1
|
Cheever A, Kang CC, O’Neill KL, Weber KS. Application of novel CAR technologies to improve treatment of autoimmune disease. Front Immunol 2024; 15:1465191. [PMID: 39445021 PMCID: PMC11496059 DOI: 10.3389/fimmu.2024.1465191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Accepted: 09/23/2024] [Indexed: 10/25/2024] Open
Abstract
Chimeric antigen receptor (CAR) T cell therapy has become an important treatment for hematological cancers, and its success has spurred research into CAR T cell therapies for other diseases, including solid tumor cancers and autoimmune diseases. Notably, the development of CAR-based treatments for autoimmune diseases has shown great progress recently. Clinical trials for anti-CD19 and anti-BCMA CAR T cells in treating severe B cell-mediated autoimmune diseases, like systemic lupus erythematosus (SLE), have shown lasting remission thus far. CAR T cells targeting autoreactive T cells are beginning clinical trials for treating T cell mediated autoimmune diseases. Chimeric autoantigen receptor (CAAR) T cells specifically target and eliminate only autoreactive B cells, and they have shown promise in treating mucosal pemphigus vulgaris and MuSK myasthenia gravis. Regulatory CAR T cells have also been developed, which show potential in altering autoimmune affected areas by creating a protective barrier as well as helping decrease inflammation. These new treatments are only the beginning of potential CAR T cell applications in treating autoimmune disease. Novel CAR technologies have been developed that increase the safety, potency, specificity, and efficacy of CAR T cell therapy. Applying these novel modifications to autoimmune CARs has the potential to enhance the efficacy and applicability of CAR therapies to autoimmune disease. This review will detail several recently developed CAR technologies and discuss how their application to autoimmune disease will improve this emerging field. These include logic-gated CARs, soluble protein-secreting CARs, and modular CARs that enable CAR T cell therapies to be more specific, reach a wider span of target cells, be safer for patients, and give a more potent cytotoxic response. Applying these novel CAR technologies to the treatment of autoimmune diseases has the potential to revolutionize this growing application of CAR T cell therapies.
Collapse
|
2
|
Chen W, Xian N, Zhao N, Zhang Q, Xu Y. PD1CD28 chimeric molecule enhances EGFRvⅢ specific CAR-T cells in xenograft experiments in mouse models. PLoS One 2024; 19:e0310430. [PMID: 39352918 PMCID: PMC11444390 DOI: 10.1371/journal.pone.0310430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Accepted: 08/30/2024] [Indexed: 10/04/2024] Open
Abstract
Over the years, CAR-T cell therapy has achieved remarkable success in treating hematological malignancies. However, this efficacy has not been replicated in the context of glioblastoma (GBM). In this study, a PD1CD28 chimeric molecule was introduced into EGFRvⅢ-directed CAR-T cells, generating EGFRvⅢ-P2A-PD1CD28 CAR-T cells. Notably, this modification significantly increased IL-2 secretion and enhanced antigen-dependent activation of CAR-T cells, especially when programmed cell death ligand 1 (PD-L1) was present in vitro. In addition, the in vivo xenograft experiments revealed that the PD1CD28 chimeric molecule played a pivotal role in reducing recurrence rates, effectively controlling recurrent tumor volume, and ultimately prolonging the survival of mice. Collectively, these findings suggest that EGFRvⅢ-directed CAR-T cells co-expressing the PD1CD28 chimeric molecule have the potential to significantly enhance the treatment efficacy against GBM.
Collapse
Affiliation(s)
- Wanqiong Chen
- School of Pharmacy, Quanzhou Medical College, Quanzhou, Fujian, China
| | - Na Xian
- Institute of Immunotherapy, Fujian Medical University, Fuzhou, Fujian, China
- Tcelltech Biological Science and Technology Inc., Fuzhou, Fujian, China
| | - Ningning Zhao
- Laboratory Animal Center, Fujian Medical University, Fuzhou, Fujian, China
| | - Qiong Zhang
- School of Pharmacy, Fujian Medical University, Fuzhou, Fujian, China
| | - Yunlu Xu
- Laboratory of Snake Venom, The Center of Translational Hematology, Fujian Medical University, Fuzhou, Fujian, China
| |
Collapse
|
3
|
Chen L, Chao Y, Li W, Wu Z, Wang Q. Soluble immune checkpoint molecules in cancer risk, outcomes prediction, and therapeutic applications. Biomark Res 2024; 12:95. [PMID: 39218939 PMCID: PMC11368031 DOI: 10.1186/s40364-024-00647-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Accepted: 08/24/2024] [Indexed: 09/04/2024] Open
Abstract
Immunotherapy has emerged as a pivotal modality in cancer treatment, with immune checkpoint inhibitors effectively combating malignancies by impeding crucial pathways within the immune system and stimulating patients' immune responses. Soluble forms of immune checkpoints exhibit a remarkable diversity and can be readily tracked in circulation, holding immense potential as biomarkers for cancer treatment. An increasing number of studies focused on soluble immune checkpoints in cancer have emerged thanks to technological advancements. In this systematic review, we comprehensively summarized the recent studies on soluble immune checkpoints in human cancer risk prediction, outcome prediction, therapeutic applications, and potential molecular mechanisms, which demonstrated the promising future of soluble immune checkpoints in clinical applications. The clinical relevance of soluble immune checkpoints has been recognized in multiple cancers, yet the therapeutic applications and mechanisms remain obscure. Interpreting the impacts and mechanisms of soluble immune checkpoints could shed a light on the novel strategies of cancer screening, treatments, and outcome prediction.
Collapse
Affiliation(s)
- Lin Chen
- Department of Surgical Oncology, Affiliated Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Zhejiang, 310009, Zhejiang, PR China
- School of Public Health, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Yuqing Chao
- Department of Surgical Oncology, Affiliated Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Zhejiang, 310009, Zhejiang, PR China
- School of Public Health, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Wenjing Li
- Department of Surgical Oncology, Affiliated Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Zhejiang, 310009, Zhejiang, PR China
- School of Public Health, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Zhixia Wu
- Department of Service and Purchase, Affiliated Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Zhejiang, China
| | - Qinchuan Wang
- Department of Surgical Oncology, Affiliated Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Zhejiang, 310009, Zhejiang, PR China.
- School of Public Health, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.
| |
Collapse
|
4
|
Wang X, Yan L, Guo J, Jia R. An anti-PD-1 antisense oligonucleotide promotes the expression of soluble PD-1 by blocking the interaction between SRSF3 and an exonic splicing enhancer of PD-1 exon 3. Int Immunopharmacol 2024; 126:111280. [PMID: 38043270 DOI: 10.1016/j.intimp.2023.111280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 11/11/2023] [Accepted: 11/20/2023] [Indexed: 12/05/2023]
Abstract
PD-1 is a key immune checkpoint molecule. Anti-PD-1 immunotherapy is encouraging in cancer treatment. However, it still needs to be improved. PD-1 has at least five isoforms generated by alternative splicing. An isoform without exon 3 encoding soluble PD-1 (sPD-1) can activate anti-tumor immunity by inhibiting the interaction between cellular surface full-length PD-1 (flPD-1) and PD-L1. However, the regulatory mechanism of exon 3 splicing remains largely unknown. Here, we screened the exon 3 sequence by mutation and searched corresponding splicing factors by SpliceAid database and pulldown assay. The alternative splicing of PD-1 exon 3 was analyzed by RT-PCR. The expression levels of flPD-1 and sPD-1 were analyzed by Western blot, flow cytometry, and ELISA. We discovered that an exonic splicing enhancer (ESE) of exon 3 is essential for its inclusion. Moreover, SRSF3 can bind to this ESE and enhance exon 3 inclusion and flPD-1 expression. We designed and screened out an antisense oligonucleotide (ASO) targeting PD-1 to block the interaction between SRSF3 and ESE, and significantly increase exon 3 skipping and sPD-1 expression, which was verified in various tumor cells in addition to oral cancer cells. Altogether, our results uncovered the regulatory mechanism of human PD-1 exon 3 splicing and sPD-1 expression and further designed a novel anti-PD-1 ASO, which are useful for developing a new method of anti-cancer immunotherapy.
Collapse
Affiliation(s)
- Xu Wang
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University Wuhan 430072, China.
| | - Lingyan Yan
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University Wuhan 430072, China
| | - Jihua Guo
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University Wuhan 430072, China; Department of Endodontics, School & Hospital of Stomatology, Wuhan University, Wuhan 430072, China.
| | - Rong Jia
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University Wuhan 430072, China.
| |
Collapse
|
5
|
Zhang A, Wang S, Sun Y, Zhang Y, Zhao L, Yang Y, Zhang Y, Xu L, Lei Y, Du J, Chen H, Duan L, He M, Shi L, Liu L, Wang Q, Hu L, Zhang B. Targeting and cytotoxicity of chimeric antigen receptor T cells grafted with PD1 extramembrane domain. Exp Hematol Oncol 2023; 12:85. [PMID: 37777797 PMCID: PMC10543853 DOI: 10.1186/s40164-023-00438-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Accepted: 08/22/2023] [Indexed: 10/02/2023] Open
Abstract
BACKGROUND Immunosuppression induced by programmed cell death protein 1 (PD1) presents a significant constraint on the effectiveness of chimeric antigen receptor (CAR)-T therapy. The potential of combining PD1/PDL1 (Programmed cell death 1 ligand 1) axis blockade with CAR-T cell therapy is promising. However, developing a highly efficient and minimally toxic approach requires further exploration. Our attempt to devise a novel CAR structure capable of recognizing both tumor antigens and PDL1 encountered challenges since direct targeting of PDL1 resulted in systemic adverse effects. METHODS In this research, we innovatively engineered novel CARs by grafting the PD1 domain into a conventional second-generation (2G) CAR specifically targeting CD19. These CARs exist in two distinct forms: one with PD1 extramembrane domain (EMD) directly linked to a transmembrane domain (TMD), referred to as PE CAR, and the other with PD1 EMD connected to a TMD via a CD8 hinge domain (HD), known as PE8HT CAR. To evaluate their efficacy, we conducted comprehensive assessments of their cytotoxicity, cytokine release, and potential off-target effects both in vitro and in vivo using tumor models that overexpress CD19/PDL1. RESULTS The findings of our study indicate that PE CAR demonstrates enhanced cytotoxicity and reduced cytokine release specifically towards CD19 + PDL1 + tumor cells, without off-target effects to CD19-PDL1 + tumor cells, in contrast to 2G CAR-T cells. Additionally, PE CAR showed ameliorative differentiation, exhaustion, and apoptosis phenotypes as assessed by flow cytometry, RNA-sequencing, and metabolic parameter analysis, after encountering CD19 + PDL1 + tumor cells. CONCLUSION Our results revealed that CAR grafted with PD1 exhibits enhanced antitumor activity with lower cytokine release and no PD1-related off-target toxicity in tumor models that overexpress CD19 and PDL1. These findings suggest that our CAR design holds the potential for effectively addressing the PD1 signal.
Collapse
Affiliation(s)
- Ang Zhang
- Academy of Military Medical Sciences, Academy of Military Sciences, Beijing, 100850, PR China
- Department of Hematology, Strategic Support Force Medical Center, Beijing, China
| | - Shenyu Wang
- Academy of Military Medical Sciences, Academy of Military Sciences, Beijing, 100850, PR China
- Senior Department of Hematology, the Fifth Medical Center of Chinese PLA General Hospital, Beijing, 100071, PR China
| | - Yao Sun
- Senior Department of Hematology, the Fifth Medical Center of Chinese PLA General Hospital, Beijing, 100071, PR China
| | - Yikun Zhang
- Department of Hematology, Strategic Support Force Medical Center, Beijing, China
| | - Long Zhao
- Senior Department of Hematology, the Fifth Medical Center of Chinese PLA General Hospital, Beijing, 100071, PR China
| | - Yang Yang
- Senior Department of Hematology, the Fifth Medical Center of Chinese PLA General Hospital, Beijing, 100071, PR China
| | - Yijian Zhang
- Senior Department of Hematology, the Fifth Medical Center of Chinese PLA General Hospital, Beijing, 100071, PR China
| | - Lei Xu
- Senior Department of Hematology, the Fifth Medical Center of Chinese PLA General Hospital, Beijing, 100071, PR China
| | - Yangyang Lei
- Senior Department of Hematology, the Fifth Medical Center of Chinese PLA General Hospital, Beijing, 100071, PR China
| | - Jie Du
- SAFE Pharmaceutical Research Institute Co., Ltd, Beijing, China
| | - Hu Chen
- Academy of Military Medical Sciences, Academy of Military Sciences, Beijing, 100850, PR China
| | - Lian Duan
- Academy of Military Medical Sciences, Academy of Military Sciences, Beijing, 100850, PR China
| | - Mingyi He
- Department of Hematology, Strategic Support Force Medical Center, Beijing, China
| | - Lintao Shi
- Department of Hematology, Strategic Support Force Medical Center, Beijing, China
| | - Lei Liu
- Department of Hematology, Strategic Support Force Medical Center, Beijing, China
| | - Quanjun Wang
- SAFE Pharmaceutical Research Institute Co., Ltd, Beijing, China.
| | - Liangding Hu
- Senior Department of Hematology, the Fifth Medical Center of Chinese PLA General Hospital, Beijing, 100071, PR China.
| | - Bin Zhang
- Senior Department of Hematology, the Fifth Medical Center of Chinese PLA General Hospital, Beijing, 100071, PR China.
| |
Collapse
|
6
|
Mariotti FR, Ingegnere T, Landolina N, Vacca P, Munari E, Moretta L. Analysis of the mechanisms regulating soluble PD-1 production and function in human NK cells. Front Immunol 2023; 14:1229341. [PMID: 37638041 PMCID: PMC10449250 DOI: 10.3389/fimmu.2023.1229341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Accepted: 07/25/2023] [Indexed: 08/29/2023] Open
Abstract
NK cells represent important effectors that play a major role in innate defences against pathogens and display potent cytolytic activity against tumor cells. An array of surface receptors finely regulate their function and inhibitory checkpoints, such as PD-1, can dampen the immune response inducing an immunosuppressive state. Indeed, PD-1 expression in human NK cells correlated with impaired effector function and tumor immune evasion. Importantly, blockade of the PD-1/PD-L1 axis has been shown to reverse NK cell exhaustion and increase their cytotoxicity. Recently, soluble counterparts of checkpoint receptors, such as soluble PD-1 (sPD-1), are rising high interest due to their biological activity and ability to modulate immune responses. It has been widely demonstrated that sPD-1 can modulate T cell effector functions and tumor growth. Tumor-infiltrating T cells are considered the main source of circulating sPD-1. In addition, recently, also stimulated macrophages have been demonstrated to release sPD-1. However, no data are present on the role of sPD-1 in the context of other innate immune cell subsets and therefore this study is aimed to unveil the effect of sPD-1 on human NK cell function. We produced the recombinant sPD-1 protein and demonstrated that it binds PD-L1 and that its presence results in increased NK cell cytotoxicity. Notably, we also identified a pathway regulating endogenous sPD-1 synthesis and release in human NK cells. Secreted endogenous sPD-1, retained its biological function and could modulate NK cell effector function. Overall, these data reveal a pivotal role of sPD-1 in regulating NK-mediated innate immune responses.
Collapse
Affiliation(s)
| | - Tiziano Ingegnere
- Tumor Immunology Unit, Bambino Gesù Children’s Hospital, IRCCS, Rome, Italy
| | - Nadine Landolina
- Tumor Immunology Unit, Bambino Gesù Children’s Hospital, IRCCS, Rome, Italy
- Lymphoid Cells of Innate Immunity Unit, Bambino Gesù Children’s Hospital, IRCCS, Rome, Italy
| | - Paola Vacca
- Lymphoid Cells of Innate Immunity Unit, Bambino Gesù Children’s Hospital, IRCCS, Rome, Italy
| | - Enrico Munari
- Pathology Unit, Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Lorenzo Moretta
- Tumor Immunology Unit, Bambino Gesù Children’s Hospital, IRCCS, Rome, Italy
| |
Collapse
|
7
|
Lau E, Kwong G, Fowler TW, Sun BC, Donohoue PD, Davis RT, Bryan M, McCawley S, Clarke SC, Williams C, Banh L, Irby M, Edwards L, Storlie M, Kohrs B, Lilley GWJ, Smith SC, Gradia S, Fuller CK, Skoble J, Garner E, van Overbeek M, Kanner SB. Allogeneic chimeric antigen receptor-T cells with CRISPR-disrupted programmed death-1 checkpoint exhibit enhanced functional fitness. Cytotherapy 2023:S1465-3249(23)00091-9. [PMID: 37086241 DOI: 10.1016/j.jcyt.2023.03.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Revised: 03/14/2023] [Accepted: 03/20/2023] [Indexed: 04/23/2023]
Abstract
BACKGROUND AIMS Therapeutic disruption of immune checkpoints has significantly advanced the armamentarium of approaches for treating cancer. The prominent role of the programmed death-1 (PD-1)/programmed death ligand-1 axis for downregulating T cell function offers a tractable strategy for enhancing the disease-modifying impact of CAR-T cell therapy. METHODS To address checkpoint interference, primary human T cells were genome edited with a next-generation CRISPR-based platform (Cas9 chRDNA) by knockout of the PDCD1 gene encoding the PD-1 receptor. Site-specific insertion of a chimeric antigen receptor specific for CD19 into the T cell receptor alpha constant locus was implemented to drive cytotoxic activity. RESULTS These allogeneic CAR-T cells (CB-010) promoted longer survival of mice in a well-established orthotopic tumor xenograft model of a B cell malignancy compared with identically engineered CAR-T cells without a PDCD1 knockout. The persistence kinetics of CB-010 cells in hematologic tissues versus CAR-T cells without PDCD1 disruption were similar, suggesting the robust initial debulking of established tumor xenografts was due to enhanced functional fitness. By single-cell RNA-Seq analyses, CB-010 cells, when compared with identically engineered CAR-T cells without a PDCD1 knockout, exhibited fewer Treg cells, lower exhaustion phenotypes and reduced dysfunction signatures and had higher activation, glycolytic and oxidative phosphorylation signatures. Further, an enhancement of mitochondrial metabolic fitness was observed, including increased respiratory capacity, a hallmark of less differentiated T cells. CONCLUSIONS Genomic PD-1 checkpoint disruption in the context of allogeneic CAR-T cell therapy may provide a compelling option for treating B lymphoid malignancies.
Collapse
Affiliation(s)
- Elaine Lau
- Caribou Biosciences, Inc., Berkeley, California, USA
| | - George Kwong
- Caribou Biosciences, Inc., Berkeley, California, USA
| | | | - Bee-Chun Sun
- Caribou Biosciences, Inc., Berkeley, California, USA
| | | | - Ryan T Davis
- Caribou Biosciences, Inc., Berkeley, California, USA
| | - Mara Bryan
- Caribou Biosciences, Inc., Berkeley, California, USA
| | | | | | | | - Lynda Banh
- Caribou Biosciences, Inc., Berkeley, California, USA
| | - Matthew Irby
- Caribou Biosciences, Inc., Berkeley, California, USA
| | | | | | - Bryan Kohrs
- Caribou Biosciences, Inc., Berkeley, California, USA
| | | | | | - Scott Gradia
- Caribou Biosciences, Inc., Berkeley, California, USA
| | | | - Justin Skoble
- Caribou Biosciences, Inc., Berkeley, California, USA
| | | | | | | |
Collapse
|
8
|
Huang J, Huang X, Huang J. CAR-T cell therapy for hematological malignancies: Limitations and optimization strategies. Front Immunol 2022; 13:1019115. [PMID: 36248810 PMCID: PMC9557333 DOI: 10.3389/fimmu.2022.1019115] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2022] [Accepted: 09/13/2022] [Indexed: 02/04/2023] Open
Abstract
In the past decade, the emergence of chimeric antigen receptor (CAR) T-cell therapy has led to a cellular immunotherapy revolution against various cancers. Although CAR-T cell therapies have demonstrated remarkable efficacy for patients with certain B cell driven hematological malignancies, further studies are required to broaden the use of CAR-T cell therapy against other hematological malignancies. Moreover, treatment failure still occurs for a significant proportion of patients. CAR antigen loss on cancer cells is one of the most common reasons for cancer relapse. Additionally, immune evasion can arise due to the hostile immunosuppressive tumor microenvironment and the impaired CAR-T cells in vivo persistence. Other than direct antitumor activity, the adverse effects associated with CAR-T cell therapy are another major concern during treatment. As a newly emerged treatment approach, numerous novel preclinical studies have proposed different strategies to enhance the efficacy and attenuate CAR-T cell associated toxicity in recent years. The major obstacles that impede promising outcomes for patients with hematological malignancies during CAR-T cell therapy have been reviewed herein, along with recent advancements being made to surmount them.
Collapse
|
9
|
Ge Y, Zhang Y, Zhao KN, Zhu H. Emerging Therapeutic Strategies of Different Immunotherapy Approaches Combined with PD-1/PD-L1 Blockade in Cervical Cancer. Drug Des Devel Ther 2022; 16:3055-3070. [PMID: 36110399 PMCID: PMC9470119 DOI: 10.2147/dddt.s374672] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2022] [Accepted: 07/28/2022] [Indexed: 11/23/2022] Open
Affiliation(s)
- Yanjun Ge
- Department of Gynecology, Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine, Shanghai, People’s Republic of China
| | - Yuchen Zhang
- Department of Gynecology, Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine, Shanghai, People’s Republic of China
| | - Kong-Nan Zhao
- School of Basic Medical Science, Wenzhou Medical University, Wenzhou, People’s Republic of China
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St Lucia, Queensland, Australia
| | - Haiyan Zhu
- Department of Gynecology, Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine, Shanghai, People’s Republic of China
- School of Basic Medical Science, Wenzhou Medical University, Wenzhou, People’s Republic of China
- Correspondence: Haiyan Zhu, Shanghai First Maternity and Infant Hospital, No. 2699 Gaokexi Road, Shanghai, 200092, People’s Republic of China, Tel +86 13758465255, Email
| |
Collapse
|
10
|
Pedersen JG, Sokac M, Sørensen BS, Luczak AA, Aggerholm-Pedersen N, Birkbak NJ, Øllegaard TH, Jakobsen MR. Increased Soluble PD-1 Predicts Response to Nivolumab plus Ipilimumab in Melanoma. Cancers (Basel) 2022; 14:cancers14143342. [PMID: 35884403 PMCID: PMC9322974 DOI: 10.3390/cancers14143342] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 06/28/2022] [Accepted: 07/05/2022] [Indexed: 11/16/2022] Open
Abstract
BACKGROUND Checkpoint inhibitors have revolutionized the treatment of metastatic melanoma, yielding long-term survival in a considerable proportion of the patients. Yet, 40-60% of patients do not achieve a long-term benefit from such therapy, emphasizing the urgent need to identify biomarkers that can predict response to immunotherapy and guide patients for the best possible treatment. Here, we exploited an unsupervised machine learning approach to identify potential inflammatory cytokine signatures from liquid biopsies, which could predict response to immunotherapy in melanoma. METHODS We studied a cohort of 77 patients diagnosed with unresectable advanced-stage melanoma undergoing treatment with first-line nivolumab plus ipilimumab or pembrolizumab. Baseline and on-treatment plasma samples were tested for levels of PD-1, PD-L1, IFNγ, IFNβ, CCL20, CXCL5, CXCL10, IL6, IL8, IL10, MCP1, and TNFα and analyzed by Uniform Manifold Approximation and Projection (UMAP) dimension reduction method and k-means clustering analysis. RESULTS Interestingly, using UMAP analysis, we found that treatment-induced cytokine changes measured as a ratio between baseline and on-treatment samples correlated significantly to progression-free survival (PFS). For patients treated with nivolumab plus ipilimumab we identified a group of patients with superior PFS that were characterized by significantly higher baseline-to-on-treatment increments of PD-1, PD-L1, IFNγ, IL10, CXCL10, and TNFα compared to patients with worse PFS. Particularly, a high PD-1 increment was a strong individual predictor for superior PFS (HR = 0.13; 95% CI 0.034-0.49; p = 0.0026). In contrast, decreasing levels of IFNγ and IL6 and increasing levels of CXCL5 were associated with superior PFS in the pembrolizumab group, although none of the cytokines were individually predictors for PFS. CONCLUSIONS In short, our study demonstrates that a high increment of PD-1 is associated with superior PFS in advanced-stage melanoma patients treated with nivolumab plus ipilimumab. In contrast, decreasing levels of IFNγ and IL6, and increasing levels of CXCL5 are associated with response to pembrolizumab. These results suggest that using serial samples to monitor changes in cytokine levels early during treatment is informative for treatment response.
Collapse
Affiliation(s)
| | - Mateo Sokac
- Department of Molecular Medicine (MOMA), Aarhus University Hospital, 8200 Aarhus N, Denmark; (M.S.); (N.J.B.)
| | - Boe Sandahl Sørensen
- Department of Clinical Biochemistry, Aarhus University Hospital, 8200 Aarhus N, Denmark;
| | | | | | - Nicolai Juul Birkbak
- Department of Molecular Medicine (MOMA), Aarhus University Hospital, 8200 Aarhus N, Denmark; (M.S.); (N.J.B.)
- Department of Clinical Medicine, Aarhus University, 8200 Aarhus N, Denmark
- Bioinformatics Research Centre, Aarhus University, 8000 Aarhus C, Denmark
| | - Trine Heide Øllegaard
- Department of Oncology, Aarhus University Hospital, 8200 Aarhus N, Denmark;
- Correspondence: (T.H.Ø); (M.R.J.)
| | | |
Collapse
|
11
|
Forcados C, Joaquina S, Casey NP, Caulier B, Wälchli S. How CAR T Cells Breathe. Cells 2022; 11:cells11091454. [PMID: 35563759 PMCID: PMC9102061 DOI: 10.3390/cells11091454] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 04/19/2022] [Accepted: 04/22/2022] [Indexed: 02/06/2023] Open
Abstract
The manufacture of efficacious CAR T cells represents a major challenge in cellular therapy. An important aspect of their quality concerns energy production and consumption, known as metabolism. T cells tend to adopt diverse metabolic profiles depending on their differentiation state and their stimulation level. It is therefore expected that the introduction of a synthetic molecule such as CAR, activating endogenous signaling pathways, will affect metabolism. In addition, upon patient treatment, the tumor microenvironment might influence the CAR T cell metabolism by compromising the energy resources. The access to novel technology with higher throughput and reduced cost has led to an increased interest in studying metabolism. Indeed, methods to quantify glycolysis and mitochondrial respiration have been available for decades but were rarely applied in the context of CAR T cell therapy before the release of the Seahorse XF apparatus. The present review will focus on the use of this instrument in the context of studies describing the impact of CAR on T cell metabolism and the strategies to render of CAR T cells more metabolically fit.
Collapse
Affiliation(s)
- Christopher Forcados
- Translational Research Unit, Department of Cellular Therapy, Oslo University Hospital, 0379 Oslo, Norway; (C.F.); (S.J.); (N.P.C.); (B.C.)
| | - Sandy Joaquina
- Translational Research Unit, Department of Cellular Therapy, Oslo University Hospital, 0379 Oslo, Norway; (C.F.); (S.J.); (N.P.C.); (B.C.)
| | - Nicholas Paul Casey
- Translational Research Unit, Department of Cellular Therapy, Oslo University Hospital, 0379 Oslo, Norway; (C.F.); (S.J.); (N.P.C.); (B.C.)
| | - Benjamin Caulier
- Translational Research Unit, Department of Cellular Therapy, Oslo University Hospital, 0379 Oslo, Norway; (C.F.); (S.J.); (N.P.C.); (B.C.)
- Center for Cancer Cell Reprogramming (CanCell), Institute for Clinical Medicine, Faculty of Medicine, University of Oslo, 0372 Oslo, Norway
- Department of Molecular Cell Biology, Institute for Cancer Research, Oslo University Hospital, 0379 Oslo, Norway
| | - Sébastien Wälchli
- Translational Research Unit, Department of Cellular Therapy, Oslo University Hospital, 0379 Oslo, Norway; (C.F.); (S.J.); (N.P.C.); (B.C.)
- Correspondence:
| |
Collapse
|
12
|
Niu M, Liu Y, Yi M, Jiao D, Wu K. Biological Characteristics and Clinical Significance of Soluble PD-1/PD-L1 and Exosomal PD-L1 in Cancer. Front Immunol 2022; 13:827921. [PMID: 35386715 PMCID: PMC8977417 DOI: 10.3389/fimmu.2022.827921] [Citation(s) in RCA: 53] [Impact Index Per Article: 26.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Accepted: 02/21/2022] [Indexed: 12/12/2022] Open
Abstract
The immune checkpoint pathway consisting of the cell membrane-bound molecule programmed death protein 1 (PD-1) and its ligand PD-L1 has been found to mediate negative regulatory signals that effectively inhibit T-cell proliferation and function and impair antitumor immune responses. Considerable evidence suggests that the PD-1/PD-L1 pathway is responsible for tumor immune tolerance and immune escape. Blockage of this pathway has been found to reverse T lymphocyte depletion and restore antitumor immunity. Antagonists targeting this pathway have shown significant clinical activity in specific cancer types. Although originally identified as membrane-type molecules, several other forms of PD-1/PD-L1 have been detected in the blood of cancer patients, including soluble PD-1/PD-L1 (sPD-1/sPD-L1) and exosomal PD-L1 (exoPD-L1), increasing the composition and functional complications of the PD-1/PD-L1 signaling pathway. For example, sPD-1 has been shown to block the PD-1/PD-L immunosuppressive pathway by binding to PD-L1 and PD-L2, whereas the role of sPD-L1 and its mechanism of action in cancer remain unclear. In addition, many studies have investigated the roles of exoPD-L1 in immunosuppression, as a biomarker for tumor progression and as a predictive biomarker for response to immunotherapy. This review describes the molecular mechanisms underlying the generation of sPD-1/sPD-L1 and exoPD-L1, along with their biological activities and methods of detection. In addition, this review discusses the clinical importance of sPD-1/sPD-L1 and exoPD-L1 in cancer, including their predictive and prognostic roles and the effects of treatments that target these molecules.
Collapse
Affiliation(s)
- Mengke Niu
- Department of Oncology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yiming Liu
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Ming Yi
- Department of Oncology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Dechao Jiao
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- *Correspondence: Kongming Wu, ; Dechao Jiao,
| | - Kongming Wu
- Department of Oncology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- *Correspondence: Kongming Wu, ; Dechao Jiao,
| |
Collapse
|
13
|
Zhang A, Sun Y, Du J, Dong Y, Pang H, Ma L, Si S, Zhang Z, He M, Yue Y, Zhang X, Zhao W, Pi J, Chang M, Wang Q, Zhang Y. Reducing Hinge Flexibility of CAR-T Cells Prolongs Survival In Vivo With Low Cytokines Release. Front Immunol 2021; 12:724211. [PMID: 34675920 PMCID: PMC8524077 DOI: 10.3389/fimmu.2021.724211] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2021] [Accepted: 09/17/2021] [Indexed: 01/11/2023] Open
Abstract
Chimeric antigen receptor (CAR)-modified T cells targeting CD19 demonstrate unparalleled responses in B cell malignancies. However, high tumor burden limits clinical efficacy and increases the risk of cytokine release syndrome and neurotoxicity, which is associated with over-activation of the CAR-T cells. The hinge domain plays an important role in the function of CAR-T cells. We hypothesized that deletion of glycine, an amino acid with good flexibility, may reduce the flexibility of the hinge region, thereby mitigating CAR-T cell over-activation. This study involved generating a novel CAR by deletion of two consecutive glycine residues in the CD8 hinge domain of second-generation (2nd) CAR, thereafter named 2nd-GG CAR. The 2nd-GG CAR-T cells showed similar efficacy of CAR expression but lower hinge flexibility, and its protein affinity to CD19 protein was lower than that of 2nd CAR-T cells. Compared to the 2nd CAR-T cells, 2nd-GG CAR-T cells reduced proinflammatory cytokine secretion without diminishing the specific cytotoxicity toward tumor cells in vitro. Furthermore, 2nd-GG CAR-T cells prolonged overall survival in an immunodeficient mouse model bearing NALM-6 when tumor burden was high. This study demonstrated that a lower-flexibility of CD8α hinge improved survival under high tumor burden and reduced proinflammatory cytokines in preclinical studies. While there is potential for improved safety and efficacy, yet this needs validation with clinical trials.
Collapse
MESH Headings
- Animals
- Antigens, CD19/genetics
- Antigens, CD19/immunology
- CD8 Antigens/genetics
- CD8 Antigens/immunology
- Cell Line, Tumor
- Cytokines/metabolism
- Female
- Humans
- Immunotherapy, Adoptive/methods
- Leukemia, Lymphocytic, Chronic, B-Cell/genetics
- Leukemia, Lymphocytic, Chronic, B-Cell/immunology
- Leukemia, Lymphocytic, Chronic, B-Cell/pathology
- Leukemia, Lymphocytic, Chronic, B-Cell/therapy
- Lymphocyte Transfusion
- Mice
- Mice, SCID
- Receptors, Chimeric Antigen/genetics
- Receptors, Chimeric Antigen/immunology
- Survival Analysis
- T-Lymphocytes/cytology
- T-Lymphocytes/immunology
- T-Lymphocytes/transplantation
- Transduction, Genetic
- Tumor Burden
- Xenograft Model Antitumor Assays
Collapse
Affiliation(s)
- Ang Zhang
- Department of Hematology, Strategic Support Force Medical Center, Beijing, China
- The Department of Hematology, Beijing, China
| | - Yao Sun
- Department of Hematology, Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Jie Du
- SAFE Pharmaceutical Research Institute Co. Ltd, HeBei, China
| | - Yansheng Dong
- SAFE Pharmaceutical Research Institute Co. Ltd, HeBei, China
| | - Honggang Pang
- Department of Emergency, Affiliated Zhongshan Hospital, Dalian University, Dalian, China
| | - Lei Ma
- Academy of Military Medical Sciences, Academy of Military Sciences, Beijing, China
| | - Shaoyan Si
- Department of Hematology, Strategic Support Force Medical Center, Beijing, China
- Comprehensive Basic Experiment, Beijing, China
| | - Zhong Zhang
- Department of Hematology, Strategic Support Force Medical Center, Beijing, China
- The Department of Cardiovascular Medicine, Beijing, China
| | - Mingyi He
- Department of Hematology, Strategic Support Force Medical Center, Beijing, China
- The Department of Hematology, Beijing, China
| | - Yang Yue
- Department of Hematology, Strategic Support Force Medical Center, Beijing, China
- The Department of Hematology, Beijing, China
| | - Xiaoli Zhang
- Department of Hematology, Strategic Support Force Medical Center, Beijing, China
- The Department of Hematology, Beijing, China
| | - Weichao Zhao
- Department of Hematology, Strategic Support Force Medical Center, Beijing, China
- The Department of Respiratory Medicine, Beijing, China
| | - Jianjun Pi
- Department of Hematology, Strategic Support Force Medical Center, Beijing, China
- The Department of Respiratory Medicine, Beijing, China
| | - Mindong Chang
- Strategic Support Force Medical Center, The Department of Surgical Oncology, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Quanjun Wang
- National Beijing Center for Drug Safety Evaluation and Research, State Key Laboratory of Medical Countermeasures and Toxicology, Institute of Pharmacology and Toxicology, Academy of Military Sciences, Beijing, China
| | - Yikun Zhang
- Department of Hematology, Strategic Support Force Medical Center, Beijing, China
- The Department of Hematology, Beijing, China
| |
Collapse
|
14
|
Bailly C, Thuru X, Quesnel B. Soluble Programmed Death Ligand-1 (sPD-L1): A Pool of Circulating Proteins Implicated in Health and Diseases. Cancers (Basel) 2021; 13:3034. [PMID: 34204509 PMCID: PMC8233757 DOI: 10.3390/cancers13123034] [Citation(s) in RCA: 66] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 06/12/2021] [Accepted: 06/14/2021] [Indexed: 12/20/2022] Open
Abstract
Upon T-cell receptor stimulation, the Programmed cell Death-1 receptor (PD-1) expressed on T-cells can interact with its ligand PD-L1 expressed at the surface of cancer cells or antigen-presenting cells. Monoclonal antibodies targeting PD-1 or PD-L1 are routinely used for the treatment of cancers, but their clinical efficacy varies largely across the variety of tumor types. A part of the variability is linked to the existence of several forms of PD-L1, either expressed on the plasma membrane (mPD-L1), at the surface of secreted cellular exosomes (exoPD-L1), in cell nuclei (nPD-L1), or as a circulating, soluble protein (sPD-L1). Here, we have reviewed the different origins and roles of sPD-L1 in humans to highlight the biochemical and functional heterogeneity of the soluble protein. sPD-L1 isoforms can be generated essentially by two non-exclusive processes: (i) proteolysis of m/exoPD-L1 by metalloproteases, such as metalloproteinases (MMP) and A disintegrin and metalloproteases (ADAM), which are capable of shedding membrane PD-L1 to release an active soluble form, and (ii) the alternative splicing of PD-L1 pre-mRNA, leading in some cases to the release of sPD-L1 protein isoforms lacking the transmembrane domain. The expression and secretion of sPD-L1 have been observed in a large variety of pathologies, well beyond cancer, notably in different pulmonary diseases, chronic inflammatory and autoimmune disorders, and viral diseases. The expression and role of sPD-L1 during pregnancy are also evoked. The structural heterogeneity of sPD-L1 proteins, and associated functional/cellular plurality, should be kept in mind when considering sPD-L1 as a biomarker or as a drug target. The membrane, exosomal and soluble forms of PD-L1 are all integral parts of the highly dynamic PD-1/PD-L1 signaling pathway, essential for immune-tolerance or immune-escape.
Collapse
Affiliation(s)
| | - Xavier Thuru
- Plasticity and Resistance to Therapies, UMR9020-UMR1277-Canther-Cancer Heterogeneity, CHU Lille, Inserm, CNRS, University of Lille, 59000 Lille, France; (X.T.); (B.Q.)
| | - Bruno Quesnel
- Plasticity and Resistance to Therapies, UMR9020-UMR1277-Canther-Cancer Heterogeneity, CHU Lille, Inserm, CNRS, University of Lille, 59000 Lille, France; (X.T.); (B.Q.)
| |
Collapse
|
15
|
Abstract
Genetically engineered T cell immunotherapies have provided remarkable clinical success to treat B cell acute lymphoblastic leukaemia by harnessing a patient's own T cells to kill cancer, and these approaches have the potential to provide therapeutic benefit for numerous other cancers, infectious diseases and autoimmunity. By introduction of either a transgenic T cell receptor or a chimeric antigen receptor, T cells can be programmed to target cancer cells. However, initial studies have made it clear that the field will need to implement more complex levels of genetic regulation of engineered T cells to ensure both safety and efficacy. Here, we review the principles by which our knowledge of genetics and genome engineering will drive the next generation of adoptive T cell therapies.
Collapse
|
16
|
Quatrini L, Mariotti FR, Munari E, Tumino N, Vacca P, Moretta L. The Immune Checkpoint PD-1 in Natural Killer Cells: Expression, Function and Targeting in Tumour Immunotherapy. Cancers (Basel) 2020; 12:E3285. [PMID: 33172030 PMCID: PMC7694632 DOI: 10.3390/cancers12113285] [Citation(s) in RCA: 90] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Revised: 11/01/2020] [Accepted: 11/03/2020] [Indexed: 12/14/2022] Open
Abstract
In the last years, immunotherapy with antibodies against programmed cell death protein 1 (PD-1) and programmed death-ligand 1 (PD-L1) has shown remarkable efficacy in the treatment of different types of tumours, representing a true revolution in oncology. While its efficacy has initially been attributed only to unleashing T cell responses, responsivity to PD-1/PD-L1 blockade was observed in some tumours with low Human Leukocyte Antigen (HLA) I expression and increasing evidence has revealed PD-1 surface expression and inhibitory function also in natural killer (NK) cells. Thus, the contribution of anti-PD-1/PD-L1 therapy to the recovery of NK cell anti-tumour response has recently been appreciated. Here, we summarize the studies investigating PD-1 expression and function in NK cells, together with the limitations and perspectives of immunotherapies. A better understanding of checkpoint biology is needed to design next-generation therapeutic strategies and to improve the clinical protocols of current therapies.
Collapse
Affiliation(s)
- Linda Quatrini
- Department of Immunology, IRCCS Bambino Gesù Children’s Hospital, 00146 Rome, Italy; (F.R.M.); (N.T.); (P.V.); (L.M.)
| | - Francesca Romana Mariotti
- Department of Immunology, IRCCS Bambino Gesù Children’s Hospital, 00146 Rome, Italy; (F.R.M.); (N.T.); (P.V.); (L.M.)
| | - Enrico Munari
- Department of Molecular and Translational Medicine, University of Brescia, 25121 Brescia, Italy;
| | - Nicola Tumino
- Department of Immunology, IRCCS Bambino Gesù Children’s Hospital, 00146 Rome, Italy; (F.R.M.); (N.T.); (P.V.); (L.M.)
| | - Paola Vacca
- Department of Immunology, IRCCS Bambino Gesù Children’s Hospital, 00146 Rome, Italy; (F.R.M.); (N.T.); (P.V.); (L.M.)
| | - Lorenzo Moretta
- Department of Immunology, IRCCS Bambino Gesù Children’s Hospital, 00146 Rome, Italy; (F.R.M.); (N.T.); (P.V.); (L.M.)
| |
Collapse
|