth and development and their correlation. It aims to provide a comprehensive overview of research advancements on imprinted genes, DNA methylation and folic acid regulation concerning growth and development.
Collapse
Affiliation(s)
- Xiaojing Guo
- Department of Biostatistics, School of Public Health & Management, Guangxi Traditional Chinese Medical University, Nanning, Guangxi, China
| | - Junwei Yang
- Department of Neurology, The First Affiliated Hospital of Guangxi Traditional Chinese Medical University, Nanning, Guangxi, China
| |
Collapse
|
2
|
Sirena D, Araújo A, da Silveira A, Serafini M, da Silva M, Silveira A, Filippi-Chiela E, Moreira J, Paz A. Guarana (Paullinia cupana) as a potential tool for mesenchymal stromal cells priming in regenerative medicine. Braz J Med Biol Res 2024; 57:e13286. [PMID: 39082577 PMCID: PMC11290817 DOI: 10.1590/1414-431x2024e13286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Accepted: 06/08/2024] [Indexed: 08/02/2024] Open
Abstract
Mesenchymal stromal cells (MSCs) have therapeutic potential due to their abilities of differentiation, immunomodulation, and migration to injured tissues, potentiating such effects when cells are activated. Guarana (Paullinia cupana) is a tropical plant species found in South America that is known for its antioxidant, stimulant, and cicatricial effects. The guarana extract is composed of many substances and caffeine is the main component. The objective was to evaluate the effects of guarana and caffeine on MSCs. After the initial characterization, MSCs were treated with Paullinia cupana (10, 100, and 1000 μg/mL) or caffeine (0.4, 4, and 40 μg/mL) for 24 h. MSCs treatment with 1000 μg/mL guarana increased cell polarity, viability, cell migration to chemoattractant, antioxidant potential, and liberation of extracellular vesicles (EVs), while it reduced the levels of autophagy. MSCs treated with 100 and 1000 μg/mL guarana or 40 μg/mL caffeine showed a decrease of cell proliferation. No treatment affected the cellular area and cell cycle of MSCs. The study shows in vitro evidence that guarana could be a promising alternative for activating MSCs to promote better cellular products for future clinical therapies.
Collapse
Affiliation(s)
- D.H. Sirena
- Laboratório de Células, Tecidos e Genes - Centro de Pesquisa Experimental (CPE), Hospital de Clínicas de Porto Alegre, Porto Alegre, RS, Brasil
- Programa de Pós Graduação em Fisiologia, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brasil
| | - A.B. Araújo
- Laboratório de Células, Tecidos e Genes - Centro de Pesquisa Experimental (CPE), Hospital de Clínicas de Porto Alegre, Porto Alegre, RS, Brasil
- Centro de Processamento Celular, Serviço de Hemoterapia, Hospital de Clínicas de Porto Alegre, Porto Alegre, RS, Brasil
| | - A.B.T da Silveira
- Programa de Pós Graduação em Fisiologia, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brasil
| | - M.A. Serafini
- Laboratório de Células, Tecidos e Genes - Centro de Pesquisa Experimental (CPE), Hospital de Clínicas de Porto Alegre, Porto Alegre, RS, Brasil
- Programa de Pós Graduação em Fisiologia, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brasil
| | - M.M.F. da Silva
- Laboratório de Células, Tecidos e Genes - Centro de Pesquisa Experimental (CPE), Hospital de Clínicas de Porto Alegre, Porto Alegre, RS, Brasil
- Programa de Pós Graduação em Fisiologia, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brasil
| | - A.K. Silveira
- Departamento de Bioquímica, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brasil
| | - E. Filippi-Chiela
- Laboratório de Células, Tecidos e Genes - Centro de Pesquisa Experimental (CPE), Hospital de Clínicas de Porto Alegre, Porto Alegre, RS, Brasil
- Programa de Pós Graduação em Fisiologia, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brasil
| | - J.C.F. Moreira
- Departamento de Bioquímica, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brasil
| | - A.H. Paz
- Laboratório de Células, Tecidos e Genes - Centro de Pesquisa Experimental (CPE), Hospital de Clínicas de Porto Alegre, Porto Alegre, RS, Brasil
- Programa de Pós Graduação em Fisiologia, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brasil
- Departamento de Ciências Morfológicas, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brasil
| |
Collapse
|
3
|
Zhang X, Liu T, Ran C, Wang W, Piao F, Yang J, Tian S, Li L, Zhao D. Immunoregulatory paracrine effect of mesenchymal stem cells and mechanism in the treatment of osteoarthritis. Front Cell Dev Biol 2024; 12:1411507. [PMID: 39129785 PMCID: PMC11310049 DOI: 10.3389/fcell.2024.1411507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Accepted: 07/08/2024] [Indexed: 08/13/2024] Open
Abstract
Osteoarthritis (OA) is a degenerative joint disease caused by chronic inflammation that damages articular cartilage. At present, the treatment of OA includes drug therapy to relieve symptoms and joint replacement therapy for advanced OA. However, these palliatives cannot truly block the progression of the disease from the immunological pathogenesis of OA. In recent years, bone marrow mesenchymal stem cell (BMSC) transplantation has shown great potential in tissue engineering repair. In addition, many studies have shown that BMSC paracrine signals play an important role in the treatment of OA through immune regulation and suppressing inflammation. At present, the mechanism of inflammation-induced OA and the use of BMSC transplantation in joint repair have been reviewed, but the mechanism and significance of BMSC paracrine signals in the treatment of OA have not been fully reviewed. Therefore, this article focused on the latest research progress on the paracrine effects of BMSCs in the treatment of OA and the related mechanisms by which BMSCs secrete cytokines to inhibit the inflammatory response, regulate immune balance, and promote cell proliferation and differentiation. In addition, the application potential of BMSC-Exos as a new type of cell-free therapy for OA is described. This review aimed to provide systematic theoretical support for the clinical application of BMSC transplantation in the treatment of OA.
Collapse
Affiliation(s)
- Xiuzhi Zhang
- Department of Orthopedics, Affiliated Zhongshan Hospital of Dalian University, Dalian, Liaoning, China
| | - Tianhao Liu
- Department of Orthopedics, Affiliated Zhongshan Hospital of Dalian University, Dalian, Liaoning, China
| | - Chunxiao Ran
- Department of Orthopedics, Affiliated Zhongshan Hospital of Dalian University, Dalian, Liaoning, China
| | - Weidan Wang
- Orthopaedic Medical Research Center, Dalian University, Dalian, Liaoning, China
| | - Fengyuan Piao
- Orthopaedic Medical Research Center, Dalian University, Dalian, Liaoning, China
| | - Jiahui Yang
- Department of Orthopedics, Affiliated Zhongshan Hospital of Dalian University, Dalian, Liaoning, China
| | - Simiao Tian
- Orthopaedic Medical Research Center, Dalian University, Dalian, Liaoning, China
| | - Lu Li
- Department of Orthopedics, Affiliated Zhongshan Hospital of Dalian University, Dalian, Liaoning, China
| | - Dewei Zhao
- Department of Orthopedics, Affiliated Zhongshan Hospital of Dalian University, Dalian, Liaoning, China
| |
Collapse
|
4
|
Gorman EA, Rynne J, Gardiner HJ, Rostron AJ, Bannard-Smith J, Bentley AM, Brealey D, Campbell C, Curley G, Clarke M, Dushianthan A, Hopkins P, Jackson C, Kefela K, Krasnodembskaya A, Laffey JG, McDowell C, McFarland M, McFerran J, McGuigan P, Perkins GD, Silversides J, Smythe J, Thompson J, Tunnicliffe WS, Welters IDM, Amado-Rodríguez L, Albaiceta G, Williams B, Shankar-Hari M, McAuley DF, O'Kane CM. Repair of Acute Respiratory Distress Syndrome in COVID-19 by Stromal Cells (REALIST-COVID Trial): A Multicenter, Randomized, Controlled Clinical Trial. Am J Respir Crit Care Med 2023; 208:256-269. [PMID: 37154608 DOI: 10.1164/rccm.202302-0297oc] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Accepted: 05/05/2023] [Indexed: 05/10/2023] Open
Abstract
Rationale: Mesenchymal stromal cells (MSCs) may modulate inflammation, promoting repair in coronavirus disease (COVID-19)-related acute respiratory distress syndrome (ARDS). Objectives: We investigated the safety and efficacy of ORBCEL-C (CD362 [cluster of differentiation 362]-enriched, umbilical cord-derived MSCs) in COVID-19-related ARDS. Methods: In this multicenter, randomized, double-blind, allocation-concealed, placebo-controlled trial (NCT03042143), patients with moderate to severe COVID-19-related ARDS were randomized to receive ORBCEL-C (400 million cells) or placebo (Plasma-Lyte 148). The primary safety and efficacy outcomes were the incidence of serious adverse events and oxygenation index at Day 7, respectively. Secondary outcomes included respiratory compliance, driving pressure, PaO2:FiO2 ratio, and Sequential Organ Failure Assessment score. Clinical outcomes relating to duration of ventilation, lengths of ICU and hospital stays, and mortality were collected. Long-term follow-up included diagnosis of interstitial lung disease at 1 year and significant medical events and mortality at 2 years. Transcriptomic analysis was performed on whole blood at Days 0, 4, and 7. Measurements and Main Results: Sixty participants were recruited (final analysis: n = 30 received ORBCEL-C, n = 29 received placebo; 1 participant in the placebo group withdrew consent). Six serious adverse events occurred in the ORBCEL-C group and three in the placebo group (risk ratio, 2.9 [95% confidence interval, 0.6-13.2]; P = 0.25). Day 7 mean (SD) oxygenation index did not differ (ORBCEL-C, 98.3 [57.2] cm H2O/kPa; placebo, 96.6 [67.3] cm H2O/kPa). There were no differences in secondary surrogate outcomes or in mortality at Day 28, Day 90, 1 year, or 2 years. There was no difference in the prevalence of interstitial lung disease at 1 year or significant medical events up to 2 years. ORBCEL-C modulated the peripheral blood transcriptome. Conclusion: ORBCEL-C MSCs were safe in subjects with moderate to severe COVID-19-related ARDS but did not improve surrogates of pulmonary organ dysfunction.
Collapse
Affiliation(s)
- Ellen A Gorman
- Wellcome-Wolfson Institute for Experimental Medicine, Queen's University Belfast, Belfast, United Kingdom
| | - Jennifer Rynne
- Centre for Inflammation Research, The University of Edinburgh, Edinburgh, United Kingdom
| | - Hannah J Gardiner
- Wellcome-Wolfson Institute for Experimental Medicine, Queen's University Belfast, Belfast, United Kingdom
| | - Anthony J Rostron
- Sunderland Royal Hospital, South Tyneside and Sunderland National Health Service Foundation Trust, Sunderland, United Kingdom
- Clinical Research Institute, Newcastle University, Newcastle upon Tyne, United Kingdom
| | | | - Andrew M Bentley
- Acute Intensive Care Unit, Wythenshawe Hospital, Manchester, United Kingdom
| | - David Brealey
- University College Hospital London, London, United Kingdom
| | | | - Gerard Curley
- Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Mike Clarke
- Northern Ireland Clinical Trials Unit, Belfast, United Kingdom
| | - Ahilanadan Dushianthan
- University Hospital Southampton, Southampton, United Kingdom
- National Institute for Health and Care Research Southampton Biomedical Research Centre, University of Southampton, Southampton, United Kingdom
| | - Phillip Hopkins
- King's Trauma Centre, King's College Hospital, London, United Kingdom
| | - Colette Jackson
- Northern Ireland Clinical Trials Unit, Belfast, United Kingdom
| | - Kallirroi Kefela
- Department of Critical Care, Royal Infirmary of Edinburgh, Edinburgh, United Kingdom
| | - Anna Krasnodembskaya
- Wellcome-Wolfson Institute for Experimental Medicine, Queen's University Belfast, Belfast, United Kingdom
| | - John G Laffey
- Regenerative Medicine Institute at CÚRAM Centre for Research in Medical Devices, University of Galway, Galway, Ireland
| | - Cliona McDowell
- Northern Ireland Clinical Trials Unit, Belfast, United Kingdom
| | - Margaret McFarland
- Department of Critical Care, Belfast Health and Social Care Trust, Belfast, United Kingdom
| | - Jamie McFerran
- Northern Ireland Clinical Trials Unit, Belfast, United Kingdom
| | - Peter McGuigan
- Wellcome-Wolfson Institute for Experimental Medicine, Queen's University Belfast, Belfast, United Kingdom
- Department of Critical Care, Belfast Health and Social Care Trust, Belfast, United Kingdom
| | - Gavin D Perkins
- Critical Care Unit, University Hospitals Birmingham, Birmingham, United Kingdom
- Warwick Clinical Trials Unit, Warwick Medical School, University of Warwick, Coventry, United Kingdom
| | - Jonathan Silversides
- Wellcome-Wolfson Institute for Experimental Medicine, Queen's University Belfast, Belfast, United Kingdom
- Department of Critical Care, Belfast Health and Social Care Trust, Belfast, United Kingdom
| | - Jon Smythe
- National Health Service Blood and Transplant, Oxford, United Kingdom
| | - Jacqui Thompson
- National Health Service Blood and Transplant, Birmingham, United Kingdom
| | | | - Ingeborg D M Welters
- Intensive Care Unit, Royal Liverpool University Hospital, Liverpool, United Kingdom
- Institute of Life Course Medical Sciences, University of Liverpool, Liverpool Centre for Cardiovascular Science, Liverpool, United Kingdom
| | - Laura Amado-Rodríguez
- Centro de Investigación Biomédica en Red-Enfermedades Respiratorias, Instituto de Salud Carlos III, Madrid, Spain
- Instituto de Investigación Sanitaria del Principado de Asturias, Oviedo, Spain
- Unidad de Cuidados Intensivos Cardiológicos, Hospital Universitario Central de Asturias, Oviedo, Spain
| | - Guillermo Albaiceta
- Centro de Investigación Biomédica en Red-Enfermedades Respiratorias, Instituto de Salud Carlos III, Madrid, Spain
- Instituto de Investigación Sanitaria del Principado de Asturias, Oviedo, Spain
- Unidad de Cuidados Intensivos Cardiológicos, Hospital Universitario Central de Asturias, Oviedo, Spain
- Departamento de Biología Funcional, Instituto Universitario de Oncología del Principado de Asturias, Universidad de Oviedo, Oviedo, Spain; and
| | - Barry Williams
- Independent Patient and Public Representative, Sherborne, United Kingdom
| | - Manu Shankar-Hari
- Centre for Inflammation Research, The University of Edinburgh, Edinburgh, United Kingdom
| | - Daniel F McAuley
- Wellcome-Wolfson Institute for Experimental Medicine, Queen's University Belfast, Belfast, United Kingdom
- Department of Critical Care, Belfast Health and Social Care Trust, Belfast, United Kingdom
| | - Cecilia M O'Kane
- Wellcome-Wolfson Institute for Experimental Medicine, Queen's University Belfast, Belfast, United Kingdom
| |
Collapse
|
5
|
Wang X, Yu F, Ye L. Epigenetic control of mesenchymal stem cells orchestrates bone regeneration. Front Endocrinol (Lausanne) 2023; 14:1126787. [PMID: 36950693 PMCID: PMC10025550 DOI: 10.3389/fendo.2023.1126787] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/18/2022] [Accepted: 02/17/2023] [Indexed: 03/08/2023] Open
Abstract
Recent studies have revealed the vital role of MSCs in bone regeneration. In both self-healing bone regeneration processes and biomaterial-induced healing of bone defects beyond the critical size, MSCs show several functions, including osteogenic differentiation and thus providing seed cells. However, adverse factors such as drug intake and body senescence can significantly affect the functions of MSCs in bone regeneration. Currently, several modalities have been developed to regulate MSCs' phenotype and promote the bone regeneration process. Epigenetic regulation has received much attention because of its heritable nature. Indeed, epigenetic regulation of MSCs is involved in the pathogenesis of a variety of disorders of bone metabolism. Moreover, studies using epigenetic regulation to treat diseases are also being reported. At the same time, the effects of epigenetic regulation on MSCs are yet to be fully understood. This review focuses on recent advances in the effects of epigenetic regulation on osteogenic differentiation, proliferation, and cellular senescence in MSCs. We intend to illustrate how epigenetic regulation of MSCs orchestrates the process of bone regeneration.
Collapse
Affiliation(s)
- Xiaofeng Wang
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- Department of Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Fanyuan Yu
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- Department of Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- *Correspondence: Fanyuan Yu, ; Ling Ye,
| | - Ling Ye
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- Department of Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- *Correspondence: Fanyuan Yu, ; Ling Ye,
| |
Collapse
|
6
|
Cypris O, Franzen J, Frobel J, Glück P, Kuo CC, Schmitz S, Nüchtern S, Zenke M, Wagner W. Hematopoietic differentiation persists in human iPSCs defective in de novo DNA methylation. BMC Biol 2022; 20:141. [PMID: 35705990 PMCID: PMC9202186 DOI: 10.1186/s12915-022-01343-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Accepted: 06/07/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND DNA methylation is involved in the epigenetic regulation of gene expression during developmental processes and is primarily established by the DNA methyltransferase 3A (DNMT3A) and 3B (DNMT3B). DNMT3A is one of the most frequently mutated genes in clonal hematopoiesis and leukemia, indicating that it plays a crucial role for hematopoietic differentiation. However, the functional relevance of Dnmt3a for hematopoietic differentiation and hematological malignancies has mostly been analyzed in mice, with the specific role for human hematopoiesis remaining elusive. In this study, we therefore investigated if DNMT3A is essential for hematopoietic differentiation of human induced pluripotent stem cells (iPSCs). RESULTS We generated iPSC lines with knockout of either exon 2, 19, or 23 and analyzed the impact of different DNMT3A exon knockouts on directed differentiation toward mesenchymal and hematopoietic lineages. Exon 19-/- and 23-/- lines displayed an almost entire absence of de novo DNA methylation during mesenchymal and hematopoietic differentiation. Yet, differentiation efficiency was only slightly reduced in exon 19-/- and rather increased in exon 23-/- lines, while there was no significant impact on gene expression in hematopoietic progenitors (iHPCs). Notably, DNMT3A-/- iHPCs recapitulate some DNA methylation patterns of acute myeloid leukemia (AML) with DNMT3A mutations. Furthermore, multicolor genetic barcoding revealed growth advantage of exon 23-/- iHPCs in a syngeneic competitive differentiation assay. CONCLUSIONS Our results demonstrate that iPSCs with homozygous knockout of different exons of DNMT3A remain capable of mesenchymal and hematopoietic differentiation-and exon 23-/- iHPCs even gained growth advantage-despite loss of almost the entire de novo DNA methylation. Partial recapitulation of DNA methylation patterns of AML with DNMT3A mutations by our DNMT3A knockout iHPCs indicates that our model system can help to elucidate mechanisms of clonal hematopoiesis.
Collapse
Affiliation(s)
- Olivia Cypris
- Helmholtz-Institute for Biomedical Engineering, RWTH Aachen University Medical School, Pauwelsstraße 20, 52074, Aachen, North-Rhine Westphalia, Germany
- Institute for Stem Cell Biology, RWTH Aachen University Medical School, 52074, Aachen, North-Rhine Westphalia, Germany
| | - Julia Franzen
- Helmholtz-Institute for Biomedical Engineering, RWTH Aachen University Medical School, Pauwelsstraße 20, 52074, Aachen, North-Rhine Westphalia, Germany
- Institute for Stem Cell Biology, RWTH Aachen University Medical School, 52074, Aachen, North-Rhine Westphalia, Germany
| | - Joana Frobel
- Helmholtz-Institute for Biomedical Engineering, RWTH Aachen University Medical School, Pauwelsstraße 20, 52074, Aachen, North-Rhine Westphalia, Germany
- Institute for Stem Cell Biology, RWTH Aachen University Medical School, 52074, Aachen, North-Rhine Westphalia, Germany
| | - Philipp Glück
- Helmholtz-Institute for Biomedical Engineering, RWTH Aachen University Medical School, Pauwelsstraße 20, 52074, Aachen, North-Rhine Westphalia, Germany
- Institute for Stem Cell Biology, RWTH Aachen University Medical School, 52074, Aachen, North-Rhine Westphalia, Germany
| | - Chao-Chung Kuo
- Helmholtz-Institute for Biomedical Engineering, RWTH Aachen University Medical School, Pauwelsstraße 20, 52074, Aachen, North-Rhine Westphalia, Germany
- Institute for Stem Cell Biology, RWTH Aachen University Medical School, 52074, Aachen, North-Rhine Westphalia, Germany
| | - Stephani Schmitz
- Helmholtz-Institute for Biomedical Engineering, RWTH Aachen University Medical School, Pauwelsstraße 20, 52074, Aachen, North-Rhine Westphalia, Germany
- Institute for Stem Cell Biology, RWTH Aachen University Medical School, 52074, Aachen, North-Rhine Westphalia, Germany
| | - Selina Nüchtern
- Helmholtz-Institute for Biomedical Engineering, RWTH Aachen University Medical School, Pauwelsstraße 20, 52074, Aachen, North-Rhine Westphalia, Germany
- Institute for Stem Cell Biology, RWTH Aachen University Medical School, 52074, Aachen, North-Rhine Westphalia, Germany
| | - Martin Zenke
- Helmholtz-Institute for Biomedical Engineering, RWTH Aachen University Medical School, Pauwelsstraße 20, 52074, Aachen, North-Rhine Westphalia, Germany
- Institute for Stem Cell Biology, RWTH Aachen University Medical School, 52074, Aachen, North-Rhine Westphalia, Germany
| | - Wolfgang Wagner
- Helmholtz-Institute for Biomedical Engineering, RWTH Aachen University Medical School, Pauwelsstraße 20, 52074, Aachen, North-Rhine Westphalia, Germany.
- Institute for Stem Cell Biology, RWTH Aachen University Medical School, 52074, Aachen, North-Rhine Westphalia, Germany.
- Center for Integrated Oncology Aachen Bonn Cologne Düsseldorf (CIO ABCD), 52074, Aachen, North-Rhine Westphalia, Germany.
| |
Collapse
|
7
|
Wang S, Wang Z, Su H, Chen F, Ma M, Yu W, Ye G, Cen S, Mi R, Wu X, Deng W, Feng P, Zeng C, Shen H, Wu Y. Effects of long-term culture on the biological characteristics and RNA profiles of human bone-marrow-derived mesenchymal stem cells. MOLECULAR THERAPY-NUCLEIC ACIDS 2021; 26:557-574. [PMID: 34631285 PMCID: PMC8479280 DOI: 10.1016/j.omtn.2021.08.013] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Accepted: 08/12/2021] [Indexed: 12/16/2022]
Abstract
Expansion in vitro prior to mesenchymal stem cells (MSCs) application is a necessary process. Functional and genomic stability has a crucial role in stem-cell-based therapies. However, the exact expression and co-expressed profiles of coding and non-coding RNAs in human bone marrow (BM)-MSCs in vitro aging are still lacking. In the present studies, the change of morphology, immunophenotype, and capacity of proliferation, differentiation, and immunoregulation of MSCs at passage (P) 4, P6, P8, P10, and P12 were investigated. RNA sequencing identified that 439 mRNAs, 65 long noncoding RNAs (lncRNAs), 59 microRNAs (miRNAs), and 229 circular RNAs (circRNAs) were differentially expressed (DE) in P12 compared with P4, with a similar trend in P6. Gene ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG), and gene set enrichment analysis (GSEA) identified several significant biological processes and pathways, including binding, ossification, and Wnt and PPAR signaling pathways. Interaction and co-expression/localization analyses were performed for DE mRNAs and lncRNAs, and several key lncRNAs, circRNAs, and important pathways like autophagy and mitophagy were identified in the competing endogenous RNA (ceRNA) network. Some key RNAs found in the bioinformatics analysis were validated. Our studies indicate that replicative senescence of MSCs is a continuous process, including widespread alterations in biological characteristics and global gene expression patterns that need to be considered before therapeutic applications of MSCs.
Collapse
Affiliation(s)
- Shan Wang
- Center for Biotherapy, Eighth Affiliated Hospital of Sun Yat-sen University, Shenzhen 518033, P.R. China
| | - Ziming Wang
- Department of Orthopedics, Eighth Affiliated Hospital of Sun Yat-sen University, Shenzhen 518033, P.R. China
| | - Hongjun Su
- Center for Biotherapy, Sun Yat-sen Memorial Hospital of Sun Yat-sen University, Guangzhou 510120, P.R. China
| | - Fenglei Chen
- Department of Orthopedics, Eighth Affiliated Hospital of Sun Yat-sen University, Shenzhen 518033, P.R. China
| | - Mengjun Ma
- Department of Orthopedics, Eighth Affiliated Hospital of Sun Yat-sen University, Shenzhen 518033, P.R. China
| | - Wenhui Yu
- Department of Orthopedics, Eighth Affiliated Hospital of Sun Yat-sen University, Shenzhen 518033, P.R. China
| | - Guiwen Ye
- Department of Orthopedics, Sun Yat-sen Memorial Hospital of Sun Yat-sen University, Guangzhou 510120, P.R. China
| | - Shuizhong Cen
- Department of Orthopedics, Zhujiang Hospital of Southern Medical Universuty, Guangzhou 510280, P.R. China
| | - Rujia Mi
- Center for Biotherapy, Eighth Affiliated Hospital of Sun Yat-sen University, Shenzhen 518033, P.R. China
| | - Xiaohua Wu
- Center for Biotherapy, Sun Yat-sen Memorial Hospital of Sun Yat-sen University, Guangzhou 510120, P.R. China
| | - Wen Deng
- Center for Biotherapy, Sun Yat-sen Memorial Hospital of Sun Yat-sen University, Guangzhou 510120, P.R. China
| | - Pei Feng
- Center for Biotherapy, Sun Yat-sen Memorial Hospital of Sun Yat-sen University, Guangzhou 510120, P.R. China
| | - Chenying Zeng
- Center for Biotherapy, Eighth Affiliated Hospital of Sun Yat-sen University, Shenzhen 518033, P.R. China
| | - Huiyong Shen
- Department of Orthopedics, Eighth Affiliated Hospital of Sun Yat-sen University, Shenzhen 518033, P.R. China.,Department of Orthopedics, Sun Yat-sen Memorial Hospital of Sun Yat-sen University, Guangzhou 510120, P.R. China
| | - Yanfeng Wu
- Center for Biotherapy, Eighth Affiliated Hospital of Sun Yat-sen University, Shenzhen 518033, P.R. China
| |
Collapse
|
8
|
Advances in stem cell research for the treatment of primary hypogonadism. Nat Rev Urol 2021; 18:487-507. [PMID: 34188209 DOI: 10.1038/s41585-021-00480-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/17/2021] [Indexed: 02/06/2023]
Abstract
In Leydig cell dysfunction, cells respond weakly to stimulation by pituitary luteinizing hormone, and, therefore, produce less testosterone, leading to primary hypogonadism. The most widely used treatment for primary hypogonadism is testosterone replacement therapy (TRT). However, TRT causes infertility and has been associated with other adverse effects, such as causing erythrocytosis and gynaecomastia, worsening obstructive sleep apnoea and increasing cardiovascular morbidity and mortality risks. Stem-cell-based therapy that re-establishes testosterone-producing cell lineages in the body has, therefore, become a promising prospect for treating primary hypogonadism. Over the past two decades, substantial advances have been made in the identification of Leydig cell sources for use in transplantation surgery, including the artificial induction of Leydig-like cells from different types of stem cells, for example, stem Leydig cells, mesenchymal stem cells, and pluripotent stem cells (PSCs). PSC-derived Leydig-like cells have already provided a powerful in vitro model to study the molecular mechanisms underlying Leydig cell differentiation and could be used to treat men with primary hypogonadism in a more specific and personalized approach.
Collapse
|
9
|
Endothelin-1 enhances the regenerative capability of human bone marrow-derived mesenchymal stem cells in a sciatic nerve injury mouse model. Biomaterials 2021; 275:120980. [PMID: 34198163 DOI: 10.1016/j.biomaterials.2021.120980] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Revised: 05/31/2021] [Accepted: 06/17/2021] [Indexed: 12/22/2022]
Abstract
We expanded the application of endothelin-1 (EDN1) by treating human mesenchymal stem cell (hMSC) organotypic spinal cord slice cultures with EDN1. EDN1-treated hMSCs significantly enhanced neuronal outgrowth. The underlying mechanism of this effect was evaluated via whole-genome methylation. EDN1 increased whole-genome demethylation and euchromatin. To observe demethylation downstream of EDN1, deaminases and glycosylases were screened, and APOBEC1 was found to cause global demethylation and OCT4 gene activation. The sequence of methyl-CpG-binding domain showed similar patterns between EDN1- and APOBEC1-induced demethylation. SWI/SNF-related, matrix-associated, actin-dependent regulator of chromatin subfamily A member 4 (SMARC A4) and SMARC subfamily D, member 2 (SMARC D2) were screened via methyl-CpG-binding domain sequencing as a modulator in response to EDN1. Chromatin immunoprecipitation of the H3K9me3, H3K27me3, and H3K4me4 binding sequences on the APOBEC1 promoter was analyzed following treatment with or without siSMARC A4 or siSMARC D2. The results suggested that SMARC A4 and SMARC D2 induced a transition from H3K9me3 to H3K4me3 in the APOBEC1 promoter region following EDN1 treatment. Correlations between EDN1 pathways and therapeutic efficacy in hBM-MSCs were determined in a sciatic nerve injury mouse model. Thus, EDN1 may be a useful novel-concept bioactive peptide and biomaterial component for improving hMSC regenerative capability.
Collapse
|
10
|
Hamdan H, Hashmi SK, Lazarus H, Gale RP, Qu W, El Fakih R. Promising role for mesenchymal stromal cells in coronavirus infectious disease-19 (COVID-19)-related severe acute respiratory syndrome? Blood Rev 2021; 46:100742. [PMID: 32854985 PMCID: PMC7425550 DOI: 10.1016/j.blre.2020.100742] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2020] [Revised: 07/02/2020] [Accepted: 08/06/2020] [Indexed: 12/25/2022]
Abstract
Mesenchymal stromal cells (MSC) have immune regulatory and tissue regenerative properties. MSCs are being studied as a therapy option for many inflammatory and immune disorders and are approved to treat acute graft-versus-host disease (GvHD). The severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) pandemic and associated coronavirus infectious disease-19 (COVID-19) has claimed many lives. Innovative therapies are needed. Preliminary data using MSCs in the setting of acute respiratory distress syndrome (ARDS) in COVID-19 are emerging. We review mechanisms of action of MSCs in inflammatory and immune conditions and discuss a potential role in persons with COVID-19.
Collapse
Affiliation(s)
- Hamdan Hamdan
- Department of Physiology, College of Medicine, Alfaisal University, Riyadh, Saudi Arabia,Department of Neuroscience, Baylor College of Medicine, Houston, TX, USA
| | - Shahrukh K. Hashmi
- Department of Internal Medicine, Mayo Clinic, Rochester, MN, USA,Oncology Centre, King Faisal Specialist Hospital and Research Centre, Riyadh, Saudi Arabia
| | - Hillard Lazarus
- Division of Hematology and Oncology, Case Western Reserve University, Cleveland, OH, USA
| | | | - Wenchun Qu
- Department of Pain Medicine, Mayo Clinic, Jacksonville, FL, USA,Center of Regenerative Medicine, Mayo Clinic, Jacksonville, FL, USA
| | - Riad El Fakih
- Oncology Centre, King Faisal Specialist Hospital and Research Centre, Riyadh, Saudi Arabia,Corresponding author at: Oncology Centre, KFSHRC, Section of Adult Hematology/HSCT, PO Box 3354, Riyadh 11471, Saudi Arabia
| |
Collapse
|
11
|
Beeken LJ, Ting DS, Sidney LE. Potential of mesenchymal stem cells as topical immunomodulatory cell therapies for ocular surface inflammatory disorders. Stem Cells Transl Med 2021; 10:39-49. [PMID: 32896982 PMCID: PMC7780815 DOI: 10.1002/sctm.20-0118] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Revised: 07/10/2020] [Accepted: 07/30/2020] [Indexed: 12/17/2022] Open
Abstract
Ocular surface inflammatory disorders (OSIDs) are a group of highly prevalent, heterogeneous diseases that display a variety of aetiologies and symptoms and are risk factors for serious complications, including ocular and cornea impairment. Corneal inflammation is a common factor of all OSIDs, regardless of their cause or symptoms. Current medications include over-the-counter lubricating eye drops, corticosteroids, and ciclosporin, which either do not treat the corneal inflammation or have been associated with multiple side effects leading to alternative treatments being sought. Regenerative medicine cell therapies, particularly mesenchymal stem cells (MSCs), have shown great promise for immunosuppression and disease amelioration across multiple tissues, including the cornea. However, for successful development and clinical translation of MSC therapy for OSIDs, significant problems must be addressed. This review aims to highlight considerations, including whether the source of MSC isolation impacts the efficacy and safety of the therapy, in addition to assessing the feasibility of MSC topical application to the cornea and ocular surface through analysis of potential scaffolds and cell carriers for application to the eye. The literature contains limited data assessing MSCs incorporated into scaffolds for corneal administration, thus here we highlight the necessity of further investigations to truly exploit the potential of an MSC-based cell therapy for the treatment of OSIDs.
Collapse
Affiliation(s)
- Lydia J. Beeken
- Academic Ophthalmology, Division of Clinical NeurosciencesUniversity of Nottingham, Queens Medical Centre CampusNottinghamUK
| | - Darren S.J. Ting
- Academic Ophthalmology, Division of Clinical NeurosciencesUniversity of Nottingham, Queens Medical Centre CampusNottinghamUK
| | - Laura E. Sidney
- Academic Ophthalmology, Division of Clinical NeurosciencesUniversity of Nottingham, Queens Medical Centre CampusNottinghamUK
| |
Collapse
|
12
|
Chakraborty S, Sinha S, Sengupta A. Emerging trends in chromatin remodeler plasticity in mesenchymal stromal cell function. FASEB J 2020; 35:e21234. [PMID: 33337557 DOI: 10.1096/fj.202002232r] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 11/10/2020] [Accepted: 11/13/2020] [Indexed: 12/13/2022]
Abstract
Emerging evidences highlight importance of epigenetic regulation and their integration with transcriptional and cell signaling machinery in determining tissue resident adult pluripotent mesenchymal stem/stromal cell (MSC) activity, lineage commitment, and multicellular development. Histone modifying enzymes and large multi-subunit chromatin remodeling complexes and their cell type-specific plasticity remain the central defining features of gene regulation and establishment of tissue identity. Modulation of transcription factor expression gradient ex vivo and concomitant flexibility of higher order chromatin architecture in response to signaling cues are exciting approaches to regulate MSC activity and tissue rejuvenation. Being an important constituent of the adult bone marrow microenvironment/niche, pathophysiological perturbation in MSC homeostasis also causes impaired hematopoietic stem/progenitor cell function in a non-cell autonomous mechanism. In addition, pluripotent MSCs can function as immune regulatory cells, and they reside at the crossroad of innate and adaptive immune response pathways. Research in the past few years suggest that MSCs/stromal fibroblasts significantly contribute to the establishment of immunosuppressive microenvironment in shaping antitumor immunity. Therefore, it is important to understand mesenchymal stromal epigenome and transcriptional regulation to leverage its applications in regenerative medicine, epigenetic memory-guided trained immunity, immune-metabolic rewiring, and precision immune reprogramming. In this review, we highlight the latest developments and prospects in chromatin biology in determining MSC function in the context of lineage commitment and immunomodulation.
Collapse
Affiliation(s)
- Sayan Chakraborty
- Stem Cell & Leukemia Laboratory, Cancer Biology & Inflammatory Disorder Division, CSIR-Indian Institute of Chemical Biology, Kolkata, India.,Translational Research Unit of Excellence (TRUE), Kolkata, India
| | - Sayantani Sinha
- Stem Cell & Leukemia Laboratory, Cancer Biology & Inflammatory Disorder Division, CSIR-Indian Institute of Chemical Biology, Kolkata, India.,Translational Research Unit of Excellence (TRUE), Kolkata, India
| | - Amitava Sengupta
- Stem Cell & Leukemia Laboratory, Cancer Biology & Inflammatory Disorder Division, CSIR-Indian Institute of Chemical Biology, Kolkata, India.,Translational Research Unit of Excellence (TRUE), Kolkata, India
| |
Collapse
|
13
|
Li L, Sima Y, Wang Y, Zhou J, Wang L, Chen Y. The cytotoxicity of advanced glycation end products was attenuated by UCMSCs in human vaginal wall fibroblasts by inhibition of an inflammatory response and activation of PI3K/AKT/PTEN. Biosci Trends 2020; 14:263-270. [PMID: 32493859 DOI: 10.5582/bst.2020.03125] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Pelvic organ prolapse (POP) occurs when the pelvic organs (bladder, bowel or uterus) herniate into the vagina, causing incontinence, voiding, and bowel and sexual dysfunction, negatively impacting upon a woman's quality of life. Intermediate intermolecular cross-links and advanced glycation cross-links increase in prolapsed tissue. Stem cells are able to participate in tissue repair due to their ability to differentiate into multiple lineages, and thus into various types of connective tissue cells, so they therefore hold great promise for treating pelvic floor dysfunction. The current study found that advanced glycation end products (AGEs) inhibited the viability and proliferation of human vaginal wall fibroblasts (VWFs), were cytotoxic to VWFs, and also induced the apoptosis of VWFs. In contrast, umbilical cord-derived mesenchymal stem cells (UCMSCs) secreted anti-inflammation cytokines to protect against the cytotoxic effects of fibroblasts induced by AGEs and attenuated the cytotoxic effect of AGE on fibroblasts by activation of the PI3K/Akt-PTEN pathway. This study demonstrated that UCMSCs inhibited the cytotoxic effect of AGE in cells from patients with POP by inducing an anti-inflammatory reaction and activating the PI3K/AKT/PTEN signaling pathway. The current results provide important insights into use of stem cells to treat POP.
Collapse
Affiliation(s)
- Lisha Li
- Obstetrics and Gynecology Hospital of Fudan University, Shanghai, China.,The Academy of Integrative Medicine of Fudan University, Shanghai, China.,Shanghai Key Laboratory of Female Reproductive Endocrine-related Diseases, Shanghai, China
| | - Yizhen Sima
- Obstetrics and Gynecology Hospital of Fudan University, Shanghai, China
| | - Yan Wang
- Obstetrics and Gynecology Hospital of Fudan University, Shanghai, China
| | - Jing Zhou
- Obstetrics and Gynecology Hospital of Fudan University, Shanghai, China.,The Academy of Integrative Medicine of Fudan University, Shanghai, China.,Shanghai Key Laboratory of Female Reproductive Endocrine-related Diseases, Shanghai, China
| | - Ling Wang
- Obstetrics and Gynecology Hospital of Fudan University, Shanghai, China.,The Academy of Integrative Medicine of Fudan University, Shanghai, China.,Shanghai Key Laboratory of Female Reproductive Endocrine-related Diseases, Shanghai, China
| | - Yisong Chen
- Obstetrics and Gynecology Hospital of Fudan University, Shanghai, China
| |
Collapse
|
14
|
Fu X, Xu B, Jiang J, Du X, Yu X, Yan Y, Li S, Inglis BM, Ma H, Wang H, Pei X, Si W. Effects of cryopreservation and long-term culture on biological characteristics and proteomic profiles of human umbilical cord-derived mesenchymal stem cells. Clin Proteomics 2020; 17:15. [PMID: 32489333 PMCID: PMC7247169 DOI: 10.1186/s12014-020-09279-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Accepted: 05/15/2020] [Indexed: 12/14/2022] Open
Abstract
Background Human umbilical cord-derived MSCs (hUC-MSCs) have been identified as promising seeding cells in tissue engineering and clinical applications of regenerative medicine due to their advantages of simple acquisition procedure and the capability to come from a young tissue donor over the other MSCs sources. In clinical applications, large scale production is required and optimal cryopreservation and culture conditions are essential to autologous and allogeneic transplantation in the future. However, the influence of cryopreserved post-thaw and long-term culture on hUC-MSCs remains unknown, especially in terms of specific protein expression. Therefore, biological characteristics and proteomic profiles of hUC-MSCs after cryopreserving and long-term culturing were investigated. Methods Firstly, hUC-MSCs were isolated from human umbilical cord tissues and identified through morphology, surface markers and tri-lineage differentiation potential at passage 3, and then the biological characteristics and proteomic profiles were detected and compared after cryopreserving and long-term culturing at passage 4 and continuously cultured to passage 10 with detection occurring here as well. The proteomic profiles were tested by using the isobaric tags for relative and absolute quantification (iTRAQ) labeling technique and differential protein were confirmed by mass spectrometry. Results The results showed no significant differences in phenotypes including morphology, surface marker and tri-lineage differentiation potential but have obvious changes in translation level, which is involved in metabolism, cell cycle and other pathways. Conclusion This suggests that protein expression may be used as an indicator of hUC-MSCs security testing before applying in clinical settings, and it is also expected to provide the foundation or standardization guide of hUC-MSCs applications in regenerative medicine.
Collapse
Affiliation(s)
- Xufeng Fu
- Key Laboratory of Fertility Preservation and Maintenance of Ministry of Education, Ningxia Medical University, Yinchuan, 750004 China.,Yunnan Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming, 650500 China
| | - Bo Xu
- Key Laboratory of Fertility Preservation and Maintenance of Ministry of Education, Ningxia Medical University, Yinchuan, 750004 China
| | - Jiang Jiang
- Department of Obstetrics, The First People's Hospital of Yunnan Province, Kunming, 650032 China
| | - Xing Du
- Key Laboratory of Fertility Preservation and Maintenance of Ministry of Education, Ningxia Medical University, Yinchuan, 750004 China
| | - Xiaoli Yu
- Key Laboratory of Fertility Preservation and Maintenance of Ministry of Education, Ningxia Medical University, Yinchuan, 750004 China
| | - Yaping Yan
- Yunnan Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming, 650500 China
| | - Shanshan Li
- Yunnan Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming, 650500 China
| | - Briauna Marie Inglis
- Yunnan Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming, 650500 China
| | - Huiming Ma
- Key Laboratory of Fertility Preservation and Maintenance of Ministry of Education, Ningxia Medical University, Yinchuan, 750004 China
| | - Hongyan Wang
- Key Laboratory of Fertility Preservation and Maintenance of Ministry of Education, Ningxia Medical University, Yinchuan, 750004 China
| | - Xiuying Pei
- Key Laboratory of Fertility Preservation and Maintenance of Ministry of Education, Ningxia Medical University, Yinchuan, 750004 China
| | - Wei Si
- Yunnan Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming, 650500 China
| |
Collapse
|
15
|
Miyai Y, Esaki N, Takahashi M, Enomoto A. Cancer-associated fibroblasts that restrain cancer progression: Hypotheses and perspectives. Cancer Sci 2020; 111:1047-1057. [PMID: 32060987 PMCID: PMC7156845 DOI: 10.1111/cas.14346] [Citation(s) in RCA: 117] [Impact Index Per Article: 29.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2019] [Revised: 01/26/2020] [Accepted: 02/02/2020] [Indexed: 12/11/2022] Open
Abstract
The roles of cancer‐associated fibroblasts (CAF) in the progression of various types of cancers are well established. CAF promote cancer progression through pleiotropic mechanisms, including the secretion of soluble factors and extracellular matrix, physical interactions with cancer cells, and the regulation of angiogenesis, immunity and metabolism. Their contribution to therapeutic resistance is also well appreciated. Therefore, CAF have been considered as a therapeutic target in cancer. However, recent studies in autochthonous pancreatic cancer models suggest that specific subset(s) of CAF exhibit cancer‐restraining roles, indicating that CAF are functionally and molecularly heterogeneous, which is supported by recent single‐cell transcriptome analyses. While cancer‐promoting CAF (pCAF) have been extensively studied, the nature and specific marker(s) of cancer‐restraining CAF (rCAF) have remained uncharacterized. Interestingly, a recent study provided insight into the nature of rCAF and suggested that they may share molecular properties with pancreatic stellate cells (PSC) and mesenchymal stem/stromal cells (MSC). Complicating this finding is that PSC and MSC have been shown to promote the formation of a tumor‐permissive and tumor‐promoting environment in xenograft tumor models. However, these cells undergo significant transcriptional and epigenetic changes during ex vivo culture, which confounds the interpretation of experimental results based on the use of cultured cells. In this short review, we describe recent studies and hypotheses on the identity of rCAF and discuss their analogy to fibroblasts that suppress fibrosis in fibrotic diseases. Finally, we discuss how these findings can be exploited to develop novel anticancer therapies in the future.
Collapse
Affiliation(s)
- Yuki Miyai
- Department of Pathology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Nobutoshi Esaki
- Department of Pathology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Masahide Takahashi
- Department of Pathology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Atsushi Enomoto
- Department of Pathology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| |
Collapse
|
16
|
Miyai Y, Esaki N, Takahashi M, Enomoto A. Cancer-associated fibroblasts that restrain cancer progression: Hypotheses and perspectives. Cancer Sci 2020. [PMID: 32060987 DOI: 10.1111/cas.14346.] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
The roles of cancer-associated fibroblasts (CAF) in the progression of various types of cancers are well established. CAF promote cancer progression through pleiotropic mechanisms, including the secretion of soluble factors and extracellular matrix, physical interactions with cancer cells, and the regulation of angiogenesis, immunity and metabolism. Their contribution to therapeutic resistance is also well appreciated. Therefore, CAF have been considered as a therapeutic target in cancer. However, recent studies in autochthonous pancreatic cancer models suggest that specific subset(s) of CAF exhibit cancer-restraining roles, indicating that CAF are functionally and molecularly heterogeneous, which is supported by recent single-cell transcriptome analyses. While cancer-promoting CAF (pCAF) have been extensively studied, the nature and specific marker(s) of cancer-restraining CAF (rCAF) have remained uncharacterized. Interestingly, a recent study provided insight into the nature of rCAF and suggested that they may share molecular properties with pancreatic stellate cells (PSC) and mesenchymal stem/stromal cells (MSC). Complicating this finding is that PSC and MSC have been shown to promote the formation of a tumor-permissive and tumor-promoting environment in xenograft tumor models. However, these cells undergo significant transcriptional and epigenetic changes during ex vivo culture, which confounds the interpretation of experimental results based on the use of cultured cells. In this short review, we describe recent studies and hypotheses on the identity of rCAF and discuss their analogy to fibroblasts that suppress fibrosis in fibrotic diseases. Finally, we discuss how these findings can be exploited to develop novel anticancer therapies in the future.
Collapse
Affiliation(s)
- Yuki Miyai
- Department of Pathology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Nobutoshi Esaki
- Department of Pathology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Masahide Takahashi
- Department of Pathology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Atsushi Enomoto
- Department of Pathology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| |
Collapse
|
17
|
Gauthier-Fisher A, Kauffman A, Librach CL. Potential use of stem cells for fertility preservation. Andrology 2019; 8:862-878. [PMID: 31560823 DOI: 10.1111/andr.12713] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Revised: 09/19/2019] [Accepted: 09/23/2019] [Indexed: 12/14/2022]
Abstract
BACKGROUND Infertility and gonadal dysfunction can result from gonadotoxic therapies, environmental exposures, aging, or genetic conditions. In men, non-obstructive azoospermia (NOA) results from defects in the spermatogenic process that can be attributed to spermatogonial stem cells (SSC) or their niche, or both. While assisted reproductive technologies and sperm banking can enable fertility preservation (FP) in men of reproductive age who are at risk for infertility, FP for pre-pubertal patients remains experimental. Therapeutic options for NOA are limited. The rapid advance of stem cell research and of gene editing technologies could enable new FP options for these patients. Induced pluripotent stem cells (iPSC), SSC, and testicular niche cells, as well as mesenchymal stromal cells (aka medicinal signaling cells, MSCs), have been investigated for their potential use in male FP strategies. OBJECTIVE Here, we review the benefits and challenges for three types of stem cell-based approaches under investigation for male FP, focusing on the role that promising sources of MSC derived from human umbilical cord, specifically human umbilical cord perivascular cells (HUCPVC), could fulfill. These approaches are as follows: 1. isolation and ex vivo expansion of autologous SSC for in vivo transplantation or in vitro spermatogenesis; 2. in vitro differentiation toward germ cell and testicular somatic cell lineages using autologous SSC, or stem cells such iPSC or MSC; and 3. protection or regeneration of the spermatogenic niche after gonadotoxic insults in vivo. CONCLUSION Our studies suggest that HUCPVC are promising sources of cells that could be utilized in multiple aspects of male FP strategies.
Collapse
Affiliation(s)
| | - A Kauffman
- CReATe Fertility Centre, Toronto, ON, Canada
| | - C L Librach
- CReATe Fertility Centre, Toronto, ON, Canada.,Department of Obstetrics and Gynecology, University of Toronto, Toronto, ON, Canada.,Department of Physiology, University of Toronto, Toronto, ON, Canada.,Institute of Medical Sciences, University of Toronto, Toronto, ON, Canada.,Department of Gynecology, Women's College Hospital, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
18
|
Hayes AJ, Melrose J. Glycosaminoglycan and Proteoglycan Biotherapeutics in Articular Cartilage Protection and Repair Strategies: Novel Approaches to Visco‐supplementation in Orthobiologics. ADVANCED THERAPEUTICS 2019. [DOI: 10.1002/adtp.201900034] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Anthony J. Hayes
- Bioimaging Research HubCardiff School of BiosciencesCardiff University Cardiff CF10 3AX Wales UK
| | - James Melrose
- Graduate School of Biomedical EngineeringUNSW Sydney Sydney NSW 2052 Australia
- Raymond Purves Bone and Joint Research LaboratoriesKolling Institute of Medical ResearchRoyal North Shore Hospital and The Faculty of Medicine and HealthUniversity of Sydney St. Leonards NSW 2065 Australia
- Sydney Medical SchoolNorthernRoyal North Shore HospitalSydney University St. Leonards NSW 2065 Australia
| |
Collapse
|
19
|
Weiss ARR, Dahlke MH. Immunomodulation by Mesenchymal Stem Cells (MSCs): Mechanisms of Action of Living, Apoptotic, and Dead MSCs. Front Immunol 2019; 10:1191. [PMID: 31214172 PMCID: PMC6557979 DOI: 10.3389/fimmu.2019.01191] [Citation(s) in RCA: 412] [Impact Index Per Article: 82.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2019] [Accepted: 05/10/2019] [Indexed: 12/13/2022] Open
Abstract
Expectations on mesenchymal stem cell (MSC) treatment are high, especially in the fields of sepsis, transplant medicine, and autoimmune diseases. Various pre-clinical studies have been conducted with encouraging results, although the mechanisms of action behind the observed immunomodulatory capacity of mesenchymal stem cells have not been fully understood. Previous studies have demonstrated that the immunomodulatory effect of MSCs is communicated via MSC-secreted cytokines and has been proven to rely on the local microenvironment as some of the observed effects depend on a pre-treatment of MSCs with inflammatory cytokines. Nonetheless, recent findings indicate that the cytokine-mediated effects are only one part of the equation as apoptotic, metabolically inactivated, or even fragmented MSCs have been shown to possess an immunomodulatory potential as well. Both cytokine-dependent and cytokine-independent mechanisms suggest a key role for regulatory T cells and monocytes in the overall pattern, but the principle as to why viable and non-viable MSCs have similar immunomodulatory capacities remains elusive. Here we review the current knowledge on cellular and molecular mechanisms involved in MSC-mediated immunomodulation and focus on the viability of MSCs, as there is still uncertainty concerning the tumorigenic potential of living MSCs.
Collapse
|
20
|
Melnik S, Werth N, Boeuf S, Hahn EM, Gotterbarm T, Anton M, Richter W. Impact of c-MYC expression on proliferation, differentiation, and risk of neoplastic transformation of human mesenchymal stromal cells. Stem Cell Res Ther 2019; 10:73. [PMID: 30836996 PMCID: PMC6402108 DOI: 10.1186/s13287-019-1187-z] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Revised: 02/13/2019] [Accepted: 02/22/2019] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Mesenchymal stromal cells isolated from bone marrow (MSC) represent an attractive source of adult stem cells for regenerative medicine. However, thorough research is required into their clinical application safety issues concerning a risk of potential neoplastic degeneration in a process of MSC propagation in cell culture for therapeutic applications. Expansion protocols could preselect MSC with elevated levels of growth-promoting transcription factors with oncogenic potential, such as c-MYC. We addressed the question whether c-MYC expression affects the growth and differentiation potential of human MSC upon extensive passaging in cell culture and assessed a risk of tumorigenic transformation caused by MSC overexpressing c-MYC in vivo. METHODS MSC were subjected to retroviral transduction to induce expression of c-MYC, or GFP, as a control. Cells were expanded, and effects of c-MYC overexpression on osteogenesis, adipogenesis, and chondrogenesis were monitored. Ectopic bone formation properties were tested in SCID mice. A potential risk of tumorigenesis imposed by MSC with c-MYC overexpression was evaluated. RESULTS C-MYC levels accumulated during ex vivo passaging, and overexpression enabled the transformed MSC to significantly overgrow competing control cells in culture. C-MYC-MSC acquired enhanced biological functions of c-MYC: its increased DNA-binding activity, elevated expression of the c-MYC-binding partner MAX, and induction of antagonists P19ARF/P16INK4A. Overexpression of c-MYC stimulated MSC proliferation and reduced osteogenic, adipogenic, and chondrogenic differentiation. Surprisingly, c-MYC overexpression also caused an increased COL10A1/COL2A1 expression ratio upon chondrogenesis, suggesting a role in hypertrophic degeneration. However, the in vivo ectopic bone formation ability of c-MYC-transduced MSC remained comparable to control GFP-MSC. There was no indication of tumor growth in any tissue after transplantation of c-MYC-MSC in mice. CONCLUSIONS C-MYC expression promoted high proliferation rates of MSC, attenuated but not abrogated their differentiation capacity, and did not immediately lead to tumor formation in the tested in vivo mouse model. However, upregulation of MYC antagonists P19ARF/P16INK4A promoting apoptosis and senescence, as well as an observed shift towards a hypertrophic collagen phenotype and cartilage degeneration, point to lack of safety for clinical application of MSC that were manipulated to overexpress c-MYC for their better expansion.
Collapse
Affiliation(s)
- Svitlana Melnik
- Research Center for Experimental Orthopaedics, Center for Orthopaedics, Trauma Surgery and Paraplegiology, Heidelberg University Hospital, Schlierbacher Landstrasse 200a, 69118, Heidelberg, Germany
| | - Nadine Werth
- Research Center for Experimental Orthopaedics, Center for Orthopaedics, Trauma Surgery and Paraplegiology, Heidelberg University Hospital, Schlierbacher Landstrasse 200a, 69118, Heidelberg, Germany
| | - Stephane Boeuf
- Research Center for Experimental Orthopaedics, Center for Orthopaedics, Trauma Surgery and Paraplegiology, Heidelberg University Hospital, Schlierbacher Landstrasse 200a, 69118, Heidelberg, Germany
| | - Eva-Maria Hahn
- Research Center for Experimental Orthopaedics, Center for Orthopaedics, Trauma Surgery and Paraplegiology, Heidelberg University Hospital, Schlierbacher Landstrasse 200a, 69118, Heidelberg, Germany
| | - Tobias Gotterbarm
- Department of Orthopedics, Kepler University Hospital, Linz, Austria
| | - Martina Anton
- Institutes of Molecular Immunology and Experimental Oncology, Klinikum rechts der Isar, Technical University Munich, Munich, Germany
| | - Wiltrud Richter
- Research Center for Experimental Orthopaedics, Center for Orthopaedics, Trauma Surgery and Paraplegiology, Heidelberg University Hospital, Schlierbacher Landstrasse 200a, 69118, Heidelberg, Germany.
| |
Collapse
|
21
|
Bahsoun S, Coopman K, Forsyth NR, Akam EC. The Role of Dissolved Oxygen Levels on Human Mesenchymal Stem Cell Culture Success, Regulatory Compliance, and Therapeutic Potential. Stem Cells Dev 2018; 27:1303-1321. [DOI: 10.1089/scd.2017.0291] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Affiliation(s)
- Soukaina Bahsoun
- School of Sport, Exercise and Health Sciences, Loughborough University, Loughborough, United Kingdom
| | - Karen Coopman
- Centre for Biological Engineering, Loughborough University, Loughborough, United Kingdom
| | - Nicholas R. Forsyth
- Guy Hilton Research Centre, Institute for Science and Technology in Medicine, Keele University, Keele, United Kingdom
| | - Elizabeth C. Akam
- School of Sport, Exercise and Health Sciences, Loughborough University, Loughborough, United Kingdom
| |
Collapse
|