1
|
Halder S, Afrose S, Shill MC, Sharmin N, Mollick PP, Shuma ML, Muhit MA, Rahman SMA. Self-micellizing solid dispersion of thymoquinone with enhanced biopharmaceutical and nephroprotective effects. Drug Deliv 2024; 31:2337423. [PMID: 38590120 PMCID: PMC11005877 DOI: 10.1080/10717544.2024.2337423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Accepted: 03/13/2024] [Indexed: 04/10/2024] Open
Abstract
The present study was designed to develop a self-micellizing solid dispersion (SMSD) containing Thymoquinone (TQM), a phytonutrient obtained from Nigella sativa seeds, aiming to improve its biopharmaceutical and nephroprotective functions. The apparent solubility of TQM in polymer solutions was used to choose an appropriate amphiphilic polymer that could be used to make an SMSD system. Based on the apparent solubility, Soluplus® was selected as an appropriate carrier, and mixing with TQM, SMSD-TQM with different loadings of TQM (5-15%) was made by solvent evaporation and freeze-drying techniques, respectively, and the formulations were optimized. The optimized SMSD-TQM was evaluated in terms of particle size distribution, morphology, release characteristics, pharmacokinetic behavior, and nephroprotective effects in a rat model of acute kidney injury. SMSD-TQM significantly improved the dissolution characteristics (97.8%) of TQM in water within 60 min. Oral administration of SMSD-TQM in rats exhibited a 4.9-fold higher systemic exposure than crystalline TQM. In a cisplatin-induced (6 mg/kg, i.p.) acute kidney-damaged rat model, oral SMSD-TQM (10 mg/kg) improved the nephroprotective effects of TQM based on the results of kidney biomarkers and histological abnormalities. These findings suggest that SMSD-TQM might be efficacious in enhancing the nephroprotective effect of TQM by overcoming biopharmaceutical limitations.
Collapse
Affiliation(s)
- Shimul Halder
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Dhaka, Dhaka, Bangladesh
| | - Sanjida Afrose
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Dhaka, Dhaka, Bangladesh
| | - Manik Chandra Shill
- Department of Pharmaceutical Sciences, North South University, Dhaka, Bangladesh
| | - Nahid Sharmin
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Dhaka, Dhaka, Bangladesh
| | | | - Madhabi Lata Shuma
- Department of Pharmacy, School of Pharmacy and Public Health, Independent University Bangladesh, Dhaka, Bangladesh
| | - Md. Abdul Muhit
- Department of Clinical Pharmacy and Pharmacology, Faculty of Pharmacy, University of Dhaka, Dhaka, Bangladesh
| | - S. M. Abdur Rahman
- Department of Clinical Pharmacy and Pharmacology, Faculty of Pharmacy, University of Dhaka, Dhaka, Bangladesh
| |
Collapse
|
2
|
Nyamba I, Sombié CB, Yabré M, Zimé-Diawara H, Yaméogo J, Ouédraogo S, Lechanteur A, Semdé R, Evrard B. Pharmaceutical approaches for enhancing solubility and oral bioavailability of poorly soluble drugs. Eur J Pharm Biopharm 2024; 204:114513. [PMID: 39313163 DOI: 10.1016/j.ejpb.2024.114513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2024] [Revised: 09/15/2024] [Accepted: 09/20/2024] [Indexed: 09/25/2024]
Abstract
High solubility in water and physiological fluids is an indispensable requirement for the pharmacological efficacy of an active pharmaceutical ingredient. Indeed, it is well established that pharmaceutical substances exhibiting limited solubility in water are inclined towards diminished and inconsistent absorption following oral administration, consequently resulting in variability in therapeutic outcomes. The current advancements in combinatorial chemistry and pharmaceutical design have facilitated the creation of drug candidates characterized by increased lipophilicity, elevated molecular size, and reduced aqueous solubility. Undoubtedly, the issue of poorly water-soluble medications has been progressively escalating over recent years. Indeed, 40% of the top 200 oral medications marketed in the United States, 33% of drugs listed in the US pharmacopoeia, 75% of compounds under development and 90% of new chemical entities are insufficiently water-soluble compounds. In order to address this obstacle, formulation scientists employ a variety of approaches, encompassing both physical and chemical methods such as prodrug synthesis, salt formation, solid dispersions formation, hydrotropic substances utilization, solubilizing agents incorporation, cosolvent addition, polymorphism exploration, cocrystal creation, cyclodextrins complexation, lipid formulations, particle size reduction and nanoformulation techniques. Despite the utilization of these diverse approaches, the primary reason for the failure in new drug development persists as the poor aqueous solubility of pharmaceutical compounds. This paper, therefore, delves into the foundational principles that underpin the implementation of various formulation strategies, along with a discussion on the respective advantages and drawbacks associated with each approach. Additionally, a discourse is provided regarding methodological frameworks for making informed decisions on selecting an appropriate formulation strategy to effectively tackle the key challenges posed during the development of a poorly water-soluble drug candidate.
Collapse
Affiliation(s)
- Isaïe Nyamba
- Laboratory of Pharmaceutical Technology and Biopharmacy, CIRM, Université de Liège, 4000 Liège, Belgium; Laboratory of Drug Development, Center of Training, Research and Expertise in Pharmaceutical Sciences (CFOREM), Doctoral School of Sciences and Health, Université Joseph KI-ZERBO, 03 BP 7021 Ouagadougou 03, Burkina Faso; Institut Supérieur des Sciences de la Santé (INSSA), Université Nazi Boni, 01 BP 1091 Bobo-Dioulasso 01, Burkina Faso.
| | - Charles B Sombié
- Laboratory of Drug Development, Center of Training, Research and Expertise in Pharmaceutical Sciences (CFOREM), Doctoral School of Sciences and Health, Université Joseph KI-ZERBO, 03 BP 7021 Ouagadougou 03, Burkina Faso
| | - Moussa Yabré
- Institut Supérieur des Sciences de la Santé (INSSA), Université Nazi Boni, 01 BP 1091 Bobo-Dioulasso 01, Burkina Faso
| | - Hermine Zimé-Diawara
- Laboratory of Drug Development, Center of Training, Research and Expertise in Pharmaceutical Sciences (CFOREM), Doctoral School of Sciences and Health, Université Joseph KI-ZERBO, 03 BP 7021 Ouagadougou 03, Burkina Faso
| | - Josias Yaméogo
- Laboratory of Drug Development, Center of Training, Research and Expertise in Pharmaceutical Sciences (CFOREM), Doctoral School of Sciences and Health, Université Joseph KI-ZERBO, 03 BP 7021 Ouagadougou 03, Burkina Faso
| | - Salfo Ouédraogo
- Laboratory of Drug Development, Center of Training, Research and Expertise in Pharmaceutical Sciences (CFOREM), Doctoral School of Sciences and Health, Université Joseph KI-ZERBO, 03 BP 7021 Ouagadougou 03, Burkina Faso
| | - Anna Lechanteur
- Laboratory of Pharmaceutical Technology and Biopharmacy, CIRM, Université de Liège, 4000 Liège, Belgium
| | - Rasmané Semdé
- Laboratory of Drug Development, Center of Training, Research and Expertise in Pharmaceutical Sciences (CFOREM), Doctoral School of Sciences and Health, Université Joseph KI-ZERBO, 03 BP 7021 Ouagadougou 03, Burkina Faso
| | - Brigitte Evrard
- Laboratory of Pharmaceutical Technology and Biopharmacy, CIRM, Université de Liège, 4000 Liège, Belgium
| |
Collapse
|
3
|
Mbese Z, Choene M, Morifi E, Nwamadi M, Adeyemi S, Kolawole Oyebamiji A, Adeyinka AS, George B, Aderibigbe BA. Hybrid Molecules Containing Methotrexate, Vitamin D, and Platinum Derivatives: Synthesis, Characterization, In Vitro Cytotoxicity, In Silico ADME Docking, Molecular Docking and Dynamics. Chem Biodivers 2024:e202400373. [PMID: 39278836 DOI: 10.1002/cbdv.202400373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Revised: 09/03/2024] [Accepted: 09/13/2024] [Indexed: 09/18/2024]
Abstract
Designing hybrid-based drugs is one promising strategy for developing effective anticancer drugs that explore combination therapy to enhance treatment efficacy, overcome the development of drug resistance, and lower treatment duration. Bisphosphonates and Vitamin D are commonly administered drugs for the treatment of bone diseases and the prevention of bone metastases. Platinum-based and methotrexate are widely used anticancer drugs in clinics. However, their use is hampered by adverse side effects. Hybrid-based compounds containing either bisphosphonate, vitamin D, platinum-based, or methotrexate were synthesized and characterized using FTIR, 1H-,31P, 13C-NMR, and UHPLC-HRMS which confirmed their successful synthesis. The hydroxyapatite bone binding assay revealed a promising percentage binding affinity of the bisphosphonate hybrid compounds. In vitro cytotoxicity assays on MCF-7 and HT-29 cell lines revealed a promising cytotoxic effect of hybrid 19 at 50 and 100 μg/mL on HT-29 and hybrid 15 on MCF-7 at 100 μg/mL. Molecular docking and dynamics simulation analysis revealed a binding affinity of -9.70 kcal/mol for hybrid 15 against Human 3 alpha-hydroxysteroid dehydrogenase type 3, showing its capability to inhibit Human 3 alpha-hydroxysteroid dehydrogenase type 3. The Swiss ADME, ProTox-II, GUSAR (General Unrestricted Structure-Activity Relationships), and molecular docking and dynamics studies revealed that these compounds are promising anticancer compounds.
Collapse
Affiliation(s)
- Zintle Mbese
- Department of Chemistry, University of Fort Hare, Alice Campus, 5700, Alice, Eastern Cape, South Africa
| | - Mpho Choene
- Department of Biochemistry, University of Johannesburg, Kingsway Campus, Auckland Park, 2006, Johannesburg, South Africa
| | - Eric Morifi
- School of Chemistry, Mass Spectrometry Division, University of Witwatersrand, 2050, Johannesburg, South Africa
| | - M Nwamadi
- Department of Chemistry, University of Johannesburg, Auckland Park Campus, 2006, Johannesburg, South Africa
| | - Samson Adeyemi
- Wits Advanced Drug Delivery Platform Research Unit, Department of Pharmacy and Pharmacology, School of Therapeutic Science, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Abel Kolawole Oyebamiji
- Department of Chemistry and Industrial Chemistry, Bowen University, Iwo, Osun State, Nigeria
| | - Adedapo S Adeyinka
- Research Centre for Synthesis and Catalysis, Department of Chemical Sciences, University of Johannesburg, Auckland Park, 2006, Johannesburg, South Africa
| | - Blassan George
- Laser Research Centre, Faculty of Health Sciences, University of Johannesburg, Doornfontein Campus, 2028, Johannesburg, South Africa
| | - Blessing Atim Aderibigbe
- Department of Chemistry, University of Fort Hare, Alice Campus, 5700, Alice, Eastern Cape, South Africa
| |
Collapse
|
4
|
Dolton MJ, Bowman C, Ma F, Cheeti S, Kuruvilla D, Kassir N, Chen Y, Liu J, Chiang PC. Integrating Dynamic in vitro Systems and Mechanistic Absorption Modeling: Case Study of Pralsetinib. J Pharm Sci 2024; 113:2952-2956. [PMID: 39002726 DOI: 10.1016/j.xphs.2024.07.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 07/08/2024] [Accepted: 07/08/2024] [Indexed: 07/15/2024]
Abstract
Dynamic in vitro absorption systems and mechanistic absorption modeling via PBPK have both shown promise in predicting human oral absorption, although these efforts have been largely separate; this work aimed to integrate knowledge from these approaches to investigate the oral absorption of a RET inhibitor, pralsetinib, with BCS Class II properties. Tiny-TIM (TIM B.V., Weteringbrug, The Netherlands) is a dynamic in vitro model with close simulation of the successive physiological conditions of the human stomach and small intestine. Tiny-TIM runs with pralsetinib were performed at doses of 200 mg and 400 mg under fasting conditions. Mechanistic modeling of absorption was performed in Simcyp V21 (Certara, Manchester, UK). Pralsetinib fasted bioaccessibility in the Tiny-TIM system was 63% at 200 mg and 53% at 400 mg; a 16% reduction at 400 mg was observed under elevated gastric pH. Maximum pralsetinib solubility from the small intestinal compartment in Tiny-TIM directly informed the supersaturation/precipitation model parameters. The PBPK model predicted a similar fraction absorbed at 200 mg and 400 mg, consistent with the dose proportional increases in observed pralsetinib exposure. Integrating dynamic in vitro systems with mechanistic absorption modeling provides a promising approach for understanding and predicting human absorption with challenging low solubility compounds.
Collapse
Affiliation(s)
- Michael J Dolton
- Clinical Pharmacology, Genentech Inc., 1 DNA Way, South San Francisco, CA 94080, USA.
| | - Christine Bowman
- Drug Metabolism and Pharmacokinetics, Genentech Inc., 1 DNA Way, South San Francisco, CA 94080, USA
| | - Fang Ma
- Drug Metabolism and Pharmacokinetics, Genentech Inc., 1 DNA Way, South San Francisco, CA 94080, USA
| | - Sravanthi Cheeti
- Clinical Pharmacology, Genentech Inc., 1 DNA Way, South San Francisco, CA 94080, USA
| | - Denison Kuruvilla
- Clinical Pharmacology, Genentech Inc., 1 DNA Way, South San Francisco, CA 94080, USA
| | - Nastya Kassir
- Clinical Pharmacology, Genentech Inc., 1 DNA Way, South San Francisco, CA 94080, USA
| | - Yuan Chen
- Clinical Pharmacology, Genentech Inc., 1 DNA Way, South San Francisco, CA 94080, USA; Drug Metabolism and Pharmacokinetics, Genentech Inc., 1 DNA Way, South San Francisco, CA 94080, USA
| | - Jia Liu
- Small Molecule Pharmaceutical Sciences, Genentech Inc., 1 DNA Way, South San Francisco, CA 94080, USA
| | - Po-Chang Chiang
- Small Molecule Pharmaceutical Sciences, Genentech Inc., 1 DNA Way, South San Francisco, CA 94080, USA
| |
Collapse
|
5
|
Baumgartner A, Planinšek O. Development of Orodispersible Tablets with Solid Dispersions of Fenofibrate and Co-Processed Mesoporous Silica for Improved Dissolution. Pharmaceutics 2024; 16:1060. [PMID: 39204405 PMCID: PMC11359594 DOI: 10.3390/pharmaceutics16081060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 08/05/2024] [Accepted: 08/10/2024] [Indexed: 09/04/2024] Open
Abstract
Poor water solubility is an important challenge in the development of oral patient-friendly solid dosage forms. This study aimed to prepare orodispersible tablets with solid dispersions of a poorly water-soluble drug fenofibrate and a co-processed excipient consisting of mesoporous silica and isomalt. This co-processed excipient, developed in a previous study, exhibited improved flow and compression properties compared to pure silica while maintaining a high specific surface area for drug adsorption. Rotary evaporation was used to formulate solid dispersions with different amounts of fenofibrate, which were evaluated for solid state properties and drug release. The solid dispersion with 30% fenofibrate showed no signs of crystallinity and had a significantly improved dissolution rate, making it the optimal sample for formulation or orodispersible tablets. The aim was to produce tablets with minimal amounts of additional excipients while achieving a drug release profile similar to the uncompressed solid dispersion. The compressed formulations met the requirements for orodispersible tablets in terms of disintegration time, and the drug release from best formulation approximated the profile of uncompressed solid dispersion. Future research should focus on reducing the disintegration time and tablet size to enhance patient acceptability further.
Collapse
Affiliation(s)
- Ana Baumgartner
- Faculty of Pharmacy, University of Ljubljana, Aškerčeva 7, 1000 Ljubljana, Slovenia
| | - Odon Planinšek
- Faculty of Pharmacy, University of Ljubljana, Aškerčeva 7, 1000 Ljubljana, Slovenia
| |
Collapse
|
6
|
Huang Y, Tang H, Meng X, Liu D, Liu Y, Chen B, Zou Z. Highly Drug-Loaded Nanoaggregate Microparticles for Pulmonary Delivery of Cyclosporin A. Int J Nanomedicine 2024; 19:7529-7546. [PMID: 39071501 PMCID: PMC11283786 DOI: 10.2147/ijn.s470134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Accepted: 07/08/2024] [Indexed: 07/30/2024] Open
Abstract
Introduction Nanoparticles have the advantages of improving the solubility of poorly water-soluble drugs, facilitating the drug across biological barriers, and reducing macrophage phagocytosis in pulmonary drug delivery. However, nanoparticles have a small aerodynamic particle size, which makes it difficult to achieve optimal deposition when delivered directly to the lungs. Therefore, delivering nanoparticles to the lungs effectively has become a popular research topic. Methods Nanoaggregate microparticles were used as a pulmonary drug delivery strategy for the improvement of the bioavailability of cyclosporine A (CsA). The nanoaggregate microparticles were prepared with polyvinyl pyrrolidone (PVP) as the excipient by combining the anti-solvent method and spray drying process. The physicochemical properties, aerodynamic properties, in vivo pharmacokinetics and inhalation toxicity of nanoaggregate microparticles were systematically evaluated. Results The optimal nanoparticles exhibited mainly spherical shapes with the particle size and zeta potential of 180.52 nm and -19.8 mV. The nanoaggregate microparticles exhibited irregular shapes with the particle sizes of less than 1.6 µm and drug loading (DL) values higher than 70%. Formulation NM-2 as the optimal nanoaggregate microparticles was suitable for pulmonary drug delivery and probably deposited in the bronchiole and alveolar region, with FPF and MMAD values of 89.62% and 1.74 μm. In addition, inhaled NM-2 had C max and AUC0-∞ values approximately 1.7-fold and 1.8-fold higher than oral cyclosporine soft capsules (Neoral®). The inhalation toxicity study suggested that pulmonary delivery of NM-2 did not result in lung function damage, inflammatory responses, or tissue lesions. Conclusion The novel nanoaggregate microparticles for pulmonary drug delivery could effectively enhance the relative bioavailability of CsA and had great potential for clinical application.
Collapse
Affiliation(s)
- Yongpeng Huang
- State Key Laboratory of NBC Protection for Civilian, Beijing, People’s Republic of China
| | - Hui Tang
- State Key Laboratory of NBC Protection for Civilian, Beijing, People’s Republic of China
| | - Xiangyan Meng
- State Key Laboratory of NBC Protection for Civilian, Beijing, People’s Republic of China
| | - Dongxin Liu
- State Key Laboratory of NBC Protection for Civilian, Beijing, People’s Republic of China
| | - Yanli Liu
- State Key Laboratory of NBC Protection for Civilian, Beijing, People’s Republic of China
| | - Bo Chen
- State Key Laboratory of NBC Protection for Civilian, Beijing, People’s Republic of China
| | - Zhiyun Zou
- State Key Laboratory of NBC Protection for Civilian, Beijing, People’s Republic of China
| |
Collapse
|
7
|
Bell TN, Kusi-Appiah AE, Tocci V, Lyu P, Zhu L, Zhu F, Van Winkle D, Cao H, Singh MS, Lenhert S. Scalable lipid droplet microarray fabrication, validation, and screening. PLoS One 2024; 19:e0304736. [PMID: 38968248 PMCID: PMC11226032 DOI: 10.1371/journal.pone.0304736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Accepted: 05/16/2024] [Indexed: 07/07/2024] Open
Abstract
High throughput screening of small molecules and natural products is costly, requiring significant amounts of time, reagents, and operating space. Although microarrays have proven effective in the miniaturization of screening for certain biochemical assays, such as nucleic acid hybridization or antibody binding, they are not widely used for drug discovery in cell culture due to the need for cells to internalize lipophilic drug candidates. Lipid droplet microarrays are a promising solution to this problem as they are capable of delivering lipophilic drugs to cells at dosages comparable to solution delivery. However, the scalablility of the array fabrication, assay validation, and screening steps has limited the utility of this approach. Here we take several new steps to scale up the process for lipid droplet array fabrication, assay validation in cell culture, and drug screening. A nanointaglio printing process has been adapted for use with a printing press. The arrays are stabilized for immersion into aqueous solution using a vapor coating process. In addition to delivery of lipophilic compounds, we found that we are also able to encapsulate and deliver a water-soluble compound in this way. The arrays can be functionalized by extracellular matrix proteins such as collagen prior to cell culture as the mechanism for uptake is based on direct contact with the lipid delivery vehicles rather than diffusion of the drug out of the microarray spots. We demonstrate this method for delivery to 3 different cell types and the screening of 92 natural product extracts on a microarray covering an area of less than 0.1 cm2. The arrays are suitable for miniaturized screening, for instance in high biosafety level facilities where space is limited and for applications where cell numbers are limited, such as in functional precision medicine.
Collapse
Affiliation(s)
- Tracey N. Bell
- Department of Biological Science and Integrative NanoScience Institute, Florida State University, Tallahassee, Florida, United States of America
| | - Aubrey E. Kusi-Appiah
- Department of Biological Science and Integrative NanoScience Institute, Florida State University, Tallahassee, Florida, United States of America
| | - Vincent Tocci
- Department of Biological Science and Integrative NanoScience Institute, Florida State University, Tallahassee, Florida, United States of America
| | - Pengfei Lyu
- Department of Statistics, Florida State University, Tallahassee, Florida, United States of America
| | - Lei Zhu
- Department of Chemistry & Biochemistry, Florida State University, Tallahassee, Florida, United States of America
| | - Fanxiu Zhu
- Department of Biological Science, Florida State University, Tallahassee, Florida, United States of America
| | - David Van Winkle
- Department of Physics, Florida State University, Tallahassee, Florida, United States of America
| | - Hongyuan Cao
- Department of Statistics, Florida State University, Tallahassee, Florida, United States of America
| | - Mandip S. Singh
- College of Pharmacy and Pharmaceutical Science, Florida A&M University, Tallahassee, Florida, United States of America
| | - Steven Lenhert
- Department of Biological Science and Integrative NanoScience Institute, Florida State University, Tallahassee, Florida, United States of America
| |
Collapse
|
8
|
Kehrein J, Bunker A, Luxenhofer R. POxload: Machine Learning Estimates Drug Loadings of Polymeric Micelles. Mol Pharm 2024; 21:3356-3374. [PMID: 38805643 PMCID: PMC11394009 DOI: 10.1021/acs.molpharmaceut.4c00086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/30/2024]
Abstract
Block copolymers, composed of poly(2-oxazoline)s and poly(2-oxazine)s, can serve as drug delivery systems; they form micelles that carry poorly water-soluble drugs. Many recent studies have investigated the effects of structural changes of the polymer and the hydrophobic cargo on drug loading. In this work, we combine these data to establish an extended formulation database. Different molecular properties and fingerprints are tested for their applicability to serve as formulation-specific mixture descriptors. A variety of classification and regression models are built for different descriptor subsets and thresholds of loading efficiency and loading capacity, with the best models achieving overall good statistics for both cross- and external validation (balanced accuracies of 0.8). Subsequently, important features are dissected for interpretation, and the DrugBank is screened for potential therapeutic use cases where these polymers could be used to develop novel formulations of hydrophobic drugs. The most promising models are provided as an open-source software tool for other researchers to test the applicability of these delivery systems for potential new drug candidates.
Collapse
Affiliation(s)
- Josef Kehrein
- Soft Matter Chemistry, Department of Chemistry, Faculty of Science, University of Helsinki, A. I. Virtasen aukio 1, 00014 Helsinki, Finland
- Drug Research Program, Division of Pharmaceutical Biosciences Faculty of Pharmacy, University of Helsinki, Viikinkaari 5 E, 00014 Helsinki, Finland
| | - Alex Bunker
- Drug Research Program, Division of Pharmaceutical Biosciences Faculty of Pharmacy, University of Helsinki, Viikinkaari 5 E, 00014 Helsinki, Finland
| | - Robert Luxenhofer
- Soft Matter Chemistry, Department of Chemistry, Faculty of Science, University of Helsinki, A. I. Virtasen aukio 1, 00014 Helsinki, Finland
| |
Collapse
|
9
|
Rodríguez-Pombo L, Carou-Senra P, Rodríguez-Martínez E, Januskaite P, Rial C, Félix P, Alvarez-Lorenzo C, Basit AW, Goyanes A. Customizable orodispersible films: Inkjet printing and data matrix encoding for personalized hydrocortisone dosing. Int J Pharm 2024; 655:124005. [PMID: 38493841 DOI: 10.1016/j.ijpharm.2024.124005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 03/08/2024] [Accepted: 03/14/2024] [Indexed: 03/19/2024]
Abstract
The aim of this study was to exploit the versatility of inkjet printing to develop flexible doses of drug-loaded orodispersible films that encoded information in a data matrix pattern, and to introduce a specialised data matrix-generator software specifically focused on the healthcare sector. Pharma-inks (drug-loaded inks) containing hydrocortisone (HC) were developed and characterised based on their rheological properties and drug content. Different strategies were investigated to improve HC solubility: formation of β-cyclodextrin complexes, Soluplus® based micelles, and the use of co-solvent systems. The software automatically adapted the data matrix size and identified the number of layers for printing. HC content deposited in each film layer was measured, and it was found that the proportion of co-solvent used directly affected the drug solubility and simultaneously played a role in the modification of the viscosity and surface tension of the inks. The formation of β-cyclodextrin complexes improved the drug quantity deposited in each layer. On the contrary, micelle-based inks were not suitable for printing. Orodispersible films containing flexible and low doses of personalised HC were successfully prepared, and the development of a code generator software oriented to medical use provided an additional, innovative, and revolutionary advantage to personalised medicine safety and accessibility.
Collapse
Affiliation(s)
- Lucía Rodríguez-Pombo
- Departamento de Farmacología, Farmacia y Tecnología Farmacéutica, I+D Farma (GI-1645), Facultad de Farmacia, Instituto de Materiales (iMATUS) and Health Research Institute of Santiago de Compostela (IDIS), Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - Paola Carou-Senra
- Departamento de Farmacología, Farmacia y Tecnología Farmacéutica, I+D Farma (GI-1645), Facultad de Farmacia, Instituto de Materiales (iMATUS) and Health Research Institute of Santiago de Compostela (IDIS), Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - Erea Rodríguez-Martínez
- Departamento de Farmacología, Farmacia y Tecnología Farmacéutica, I+D Farma (GI-1645), Facultad de Farmacia, Instituto de Materiales (iMATUS) and Health Research Institute of Santiago de Compostela (IDIS), Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - Patricija Januskaite
- Department of Pharmaceutics, UCL School of Pharmacy, University College London, 29-39 Brunswick Square, London WC1N 1AX, UK
| | - Carlos Rial
- FABRX Ltd., Henwood House, Henwood, Ashford, Kent TN24 8DH, UK; FABRX Artificial Intelligence, Carretera de Escairón, 14, Currelos (O Saviñao) CP 27543, Spain
| | - Paulo Félix
- CiTIUS, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - Carmen Alvarez-Lorenzo
- Departamento de Farmacología, Farmacia y Tecnología Farmacéutica, I+D Farma (GI-1645), Facultad de Farmacia, Instituto de Materiales (iMATUS) and Health Research Institute of Santiago de Compostela (IDIS), Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - Abdul W Basit
- Department of Pharmaceutics, UCL School of Pharmacy, University College London, 29-39 Brunswick Square, London WC1N 1AX, UK; FABRX Ltd., Henwood House, Henwood, Ashford, Kent TN24 8DH, UK; FABRX Artificial Intelligence, Carretera de Escairón, 14, Currelos (O Saviñao) CP 27543, Spain.
| | - Alvaro Goyanes
- Departamento de Farmacología, Farmacia y Tecnología Farmacéutica, I+D Farma (GI-1645), Facultad de Farmacia, Instituto de Materiales (iMATUS) and Health Research Institute of Santiago de Compostela (IDIS), Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain; Department of Pharmaceutics, UCL School of Pharmacy, University College London, 29-39 Brunswick Square, London WC1N 1AX, UK; FABRX Ltd., Henwood House, Henwood, Ashford, Kent TN24 8DH, UK; FABRX Artificial Intelligence, Carretera de Escairón, 14, Currelos (O Saviñao) CP 27543, Spain.
| |
Collapse
|
10
|
Kovačević M, Zvonar Pobirk A, German Ilić I. The effect of polymeric binder type and concentration on flow and dissolution properties of SMEDDS loaded mesoporous silica-based granules. Eur J Pharm Sci 2024; 193:106582. [PMID: 37709174 DOI: 10.1016/j.ejps.2023.106582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 09/07/2023] [Accepted: 09/11/2023] [Indexed: 09/16/2023]
Abstract
Self-microemulsifying drug delivery systems (SMEDDS) are lipid-based formulations, designed to improve the solubility of poorly-water soluble drugs. Mesoporous silica is frequently used for SMEDDS solidification by various techniques. One of them is wet granulation, which enables achieving both high SMEDDS load and good flow properties. This study investigated the effect of six polymeric binders' addition to granulation dispersion (GD) (povidone K30, povidone K90, copovidone, Pharmacoat® 603, Pharmacoat® 615 and Methocel™ K100 Premium LV) on characteristics of produced SMEDDS granules, prepared by wet granulation. By incorporation of polymer in GD, it was possible to produce mesoporous silica-based free-flowing granules, with preserved self-microemulsifying properties, responsible for improved in vitro release of carvedilol. The incorporation of higher molecular weight binders resulted in slower in vitro release, while high binder concentration was related to faster drug release. The highest release rate was achieved with povidone K30 at 7.45 % binder concentration, as corresponding granules exhibited complete drug release already in 5 min. Granulation method (manual vs. high-shear) influenced the release rate of carvedilol as it was released slower from SMEDDS granules prepared using the granulator. Finally, SMEDDS tablet formulation was optimized to achieve maximum granule content and adequate tablet hardness. Increased granule content found to negatively influence tablet hardness, as maximum granule content of 25 % was needed to obtain appropriate hardness. Such tablets exhibited short disintegration time, so this final prototype can be considered as orodispersible tablet.
Collapse
Affiliation(s)
- Mila Kovačević
- Faculty of Pharmacy, University of Ljubljana, Aškerčeva 7, Ljubljana 1000, Slovenia
| | - Alenka Zvonar Pobirk
- Faculty of Pharmacy, University of Ljubljana, Aškerčeva 7, Ljubljana 1000, Slovenia
| | - Ilija German Ilić
- Faculty of Pharmacy, University of Ljubljana, Aškerčeva 7, Ljubljana 1000, Slovenia.
| |
Collapse
|
11
|
Todorović N, Čanji Panić J, Pavlić B, Popović S, Ristić I, Rakić S, Rajšić I, Vukmirović S, Srđenović Čonić B, Milijašević B, Milošević N, Lalić-Popović M. Supercritical fluid technology as a strategy for nifedipine solid dispersions formulation: In vitro and in vivo evaluation. Int J Pharm 2024; 649:123634. [PMID: 38000651 DOI: 10.1016/j.ijpharm.2023.123634] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 11/07/2023] [Accepted: 11/21/2023] [Indexed: 11/26/2023]
Abstract
Supercritical fluid technology (SFT) is an insufficiently investigated approach for the production of solid dispersions, it is environmentally acceptable and has a high potential for application in the pharmaceutical industry. The aim of this work was to formulate and characterize nifedipine solid dispersions (SDs) produced by the SFT and compare the results with ones obtained by the classical solvent based kneading method. The following in vitro tests were conducted: assay and yield, solvent residues, solid state characterization (FTIR, DSC, XRD), flowability, hygroscopicity, solubility, dissolution and stability. Additionally, bioavailability was examined on an animal model (Wistar rats). The formulation selection for in vivo study was performed using the multilevel categoric experimental design and the health risk assessment. Solid state characterization revealed that formulation obtained by the SFT method and higher ratio of polymer (1:5) have had nifedipine in completely amorphous form. Polymer ratio and method of SDs preparation do influence the investigation characteristics. Dissolution rate was fastest in SDs prepared by the SFT and higher polymer ration (1:5). In vivo data of selected SDs prepared by the kneading (ratio 1:1) and the SFT (ratio 1:5) showed alteration in pharmacokinetic profile after i.v. and p.o. application.
Collapse
Affiliation(s)
- Nemanja Todorović
- University of Novi Sad, Faculty of Medicine Novi Sad, Department of Pharmacy, Hajduk Veljkova 3, 21000 Novi Sad, Republic of Serbia
| | - Jelena Čanji Panić
- University of Novi Sad, Faculty of Medicine Novi Sad, Department of Pharmacy, Hajduk Veljkova 3, 21000 Novi Sad, Republic of Serbia
| | - Branimir Pavlić
- University of Novi Sad, Faculty of Technology Novi Sad, Bulevar Cara Lazara 1, 21000 Novi Sad, Republic of Serbia
| | - Senka Popović
- University of Novi Sad, Faculty of Technology Novi Sad, Bulevar Cara Lazara 1, 21000 Novi Sad, Republic of Serbia
| | - Ivan Ristić
- University of Novi Sad, Faculty of Technology Novi Sad, Bulevar Cara Lazara 1, 21000 Novi Sad, Republic of Serbia
| | - Srđan Rakić
- University of Novi Sad, Faculty of Sciences, Department of Physics, Trg Dositeja Obradovića 4, 21000 Novi Sad, Republic of Serbia
| | - Ivana Rajšić
- University of Novi Sad, Faculty of Medicine Novi Sad, Department of Pharmacology and Toxicology, Hajduk Veljkova 3, 21000 Novi Sad, Republic of Serbia
| | - Saša Vukmirović
- University of Novi Sad, Faculty of Medicine Novi Sad, Department of Pharmacology and Toxicology, Hajduk Veljkova 3, 21000 Novi Sad, Republic of Serbia
| | - Branislava Srđenović Čonić
- University of Novi Sad, Faculty of Medicine Novi Sad, Department of Pharmacy, Hajduk Veljkova 3, 21000 Novi Sad, Republic of Serbia; University of Novi Sad, Faculty of Medicine Novi Sad, Centre for Medical and Pharmaceutical Investigations and Quality Control (CEMPhIC), Hajduk Veljkova 3, 21000 Novi Sad, Republic of Serbia
| | - Boris Milijašević
- University of Novi Sad, Faculty of Medicine Novi Sad, Department of Pharmacology and Toxicology, Hajduk Veljkova 3, 21000 Novi Sad, Republic of Serbia
| | - Nataša Milošević
- University of Novi Sad, Faculty of Medicine Novi Sad, Department of Pharmacy, Hajduk Veljkova 3, 21000 Novi Sad, Republic of Serbia
| | - Mladena Lalić-Popović
- University of Novi Sad, Faculty of Medicine Novi Sad, Department of Pharmacy, Hajduk Veljkova 3, 21000 Novi Sad, Republic of Serbia; University of Novi Sad, Faculty of Medicine Novi Sad, Centre for Medical and Pharmaceutical Investigations and Quality Control (CEMPhIC), Hajduk Veljkova 3, 21000 Novi Sad, Republic of Serbia.
| |
Collapse
|
12
|
Klueppelberg J, Handge UA, Thommes M, Winck J. Composition Dependency of the Flory-Huggins Interaction Parameter in Drug-Polymer Phase Behavior. Pharmaceutics 2023; 15:2650. [PMID: 38139992 PMCID: PMC10747291 DOI: 10.3390/pharmaceutics15122650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 11/14/2023] [Accepted: 11/15/2023] [Indexed: 12/24/2023] Open
Abstract
An innovative strategy to address recent challenges in the oral administration of poorly soluble drugs is the formulation of amorphous solid dispersions (ASDs), where the drug is dissolved in a highly soluble carrier polymer. Therefore, special knowledge of the drug-polymer phase behavior is essential for an effective product and process design, accelerating the introduction of novel efficacious ASD products. Flory-Huggins theory can be applied to model solubility temperatures of crystalline drugs in carrier polymers over the drug fraction. However, predicted solubility temperatures lack accuracy in cases of strong drug/polymer interactions that are not represented in the Flory-Huggins lattice model. Within this study, a modeling strategy is proposed to improve the predictive power through an extension of the Flory-Huggins interaction parameter by a correlation with the drug fraction. Therefore, the composition dependency of the Flory-Huggins interaction parameter was evaluated experimentally for various drug-polymer formulations that cover a wide variety of drug and polymer characteristics regarding molecular weights, glass transition temperatures and melting temperatures, as well as drug-polymer interactions of different strengths and effects. The extended model was successfully approved for nine exemplary ASD formulations containing the drugs acetaminophen, itraconazole, and griseofulvine, as well as the following polymers: basic butylated methacrylate copolymer, Soluplus®, and vinylpyrrolidone/vinyl acetate copolymer. A high correlation between the predicted solubility temperatures and experimental and literature data was found, particularly at low drug fractions, since the model accounts for composition dependent drug-polymer interactions.
Collapse
Affiliation(s)
- Jana Klueppelberg
- Laboratory of Solids Process Engineering, Department of Biochemical and Chemical Engineering, TU Dortmund University, Emil-Figge-Street 68, 44227 Dortmund, Germany; (J.K.); (M.T.)
| | - Ulrich A. Handge
- Chair of Plastics Technology, Department of Mechanical Engineering, TU Dortmund University, Leonhard-Euler-Street 5, 44227 Dortmund, Germany;
| | - Markus Thommes
- Laboratory of Solids Process Engineering, Department of Biochemical and Chemical Engineering, TU Dortmund University, Emil-Figge-Street 68, 44227 Dortmund, Germany; (J.K.); (M.T.)
| | - Judith Winck
- Laboratory of Solids Process Engineering, Department of Biochemical and Chemical Engineering, TU Dortmund University, Emil-Figge-Street 68, 44227 Dortmund, Germany; (J.K.); (M.T.)
| |
Collapse
|
13
|
Siddiquee A, Parray Z, Anand A, Tasneem S, Hasan N, Alamier WM, Ageeli AA, Wani FA, Singh P, Patel R. Binding Study of Antibacterial Drug Ciprofloxacin with Imidazolium-Based Ionic Liquids Having Different Halide Anions: A Spectroscopic and Density Functional Theory Analysis. ACS OMEGA 2023; 8:42699-42710. [PMID: 38024745 PMCID: PMC10653064 DOI: 10.1021/acsomega.3c05100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 10/06/2023] [Accepted: 10/09/2023] [Indexed: 12/01/2023]
Abstract
Herein, we have shown the interaction of an antibiotic drug ciprofloxacin (CIP) with three surface-active ionic liquids (ILs), having the same cation and different anions, namely, 1-decyl-3-methylimidazoliumtetrafluoroborate [C10mim][BF4], 1-decyl-3-methylimidazolium bromide [C10mim][Br], and 1-decyl-3-methylimidazolium chloride [C10mim][Cl]. This study has been performed by exploiting various spectroscopic techniques such as steady-state fluorescence, time-resolved fluorescence, and UV-visible spectroscopy. The fluorescence emission study of CIP with ILs was performed at various concentrations of all the three ILs. The emission spectra of CIP decreased in the presence of ILs, suggesting complex formation between CIP-IL. The effect of different concentrations of ILs on the emission spectra of CIP was exploited in terms of quenching and binding parameters. Further, fluorescence emission study was validated by the time-resolved fluorescence technique by measuring the average lifetime (τavg) of CIP in the presence of all the three ILs. The τavg value of the drug changed with the addition of ILs, which suggests complex formation between the drug and ILs. This complex formation was also confirmed by UV-visible spectroscopy results of CIP with all the three ILs. Further, for evaluating the thermodynamic parameters of the CIP-IL interactions, isothermal titration calorimetry (ITC) was performed. The ITC experiment yielded the thermodynamic parameters, ΔH (change in the enthalpy of association), ΔG (Gibbs free energy change), ΔS (entropy change), and binding constant (Ka). The binding parameters driven by ITC revealed that CIP-IL interactions are spontaneous in nature and enthalpy-driven, involving hydrophobic forces. Further, the classical density functional theory (DFT) calculations were performed, which provided deep insight for CIP-IL complex formation.
Collapse
Affiliation(s)
- Abrar Siddiquee
- Biophysical
Chemistry Laboratory, Centre for Interdisciplinary Research in Basic
Sciences, Jamia Millia Islamia, New Delhi 110025, India
| | - Zahoor Parray
- Department
of Chemistry, IIT Delhi, Hauz Khaus Campus, New Delhi 110016, India
| | - Aashima Anand
- Biophysical
Chemistry Laboratory, Centre for Interdisciplinary Research in Basic
Sciences, Jamia Millia Islamia, New Delhi 110025, India
| | - Shadma Tasneem
- Department
of Chemistry, Faculty of Science, Jazan
University, P.O. Box 2097, Jazan 45142, Saudi Arabia
| | - Nazim Hasan
- Department
of Chemistry, Faculty of Science, Jazan
University, P.O. Box 2097, Jazan 45142, Saudi Arabia
| | - Waleed M. Alamier
- Department
of Chemistry, Faculty of Science, Jazan
University, P.O. Box 2097, Jazan 45142, Saudi Arabia
| | - Abeer A. Ageeli
- Department
of Chemistry, Faculty of Science, Jazan
University, P.O. Box 2097, Jazan 45142, Saudi Arabia
| | - Farooq Ahmad Wani
- Biophysical
Chemistry Laboratory, Centre for Interdisciplinary Research in Basic
Sciences, Jamia Millia Islamia, New Delhi 110025, India
| | - Prashant Singh
- Department
of Chemistry, ARSD College, Delhi University, New Delhi 110021, India
| | - Rajan Patel
- Biophysical
Chemistry Laboratory, Centre for Interdisciplinary Research in Basic
Sciences, Jamia Millia Islamia, New Delhi 110025, India
| |
Collapse
|
14
|
Md Moshikur R, Goto M. Pharmaceutical Applications of Ionic Liquids: A Personal Account. CHEM REC 2023; 23:e202300026. [PMID: 37042429 DOI: 10.1002/tcr.202300026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Revised: 03/27/2023] [Indexed: 04/13/2023]
Abstract
Ionic liquids (ILs) have been extensively used in drug formulation and delivery as designer solvents and other components because of their inherent tunability and useful physicochemical and biopharmaceutical properties. ILs can be used to manage some of the operational and functional challenges of drug delivery, including drug solubility, permeability, formulation instability, and in vivo systemic toxicity, that are associated with conventional organic solvents/agents. Furthermore, ILs have been recognized as potential solvents to address the polymorphism, limited solubility, poor permeability, instability, and low bioavailability of crystalline drugs. In this account, we discuss the technological progress and strategies toward designing biocompatible ILs and explore potential biomedical applications, namely the solubilization of small and macromolecular drugs, the creation of active pharmaceutical ingredients, and the delivery of pharmaceuticals.
Collapse
Affiliation(s)
- Rahman Md Moshikur
- Department of Applied Chemistry, Graduate School of Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Masahiro Goto
- Department of Applied Chemistry, Advanced Transdermal Drug Delivery System Center, Division of Biotechnology, Center for Future Chemistry, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| |
Collapse
|
15
|
Rastmanesh R. Inadequate Hydration Status of Test Subjects Can Affect Bioavailability Studies. ACS Pharmacol Transl Sci 2023; 6:1104-1106. [PMID: 37470021 PMCID: PMC10353055 DOI: 10.1021/acsptsci.3c00089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Indexed: 07/21/2023]
Abstract
This Viewpoint identifies some of the pitfalls in the bioavailability of water-soluble drugs and introduces a novel bias we term the "hypohydration bias". We suggest that future bioavailability studies take some important neglected confounding factors into account, and we propose that, to avoid such a bias, some relevant variables such as serum and urine osmolality, dry weight adjustment, fluid balance, semi-nude body mass, saliva osmolality, saliva total protein concentration, and urine specific gravity should be controlled to increase the precision of the bioavailability measurements. We suggest that a new definition of hydration status is needed, and that systematic protocols of bioavailability studies should be revisited.
Collapse
Affiliation(s)
- Reza Rastmanesh
- American
Physical Society, College Park, Maryland 20740, USA
- The
Nutrition Society, London W6 7NJ, U.K.
- Independent
researcher, #6, Physicians
Building, Sarshar Alley, Vali-Asr, Tajrish, Tehran 1961835555, Iran
| |
Collapse
|
16
|
Thompson SA, Gala U, Davis DA, Kucera S, Miller D, Williams RO. Can the Oral Bioavailability of the Discontinued Prostate Cancer Drug Galeterone Be Improved by Processing Method? KinetiSol® Outperforms Spray Drying in a Head-to-head Comparison. AAPS PharmSciTech 2023; 24:137. [PMID: 37344629 DOI: 10.1208/s12249-023-02597-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Accepted: 05/31/2023] [Indexed: 06/23/2023] Open
Abstract
Galeterone, a novel prostate cancer candidate treatment, was discontinued after a Phase III clinical trial due to lack of efficacy. Galeterone is weakly basic and exhibits low solubility in biorelevant media (i.e., ~ 2 µg/mL in fasted simulated intestinal fluid). It was formulated as a 50-50 (w/w) galeterone-hypromellose acetate succinate spray-dried dispersion to increase its bioavailability. Despite this increase, the bioavailability of this formulation may have been insufficient and contributed to its clinical failure. We hypothesized that reformulating galeterone as an amorphous solid dispersion by KinetiSol® compounding could increase its bioavailability. In this study, we examined the effects of composition and manufacturing technology (Kinetisol and spray drying) on the performance of galeterone amorphous solid dispersions. KinetiSol compounding was utilized to create galeterone amorphous solid dispersions containing the complexing agent hydroxypropyl-β-cyclodextrin or hypromellose acetate succinate with lower drug loads that both achieved a ~ 6 × increase in dissolution performance versus the 50-50 spray-dried dispersion. When compared to a spray-dried dispersion with an equivalent drug load, the KinetiSol amorphous solid dispersions formulations exhibited ~ 2 × exposure in an in vivo rat study. Acid-base surface energy analysis showed that the equivalent composition of the KinetiSol amorphous solid dispersion formulation better protected the weakly basic galeterone from premature dissolution in acidic media and thereby reduced precipitation, inhibited recrystallization, and extended the extent of supersaturation during transit into neutral intestinal media.
Collapse
Affiliation(s)
- Stephen A Thompson
- Molecular Pharmaceutics and Drug Delivery Division, The University of Texas at Austin College of Pharmacy, 2409 W. University Ave. PHR 4.214, Austin, Texas, 78712, USA.
| | - Urvi Gala
- AustinPx, LLC. 111 W Cooperative Way, Suite 300, Georgetown, Texas, 78626, USA
| | - Daniel A Davis
- AustinPx, LLC. 111 W Cooperative Way, Suite 300, Georgetown, Texas, 78626, USA
| | - Sandra Kucera
- AustinPx, LLC. 111 W Cooperative Way, Suite 300, Georgetown, Texas, 78626, USA
| | - Dave Miller
- AustinPx, LLC. 111 W Cooperative Way, Suite 300, Georgetown, Texas, 78626, USA
| | - Robert O Williams
- Molecular Pharmaceutics and Drug Delivery Division, The University of Texas at Austin College of Pharmacy, 2409 W. University Ave. PHR 4.214, Austin, Texas, 78712, USA
| |
Collapse
|
17
|
Hidayatullah T, Nasir F, Khattak MA, Pervez S, Almalki WH, Alasmari F, Maryam GE, Rahman AU, Ali AT. Hybrid Dissolving Microneedle-Mediated Delivery of Ibuprofen: Solubilization, Fabrication, and Characterization. Pharmaceuticals (Basel) 2023; 16:ph16050677. [PMID: 37242460 DOI: 10.3390/ph16050677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 04/27/2023] [Accepted: 04/27/2023] [Indexed: 05/28/2023] Open
Abstract
Microneedles have recently emerged as a promising platform for delivering therapeutic agents by disrupting the skin, resulting in improved and high drug delivery via this route. Ibuprofen is widely used topically and orally for chronic pain conditions; to avoid untoward gastric effects, topical application is preferred over the oral route. This study aimed to enhance the solubility of the poorly water-soluble ibuprofen using Soluplus (SP) as a solubilizer and to fabricate dissolving microneedle patches of the drug. The fabricated patches were compared with marketed oral and topical formulations of ibuprofen. A 432-fold increase was observed in the solubility of the drug at 8% SP. The FTIR studies revealed that the drug and polymers were compatible. MNs were of uniform morphology and released the drug in a predictable manner. The in vivo analysis on healthy human volunteers revealed a Cmax of 28.7 µg/mL ± 0.5 with a Tmax of 24 h and a MRT of 19.5 h, which was significantly higher than that observed for commercially available topical formulations. The prepared ibuprofen microneedles have higher bioavailability and MRT at a lower dose (165 µg) as compared to tablet and cream doses (200 mg).
Collapse
Affiliation(s)
| | - Fazli Nasir
- Department of Pharmacy, University of Peshawar, Peshawar 25000, Pakistan
| | - Muzna Ali Khattak
- Department of Pharmacy, University of Peshawar, Peshawar 25000, Pakistan
- Department of Pharmacy, CECOS University of IT and Emerging Sciences, Peshawar 25000, Pakistan
| | - Sadia Pervez
- Department of Pharmacy, University of Peshawar, Peshawar 25000, Pakistan
| | - Waleed H Almalki
- Department of Pharmacology and Toxicology, College of Pharmacy, Umm Al-Qura University, Makkah P.O. Box 715, Saudi Arabia
| | - Fawaz Alasmari
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Gul E Maryam
- Department of Pharmacy, Qurtaba University of Science and Information Technology, Peshawar 25000, Pakistan
| | - Altaf Ur Rahman
- Department of Pharmacy, University of Peshawar, Peshawar 25000, Pakistan
| | - Arbab Tahir Ali
- Department of Pharmacy, University of Peshawar, Peshawar 25000, Pakistan
| |
Collapse
|
18
|
Kumari L, Choudhari Y, Patel P, Gupta GD, Singh D, Rosenholm JM, Bansal KK, Kurmi BD. Advancement in Solubilization Approaches: A Step towards Bioavailability Enhancement of Poorly Soluble Drugs. Life (Basel) 2023; 13:life13051099. [PMID: 37240744 DOI: 10.3390/life13051099] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 04/20/2023] [Accepted: 04/25/2023] [Indexed: 05/28/2023] Open
Abstract
A drug's aqueous solubility is defined as the ability to dissolve in a particular solvent, and it is currently a major hurdle in bringing new drug molecules to the market. According to some estimates, up to 40% of commercialized products and 70-90% of drug candidates in the development stage are poorly soluble, which results in low bioavailability, diminished therapeutic effects, and dosage escalation. Because of this, solubility must be taken into consideration when developing and fabricating pharmaceutical products. To date, a number of approaches have been investigated to address the problem of poor solubility. This review article attempts to summarize several conventional methods utilized to increase the solubility of poorly soluble drugs. These methods include the principles of physical and chemical approaches such as particle size reduction, solid dispersion, supercritical fluid technology, cryogenic technology, inclusion complex formation techniques, and floating granules. It includes structural modification (i.e., prodrug, salt formation, co-crystallization, use of co-solvents, hydrotrophy, polymorphs, amorphous solid dispersions, and pH variation). Various nanotechnological approaches such as liposomes, nanoparticles, dendrimers, micelles, metal organic frameworks, nanogels, nanoemulsions, nanosuspension, carbon nanotubes, and so forth have also been widely investigated for solubility enhancement. All these approaches have brought forward the enhancement of the bioavailability of orally administered drugs by improving the solubility of poorly water-soluble drugs. However, the solubility issues have not been completely resolved, owing to several challenges associated with current approaches, such as reproducibility in large scale production. Considering that there is no universal approach for solving solubility issues, more research is needed to simplify the existing technologies, which could increase the number of commercially available products employing these techniques.
Collapse
Affiliation(s)
- Lakshmi Kumari
- Department of Pharmaceutics, ISF College of Pharmacy, GT Road, Moga 142001, Punjab, India
| | - Yash Choudhari
- Department of Pharmaceutics, ISF College of Pharmacy, GT Road, Moga 142001, Punjab, India
| | - Preeti Patel
- Department of Pharmaceutical Chemistry, ISF College of Pharmacy, GT Road, Moga 142001, Punjab, India
| | - Ghanshyam Das Gupta
- Department of Pharmaceutics, ISF College of Pharmacy, GT Road, Moga 142001, Punjab, India
| | - Dilpreet Singh
- Department of Pharmaceutics, ISF College of Pharmacy, GT Road, Moga 142001, Punjab, India
| | - Jessica M Rosenholm
- Pharmaceutical Sciences Laboratory, Faculty of Science and Engineering, Åbo Akademi University, 20520 Turku, Finland
| | - Kuldeep Kumar Bansal
- Pharmaceutical Sciences Laboratory, Faculty of Science and Engineering, Åbo Akademi University, 20520 Turku, Finland
| | - Balak Das Kurmi
- Department of Pharmaceutics, ISF College of Pharmacy, GT Road, Moga 142001, Punjab, India
| |
Collapse
|
19
|
Trzeciak K, Wielgus E, Kaźmierski S, Pawlak T, Potrzebowski MJ. Amorphization of Ethenzamide and Ethenzamide Cocrystals-A Case Study of Single and Binary Systems Forming Low-Melting Eutectic Phases Loaded on/in Silica Gel. Pharmaceutics 2023; 15:pharmaceutics15041234. [PMID: 37111719 PMCID: PMC10142476 DOI: 10.3390/pharmaceutics15041234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 04/05/2023] [Accepted: 04/11/2023] [Indexed: 04/29/2023] Open
Abstract
The applicability of different solvent-free approaches leading to the amorphization of active pharmaceutical ingredients (APIs) was tested. Ethenzamide (ET), an analgesic and anti-inflammatory drug, and two ethenzamide cocrystals with glutaric acid (GLU) and ethyl malonic acid (EMA) as coformers were used as pharmaceutical models. Calcinated and thermally untreated silica gel was applied as an amorphous reagent. Three methods were used to prepare the samples: manual physical mixing, melting, and grinding in a ball mill. The ET:GLU and ET:EMA cocrystals forming low-melting eutectic phases were selected as the best candidates for testing amorphization by thermal treatment. The progress and degree of amorphousness were determined using instrumental techniques: solid-state NMR spectroscopy, powder X-ray diffraction, and differential scanning calorimetry. In each case, the API amorphization was complete and the process was irreversible. A comparative analysis of the dissolution profiles showed that the dissolution kinetics for each sample are significantly different. The nature and mechanism of this distinction are discussed.
Collapse
Affiliation(s)
- Katarzyna Trzeciak
- Centre of Molecular and Macromolecular Studies, Polish Academy of Sciences, Sienkiewicza 112, 90-363 Lodz, Poland
| | - Ewelina Wielgus
- Centre of Molecular and Macromolecular Studies, Polish Academy of Sciences, Sienkiewicza 112, 90-363 Lodz, Poland
| | - Sławomir Kaźmierski
- Centre of Molecular and Macromolecular Studies, Polish Academy of Sciences, Sienkiewicza 112, 90-363 Lodz, Poland
| | - Tomasz Pawlak
- Centre of Molecular and Macromolecular Studies, Polish Academy of Sciences, Sienkiewicza 112, 90-363 Lodz, Poland
| | - Marek J Potrzebowski
- Centre of Molecular and Macromolecular Studies, Polish Academy of Sciences, Sienkiewicza 112, 90-363 Lodz, Poland
| |
Collapse
|
20
|
Oladipo AO, Lebelo SL, Msagati TAM. Nanocarrier design–function relationship: The prodigious role of properties in regulating biocompatibility for drug delivery applications. Chem Biol Interact 2023; 377:110466. [PMID: 37004951 DOI: 10.1016/j.cbi.2023.110466] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 03/14/2023] [Accepted: 03/28/2023] [Indexed: 04/03/2023]
Abstract
The concept of drug delivery systems as a magic bullet for the delivery of bioactive compounds has emerged as a promising approach in the treatment of different diseases with significant advantages over the limitations of traditional methods. While nanocarrier-based drug delivery systems are the main advocates of drug uptake because they offer several advantages including reduced non-specific biodistribution, improved accumulation, and enhanced therapeutic efficiency; their safety and biocompatibility within cellular/tissue systems are therefore important for achieving the desired effect. The underlying power of "design-interplay chemistry" in modulating the properties and biocompatibility at the nanoscale level will direct the interaction with their immediate surrounding. Apart from improving the existing nanoparticle physicochemical properties, the balancing of the hosts' blood components interaction holds the prospect of conferring newer functions altogether. So far, this concept has been remarkable in achieving many fascinating feats in addressing many challenges in nanomedicine such as immune responses, inflammation, biospecific targeting and treatment, and so on. This review, therefore, provides a diverse account of the recent advances in the fabrication of biocompatible nano-drug delivery platforms for chemotherapeutic applications, as well as combination therapy, theragnostic, and other diseases that are of interest to scientists in the pharmaceutical industries. Thus, careful consideration of the "property of choice" would be an ideal way to realize specific functions from a set of delivery platforms. Looking ahead, there is an enormous prospect for nanoparticle properties in regulating biocompatibility.
Collapse
Affiliation(s)
- Adewale O Oladipo
- Department of Life and Consumer Sciences, College of Agriculture and Environmental Sciences, University of South Africa, Private Bag X06, Florida, 1710, South Africa.
| | - Sogolo L Lebelo
- Department of Life and Consumer Sciences, College of Agriculture and Environmental Sciences, University of South Africa, Private Bag X06, Florida, 1710, South Africa
| | - Titus A M Msagati
- Institute for Nanotechnology and Water Sustainability (iNanoWS), College of Science, Engineering, and Technology, University of South Africa, Private Bag X06, Florida, 1710, South Africa
| |
Collapse
|
21
|
Glišić T, Djuriš J, Vasiljević I, Parojčić J, Aleksić I. Application of Machine-Learning Algorithms for Better Understanding the Properties of Liquisolid Systems Prepared with Three Mesoporous Silica Based Carriers. Pharmaceutics 2023; 15:pharmaceutics15030741. [PMID: 36986602 PMCID: PMC10054079 DOI: 10.3390/pharmaceutics15030741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Revised: 02/17/2023] [Accepted: 02/21/2023] [Indexed: 02/25/2023] Open
Abstract
The processing of liquisolid systems (LSS), which are considered a promising approach to improving the oral bioavailability of poorly soluble drugs, has proven challenging due to the relatively high amount of liquid phase incorporated within them. The objective of this study was to apply machine-learning tools to better understand the effects of formulation factors and/or tableting process parameters on the flowability and compaction properties of LSS with silica-based mesoporous excipients as carriers. In addition, the results of the flowability testing and dynamic compaction analysis of liquisolid admixtures were used to build data sets and develop predictive multivariate models. In the regression analysis, six different algorithms were used to model the relationship between tensile strength (TS), the target variable, and eight other input variables. The AdaBoost algorithm provided the best-fit model for predicting TS (coefficient of determination = 0.94), with ejection stress (ES), compaction pressure, and carrier type being the parameters that influenced its performance the most. The same algorithm was best for classification (precision = 0.90), depending on the type of carrier used, with detachment stress, ES, and TS as variables affecting the performance of the model. Furthermore, the formulations with Neusilin® US2 were able to maintain good flowability and satisfactory values of TS despite having a higher liquid load compared to the other two carriers.
Collapse
|
22
|
Møller A, Schultz HB, Meola TR, Joyce P, Müllertz A, Prestidge CA. The Influence of Blonanserin Supersaturation in Liquid and Silica Stabilised Self-Nanoemulsifying Drug Delivery Systems on In Vitro Solubilisation. Pharmaceutics 2023; 15:pharmaceutics15010284. [PMID: 36678919 PMCID: PMC9864080 DOI: 10.3390/pharmaceutics15010284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 01/09/2023] [Accepted: 01/11/2023] [Indexed: 01/18/2023] Open
Abstract
Reformulating poorly water-soluble drugs as supersaturated lipid-based formulations achieves higher drug loading and potentially improves solubilisation and bioavailability. However, for the weak base blonanserin, silica solidified supersaturated lipid-based formulations have demonstrated reduced in vitro solubilisation compared to their liquid-state counterparts. Therefore, this study aimed to understand the influence of supersaturated drug load on blonanserin solubilisation from liquid and silica solidified supersaturated self-nanoemulsifying drug delivery systems (super-SNEDDS) during in vitro lipolysis. Stable liquid super-SNEDDS with varying drug loads (90-300% of the equilibrium solubility) were solidified by imbibition into porous silica microparticles (1:1 lipid: silica ratio). In vitro lipolysis revealed greater blonanserin solubilisation from liquid super-SNEDDS compared to solid at equivalent drug saturation levels, owing to strong silica-BLON/lipid interactions, evidenced by a significant decrease in blonanserin solubilisation upon addition of silica to a digesting liquid super-SNEDDS. An increase in solid super-SNEDDS drug loading led to increased solubilisation, owing to the increased drug:silica and drug:lipid ratios. Solidifying SNEDDS with silica enables the fabrication of powdered formulations with higher blonanserin loading and greater stability than liquid super-SNEDDS, however at the expense of drug solubilisation. These competing parameters need careful consideration in designing optimal super-SNEDDS for pre-clinical and clinical application.
Collapse
Affiliation(s)
- Amalie Møller
- UniSA Clinical & Health Sciences, University of South Australia, Adelaide, SA 5000, Australia
- Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, 2100 Copenhagen, Denmark
- Future Industries Institute, UniSA STEM, Mawson Lakes Campus, University of South Australia, Mawson Lakes, SA 5095, Australia
| | - Hayley B. Schultz
- UniSA Clinical & Health Sciences, University of South Australia, Adelaide, SA 5000, Australia
| | - Tahlia R. Meola
- UniSA Clinical & Health Sciences, University of South Australia, Adelaide, SA 5000, Australia
| | - Paul Joyce
- UniSA Clinical & Health Sciences, University of South Australia, Adelaide, SA 5000, Australia
| | - Anette Müllertz
- Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, 2100 Copenhagen, Denmark
- Bioneer:FARMA, Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, 2100 Copenhagen, Denmark
| | - Clive A. Prestidge
- UniSA Clinical & Health Sciences, University of South Australia, Adelaide, SA 5000, Australia
- Correspondence: ; Tel.: +61-8-830-22438
| |
Collapse
|
23
|
Winck J, Daalmann M, Berghaus A, Thommes M. In-line monitoring of solid dispersion preparation in small scale extrusion based on UV-vis spectroscopy. Pharm Dev Technol 2022; 27:1009-1015. [PMID: 36331240 DOI: 10.1080/10837450.2022.2144887] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
The poor solubility of a large number of active pharmaceutical ingredients (APIs) is a major challenge in pharmaceutical research. Therefore, the extrusion of amorphous solid dispersions (ASDs) is one promising approach to enhance the dissolution rate by molecularly dissolving the API in an amorphous carrier polymer. During ASD extrusion, crucial parameters as the dissolution of the API in the carrier polymer need to be monitored. Within this study, a small scale twin screw extruder was coupled with special ColVisTec UV-vis probes that are characterized by their small dimensions. This setup enables a systematic formulation design and optimization based on in-line monitoring of drug dissolution using small material quantities. In fact, sample quantities of about 5 mg were evaluated for each measurement, representing 50% of the material inside the die. The amount of undissolved drug particles was determined based on the lightness of the extrudates. It was shown that the temperature has a significant effect on the drug dissolution in the polymer. Furthermore, complete drug dissolution was shifted to lower temperatures if higher residence times were applied. Based on the courses of lightness, regime maps were modeled that specify the process conditions where ASDs are successfully manufactured.
Collapse
Affiliation(s)
- Judith Winck
- Laboratory of Solids Process Engineering, TU Dortmund University, Dortmund, Germany
| | - Marvin Daalmann
- Laboratory of Solids Process Engineering, TU Dortmund University, Dortmund, Germany
| | | | - Markus Thommes
- Laboratory of Solids Process Engineering, TU Dortmund University, Dortmund, Germany
| |
Collapse
|
24
|
A comprehensive analysis of meloxicam particles produced by nanosecond laser ablation as a wet milling technique. Sci Rep 2022; 12:12551. [PMID: 35869132 PMCID: PMC9307616 DOI: 10.1038/s41598-022-16728-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Accepted: 07/14/2022] [Indexed: 11/30/2022] Open
Abstract
Recently, the number of water insoluble and poorly soluble drug compounds has increased significantly. Therefore, growing interest has been witnessed in different particle size reduction techniques to improve the dissolution rates, transport characteristics and bioavailability of drugs. Laser ablation has proven to be an alternative method to the production of nano- and micrometre-sized drug particles without considerable chemical damage. We present the nanosecond laser ablation of drug pastilles in distilled water, targeting meloxicam, a poorly water soluble nonsteroidal anti-inflammatory drug, at different laser wavelengths (248 nm, 532 nm and 1064 nm). Besides chemical characterization, crystallinity, morphology and particle size studies, the mechanism of the particle generation process was examined. The applicability of ablated particles in drug formulation was investigated by solubility, cytotoxicity and anti-inflammatory effect measurements. We showed that laser ablation is a clean, efficient and chemically non-damaging method to reduce the size of meloxicam particles to the sub-micrometre–few micrometre size range, which is optimal for pulmonary drug delivery. Complemented by the excellent solubility (four to nine times higher) and anti-inflammatory (four to five times better) properties of the particles compared to the initial drug, laser ablation is predicted to have wider applications in the development of drug formulations.
Collapse
|
25
|
He M, Zheng W, Wang N, Gao H, Ouyang D, Huang Z. Molecular Dynamics Simulation of Drug Solubilization Behavior in Surfactant and Cosolvent Injections. Pharmaceutics 2022; 14:2366. [PMID: 36365184 PMCID: PMC9692798 DOI: 10.3390/pharmaceutics14112366] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 10/21/2022] [Accepted: 10/27/2022] [Indexed: 10/03/2023] Open
Abstract
Surfactants and cosolvents are often combined to solubilize insoluble drugs in commercially available intravenous formulations to achieve better solubilization. In this study, six marketed parenteral formulations with surfactants and cosolvents were investigated on the aggregation processes of micelles, the structural characterization of micelles, and the properties of solvent using molecular dynamics simulations. The addition of cosolvents resulted in better hydration of the core and palisade regions of micelles and an increase in both radius of gyration (Rg) and the solvent accessible surface area (SASA), causing a rise in critical micelle concentration (CMC), which hindered the phase separation of micelles. At the same time, the presence of cosolvents disrupted the hydrogen bonding structure of water in solution, increasing the solubility of insoluble medicines. Therefore, the solubilization mechanism of the cosolvent and surfactant mixtures was successfully analyzed by molecular dynamics simulation, which will benefit future formulation development for drug delivery.
Collapse
Affiliation(s)
- Meiqi He
- The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan 523710, China
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences (ICMS), University of Macau, Macau 999078, China
- Key Laboratory of Big Data Mining and Precision Drug Design of Guangdong Medical University, Key Laboratory of Computer-Aided Drug Design of Dongguan City, Key Laboratory for Research and Development of Natural Drugs of Guangdong Province, School of Pharmacy, Guangdong Medical University, Dongguan 523808, China
| | - Wenwen Zheng
- Department of Clinical Laboratory, The Sixth Affiliated Hospital of Sun Yat-sen University, Guangzhou 510655, China
| | - Nannan Wang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences (ICMS), University of Macau, Macau 999078, China
| | - Hanlu Gao
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences (ICMS), University of Macau, Macau 999078, China
| | - Defang Ouyang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences (ICMS), University of Macau, Macau 999078, China
| | - Zunnan Huang
- The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan 523710, China
- Key Laboratory of Big Data Mining and Precision Drug Design of Guangdong Medical University, Key Laboratory of Computer-Aided Drug Design of Dongguan City, Key Laboratory for Research and Development of Natural Drugs of Guangdong Province, School of Pharmacy, Guangdong Medical University, Dongguan 523808, China
| |
Collapse
|
26
|
Ivanova IS, Tsebrikova GS, Lapshina MA, Rogacheva YI, Ilyukhin AB, Solov’ev VP, Pyatova EN, Baulin VE. (2-Hydroxyphenyl)phosphonic acid: complexation with the copper(ii) cation, toxicity, and accumulation in HeLa cells. Russ Chem Bull 2022. [DOI: 10.1007/s11172-022-3664-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
27
|
Hirai D, Tsunematsu H, Kimura SI, Itai S, Fukami T, Iwao Y. Theoretical evaluation of supersaturation of amorphous solid dispersion formulations with different drug/polymer combinations using mathematical modeling. Int J Pharm 2022; 625:122110. [PMID: 35970282 DOI: 10.1016/j.ijpharm.2022.122110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Revised: 07/19/2022] [Accepted: 08/10/2022] [Indexed: 11/17/2022]
Abstract
Amorphous solid dispersion (ASD) is a preparation widely used for improving the solubility and low oral absorbability of poorly water-soluble drugs, but the quantitative analysis of its dissolution profiles and its supersaturation status remains an important issue. We previously reported a new mathematical model for analyzing the dissolution characteristics of ASD preparations that enabled evaluation of theoretical solubility of ASDs and crystal precipitation rate constants of ASD preparations. In this study, to analyze the relationship between the mathematical parameters of the model and the dissolution behavior in detail, we simulated the dissolution behaviors upon changing parameters. We quantitatively evaluated the supersaturation of ASD preparations composed of various combinations of two drugs (ibuprofen or indomethacin) and three polymers (polyvinylpyrrolidone (PVP), copovidone or hydroxypropylmethylcellulose (HPMC)). Based on parameter comparison, the difference in the peak of drug concentration between IB/PVP and IB/HPMC ASDs was found to be derived from precipitation rate constant, not the theoretical solubility. In addition, although IMC/PVP ASD had higher solubility than IMC/HPMC ASDs, HPMC could suppress crystal precipitation and maintain supersaturation at higher concentrations than IMC/PVP ASD by comparing parameters derived from model fitting. Thus, our results show that the use of mathematical parameters can illuminate theoretical mechanical information regarding dissolution behaviors of various ASDs and permit a visualization of the character of the dissolution process.
Collapse
Affiliation(s)
- Daiki Hirai
- School of Pharmaceutical Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka, 422-8526, Japan
| | - Hiroki Tsunematsu
- School of Pharmaceutical Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka, 422-8526, Japan
| | - Shin-Ichiro Kimura
- School of Pharmaceutical Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka, 422-8526, Japan
| | - Shigeru Itai
- School of Pharmaceutical Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka, 422-8526, Japan
| | - Toshiro Fukami
- Department of Molecular Pharmaceutics, Meiji Pharmaceutical University, 2-522-1 Noshio, Kiyose, Tokyo 204-8588, Japan
| | - Yasunori Iwao
- School of Pharmaceutical Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka, 422-8526, Japan; School of Pharmaceutical Sciences, Wakayama Medical University, 25-1, Shichiban-cho, Wakayama-shi, Wakayama, 640-8156, Japan.
| |
Collapse
|
28
|
Improving oral bioavailability of water-insoluble idebenone with bioadhesive liposomes. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2022.103640] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
29
|
Ma N, Liu Y, Ling G, Zhang P. Preparation of meloxicam-salicylic acid co-crystal and its application in the treatment of rheumatoid arthritis. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2022.103542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
30
|
Optimization of the Preformulation and Formulation Parameters in the Development of New Extended-Release Tablets Containing Felodipine. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12115333] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Herein, new extended-release tablets containing felodipine were developed. For the orally administered formulations, optimization of the preformulation and formulation parameters was performed to assess the performance of the dosage form. Initially, the morphological and physical characterization of two forms of felodipine (microcrystalline and macrocrystalline) using Fourier transform infrared spectroscopy, differential scanning calorimetry and optical microscopy was performed. The pharmaco-technical properties of the two felodipine forms were also determined. Subsequently, formulation studies for felodipine extended-release tablets were performed. Mathematical modelling of release kinetics of felodipine from developed formulations using a power law model was also performed. Based on the influence of formulation factors on the in vitro availability of felodipine in experimental tablets, a new extended-release tablet formulation was established.
Collapse
|
31
|
How Does Long-Term Storage Influence the Physical Stability and Dissolution of Bicalutamide from Solid Dispersions and Minitablets? Processes (Basel) 2022. [DOI: 10.3390/pr10051002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
The stability of amorphous drugs is among the main challenges in the development of solid dosage forms. This paper examines the effect of storage conditions (25 °C/60% RH and 40 °C/75% RH) and different packaging materials, i.e., polystyrene containers and PVC/Al blisters, on the crystallinity and dissolution characteristics of solid dispersions containing bicalutamide and polyvinylpyrrolidone. The results confirmed drug amorphization upon milling and improved dissolution resulting from the lack of a crystal lattice. These properties varied with time regarding sample composition, storage conditions, and packaging material. The most resistant to storage conditions was the 1:1 solid dispersion packed into blisters. Based on the obtained results, the 1:1 solid dispersion was formulated into minitablets, which were then tested after tableting and then packed into PVC/Al blisters and stored for six months in the same conditions as solid dispersions. We proved that efficient stabilization of amorphous bicalutamide depends on the barrier properties of packaging materials and that a properly chosen material protected the drug substance from the influence of unfavorable storage conditions such as elevated temperature and humidity.
Collapse
|
32
|
O'Sullivan A, Long B, Verma V, Ryan KM, Padrela L. Solid-State and Particle Size Control of Pharmaceutical Cocrystals using Atomization-Based Techniques. Int J Pharm 2022; 621:121798. [PMID: 35525471 DOI: 10.1016/j.ijpharm.2022.121798] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 04/28/2022] [Accepted: 04/29/2022] [Indexed: 12/12/2022]
Abstract
Poor bioavailability and aqueous solubility represent a major constraint during the development of new API molecules and can influence the impact of new medicines or halt their approval to the market. Cocrystals offer a novel and competitive advantage over other conventional methods with respect towards the substantial improvement in solubility profiles relative to the single-API crystals. Furthermore, the production of such cocrystals through atomization-based methods allow for greater control, with respect to particle size reduction, to further increase the solubility of the API. Such atomization-based methods include supercritical fluid methods, conventional spray drying and electrohydrodynamic atomization/electrospraying. The influence of process parameters such as solution flow rates, pressure and solution concentration, in controlling the solid-state and final particle size are discussed in this review with respect to atomization-based methods. For the last decade, literature has been attempting to catch-up with new regulatory rulings regarding the classification of cocrystals, due in part to data sparsity. In recent years, there has been an increase in cocrystal publications, specifically employing atomization-based methods. This review considers the benefits to employing atomization-based methods for the generation of pharmaceutical cocrystals, examines the most recent regulatory changes regarding cocrystals and provides an outlook towards the future of this field.
Collapse
Affiliation(s)
- Aaron O'Sullivan
- SSPC Research Centre, Department of Chemical Sciences, Bernal Institute, University of Limerick, Limerick, Ireland
| | - Barry Long
- SSPC Research Centre, Department of Chemical Sciences, Bernal Institute, University of Limerick, Limerick, Ireland
| | - Vivek Verma
- SSPC Research Centre, Department of Chemical Sciences, Bernal Institute, University of Limerick, Limerick, Ireland
| | - Kevin M Ryan
- SSPC Research Centre, Department of Chemical Sciences, Bernal Institute, University of Limerick, Limerick, Ireland
| | - Luis Padrela
- SSPC Research Centre, Department of Chemical Sciences, Bernal Institute, University of Limerick, Limerick, Ireland.
| |
Collapse
|
33
|
An update on solid-state characterization of the polyphenol pterostilbene. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2022.103331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
34
|
Wang ZD, Peng HH, Guan YX, Yao SJ. Supercritical CO2 assisted micronization of curcumin-loaded oil-in-water emulsion promising in colon targeted delivery. J CO2 UTIL 2022. [DOI: 10.1016/j.jcou.2022.101966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
35
|
Ionic Liquids: Promising Approach for Oral Drug Delivery. Pharm Res 2022; 39:2353-2365. [PMID: 35449344 DOI: 10.1007/s11095-022-03260-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Accepted: 04/06/2022] [Indexed: 12/22/2022]
Abstract
Oral administration is the most preferred route for drug administration in clinic. However, due to unsatisfactory physicochemical properties of drugs and various physiological barriers, the oral bioavailability of most poorly water-soluble and macromolecules drugs is low and the therapeutic effect is unsatisfactory. Ionic liquids (ILs), molten salts with unique properties, show amazing potential for oral delivery. In addition to being able to form active pharmaceutical ingredients based ILs (API-ILs) to overcome drug solubility and polymorphism issues, ILs have also been used to enhance the solubility of poorly soluble drugs, enhance drug stability in the gastrointestinal environment, improve drug permeability in intestinal mucus, and facilitate drug penetration across the intestinal epithelial barrier. Furthermore, ILs were attempted as formulation components to develop novel oral drug delivery systems. This review focus on the application progress of ILs in oral drug delivery and the mechanisms. The challenges and perspectives of the development of ILs-based oral delivery systems are also discussed. This article reviews the latest advances of ionic liquids for oral drug delivery, focusing on the application and related mechanisms of ionic liquids in improving the drug physicochemical properties and enhancing drug delivery across physiological barriers.
Collapse
|
36
|
da Rocha NP, Barbosa EJ, Barros de Araujo GL, Bou-Chacra NA. Innovative drug delivery systems for leprosy treatment. Indian J Dermatol Venereol Leprol 2022; 88:1-6. [PMID: 35434984 DOI: 10.25259/ijdvl_1119_20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Accepted: 01/01/2022] [Indexed: 11/04/2022]
Affiliation(s)
- Nataly Paredes da Rocha
- Faculty of Pharmaceutical Sciences, University of São Paulo, Prof. Lineu Prestes Avenue, São Paulo, SP, Brazil
| | - Eduardo José Barbosa
- Faculty of Pharmaceutical Sciences, University of São Paulo, Prof. Lineu Prestes Avenue, São Paulo, SP, Brazil
| | | | - Nádia Araci Bou-Chacra
- Faculty of Pharmaceutical Sciences, University of São Paulo, Prof. Lineu Prestes Avenue, São Paulo, SP, Brazil
| |
Collapse
|
37
|
Chaudhari PM, Johnson P, Mhetre RL, Al-Achi A. Nanonization-Based Solubility Enhancement by Loaded Porous Starch Foam: Nifedipine Tablet Formulation. J Pharm Innov 2022. [DOI: 10.1007/s12247-022-09622-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
38
|
Ibrahim AH, Ibrahim HM, Elbahwy IA, Afouna MI, Tagami T, Ozeki T. Lyophilized tablets of felodipine-loaded polymeric nanocapsules to enhance aqueous solubility: Formulation and optimization. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2022.103172] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
39
|
Fang X, Hu Y, Huang Z, Han L, Li B, Lu S, Cao Y. Exploring the formation mechanism of coamorphous andrographolide-oxymatrine based on molecular dynamics and spectroscopy. J Pharm Sci 2022; 111:2056-2071. [DOI: 10.1016/j.xphs.2022.02.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 02/05/2022] [Accepted: 02/06/2022] [Indexed: 12/18/2022]
|
40
|
Miranda C, Ruiz-Picazo A, Pomares P, Gonzalez-Alvarez I, Bermejo M, Gonzalez-Alvarez M, Avdeef A, Cabrera-Pérez MÁ. Integration of In Silico, In Vitro and In Situ Tools for the Preformulation and Characterization of a Novel Cardio-Neuroprotective Compound during the Early Stages of Drug Development. Pharmaceutics 2022; 14:182. [PMID: 35057075 PMCID: PMC8780741 DOI: 10.3390/pharmaceutics14010182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 12/14/2021] [Accepted: 01/05/2022] [Indexed: 11/18/2022] Open
Abstract
The main aim of this work is the biopharmaceutical characterization of a new hybrid benzodiazepine-dihydropyridine derivative, JM-20, derived with potent anti-ischemic and neuroprotective effects. In this study, the pKa and the pH-solubility profile were experimentally determined. Additionally, effective intestinal permeability was measured using three in vitro epithelial cell lines (MDCK, MDCK-MDR1 and Caco-2) and an in situ closed-loop intestinal perfusion technique. The results indicate that JM-20 is more soluble at acidic pH (9.18 ± 0.16); however, the Dose number (Do) was greater than 1, suggesting that it is a low-solubility compound. The permeability values obtained with in vitro cell lines as well as with the in situ perfusion method show that JM-20 is a highly permeable compound (Caco-2 value 3.8 × 10-5). The presence of an absorption carrier-mediated transport mechanism was also demonstrated, as well as the efflux effect of P-glycoprotein on the permeability values. Finally, JM-20 was provisionally classified as class 2 according to the biopharmaceutical classification system (BCS) due to its high intestinal permeability and low solubility. The potential good oral absorption of this compound could be limited by its solubility.
Collapse
Affiliation(s)
- Claudia Miranda
- Unit of Modeling & Experimental Biopharmaceutics, Central “Marta Abreu” de Las Villas, Centro de Bioactivos Químicos Universidad, Santa Clara 50100, Cuba; (C.M.); (M.-Á.C.-P.)
| | - Alejandro Ruiz-Picazo
- Department Engineering of Pharmacokinetics and Pharmaceutical Technology Area, Miguel Hernandez University, 03550 Alicante, Spain; (A.R.-P.); (P.P.); (I.G.-A.); (M.B.)
| | - Paula Pomares
- Department Engineering of Pharmacokinetics and Pharmaceutical Technology Area, Miguel Hernandez University, 03550 Alicante, Spain; (A.R.-P.); (P.P.); (I.G.-A.); (M.B.)
| | - Isabel Gonzalez-Alvarez
- Department Engineering of Pharmacokinetics and Pharmaceutical Technology Area, Miguel Hernandez University, 03550 Alicante, Spain; (A.R.-P.); (P.P.); (I.G.-A.); (M.B.)
| | - Marival Bermejo
- Department Engineering of Pharmacokinetics and Pharmaceutical Technology Area, Miguel Hernandez University, 03550 Alicante, Spain; (A.R.-P.); (P.P.); (I.G.-A.); (M.B.)
| | - Marta Gonzalez-Alvarez
- Department Engineering of Pharmacokinetics and Pharmaceutical Technology Area, Miguel Hernandez University, 03550 Alicante, Spain; (A.R.-P.); (P.P.); (I.G.-A.); (M.B.)
| | - Alex Avdeef
- In-ADME Research, 1732 First Avenue # 102, New York, NY 10128, USA;
| | - Miguel-Ángel Cabrera-Pérez
- Unit of Modeling & Experimental Biopharmaceutics, Central “Marta Abreu” de Las Villas, Centro de Bioactivos Químicos Universidad, Santa Clara 50100, Cuba; (C.M.); (M.-Á.C.-P.)
| |
Collapse
|
41
|
Yuan J, Zhou N, Wu J, Yin T, Jia Y. Ionic liquids as effective additives to enhance the solubility and permeation for puerarin and ferulic acid. RSC Adv 2022; 12:3416-3422. [PMID: 35425358 PMCID: PMC8979243 DOI: 10.1039/d1ra07080k] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Accepted: 01/14/2022] [Indexed: 12/25/2022] Open
Abstract
Ionic liquids, especially the cholinium-amino acid-based ionic liquids (CHAAILs), have recently been found to be effective ingredients in formulation of transdermal drug delivery system. In this work, we synthesized six CHAAILs, and investigated their ability to enhance the solubility and permeation of two active pharmaceutic ingredients (APIs), i.e. ferulic acid and puerarin. The solubility measurements showed that a low amount of CHAAILs can significantly increase the solubility of APIs. Moreover, the effective enhancement of permeation of APIs across a polyethersulfone (PES) membrane was achieved at low concentration (4 mg ml−1) of CHAAILs. It is more worthwhile that the presence of CHAAIL brings much less cytotoxicity as compared to traditional types of ionic liquids. Therefore, CHAAILs can be considered as great potential candidates of green and effective additives in transdermal drug delivery systems. Cholinium-animo acid based ionic liquids displayed high efficiency in enhancing the solubility and permeation ability of active pharmaceutic ingredients.![]()
Collapse
Affiliation(s)
- Jing Yuan
- Shanghai Sixth People's Hospital, Shanghai 201306, China
| | - Ningning Zhou
- School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Jieyu Wu
- School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Tianxiang Yin
- School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Yunbin Jia
- Shanghai Sixth People's Hospital, Shanghai 201306, China
| |
Collapse
|
42
|
Pandey S, Keerthana AC, Madhulika S, Prasad P, Peruncheralathan S, Ghosh A. Hydrothermal treatment as a means of improving the solubility and enhancing the diaCEST MRI contrast efficiency. NEW J CHEM 2022. [DOI: 10.1039/d2nj02529a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Carbon dot formation through the hydrothermal treatment of amino-thioamide improves the diaCEST contrast efficiency.
Collapse
Affiliation(s)
- Shalini Pandey
- School of Chemical Sciences, National Institute of Science Education and Research(NISER), HBNI, Jatni, Khurda, Bhubaneswar, 752050, Odisha, India
| | - Anil C. Keerthana
- School of Chemical Sciences, National Institute of Science Education and Research(NISER), HBNI, Jatni, Khurda, Bhubaneswar, 752050, Odisha, India
| | - Swati Madhulika
- Chromatin and Epigenetic group, Institute of Life Sciences, Bhubaneswar, 751023, Odisha, India
| | - Punit Prasad
- Chromatin and Epigenetic group, Institute of Life Sciences, Bhubaneswar, 751023, Odisha, India
| | - S. Peruncheralathan
- School of Chemical Sciences, National Institute of Science Education and Research(NISER), HBNI, Jatni, Khurda, Bhubaneswar, 752050, Odisha, India
| | - Arindam Ghosh
- School of Chemical Sciences, National Institute of Science Education and Research(NISER), HBNI, Jatni, Khurda, Bhubaneswar, 752050, Odisha, India
| |
Collapse
|
43
|
Gröls J, Tasso Guaraldo T, Herdes C, Mattia D, Castro Dominguez B. Metal Oxide Foams for Pharmaceutical Amorphization. CrystEngComm 2022. [DOI: 10.1039/d2ce00211f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The amorphization of pharmaceutical crystals is an effective strategy to enhance the bioavailability of poorly soluble active pharmaceutical ingredients (APIs). However, this process can be challenging as these supramolecular structures...
Collapse
|
44
|
Koch N, Jennotte O, Ziemons E, Boussard G, Lechanteur A, Evrard B. Influence of API physico-chemical properties on amorphization capacity of several mesoporous silica loading methods. Int J Pharm 2021; 613:121372. [PMID: 34906649 DOI: 10.1016/j.ijpharm.2021.121372] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Revised: 12/06/2021] [Accepted: 12/07/2021] [Indexed: 12/15/2022]
Abstract
The objective of this work was to evaluate the impact of physico-chemical properties of pharmaceutical drugs on the optimal mesoporous silica loading methods. Indeed, a good combination between drug and loading process has to be studied to promote the deepest penetration of the drug inside the mesopores, allowing high drug amorphization. Six molecules, namely lidocaine and its hydrochloride, ibuprofen, ketoprofen, artemether and miconazole, with different physico-chemical properties (the ionized character, the acid-base character, the HBDA number, the solubility in sc-CO2 and the behavior under subcritical CO2) were used to produce drug-silica formulations. Different impregnation processes (physical mixing, melting, wetting, sc-CO2 and subcritical CO2 impregnations) have been compared for each drug, in terms of drug recovery and crystallinity. Formulations showed drug percentage close to 100% except for supercritical soluble drug formulations impregnated by using sc-CO2. However, the basic drug character provided less or no drug loss during impregnation. Processing insoluble sc-CO2 molecule under supercritical conditions led to less crystallinity than the correspondent physical mixture suggesting an interesting repulsive effect that forces the drug penetration within the mesopores. Besides, it has been also highlighted that the HBDA number is not sufficient to predict the final drug loading. Melting methods have high interest considering the drugs tested and subcritical CO2 could increase the loading, especially for drugs with high molten viscosity. This study showed that a plethora of loading methods can be used to provide high drug loaded MS formulations with a wide choice of equipment.
Collapse
Affiliation(s)
- N Koch
- University of Liège, Laboratory of Pharmaceutical Technology and Biopharmacy, CIRM, Avenue Hippocrate, B36 (+2) 4000 Liège, Belgium.
| | - O Jennotte
- University of Liège, Laboratory of Pharmaceutical Technology and Biopharmacy, CIRM, Avenue Hippocrate, B36 (+2) 4000 Liège, Belgium
| | - E Ziemons
- University of Liège, Laboratory of Pharmaceutical Analytical Chemistry Laboratory, Vibra-Santé Hub, CIRM, Avenue Hippocrate, B36 (+2) 4000 Liège, Belgium
| | - G Boussard
- University of Liège, Laboratory of Pharmaceutical Technology and Biopharmacy, CIRM, Avenue Hippocrate, B36 (+2) 4000 Liège, Belgium
| | - A Lechanteur
- University of Liège, Laboratory of Pharmaceutical Technology and Biopharmacy, CIRM, Avenue Hippocrate, B36 (+2) 4000 Liège, Belgium
| | - B Evrard
- University of Liège, Laboratory of Pharmaceutical Technology and Biopharmacy, CIRM, Avenue Hippocrate, B36 (+2) 4000 Liège, Belgium
| |
Collapse
|
45
|
Vazda A, Xia W, Engqvist H. The use of heat to deliver fentanyl via pulmonary drug delivery. Int J Pharm X 2021; 3:100096. [PMID: 34704012 PMCID: PMC8521112 DOI: 10.1016/j.ijpx.2021.100096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2021] [Revised: 08/22/2021] [Accepted: 08/31/2021] [Indexed: 11/21/2022] Open
Abstract
The golden standard to treat acute pain is by intravenous drug delivery of opioids such as fentanyl or morphine. Intravenous drug delivery requires the placement of an intravenous (IV) port, which can cause infections, dislodgments, and distress to the patients, and therefore a non-invasive method is desirable. Pulmonary drug delivery is a non-invasive method that has been shown to be a good alternative to intravenous administration. New devices have been investigated for treating acute pain by delivering fentanyl by heat. The pure drug, fentanyl, is applied onto a surface which is then heated up to 350 °C and inhaled, resulting in no formation of degradation products. Furthermore, forced degradation of fentanyl has been studied which showed that longer heating time and higher temperatures will result in the formation of degradation products. The evidence indicates that heat can be used to deliver drugs to the lungs where fast onset reaction can be obtained giving fast and non-invasive pain relief.
Collapse
Affiliation(s)
- Amina Vazda
- Division of Applied Materials Science, Department of Materials Science and Engineering, The Ångström Laboratory, Uppsala University, 75121 Uppsala, Sweden
| | - Wei Xia
- Division of Applied Materials Science, Department of Materials Science and Engineering, The Ångström Laboratory, Uppsala University, 75121 Uppsala, Sweden
| | - Håkan Engqvist
- Division of Applied Materials Science, Department of Materials Science and Engineering, The Ångström Laboratory, Uppsala University, 75121 Uppsala, Sweden
| |
Collapse
|
46
|
Tsebrikova GS, Rogacheva YI, Ivanova IS, Ilyukhin AB, Soloviev VP, Demina LI, Baulin VE, Tsivadze AY. Synthesis and Complexation Properties of 2-Hydroxy-5-methoxyphenylphosphonic Acid (H3L1). Crystal Structure of the [Cu(H2L1)2(Н2О)2] Complex. RUSS J GEN CHEM+ 2021. [DOI: 10.1134/s1070363221110074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Abstract
2-Hydroxy-5-methoxyphenylphosphonic acid (H3L1) and the complex [Cu(H2L1)2(H2O)2] were synthesized and characterized by IR spectroscopy, thermogravimetry, and X-ray diffraction analysis. The polyhedron of the copper atom is an axially elongated square bipyramid with oxygen atoms of phenolic and of monodeprotonated phosphonic groups at the base and oxygen atoms of water molecules at the vertices. The protonation constants of the H3L1 acid and the stability constants of its Cu2+ complexes in water were determined by potentiometric titration. The protonation constants of the acid in water are significantly influenced by the intramolecular hydrogen bond and the methoxy group. The H3L1 acid forms complexes CuL‒ and CuL24‒ with Cu2+ in water.
Collapse
|
47
|
Simulate SubQ: The Methods and the Media. J Pharm Sci 2021; 112:1492-1508. [PMID: 34728176 DOI: 10.1016/j.xphs.2021.10.031] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 10/25/2021] [Accepted: 10/26/2021] [Indexed: 11/21/2022]
Abstract
For decades, there has been a growing interest in injectable subcutaneous formulations to improve the absorption of drugs into the systemic circulation and to prolong their release over a longer period. However, fluctuations in the blood plasma levels together with bioavailability issues often limit their clinical success. This warrants a closer look at the performance of long-acting depots, for example, and their dependence on the complex interplay between the dosage form and the physiological microenvironment. For this, biopredictive performance testing is used for a thorough understanding of the biophysical processes affecting the absorption of compounds from the injection site in vivo and their simulation in vitro. In the present work, we discuss in vitro methodologies including methods and media developed for the subcutaneous route of administration on the background of the most relevant absorption mechanisms. Also, we highlight some important knowledge gaps and shortcomings of the existing methodologies to provide the reader with a better understanding of the scientific evidence underlying these models.
Collapse
|
48
|
Integrated computer-aided formulation design: A case study of andrographolide/ cyclodextrin ternary formulation. Asian J Pharm Sci 2021; 16:494-507. [PMID: 34703498 PMCID: PMC8520056 DOI: 10.1016/j.ajps.2021.03.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Revised: 02/28/2021] [Accepted: 03/21/2021] [Indexed: 01/17/2023] Open
Abstract
Current formulation development strongly relies on trial-and-error experiments in the laboratory by pharmaceutical scientists, which is time-consuming, high cost and waste materials. This research aims to integrate various computational tools, including machine learning, molecular dynamic simulation and physiologically based absorption modeling (PBAM), to enhance andrographolide (AG) /cyclodextrins (CDs) formulation design. The lightGBM prediction model we built before was utilized to predict AG/CDs inclusion's binding free energy. AG/γ-CD inclusion complexes showed the strongest binding affinity, which was experimentally validated by the phase solubility study. The molecular dynamic simulation was used to investigate the inclusion mechanism between AG and γ-CD, which was experimentally characterized by DSC, FTIR and NMR techniques. PBAM was applied to simulate the in vivo behavior of the formulations, which were validated by cell and animal experiments. Cell experiments revealed that the presence of D-α-Tocopherol polyethylene glycol succinate (TPGS) significantly increased the intracellular uptake of AG in MDCK-MDR1 cells and the absorptive transport of AG in MDCK-MDR1 monolayers. The relative bioavailability of the AG-CD-TPGS ternary system in rats was increased to 2.6-fold and 1.59-fold compared with crude AG and commercial dropping pills, respectively. In conclusion, this is the first time to integrate various computational tools to develop a new AG-CD-TPGS ternary formulation with significant improvement of aqueous solubility, dissolution rate and bioavailability. The integrated computational tool is a novel and robust methodology to facilitate pharmaceutical formulation design.
Collapse
|
49
|
Kumar R, Thakur AK, Banerjee N, Chaudhari P. A critical review on the particle generation and other applications of rapid expansion of supercritical solution. Int J Pharm 2021; 608:121089. [PMID: 34530097 DOI: 10.1016/j.ijpharm.2021.121089] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 08/29/2021] [Accepted: 09/09/2021] [Indexed: 11/18/2022]
Abstract
The novel particle generation processes of Active Pharmaceutical Ingredient (API)/drug have been extensively explored in recent decades due to their wide-range applications in the pharmaceutical industry. The Rapid Expansion of Supercritical Solutions (RESS) is one of the promising techniques to obtain the fine particles (micro to nano-size) of APIs with narrow particle size distribution (PSD). In RESS, supercritical carbon dioxide (SC CO2) and API are used as solvent and solute respectively. In this literature survey, the application of RESS in the formation of fine particles is critically reviewed. Solubility of API in SC CO2 and supersaturation are the key factors in tuning the particle size. The different approaches to model and predict the solubility of API in SC CO2 are discussed. Then, the effect of process parameters on mean particle size and the particle size distribution are interpreted in the context of solubility and supersaturation. Furthermore, the less-explored applications of RESS in preparation of solid-lipid nanoparticles, liposome, polymorphic conversion, cocrystallization and inclusion complexation are compared with traditional processes. The solubility enhancement of API in SC CO2 using co-solvent and its applications in particle generation are explored in published literature. The development and modifications in the conventional RESS process to overcome the limitations of RESS are presented. Finally, the perspective on RESS with special attention to its commercial operation is highlighted.
Collapse
Affiliation(s)
- Rahul Kumar
- Department of Chemical Engineering, University of Petroleum and Energy Studies, Dehradun 248007, Uttarakhand, India.
| | - Amit K Thakur
- Department of Chemical Engineering, University of Petroleum and Energy Studies, Dehradun 248007, Uttarakhand, India
| | - Nilanjana Banerjee
- Department of Chemical Engineering, University of Petroleum and Energy Studies, Dehradun 248007, Uttarakhand, India
| | - Pranava Chaudhari
- Department of Chemical Engineering, University of Petroleum and Energy Studies, Dehradun 248007, Uttarakhand, India
| |
Collapse
|
50
|
Iyer R, Petrovska Jovanovska V, Berginc K, Jaklič M, Fabiani F, Harlacher C, Huzjak T, Sanchez-Felix MV. Amorphous Solid Dispersions (ASDs): The Influence of Material Properties, Manufacturing Processes and Analytical Technologies in Drug Product Development. Pharmaceutics 2021; 13:1682. [PMID: 34683975 PMCID: PMC8540358 DOI: 10.3390/pharmaceutics13101682] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 09/06/2021] [Accepted: 09/13/2021] [Indexed: 12/14/2022] Open
Abstract
Poorly water-soluble drugs pose a significant challenge to developability due to poor oral absorption leading to poor bioavailability. Several approaches exist that improve the oral absorption of such compounds by enhancing the aqueous solubility and/or dissolution rate of the drug. These include chemical modifications such as salts, co-crystals or prodrugs and physical modifications such as complexation, nanocrystals or conversion to amorphous form. Among these formulation strategies, the conversion to amorphous form has been successfully deployed across the pharmaceutical industry, accounting for approximately 30% of the marketed products that require solubility enhancement and making it the most frequently used technology from 2000 to 2020. This article discusses the underlying scientific theory and influence of the active compound, the material properties and manufacturing processes on the selection and design of amorphous solid dispersion (ASD) products as marketed products. Recent advances in the analytical tools to characterize ASDs stability and ability to be processed into suitable, patient-centric dosage forms are also described. The unmet need and regulatory path for the development of novel ASD polymers is finally discussed, including a description of the experimental data that can be used to establish if a new polymer offers sufficient differentiation from the established polymers to warrant advancement.
Collapse
Affiliation(s)
- Raman Iyer
- Technical Research and Development, c/o Global Drug Development, Novartis Pharmaceuticals Corp., One Health Plaza, East Hanover, NJ 07936, USA
| | - Vesna Petrovska Jovanovska
- Product Development, Lek Pharmaceuticals d.d., Verovškova 57, 1526 Ljubljana, Slovenia; (V.P.J.); (K.B.); (M.J.); (T.H.)
| | - Katja Berginc
- Product Development, Lek Pharmaceuticals d.d., Verovškova 57, 1526 Ljubljana, Slovenia; (V.P.J.); (K.B.); (M.J.); (T.H.)
| | - Miha Jaklič
- Product Development, Lek Pharmaceuticals d.d., Verovškova 57, 1526 Ljubljana, Slovenia; (V.P.J.); (K.B.); (M.J.); (T.H.)
| | - Flavio Fabiani
- Technical Research and Development, c/o Global Drug Development, Novartis Pharma AG, Lichtstrasse 35, CH-4056 Basel, Switzerland; (F.F.); (C.H.)
| | - Cornelius Harlacher
- Technical Research and Development, c/o Global Drug Development, Novartis Pharma AG, Lichtstrasse 35, CH-4056 Basel, Switzerland; (F.F.); (C.H.)
| | - Tilen Huzjak
- Product Development, Lek Pharmaceuticals d.d., Verovškova 57, 1526 Ljubljana, Slovenia; (V.P.J.); (K.B.); (M.J.); (T.H.)
| | | |
Collapse
|