1
|
Azambuja M, Nogaroto V, Moreira-Filho O, Vicari MR. U2 and U4 snDNA Comparative Chromosomal Mapping in the Neotropical Fish Genera Apareiodon and Parodon (Characiformes: Parodontidae). Zebrafish 2023; 20:221-228. [PMID: 37797225 DOI: 10.1089/zeb.2023.0025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/07/2023] Open
Abstract
Small nuclear DNA (snDNA) are valuable cytogenetic markers for comparative studies in chromosome evolution because different distribution patterns were found among species. Parodontidae, a Neotropical fish family, is known to have female heterogametic sex chromosome systems in some species. The U2 and U4 snDNA sites have been found to be involved in Z and W chromosome differentiation in Apareiodon sp., Apareiodon affinis, and Parodon hilarii. However, few studies have evaluated snDNA sites as propulsors of chromosome diversification among closely related fish species. In this study, we investigated the distribution of U2 and U4 snDNA clusters in the chromosomes of 10 populations/species belonging to Apareiodon and Parodon, aiming to identify chromosomal homeologies or diversification. In situ localization data revealed a submetacentric pair carrying the U2 snDNA site among the populations/species analyzed. Furthermore, all studied species demonstrated homeology in the location of U4 snDNA cluster in the proximal region of metacentric pair 1, besides an additional signal showing up with a divergence in Apareiodon. Comparative chromosomal mapping of U4 snDNA also helped to reinforce the proposal of the ZZ/ZW1W2 sex chromosome system origin in an A. affinis population. According to cytogenetic data, the study corroborates the diversification in Parodontidae paired species with uncertain taxonomy.
Collapse
Affiliation(s)
- Matheus Azambuja
- Programa de Pós-Graduação em Genética, Universidade Federal do Paraná, Curitiba, Brazil
| | - Viviane Nogaroto
- Departamento de Biologia Estrutural, Molecular e Genética, Universidade Estadual de Ponta Grossa, Ponta Grossa, Brazil
| | - Orlando Moreira-Filho
- Departamento de Genética e Evolução, Universidade Federal de São Carlos, São Carlos, Brazil
| | - Marcelo Ricardo Vicari
- Programa de Pós-Graduação em Genética, Universidade Federal do Paraná, Curitiba, Brazil
- Departamento de Biologia Estrutural, Molecular e Genética, Universidade Estadual de Ponta Grossa, Ponta Grossa, Brazil
| |
Collapse
|
2
|
Marajó L, Viana PF, Ferreira AMV, Py-Daniel LHR, Cioffi MDB, Sember A, Feldberg E. Chromosomal rearrangements and the first indication of an ♀X 1 X 1 X 2 X 2 /♂X 1 X 2 Y sex chromosome system in Rineloricaria fishes (Teleostei: Siluriformes). JOURNAL OF FISH BIOLOGY 2023; 102:443-454. [PMID: 36427042 DOI: 10.1111/jfb.15275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Accepted: 11/15/2022] [Indexed: 06/16/2023]
Abstract
Rineloricaria is the most diverse genus within the freshwater fish subfamily Loricariinae, and it is widely distributed in the Neotropical region. Despite limited cytogenetic data, records from southern and south-eastern Brazil suggest a high rate of chromosomal rearrangements in this genus, mirrored in remarkable inter- and intraspecific karyotype variability. In the present work, we investigated the karyotype features of Rineloricaria teffeana, an endemic representative from northern Brazil, using both conventional and molecular cytogenetic techniques. We revealed different diploid chromosome numbers (2n) between sexes (33♂/34♀), which suggests the presence of an ♀X1 X1 X2 X2 /♂X1 X2 Y multiple sex chromosome system. The male-limited Y chromosome was the largest and the only biarmed element in the karyotype, implying Y-autosome fusion as the most probable mechanism behind its origination. C-banding revealed low amounts of constitutive heterochromatin, mostly confined to the (peri)centromeric regions of most chromosomes (including the X2 and the Y) but also occupying the distal regions of a few chromosomal pairs. The chromosomal localization of the 18S ribosomal DNA (rDNA) clusters revealed a single site on chromosome pair 4, which was adjacent to the 5S rDNA cluster. Additional 5S rDNA loci were present on the autosome pair 8, X1 chromosome, and in the presumed fusion point on the Y chromosome. The probe for telomeric repeat motif (TTAGGG)n revealed signals of variable intensities at the ends of all chromosomes except for the Y chromosome, where no detectable signals were evidenced. Male-to-female comparative genomic hybridization revealed no sex-specific or sex-biased repetitive DNA accumulations, suggesting a presumably low level of neo-Y chromosome differentiation. We provide evidence that rDNA sites might have played a role in the formation of this putative multiple sex chromosome system and that chromosome fusions originate through different mechanisms among different Rineloricaria species.
Collapse
Affiliation(s)
- Leandro Marajó
- Laboratório de Genética Animal, Programa de Pós-Graduação em Genética, Conservação e Biologia Evolutiva, Coordenação de Biodiversidade, Instituto Nacional de Pesquisas da Amazônia, Manaus, Brazil
| | - Patrik Ferreira Viana
- Laboratório de Genética Animal, Programa de Pós-Graduação em Genética, Conservação e Biologia Evolutiva, Coordenação de Biodiversidade, Instituto Nacional de Pesquisas da Amazônia, Manaus, Brazil
| | - Alex Matheus Viana Ferreira
- Laboratório de Genética Animal, Programa de Pós-Graduação em Genética, Conservação e Biologia Evolutiva, Coordenação de Biodiversidade, Instituto Nacional de Pesquisas da Amazônia, Manaus, Brazil
| | - Lúcia Helena Rapp Py-Daniel
- Coleção de Peixes, Coordenação de Biodiversidade, Instituto Nacional de Pesquisas da Amazônia, Manaus, Brazil
| | - Marcelo de Bello Cioffi
- Laboratório de Citogenética de Peixes, Departamento de Genética e Evolução, Universidade Federal de São Carlos, São Carlos, Brazil
| | - Alexandr Sember
- Laboratory of Fish Genetics, Institute of Animal Physiology and Genetics, Czech Academy of Sciences, Libechov, Czech Republic
| | - Eliana Feldberg
- Laboratório de Genética Animal, Programa de Pós-Graduação em Genética, Conservação e Biologia Evolutiva, Coordenação de Biodiversidade, Instituto Nacional de Pesquisas da Amazônia, Manaus, Brazil
| |
Collapse
|
3
|
Azambuja M, Orane Schemberger M, Nogaroto V, Moreira-Filho O, Martins C, Ricardo Vicari M. Major and minor U small nuclear RNAs genes characterization in a neotropical fish genome: Chromosomal remodeling and repeat units dispersion in Parodontidae. Gene 2022; 826:146459. [PMID: 35358649 DOI: 10.1016/j.gene.2022.146459] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 01/15/2022] [Accepted: 03/25/2022] [Indexed: 11/29/2022]
Abstract
In association with many proteins, small nuclear RNAs (snRNAs) organize the spliceosomes that play a significant role in processing precursor mRNAs during gene expression. According to snRNAs genic arrangements, two kinds of spliceosomes (major and minor) can be organized into eukaryotic cells. Although in situ localization of U1 and U2 snDNAs have been performed in fish karyotypes, studies with genomic characterization and functionality of U snRNAs integrated into chromosomal changes on Teleostei are still scarce. This study aimed to achieve a genomic characterization of the U snRNAs genes in Apareiodon sp. (2n = 54, ZZ/ZW), apply these data to recognize functional/defective copies, and map chromosomal changes involving snDNAs in Parodontidae species karyotype diversification. Nine snRNA multigene families (U1, U2, U4, U5, U6, U11, U12, U4atac and U6atac) arranged in putatively functional copies in the genome were analyzed. Proximal Sequence Elements (PSE) and TATA-box promoters occurrence, besides an entire transcribed region and conserved secondary structures, qualify them for spliceosome activity. In addition, several defective copies or pseudogenes were identified for the snRNAs that make up the major spliceosome. In situ localization of snDNAs in five species of Parodontidae demonstrated that U1, U2, and U4 snDNAs were involved in chromosomal location changes or units dispersion. The U snRNAs defective/pseudogenes units dispersion could be favored by the probable occurrence of active retrotransposition enzymes in the Apareiodon genome. The U2 and U4 snDNAs sites were involved in independent events in the differentiation of sex chromosomes among Parodontidae lineages. The study characterized U snRNA genes that compose major and minor spliceosomes in the Apareiodon sp. genome and proposes that their defective copies trigger chromosome differentiation and diversification events in Parodontidae.
Collapse
Affiliation(s)
- Matheus Azambuja
- Programa de Pós-Graduação em Genética, Universidade Federal do Paraná, Centro Politécnico, Avenida Coronel Francisco H. dos Santos, 100, 81531-990 Curitiba, Paraná, Brazil.
| | - Michelle Orane Schemberger
- Programa de Pós-Graduação em Genética, Universidade Federal do Paraná, Centro Politécnico, Avenida Coronel Francisco H. dos Santos, 100, 81531-990 Curitiba, Paraná, Brazil.
| | - Viviane Nogaroto
- Departamento de Biologia Estrutural, Molecular e Genética, Universidade Estadual de Ponta Grossa, Av. Carlos Cavalcanti, 4748, 84030-900 Ponta Grossa, Paraná, Brazil.
| | - Orlando Moreira-Filho
- Departamento de Genética e Evolução, Universidade Federal de São Carlos, Rodovia Washington Luís, Km 235, 13565-905 São Carlos, São Paulo, Brazil.
| | - Cesar Martins
- Departamento de Morfologia, Instituto de Biociências de Botucatu, Universidade Estadual Paulista, Distrito de Rubião Júnior, s/n, 18618-689 Botucatu, São Paulo, Brazil.
| | - Marcelo Ricardo Vicari
- Programa de Pós-Graduação em Genética, Universidade Federal do Paraná, Centro Politécnico, Avenida Coronel Francisco H. dos Santos, 100, 81531-990 Curitiba, Paraná, Brazil; Departamento de Biologia Estrutural, Molecular e Genética, Universidade Estadual de Ponta Grossa, Av. Carlos Cavalcanti, 4748, 84030-900 Ponta Grossa, Paraná, Brazil.
| |
Collapse
|
4
|
Azambuja M, Marcondes DS, Nogaroto V, Moreira-Filho O, Vicari MR. Population structuration and chromosomal features homogeneity in Parodon nasus (Characiformes: Parodontidae): A comparison between Lower and Upper Paraná River representatives. NEOTROPICAL ICHTHYOLOGY 2022. [DOI: 10.1590/1982-0224-2021-0162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
ABSTRACT The ichthyofauna of the La Plata hydrographic basin is divided into Upper and Lower Paraná River systems due to the geographic isolation of the Sete Quedas waterfalls, currently flooded by the lake of the Itaipu dam. In Parodontidae, pairs of species, or groups of cryptic species were described between these systems. Although genetic isolation and speciation have already been proposed in other species in the group, Parodon nasus has been maintained as a valid species and distributed throughout the La Plata river basin. In this perspective, specimens of P. nasus from four different sampling sites in the Upper and Lower Paraná River systems were compared regarding the karyotypes, molecular analyzes of population biology and species delimitation to investigate their genetic and population isolation in the La Plata river basin. Despite a geographic barrier and the immense geographic distance separating the specimens sampled from the Lower Paraná River system compared to those from the Upper Paraná River, the data obtained showed P. nasus as a unique taxon. Thus, unlike other species of Parodontidae that showed diversification when comparing the groups residing in the Lower versus Upper Paraná River, P. nasus showed a population structure and a karyotypic homogeneity.
Collapse
|
5
|
Sember A, Nguyen P, Perez MF, Altmanová M, Ráb P, Cioffi MDB. Multiple sex chromosomes in teleost fishes from a cytogenetic perspective: state of the art and future challenges. Philos Trans R Soc Lond B Biol Sci 2021; 376:20200098. [PMID: 34304595 PMCID: PMC8310710 DOI: 10.1098/rstb.2020.0098] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/30/2020] [Indexed: 12/15/2022] Open
Abstract
Despite decades of cytogenetic and genomic research of dynamic sex chromosome evolution in teleost fishes, multiple sex chromosomes have been largely neglected. In this review, we compiled available data on teleost multiple sex chromosomes, identified major trends in their evolution and suggest further trajectories in their investigation. In a compiled dataset of 440 verified records of fish sex chromosomes, we counted 75 multiple sex chromosome systems with 60 estimated independent origins. We showed that male-heterogametic systems created by Y-autosome fusion predominate and that multiple sex chromosomes are over-represented in the order Perciformes. We documented a striking difference in patterns of differentiation of sex chromosomes between male and female heterogamety and hypothesize that faster W sex chromosome differentiation may constrain sex chromosome turnover in female-heterogametic systems. We also found no significant association between the mechanism of multiple sex chromosome formation and percentage of uni-armed chromosomes in teleost karyotypes. Last but not least, we hypothesized that interaction between fish populations, which differ in their sex chromosomes, can drive the evolution of multiple sex chromosomes in fishes. This underlines the importance of broader inter-population sampling in studies of fish sex chromosomes. This article is part of the theme issue 'Challenging the paradigm in sex chromosome evolution: empirical and theoretical insights with a focus on vertebrates (Part II)'.
Collapse
Affiliation(s)
- Alexandr Sember
- Laboratory of Fish Genetics, Institute of Animal Physiology and Genetics, Czech Academy of Sciences, Rumburská 89, 277 21 Liběchov, Czech Republic
| | - Petr Nguyen
- Laboratory of Fish Genetics, Institute of Animal Physiology and Genetics, Czech Academy of Sciences, Rumburská 89, 277 21 Liběchov, Czech Republic
- Faculty of Science, University of South Bohemia, Branišovská 1760, 370 05 České Budějovice, Czech Republic
| | - Manolo F. Perez
- Departamento de Genética e Evolução, Universidade Federal de São Carlos, Rod. Washington Luiz km 235 cep, 13565-905, São Carlos, Brazil
| | - Marie Altmanová
- Laboratory of Fish Genetics, Institute of Animal Physiology and Genetics, Czech Academy of Sciences, Rumburská 89, 277 21 Liběchov, Czech Republic
- Department of Ecology, Faculty of Science, Charles University, Viničná 7, 128 44 Prague, Czech Republic
| | - Petr Ráb
- Laboratory of Fish Genetics, Institute of Animal Physiology and Genetics, Czech Academy of Sciences, Rumburská 89, 277 21 Liběchov, Czech Republic
| | - Marcelo de Bello Cioffi
- Departamento de Genética e Evolução, Universidade Federal de São Carlos, Rod. Washington Luiz km 235 cep, 13565-905, São Carlos, Brazil
| |
Collapse
|
6
|
Rossi AR. Fish Cytogenetics: Present and Future. Genes (Basel) 2021; 12:genes12070983. [PMID: 34203124 PMCID: PMC8305243 DOI: 10.3390/genes12070983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Accepted: 06/24/2021] [Indexed: 11/16/2022] Open
Affiliation(s)
- Anna Rita Rossi
- Dipartimento di Biologia e Biotecnologie "C. Darwin", Sapienza-Università di Roma, Via Alfonso Borelli 50, 00161 Rome, Italy
| |
Collapse
|
7
|
Soares LB, Paim FG, Ramos LP, Foresti F, Oliveira C. Molecular cytogenetic analysis and the establishment of a cell culture in the fish species Hollandichthys multifasciatus (Eigenmann & Norris, 1900) (Characiformes, Characidae). Genet Mol Biol 2021; 44:e20200260. [PMID: 33877256 PMCID: PMC8056886 DOI: 10.1590/1678-4685-gmb-2020-0260] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Accepted: 02/07/2021] [Indexed: 11/22/2022] Open
Abstract
Hollandichthys is a fish genus of the family Characidae that
was until recently considered to be monotypic, with cytogenetic, morphological,
and molecular data being restricted to a few local populations. In the present
study, the karyotype of a population of Hollandichthys
multifasciatus was analyzed using classical and molecular
cytogenetic approaches for the investigation of potential markers that could
provide new perspectives on the cytotaxonomy. H. multifasciatus
presented a diploid number of 2n=50 chromosomes and a karyotype formula of
8m+10sm+32st. A single pair of chromosomes presented Ag-NORs signals, which
coincided with the 18S rDNA sites visualized by FISH, whilst the 5S rDNA
sequences were mapped in two chromosome pairs. The distribution of the U snRNA
genes was mapped on the Hollandichthys chromosomes for the
first time, with the probes revealing the presence of the U1 snDNA on the
chromosomes of pair 20, U2 on pairs 6 and 19, U4 on pair 16, and U6 on the
chromosomes of pair 11. The results of the present study indicated karyotypic
differences in comparison with the other populations of H.
multifasciatus studied previously, reinforcing the need for further
research to identify isolated populations or the potential existence of cryptic
Hollandichthys species.
Collapse
Affiliation(s)
- Letícia Batista Soares
- Universidade Estadual Paulista "Júlio de Mesquita Filho", Instituto de Biociências, Laboratório de Biologia e Genética de Peixes, Botucatu, SP, Brazil
| | - Fabilene Gomes Paim
- Universidade Estadual Paulista "Júlio de Mesquita Filho", Instituto de Biociências, Laboratório de Biologia e Genética de Peixes, Botucatu, SP, Brazil
| | - Lucas Peres Ramos
- Universidade Estadual Paulista "Júlio de Mesquita Filho", Instituto de Biociências, Laboratório de Biologia e Genética de Peixes, Botucatu, SP, Brazil
| | - Fausto Foresti
- Universidade Estadual Paulista "Júlio de Mesquita Filho", Instituto de Biociências, Laboratório de Biologia e Genética de Peixes, Botucatu, SP, Brazil
| | - Claudio Oliveira
- Universidade Estadual Paulista "Júlio de Mesquita Filho", Instituto de Biociências, Laboratório de Biologia e Genética de Peixes, Botucatu, SP, Brazil
| |
Collapse
|
8
|
Nirchio M, Masache MC, Paim FG, Cioffi MDB, Moreira Filho O, Barriga R, Oliveira C, Rossi AR. Chromosome analysis in Saccodon wagneri (Characiformes) and insights into the karyotype evolution of Parodontidae. NEOTROPICAL ICHTHYOLOGY 2021. [DOI: 10.1590/1982-0224-2020-0103] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
ABSTRACT Parodontidae is a relatively small group of Neotropical characiform fishes consisting of three genera (Apareiodon, Parodon, and Saccodon) with 32 valid species. A vast cytogenetic literature is available on Apareiodon and Parodon, but to date, there is no cytogenetic data about Saccodon, a genus that contains only three species with a trans-Andean distribution. In the present study the karyotype of S. wagneri was described, based on both conventional (Giemsa staining, Ag-NOR, C-bands) and molecular (repetitive DNA mapping by fluorescent in situ hybridization) methods. A diploid chromosome number of 2n = 54 was observed in both sexes, and the presence of heteromorphic sex chromosomes of the ZZ/ZW type was detected. The W chromosome has a terminal heterochromatin band that occupies approximately half of the long arm, being this band approximately half the size of the Z chromosome. The FISH assay showed a synteny of the 18S-rDNA and 5S-rDNA genes in the chromosome pair 14, and the absence of interstitial telomeric sites. Our data reinforce the hypothesis of a conservative karyotype structure in Parodontidae and suggest an ancient origin of the sex chromosomes in the fishes of this family.
Collapse
Affiliation(s)
- Mauro Nirchio
- Universidad Técnica de Machala, Ecuador; Universidad de Oriente, Venezuela
| | | | | | | | | | | | | | | |
Collapse
|
9
|
Highly Rearranged Karyotypes and Multiple Sex Chromosome Systems in Armored Catfishes from the Genus Harttia (Teleostei, Siluriformes). Genes (Basel) 2020; 11:genes11111366. [PMID: 33218104 PMCID: PMC7698909 DOI: 10.3390/genes11111366] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Revised: 11/15/2020] [Accepted: 11/16/2020] [Indexed: 11/16/2022] Open
Abstract
Harttia comprises an armored catfish genus endemic to the Neotropical region, including 27 valid species with low dispersion rates that are restricted to small distribution areas. Cytogenetics data point to a wide chromosomal diversity in this genus due to changes that occurred in isolated populations, with chromosomal fusions and fissions explaining the 2n number variation. In addition, different multiple sex chromosome systems and rDNA loci location are also found in some species. However, several Harttia species and populations remain to be investigated. In this study, Harttia intermontana and two still undescribed species, morphologically identified as Harttia sp. 1 and Harttia sp. 2, were cytogenetically analyzed. Harttia intermontana has 2n = 52 and 2n = 53 chromosomes, while Harttia sp. 1 has 2n = 56 and 2n = 57 chromosomes in females and males, respectively, thus highlighting the occurrence of an XX/XY1Y2 multiple sex chromosome system in both species. Harttia sp. 2 presents 2n = 62 chromosomes for both females and males, with fission events explaining its karyotype diversification. Chromosomal locations of the rDNA sites were also quite different among species, reinforcing that extensive rearrangements had occurred in their karyotype evolution. Comparative genomic hybridization (CGH) experiments among some Harttia species evidenced a shared content of the XY1Y2 sex chromosomes in three of them, thus pointing towards their common origin. Therefore, the comparative analysis among all Harttia species cytogenetically studied thus far allowed us to provide an evolutionary scenario related to the speciation process of this fish group.
Collapse
|
10
|
Recent Apareiodon species evolutionary divergence (Characiformes: Parodontidae) evidenced by chromosomal and molecular inference. ZOOL ANZ 2020. [DOI: 10.1016/j.jcz.2020.10.010] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
11
|
Sember A, de Oliveira EA, Ráb P, Bertollo LAC, de Freitas NL, Viana PF, Yano CF, Hatanaka T, Marinho MMF, de Moraes RLR, Feldberg E, Cioffi MDB. Centric Fusions behind the Karyotype Evolution of Neotropical Nannostomus Pencilfishes (Characiforme, Lebiasinidae): First Insights from a Molecular Cytogenetic Perspective. Genes (Basel) 2020; 11:genes11010091. [PMID: 31941136 PMCID: PMC7017317 DOI: 10.3390/genes11010091] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Revised: 01/07/2020] [Accepted: 01/08/2020] [Indexed: 02/07/2023] Open
Abstract
Lebiasinidae is a Neotropical freshwater family widely distributed throughout South and Central America. Due to their often very small body size, Lebiasinidae species are cytogenetically challenging and hence largely underexplored. However, the available but limited karyotype data already suggested a high interspecific variability in the diploid chromosome number (2n), which is pronounced in the speciose genus Nannostomus, a popular taxon in ornamental fish trade due to its remarkable body coloration. Aiming to more deeply examine the karyotype diversification in Nannostomus, we combined conventional cytogenetics (Giemsa-staining and C-banding) with the chromosomal mapping of tandemly repeated 5S and 18S rDNA clusters and with interspecific comparative genomic hybridization (CGH) to investigate genomes of four representative Nannostomus species: N. beckfordi, N. eques, N. marginatus, and N. unifasciatus. Our data showed a remarkable variability in 2n, ranging from 2n = 22 in N. unifasciatus (karyotype composed exclusively of metacentrics/submetacentrics) to 2n = 44 in N. beckfordi (karyotype composed entirely of acrocentrics). On the other hand, patterns of 18S and 5S rDNA distribution in the analyzed karyotypes remained rather conservative, with only two 18S and two to four 5S rDNA sites. In view of the mostly unchanged number of chromosome arms (FN = 44) in all but one species (N. eques; FN = 36), and with respect to the current phylogenetic hypothesis, we propose Robertsonian translocations to be a significant contributor to the karyotype differentiation in (at least herein studied) Nannostomus species. Interspecific comparative genome hybridization (CGH) using whole genomic DNAs mapped against the chromosome background of N. beckfordi found a moderate divergence in the repetitive DNA content among the species’ genomes. Collectively, our data suggest that the karyotype differentiation in Nannostomus has been largely driven by major structural rearrangements, accompanied by only low to moderate dynamics of repetitive DNA at the sub-chromosomal level. Possible mechanisms and factors behind the elevated tolerance to such a rate of karyotype change in Nannostomus are discussed.
Collapse
Affiliation(s)
- Alexandr Sember
- Laboratory of Fish Genetics, Institute of Animal Physiology and Genetics, Czech Academy of Sciences, Rumburská 89, 277 21 Liběchov, Czech Republic; (A.S.); (P.R.)
| | - Ezequiel Aguiar de Oliveira
- Departamento de Genética e Evolução, Universidade Federal de São Carlos, São Carlos, São Paulo 13565-905, Brazil; (E.A.d.O.); (L.A.C.B.); (N.L.d.F.); (C.F.Y.); (T.H.); (R.L.R.d.M.)
- Secretaria de Estado de Educação de Mato Grosso–SEDUC-MT, Cuiabá 78049-909, Brazil
| | - Petr Ráb
- Laboratory of Fish Genetics, Institute of Animal Physiology and Genetics, Czech Academy of Sciences, Rumburská 89, 277 21 Liběchov, Czech Republic; (A.S.); (P.R.)
| | - Luiz Antonio Carlos Bertollo
- Departamento de Genética e Evolução, Universidade Federal de São Carlos, São Carlos, São Paulo 13565-905, Brazil; (E.A.d.O.); (L.A.C.B.); (N.L.d.F.); (C.F.Y.); (T.H.); (R.L.R.d.M.)
| | - Natália Lourenço de Freitas
- Departamento de Genética e Evolução, Universidade Federal de São Carlos, São Carlos, São Paulo 13565-905, Brazil; (E.A.d.O.); (L.A.C.B.); (N.L.d.F.); (C.F.Y.); (T.H.); (R.L.R.d.M.)
| | - Patrik Ferreira Viana
- Instituto Nacional de Pesquisas da Amazônia, Coordenação de Biodiversidade, Av. André Araújo 2936, Petrópolis, Manaus 69067-375, Brazil; (P.F.V.); (E.F.)
| | - Cassia Fernanda Yano
- Departamento de Genética e Evolução, Universidade Federal de São Carlos, São Carlos, São Paulo 13565-905, Brazil; (E.A.d.O.); (L.A.C.B.); (N.L.d.F.); (C.F.Y.); (T.H.); (R.L.R.d.M.)
| | - Terumi Hatanaka
- Departamento de Genética e Evolução, Universidade Federal de São Carlos, São Carlos, São Paulo 13565-905, Brazil; (E.A.d.O.); (L.A.C.B.); (N.L.d.F.); (C.F.Y.); (T.H.); (R.L.R.d.M.)
| | - Manoela Maria Ferreira Marinho
- Universidade Federal da Paraíba (UFPB), Departamento de Sistemática e Ecologia (DSE), Laboratório de Sistemática e Morfologia de Peixes, João Pessoa 58051-090, Brazil;
| | - Renata Luiza Rosa de Moraes
- Departamento de Genética e Evolução, Universidade Federal de São Carlos, São Carlos, São Paulo 13565-905, Brazil; (E.A.d.O.); (L.A.C.B.); (N.L.d.F.); (C.F.Y.); (T.H.); (R.L.R.d.M.)
| | - Eliana Feldberg
- Instituto Nacional de Pesquisas da Amazônia, Coordenação de Biodiversidade, Av. André Araújo 2936, Petrópolis, Manaus 69067-375, Brazil; (P.F.V.); (E.F.)
| | - Marcelo de Bello Cioffi
- Departamento de Genética e Evolução, Universidade Federal de São Carlos, São Carlos, São Paulo 13565-905, Brazil; (E.A.d.O.); (L.A.C.B.); (N.L.d.F.); (C.F.Y.); (T.H.); (R.L.R.d.M.)
- Correspondence: ; Tel.: +55-16-3351-8431; Fax: +55-16-3351-8377
| |
Collapse
|
12
|
Glugoski L, Deon G, Schott S, Vicari MR, Nogaroto V, Moreira-Filho O. Comparative cytogenetic analyses in Ancistrus species (Siluriformes: Loricariidae). NEOTROPICAL ICHTHYOLOGY 2020. [DOI: 10.1590/1982-0224-2020-0013] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
ABSTRACT Ancistrus is a specious genus of armored catfishes that has been extensively used for cytogenetic studies in the last 17 years. A comparison of the extensive karyotypic plasticity within this genus is presented with new cytogenetic analysis for Ancistrus cf. multispinis and Ancistrus aguaboensis. This study aims to improve our understanding of chromosomal evolution associated with changes in the diploid number (2n) and the dispersion of ribosomal DNAs (rDNAs) within Ancistrus. Ancistrus cf. multispinis and A. aguaboensis exhibit 2n of 52 and 50 chromosomes, respectively. Given that A. cf. multispinis shares a 2n = 52 also found in Pterygoplichthyini, the sister group for Ancistrini, a Robertsonian (Rb) fusion event is proposed for the 2n reduction in A. aguaboensis. 5S rDNAs pseudogenes sites have already been associated with Rb fusion in Ancistrus and our analysis suggests that the 2n reduction in A. aguaboensis was triggered by double strand breaks (DSBs) and chromosomal rearrangements at 5S rDNA sites. The presence of evolutionary breakpoint regions (EBRs) into rDNA cluster is proposed to explain part of the Rb fusion in Ancistrus. Cytogenetic data presented extends the diversity already documented in Ancistrus to further understand the role of chromosomal rearrangements in the diversification of Ancistrini.
Collapse
Affiliation(s)
| | - Geize Deon
- Universidade Federal de São Carlos, Brazil
| | | | | | | | | |
Collapse
|
13
|
Toma GA, de Moraes RLR, Sassi FDMC, Bertollo LAC, de Oliveira EA, Rab P, Sember A, Liehr T, Hatanaka T, Viana PF, Marinho MMF, Feldberg E, Cioffi MDB. Cytogenetics of the small-sized fish, Copeina guttata (Characiformes, Lebiasinidae): Novel insights into the karyotype differentiation of the family. PLoS One 2019; 14:e0226746. [PMID: 31856256 PMCID: PMC6922430 DOI: 10.1371/journal.pone.0226746] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Accepted: 12/04/2019] [Indexed: 11/19/2022] Open
Abstract
Lebiasinidae is a small fish family composed by miniature to small-sized fishes with few cytogenetic data (most of them limited to descriptions of diploid chromosome numbers), thus preventing any evolutionary comparative studies at the chromosomal level. In the present study, we are providing, the first cytogenetic data for the red spotted tetra, Copeina guttata, including the standard karyotype, C-banding, repetitive DNA mapping by fluorescence in situ hybridization (FISH) and comparative genomic hybridization (CGH), providing chromosomal patterns and novel insights into the karyotype differentiation of the family. Males and females share diploid chromosome number 2n = 42 and karyotype composed of 2 metacentric (m), 4 submetacentric (sm) and 36 subtelocentric to acrocentric (st-a) chromosomes. Blocks of constitutive heterochromatin were observed in the centromeric and interstitial regions of several chromosomes, in addition to a remarkably large distal block, heteromorphic in size, which fully corresponded with the 18S rDNA sites in the fourth chromosomal pair. This overlap was confirmed by 5S/18S rDNA dual-color FISH. On the other hand, 5S rDNA clusters were situated in the long and short arms of the 2nd and 15th pairs, respectively. No sex-linked karyotype differences were revealed by male/female CGH experiments. The genomic probes from other two lebiasinid species, Lebiasina melanoguttata and Pyrrhulina brevis, showed positive hybridization signals only in the NOR region in the genome of C. guttata. We demonstrated that karyotype diversification in lebiasinids was accompanied by a series of structural and numeric chromosome rearrangements of different types, including particularly fusions and fissions.
Collapse
Affiliation(s)
- Gustavo Akira Toma
- Laboratório de Citogenética de Peixes, Departamento de Genética e Evolução, Universidade Federal de São Carlos, São Carlos, São Paulo, Brazil
| | - Renata Luiza Rosa de Moraes
- Laboratório de Citogenética de Peixes, Departamento de Genética e Evolução, Universidade Federal de São Carlos, São Carlos, São Paulo, Brazil
| | | | - Luiz Antonio Carlos Bertollo
- Laboratório de Citogenética de Peixes, Departamento de Genética e Evolução, Universidade Federal de São Carlos, São Carlos, São Paulo, Brazil
| | - Ezequiel Aguiar de Oliveira
- Laboratório de Citogenética de Peixes, Departamento de Genética e Evolução, Universidade Federal de São Carlos, São Carlos, São Paulo, Brazil
- Secretaria de Estado de Educação de Mato Grosso, Cuiabá, Mato Grosso, Brazil
| | - Petr Rab
- Laboratory of Fish Genetics, Institute of Animal Physiology and Genetics, Czech Academy of Sciences, Liběchov, Czech Republic
| | - Alexandr Sember
- Laboratory of Fish Genetics, Institute of Animal Physiology and Genetics, Czech Academy of Sciences, Liběchov, Czech Republic
| | - Thomas Liehr
- Institute of Human Genetics, University Hospital Jena, Jena, Germany
| | - Terumi Hatanaka
- Laboratório de Citogenética de Peixes, Departamento de Genética e Evolução, Universidade Federal de São Carlos, São Carlos, São Paulo, Brazil
| | | | | | - Eliana Feldberg
- Instituto Nacional de Pesquisas da Amazônia, Manaus, Amazonas, Brazil
| | - Marcelo de Bello Cioffi
- Laboratório de Citogenética de Peixes, Departamento de Genética e Evolução, Universidade Federal de São Carlos, São Carlos, São Paulo, Brazil
- Institute of Human Genetics, University Hospital Jena, Jena, Germany
| |
Collapse
|
14
|
Schemberger MO, Nascimento VD, Coan R, Ramos É, Nogaroto V, Ziemniczak K, Valente GT, Moreira-Filho O, Martins C, Vicari MR. DNA transposon invasion and microsatellite accumulation guide W chromosome differentiation in a Neotropical fish genome. Chromosoma 2019; 128:547-560. [DOI: 10.1007/s00412-019-00721-9] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Revised: 05/25/2019] [Accepted: 08/06/2019] [Indexed: 11/28/2022]
|
15
|
Santos EOD, Deon GA, Almeida RBD, Oliveira EAD, Nogaroto V, Silva HPD, Pavanelli CS, Cestari MM, Bertollo LAC, Moreira-Filho O, Vicari MR. Cytogenetics and DNA barcode reveal an undescribed Apareiodon species (Characiformes: Parodontidae). Genet Mol Biol 2019; 42:365-373. [PMID: 31259363 PMCID: PMC6726146 DOI: 10.1590/1678-4685-gmb-2018-0066] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2018] [Accepted: 08/01/2018] [Indexed: 11/22/2022] Open
Abstract
Parodontidae is a small group of fish and some species are particularly difficult
to identify due to the lack of sufficiently consistent morphological traits.
Cytogenetically, the species possess 2n = 54 chromosomes and are either
sex-homomorphic or sex-heteromorphic (regarding its chromosomes). We evaluated
data on color, tooth morphology, cytogenetics, and mitochondrial markers (COI)
in Apareiodon specimens from the Aripuanã River (Amazon basin)
and the results were compared to other congeneric taxa. Morphological results
show an overlap of body color and tooth morphology to other known
Apareiodon. The cytogenetics data showed that the 2n = 54
chromosomes, 50 m/sm + 4 st and, a ZZ/ZW sex chromosome system in
Apareiodon sp. are common to other species of the genus.
However, the number and chromosomal localization of the 45S ribosomal and
pPh2004 satellite DNA sites, in addition to W chromosome
localization of the pPh2004 appear to be exclusive cytogenetic
features in Apareiodon sp. Our phylogenetic tree revealed
well-supported clades and confirmed, by barcode species delimitation analysis, a
new Molecular Operational Taxonomic Unit (MOTU) for Apareiodon
sp. (Aripuanã River). As a whole, the above features support the occurrence of a
new species of the Apareiodon, thus far unknown for the
Parodontidae.
Collapse
Affiliation(s)
- Emanoel Oliveira Dos Santos
- Departamento de Genética, Programa de Pós-Graduação em Genética, Universidade Federal do Paraná, Curitiba, PR, Brazil
| | - Geize Aparecida Deon
- Departamento de Biologia Estrutural, Molecular e Genética, Universidade Estadual de Ponta Grossa, Ponta Grossa, PR, Brazil
| | - Rafael Bonfim de Almeida
- Departamento de Genética, Programa de Pós-Graduação em Genética, Universidade Federal do Paraná, Curitiba, PR, Brazil
| | | | - Viviane Nogaroto
- Departamento de Biologia Estrutural, Molecular e Genética, Universidade Estadual de Ponta Grossa, Ponta Grossa, PR, Brazil
| | - Hugmar Pains da Silva
- Laboratório de Citogenética e Genética Animal, Instituto de Biociências, Universidade Federal de Mato Grosso, Cuiabá, MT, Brazil
| | - Carla Simone Pavanelli
- Núcleo de Pesquisas em Limnologia, Ictiologia e Aquicultura (Nupélia), Universidade Estadual de Maringá, Maringá, PR, Brazil
| | - Marta Margarete Cestari
- Departamento de Genética, Programa de Pós-Graduação em Genética, Universidade Federal do Paraná, Curitiba, PR, Brazil
| | | | - Orlando Moreira-Filho
- Departamento de Genética e Evolução, Universidade Federal de São Carlos, São Carlos, São Paulo, SP, Brazil
| | - Marcelo Ricardo Vicari
- Departamento de Genética, Programa de Pós-Graduação em Genética, Universidade Federal do Paraná, Curitiba, PR, Brazil.,Departamento de Biologia Estrutural, Molecular e Genética, Universidade Estadual de Ponta Grossa, Ponta Grossa, PR, Brazil
| |
Collapse
|
16
|
Traldi JB, Ziemniczak K, de Fátima Martinez J, Blanco DR, Lui RL, Schemberger MO, Nogaroto V, Moreira-Filho O, Vicari MR. Chromosome Mapping of H1 and H4 Histones in Parodontidae (Actinopterygii: Characiformes): Dispersed and/or Co-Opted Transposable Elements? Cytogenet Genome Res 2019; 158:106-113. [PMID: 31203273 DOI: 10.1159/000500987] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/05/2019] [Indexed: 01/22/2023] Open
Abstract
The karyotypes of the family Parodontidae consist of 2n = 54 chromosomes. The main chromosomal evolutionary changes of its species are attributed to chromosome rearrangements in repetitive DNA regions in their genomes. Physical mapping of the H1 and H4 histones was performed in 7 Parodontidae species to analyze the chromosome rearrangements involved in karyotype diversification in the group. In parallel, the observation of a partial sequence of an endogenous retrovirus (ERV) retrotransposon in the H1 histone sequence was evaluated to verify molecular co-option of the transposable elements (TEs) and to assess paralogous sequence dispersion in the karyotypes. Six of the studied species had an interstitial histone gene cluster in the short arm of the autosomal pair 13. Besides this interstitial cluster, in Apareiodon davisi, a probable further site was detected in the terminal region of the long arm in the same chromosome pair. The H1/H4 clusters in Parodon cf. pongoensis were located in the smallest chromosomes (pair 20). In addition, scattered H1 signals were observed on the chromosomes in all species. The H1 sequence showed an ERV in the open reading frame (ORF), and the scattered H1 signals on the chromosomes were attributed to the ERV's location. The H4 sequence had no similarity to the TEs and displayed no dispersed signals. Furthermore, the degeneration of the inner ERV in the H1 sequence (which overlapped a stretch of the H1 ORF) was discussed regarding the likelihood of molecular co-option of this retroelement in histone gene function in Parodontidae.
Collapse
|
17
|
Nirchio M, Gaviria JI, Siccha-Ramirez ZR, Oliveira C, Foresti F, Milana V, Rossi AR. Chromosomal polymorphism and molecular variability in the pearly razorfish Xyrichtys novacula (Labriformes, Labridae): taxonomic and biogeographic implications. Genetica 2019; 147:47-56. [PMID: 30673915 DOI: 10.1007/s10709-019-00051-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2018] [Accepted: 01/09/2019] [Indexed: 01/28/2023]
Abstract
The pearly razorfish Xyrichtys novacula (Linnaeus, 1758) is a sedentary benthic species distributed in both sides of the Atlantic Ocean and in the Mediterranean Sea. Previous cytogenetic analysis reported different diploid numbers in samples from Italy, Venezuela and Brazil. This research aims to test the hypothesis that samples from American Atlantic coast and Mediterranean Sea belong to the same single evolutionary lineage, characterized by intra-specific chromosome polymorphism. To this purpose a cytogenetic and molecular (mitochondrial COI sequences) survey was undertaken. Results revealed the existence of three different pearly razorfish molecular lineages: one present in Mediterranean Sea and two in the central and south American area, which are characterized by different karyotypes. One of these lineages shows substantial intra-population chromosomal polymorphism (2n = 45-48) determined by Robertsonian fusions that produce large metacentric chromosomes. On the whole data suggest that specimens morphologically identified as X. novacula correspond to three cryptic species.
Collapse
Affiliation(s)
- Mauro Nirchio
- Escuela de Ciencias Aplicadas del Mar, Núcleo de Nueva Esparta, Universidad de Oriente, Apartado 174, Porlamar, Isla de Margarita, Venezuela.,Universidad Técnica de Machala, Av. Panamericana km 5½, Via Pasaje, Machala, El Oro, Ecuador
| | - Juan Ignacio Gaviria
- Escuela de Ciencias Aplicadas del Mar, Núcleo de Nueva Esparta, Universidad de Oriente, Apartado 174, Porlamar, Isla de Margarita, Venezuela
| | | | - Claudio Oliveira
- Departamento de Morfologia, Instituto de Biociências Universidade Estadual Paulista-UNESP, Botucatu, São Paulo, 18618-970, Brazil
| | - Fausto Foresti
- Departamento de Morfologia, Instituto de Biociências Universidade Estadual Paulista-UNESP, Botucatu, São Paulo, 18618-970, Brazil
| | - Valentina Milana
- Dipartimento di Biologia e Biotecnologie "C. Darwin", Sapienza-Università di Roma, Via Alfonso Borelli 50, 00161, Rome, Italy
| | - Anna Rita Rossi
- Dipartimento di Biologia e Biotecnologie "C. Darwin", Sapienza-Università di Roma, Via Alfonso Borelli 50, 00161, Rome, Italy.
| |
Collapse
|
18
|
Pucci MB, Nogaroto V, Bertollo LAC, Orlando Moreira-Filho, Vicari MR. The karyotypes and evolution of ZZ/ZW sex chromosomes in the genus Characidium (Characiformes, Crenuchidae). COMPARATIVE CYTOGENETICS 2018; 12:421-438. [PMID: 30310546 PMCID: PMC6177511 DOI: 10.3897/compcytogen.v12i3.28736] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Accepted: 09/07/2018] [Indexed: 09/29/2023]
Abstract
Available data on cytotaxonomy of the genus Characidium Reinhardt, 1867, which contains the greatest number of species in the Characidiinae (Crenuchidae), with 64 species widely distributed throughout the Neotropical region, were summarized and reviewed. Most Characidium species have uniform diploid chromosome number (2n) = 50 and karyotype with 32 metacentric (m) and 18 submetacentric (sm) chromosomes. The maintenance of the 2n and karyotypic formula in Characidium implies that their genomes did not experience large chromosomal rearrangements during species diversification. In contrast, the internal chromosomal organization shows a dynamic differentiation among their genomes. Available data indicated the role of repeated DNA sequences in the chromosomal constitution of the Characidium species, particularly, in sex chromosome differentiation. Karyotypes of the most Characidium species exhibit a heteromorphic ZZ/ZW sex chromosome system. The W chromosome is characterized by high rates of repetitive DNA accumulation, including satellite, microsatellite, and transposable elements (TEs), with a varied degree of diversification among species. In the current review, the main Characidium cytogenetic data are presented, highlighting the major features of its karyotype and sex chromosome evolution. Despite the conserved karyotypic macrostructure with prevalent 2n = 50 chromosomes in Characidium, herein we grouped the main cytogenetic information which led to chromosomal diversification in this Neotropical fish group.
Collapse
Affiliation(s)
- Marcela Baer Pucci
- Departamento de Genética e Evolução, Universidade Federal de São Carlos, Rodovia Washington Luís, Km 235, 13565-905, São Carlos, São Paulo State, BrazilUniversidade Federal de São CarlosSão CarlosBrazil
| | - Viviane Nogaroto
- Departamanento de Biologia Estrutural, Molecular e Genética, Universidade Estadual de Ponta Grossa, Av. Carlos Cavalcanti, 4748, 84030-900, Ponta Grossa, Paraná State, BrazilUniversidade Estadual de Ponta GrossaPonta GrossaBrazil
| | - Luiz Antonio Carlos Bertollo
- Departamento de Genética e Evolução, Universidade Federal de São Carlos, Rodovia Washington Luís, Km 235, 13565-905, São Carlos, São Paulo State, BrazilUniversidade Federal de São CarlosSão CarlosBrazil
| | - Orlando Moreira-Filho
- Departamento de Genética e Evolução, Universidade Federal de São Carlos, Rodovia Washington Luís, Km 235, 13565-905, São Carlos, São Paulo State, BrazilUniversidade Federal de São CarlosSão CarlosBrazil
| | - Marcelo Ricardo Vicari
- Departamanento de Biologia Estrutural, Molecular e Genética, Universidade Estadual de Ponta Grossa, Av. Carlos Cavalcanti, 4748, 84030-900, Ponta Grossa, Paraná State, BrazilUniversidade Estadual de Ponta GrossaPonta GrossaBrazil
| |
Collapse
|
19
|
Conventional Cytogenetic Approaches—Useful and Indispensable Tools in Discovering Fish Biodiversity. CURRENT GENETIC MEDICINE REPORTS 2018. [DOI: 10.1007/s40142-018-0148-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|