1
|
Bedogni GR, Lima AL, Gross IP, Menezes TP, Talvani A, Cunha-Filho M, Salomon CJ. 3D-Printed Tablets of Nifurtimox: In Vitro and In Vivo Anti- Trypanosoma cruzi Studies. Pharmaceutics 2025; 17:80. [PMID: 39861728 PMCID: PMC11768318 DOI: 10.3390/pharmaceutics17010080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2024] [Revised: 12/30/2024] [Accepted: 01/07/2025] [Indexed: 01/27/2025] Open
Abstract
Background/Objectives: Chagas disease is a neglected tropical disease caused by infection with the parasite Trypanosoma cruzi. Benznidazole and nifurtimox are the only approved drugs for treating this condition, but their low aqueous solubility may lead to erratic bioavailability. This work aimed for the first time to formulate tablets of nifurtimox by hot melt extrusion coupled with 3D printing as a strategy to increase drug dissolution and the production of tablets with dosage on demand. Methods: Different pharmaceutical-grade polymers were evaluated through film casting, and those with promising nifurtimox amorphization capacity were further used to prepare filaments by hot melt extrusion. The printability of the obtained filaments was tested, and the polyvinyl alcohol filament was further used for printing tablets containing 120 and 60 mg of nifurtimox. Results: Three-dimensional tablets showed a remarkable improvement in the drug dissolution rate compared to commercial tablets and a dissolution efficiency 2.8 times higher. In vivo studies were carried out on Swiss mice. Parasitemia curves of nifurtimox printed tablets were significantly superior to the pure drug. Moreover, NFX 3D tablets provided a similar Trypanosoma cruzi reduction in plasmatic concentration to benznidazole, the gold-standard drug for acute-phase treatment of the Chagas disease. Conclusions: The findings of this work showed that hot melt extrusion coupled with 3D printing is a promising alternative for increasing nifurtimox biopharmaceutical properties and an attractive approach for personalized medicine.
Collapse
Affiliation(s)
- Giselle R. Bedogni
- Institute of Chemistry Rosario, National Council for Scientific and Technical Research (IQUIR-CONICET), Rosario 2000, Argentina;
| | - Ana Luiza Lima
- Laboratory of Food, Drug, and Cosmetics (LTMAC), School of Health Sciences, University of Brasilia, Brasília 70910-900, Brazil; (A.L.L.); (I.P.G.)
| | - Idejan P. Gross
- Laboratory of Food, Drug, and Cosmetics (LTMAC), School of Health Sciences, University of Brasilia, Brasília 70910-900, Brazil; (A.L.L.); (I.P.G.)
| | - Tatiana Prata Menezes
- Laboratory of Immunobiology of Inflammation, Biological Science Department/ICEB, Federal University of Ouro Preto (UFOP), Ouro Preto 35400-000, Brazil; (T.P.M.); (A.T.)
| | - Andre Talvani
- Laboratory of Immunobiology of Inflammation, Biological Science Department/ICEB, Federal University of Ouro Preto (UFOP), Ouro Preto 35400-000, Brazil; (T.P.M.); (A.T.)
| | - Marcilio Cunha-Filho
- Laboratory of Food, Drug, and Cosmetics (LTMAC), School of Health Sciences, University of Brasilia, Brasília 70910-900, Brazil; (A.L.L.); (I.P.G.)
| | - Claudio J. Salomon
- Institute of Chemistry Rosario, National Council for Scientific and Technical Research (IQUIR-CONICET), Rosario 2000, Argentina;
- Faculty of Biochemical and Pharmaceutical Sciences, National University of Rosario (UNR), Rosario 2000, Argentina
| |
Collapse
|
2
|
Murugan M, Ramasamy SK, Venkatesan G, Lee J, Barathi S, Kandasamy S, Sarangi PK. The comprehensive review on 3D printing- pharmaceutical drug delivery and personalized food and nutrition. Food Chem 2024; 459:140348. [PMID: 38991438 DOI: 10.1016/j.foodchem.2024.140348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2024] [Revised: 06/24/2024] [Accepted: 07/03/2024] [Indexed: 07/13/2024]
Abstract
Three-dimensional printing is one of the emerging technologies that is gaining interest from the pharmaceutical industry as it provides an opportunity to customize drugs according to each patient's needs. Combining different active pharmaceutical ingredients, using different geometries, and providing sustained release enhances the effectiveness of medicine. One of the most innovative uses of 3D printing is producing fabrics, medical devices, medical implants, orthoses, and prostheses. This review summarizes the various 3D printing techniques such as stereolithography, inkjet printing, thermal inkjet printing, fused deposition modelling, extrusion printing, semi-solid extrusion printing, selective laser sintering, and hot-melt extrusion. Also, discusses the drug relies profile and its mechanisms, characteristics, and applications of the most common types of 3D printed API formulations and its recent development. Here, Authors also, summarizes the central flow of 3D food printing process and knowledge extension toward personalized nutrition.
Collapse
Affiliation(s)
- Meenakshi Murugan
- Department of Pharmaceutics, M. M. College of Pharmacy, Maharishi Markandeshwar (Deemed to be University), Mullana, Ambala -133207, Haryana, India
| | - Selva Kumar Ramasamy
- Department of Chemistry, M.M. Engineering College, Maharishi Markandeshwar (Deemed to be University), Mullana, Ambala -133207, Haryana, India
| | - Geetha Venkatesan
- Department of Biomaterials, Saveetha Dental College and Hospital, Saveetha Institute of Medical and Technical Sciences (SIMATS), Saveetha University, Chennai - 600 077, India
| | - Jintae Lee
- School of Chemical Engineering, Yeungnam University, Gyeongsan, 38541, Republic of Korea
| | - Selvaraj Barathi
- School of Chemical Engineering, Yeungnam University, Gyeongsan, 38541, Republic of Korea..
| | - Sabariswaran Kandasamy
- Department of Biotechnology, PSGR Krishnammal College for Women, Peelamedu, Coimbatore - 641004, India
| | - Prakash Kumar Sarangi
- College of Agriculture, Central Agricultural University, Imphal - 795004, Manipur, India..
| |
Collapse
|
3
|
Xu P, Nguyen HT, Huang S, Tran H. Development of 3D-Printed Two-Compartment Capsular Devices for Pulsatile Release of Peptide and Permeation Enhancer. Pharm Res 2024; 41:2259-2270. [PMID: 39487384 DOI: 10.1007/s11095-024-03785-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Accepted: 10/11/2024] [Indexed: 11/04/2024]
Abstract
OBJECTIVE The oral absorption of a peptide is driven by a high local concentration of a permeation enhancer (PE) in the gastrointestinal tract. We hypothesized that a controlled release of both PE and peptide from a solid formulation, capable of maintaining an effective co-localized concentration of PE and peptide could enhance oral peptide absorption. In this study, we aimed to develop a 3D-printed two-compartment capsular device with controlled pulsatile release of peptide and sodium caprate (C10). METHODS 3D-printed two-compartment capsular device was fabricated using a fused deposition modeling method. This device was then filled with LY peptide and C10. The release profile was modulated by changing the thickness and polymer type of the capsular device. USP apparatus II dissolution test was used to evaluate the impacts of device thickness and polymer selection on release profile in vitro. An optimal device was then enteric coated with HPMCAS. RESULTS A strong linear relationship between the thickness of capsular devices and the delay in the release onset time was observed. An increase in the device thickness or the use of PLA decreased the release rate. The capsular device with compartment 1, compartment 2 and fence thickness of 0.4; 0.95 and 0.5 mm, respectively, and the use of PVA achieved desired pulsatile release profiles of both peptide and C10. Furthermore, enteric-coated capsular devices with HPMCAS had similar pulsatile release profiles compared to non-enteric coated devices. CONCLUSION These findings suggest potential application of 3D-printing techniques in the formulation development for complex modified drug release products.
Collapse
Affiliation(s)
- Pengchong Xu
- Eli Lilly and Company, Lilly Research Laboratories, Lilly Corporate Center, Biotechnology Discovery Research, Indianapolis, IN, 46285, USA
- Eli Lilly and Company, Lilly Research Laboratories, Lilly Corporate Center, Synthetic Molecule Design and Development, Indianapolis, IN, 46285, USA
| | - Hanh Thuy Nguyen
- Eli Lilly and Company, Lilly Research Laboratories, Lilly Corporate Center, Biotechnology Discovery Research, Indianapolis, IN, 46285, USA
| | - Siyuan Huang
- Eli Lilly and Company, Lilly Research Laboratories, Lilly Corporate Center, Synthetic Molecule Design and Development, Indianapolis, IN, 46285, USA.
| | - Huyen Tran
- Eli Lilly and Company, Lilly Research Laboratories, Lilly Corporate Center, Biotechnology Discovery Research, Indianapolis, IN, 46285, USA.
| |
Collapse
|
4
|
Mora-Castaño G, Domínguez-Robles J, Himawan A, Millán-Jiménez M, Caraballo I. Current trends in 3D printed gastroretentive floating drug delivery systems: A comprehensive review. Int J Pharm 2024; 663:124543. [PMID: 39094921 DOI: 10.1016/j.ijpharm.2024.124543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 07/19/2024] [Accepted: 07/29/2024] [Indexed: 08/04/2024]
Abstract
Gastrointestinal (GI) environment is influenced by several factors (gender, genetics, sex, disease state, food) leading to oral drug absorption variability or to low bioavailability. In this scenario, gastroretentive drug delivery systems (GRDDS) have been developed in order to solve absorption problems, to lead to a more effective local therapy or to allow sustained drug release during a longer time period than the typical oral sustained release dosage forms. Among all GRDDS, floating systems seem to provide a promising and practical approach for achieving a long intra-gastric residence time and sustained release profile. In the last years, a novel technique is being used to manufacture this kind of systems: three-dimensional (3D) printing technology. This technique provides a versatile and easy process to manufacture personalized drug delivery systems. This work presents a systematic review of the main 3D printing based designs proposed up to date to manufacture floating systems. We have also summarized the most important parameters involved in buoyancy and sustained release of the systems, in order to facilitate the scale up of this technology to industrial level. Finally, a section discussing about the influence of materials in drug release, their biocompatibility and safety considerations have been included.
Collapse
Affiliation(s)
- Gloria Mora-Castaño
- Department of Pharmacy and Pharmaceutical Technology, Universidad de Sevilla, C/Profesor García González 2, 41012 Seville, Spain
| | - Juan Domínguez-Robles
- Department of Pharmacy and Pharmaceutical Technology, Universidad de Sevilla, C/Profesor García González 2, 41012 Seville, Spain
| | - Achmad Himawan
- Faculty of Pharmacy, Hasanuddin University, Makassar 90245, Indonesia; School of Pharmacy, Queen's University Belfast, Belfast BT9 7BL, United Kingdom
| | - Mónica Millán-Jiménez
- Department of Pharmacy and Pharmaceutical Technology, Universidad de Sevilla, C/Profesor García González 2, 41012 Seville, Spain.
| | - Isidoro Caraballo
- Department of Pharmacy and Pharmaceutical Technology, Universidad de Sevilla, C/Profesor García González 2, 41012 Seville, Spain
| |
Collapse
|
5
|
Algahtani MS, Ahmad J, Mohammed AA, Ahmad MZ. Extrusion-based 3D printing for development of complex capsular systems for advanced drug delivery. Int J Pharm 2024; 663:124550. [PMID: 39103062 DOI: 10.1016/j.ijpharm.2024.124550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 07/16/2024] [Accepted: 08/02/2024] [Indexed: 08/07/2024]
Abstract
This review explores the feasibility of extrusion-based 3D printing techniques for producing complex dosage forms (such as capsular shells/devices) that provide controlled drug release and targeted delivery. The current discussion explores how extrusion-based 3D printing techniques, particularly Fused Deposition Modelling (FDM) and Pressure-Assisted Modelling (PAM), offer significant advantages in fabricating such complex dosage forms. This technology enables the fabrication of single-, dual-, or multi-compartment capsular systems with customized designs/geometry of the capsular shell to achieve delayed, sustained, or pulsatile drug release. The impact of customized design/geometry on the biopharmaceutical performances of loaded therapeutics is comprehensively discussed. The potential of 3D printing techniques for different specialized drug delivery purposes like gastric floating, implants, suppositories, and printfills are also addressed. This technique has the potential to significantly improve the therapeutic outcomes, and patient adherence to medication regimens, and pave the way for personalized medicine.
Collapse
Affiliation(s)
- Mohammed S Algahtani
- Department of Pharmaceutics, College of Pharmacy, Najran University, Saudi Arabia.
| | - Javed Ahmad
- Department of Pharmaceutics, College of Pharmacy, Najran University, Saudi Arabia
| | - Abdul Aleem Mohammed
- Department of Pharmaceutics, College of Pharmacy, Najran University, Saudi Arabia
| | - Mohammad Zaki Ahmad
- Department of Pharmaceutics, College of Pharmacy, Najran University, Saudi Arabia
| |
Collapse
|
6
|
Sharma A, Rathi R, Sharma S, Sangnim T, Huanbutta K, Singh I. 3D-printed immediate release solid dosage forms: a patent evaluation of US11622940B2. Pharm Pat Anal 2024; 13:45-51. [PMID: 39316578 PMCID: PMC11449147 DOI: 10.1080/20468954.2024.2389774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Accepted: 07/17/2024] [Indexed: 09/26/2024]
Abstract
Three-dimensional (3D) printing is one of the most flexible technologies for preparing tablets, offering controlled drug release profiles. The current patent describes the preparation of immediate-release 3D-printed tablets of hydrochlorothiazide to improve disintegration and dissolution profile. The patent involves the preparation of drug-loaded filament via hot-melt extrusion and utilizing the same filaments for printing 3D-printed tablets using fused deposition modeling. The tablets were printed with different shapes and sizes by incorporating channels within the tablet spaces, termed as gaplets. The introduction of channels within the tablet design improves the disintegration and dissolution profile of the drug significantly. The morphological characteristic of 3D-printed tablets was studied by using scanning electron microscopy and revealed the presence of gaplets in the tablets.
Collapse
Affiliation(s)
- Akshay Sharma
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| | - Ritu Rathi
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| | - Sanchay Sharma
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| | - Tanikan Sangnim
- Faculty of Pharmaceutical Sciences, Burapha University, Chonburi, 20131, Thailand
| | - Kampanart Huanbutta
- Department of Manufacturing Pharmacy, College of Pharmacy, Rangsit University, Thanyaburi, Thailand
| | - Inderbir Singh
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| |
Collapse
|
7
|
Peña JF, Cotabarren I, Gallo L. Three-Dimensional Printing of PVA Capsular Devices for Applications in Compounding Pharmacy: Effect of Design Parameters on Pharmaceutical Performance. Pharmaceutics 2024; 16:1069. [PMID: 39204414 PMCID: PMC11359400 DOI: 10.3390/pharmaceutics16081069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 08/08/2024] [Accepted: 08/13/2024] [Indexed: 09/04/2024] Open
Abstract
The creation of products with personalized or innovative features in the pharmaceutical sector by using innovative technologies such as three-dimensional (3D) printing is particularly noteworthy, especially in the realm of compounding pharmacies. In this work, 3D printed capsule devices (CDs) with different wall thicknesses (0.2, 0.3, 0.4, 0.6, and 0.9 mm) and sizes were designed and successfully fabricated varying printing parameters such as extrusion temperature, printing speed, material flow percent, and nozzle diameter. The physicochemical, pharmaceutical, and biopharmaceutical performance of these CDs was evaluated with the aim of achieving an immediate drug release profile comparable to hard gelatin capsules (HGC) for use in magistral compounding. It was observed that the disintegration time of the CDs increased with wall thickness, which correlated with a slower drug release rate. CDs with configurations presenting 0.4 mm wall thickness and sizes comparable to HGC n° 0, 1, and 2 demonstrated satisfactory weight uniformity, short disintegration times, and immediate drug release, indicating their potential as effective devices in future compounding pharmacy applications. In addition, a modified Weibull-type model was proposed that incorporates wall thickness as a new variable in predicting dissolution profiles. This model improves the process of selecting a specific wall thickness to achieve the desired dissolution rate within a specified time frame.
Collapse
Affiliation(s)
- Juan Francisco Peña
- Planta Piloto de Ingeniería Química, PLAPIQUI (UNS-CONICET), Camino La Carrindanga Km 7, Bahía Blanca 8000, Argentina; (J.F.P.); (L.G.)
- Departamento de Ingeniería Química, Universidad Nacional del Sur (UNS), Av. Alem 1253, Bahía Blanca 8000, Argentina
| | - Ivana Cotabarren
- Planta Piloto de Ingeniería Química, PLAPIQUI (UNS-CONICET), Camino La Carrindanga Km 7, Bahía Blanca 8000, Argentina; (J.F.P.); (L.G.)
- Departamento de Ingeniería Química, Universidad Nacional del Sur (UNS), Av. Alem 1253, Bahía Blanca 8000, Argentina
| | - Loreana Gallo
- Planta Piloto de Ingeniería Química, PLAPIQUI (UNS-CONICET), Camino La Carrindanga Km 7, Bahía Blanca 8000, Argentina; (J.F.P.); (L.G.)
- Departamento de Biología, Bioquímica y Farmacia, Universidad Nacional del Sur (UNS), San Juan 670, Bahía Blanca 8000, Argentina
| |
Collapse
|
8
|
Mohammed AA, Alqahtani AA, Ahmed MM. Design and fabrication of 3D-printed gastric floating tablets of captopril: effect of geometry and thermal crosslinking of polymer on floating behavior and drug release. Pharm Dev Technol 2024; 29:517-529. [PMID: 38721970 DOI: 10.1080/10837450.2024.2352491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Accepted: 05/03/2024] [Indexed: 05/12/2024]
Abstract
The present study aims to investigate the potential of the 3D printing technique to design gastroretentive floating tablets (GFTs) for modifying the drug release profile of an immediate-release tablet. A 3D-printed floating shell enclosing a captopril tablet was designed having varying number of drug-release windows. The impact of geometrical changes in the design of delivery system and thermal cross-linking of polymers were evaluated to observe the influence on floating ability and drug release. Water uptake, water insolubilization, Differential Scanning Calorimetry (DSC), and Attenuated Total Reflection-Fourier Transform Infrared Spectroscopy (ATR-FTIR) were performed to assess the degree of thermal cross-linking of polyvinyl alcohol (PVA) filament. The 3D-printed GFT9 was considered the optimized gastric floating tablet that exhibited >12 h of total floating time with zero floating lag time and successfully accomplished modified-drug release by exhibiting >80% of drug release in 8 h. The zero-order release model, with an r2 value of 0.9923, best fitted the drug release kinetic data of the GFT9, which followed a super case II drug transport mechanism with an n value of 0.95. The optimized gastric floating device (GFT9) also exhibited the highest MDT values (238.55), representing slow drug release from the system due to thermal crosslinking and the presence of a single drug-releasing window in the device.
Collapse
Affiliation(s)
- Abdul Aleem Mohammed
- Department of Pharmaceutics, College of Pharmacy, Najran University, Najran, Saudi Arabia
| | - Abdulsalam A Alqahtani
- Department of Pharmaceutics, College of Pharmacy, Najran University, Najran, Saudi Arabia
| | - Mohammed Muqtader Ahmed
- Department of Pharmaceutics, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharj, Saudi Arabia
| |
Collapse
|
9
|
Rajput A, Pingale P, Telange D, Musale S, Chalikwar S. A current era in pulsatile drug delivery system: Drug journey based on chronobiology. Heliyon 2024; 10:e29064. [PMID: 38813204 PMCID: PMC11133509 DOI: 10.1016/j.heliyon.2024.e29064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Revised: 03/15/2024] [Accepted: 03/29/2024] [Indexed: 05/31/2024] Open
Abstract
Almost all biological processes in the human body are regulated by circadian rhythm, which results in drastically different biochemical and physiological conditions throughout a 24 h period. Hence, suitable drug delivery systems should be efficiently monitored to attain the required therapeutic plasma concentration and therapeutic drug responses when needed as per chrono pharmacological concepts. "Chronotherapy" is the fast and transient release of a particular quantity of drug substance post a predetermined off-release period, termed as 'lag time'. Due to rhythmic variations, it is typically unnecessary to administer a medicine drug in an unhealthy condition constantly. Pulsatile drug delivery systems have received a lot of attention in pharmaceutical development because they give a quick or rate-controlled drug release after administration, followed by an anticipated lag period. Patients with various illnesses, such as asthma, hypertension, joint inflammation, and ulcers, can benefit from a pulsatile drug delivery system. Thus, a pulsatile drug delivery system may be a potential system for managing different diseases. This review mainly focuses on pulsatile drug delivery systems. It reviews and discusses the rationale, drug release mechanism, need, and system classification. In addition, it covers mainly externally regulated pulsatile drug delivery systems and recent advances in pulsatile systems like artificial intelligence and 3D printing. It also covers the ethical issues associated with pulsatile drug delivery systems.
Collapse
Affiliation(s)
- Amarjitsing Rajput
- Department of Pharmaceutics, Bharti Vidyapeeth Deemed University, Poona College of Pharmacy, Erandwane, Pune, 411038, Maharashtra, India
| | - Prashant Pingale
- Department of Pharmaceutics, GES's Sir Dr. M. S. Gosavi College of Pharmaceutical Education and Research, Nashik, 422005, Maharashtra, India
| | - Darshan Telange
- Department of Pharmaceutics, Datta Meghe College of Pharmacy, Datta Meghe Institute of Higher Education and Research (DU), Sawangi (Meghe), Wardha, 442001, Maharashtra, India
| | - Shubham Musale
- Department of Pharmaceutics, Dr. D. Y. Patil Institute of Pharmaceutical Sciences & Research, Sant Tukaram Nagar, Pimpri, Pune, 411018, Maharashtra, India
| | - Shailesh Chalikwar
- Department of Industrial Pharmacy and Quality Assurance, R. C. Patel Institute of Pharmaceutical Education & Research, Karwand Naka, Shirpur, 425405, Maharashtra, India
| |
Collapse
|
10
|
Peng H, Han B, Tong T, Jin X, Peng Y, Guo M, Li B, Ding J, Kong Q, Wang Q. 3D printing processes in precise drug delivery for personalized medicine. Biofabrication 2024; 16:10.1088/1758-5090/ad3a14. [PMID: 38569493 PMCID: PMC11164598 DOI: 10.1088/1758-5090/ad3a14] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Accepted: 04/03/2024] [Indexed: 04/05/2024]
Abstract
With the advent of personalized medicine, the drug delivery system will be changed significantly. The development of personalized medicine needs the support of many technologies, among which three-dimensional printing (3DP) technology is a novel formulation-preparing process that creates 3D objects by depositing printing materials layer-by-layer based on the computer-aided design method. Compared with traditional pharmaceutical processes, 3DP produces complex drug combinations, personalized dosage, and flexible shape and structure of dosage forms (DFs) on demand. In the future, personalized 3DP drugs may supplement and even replace their traditional counterpart. We systematically introduce the applications of 3DP technologies in the pharmaceutical industry and summarize the virtues and shortcomings of each technique. The release behaviors and control mechanisms of the pharmaceutical DFs with desired structures are also analyzed. Finally, the benefits, challenges, and prospects of 3DP technology to the pharmaceutical industry are discussed.
Collapse
Affiliation(s)
- Haisheng Peng
- Department of Pharmacology, Medical College, University of Shaoxing, Shaoxing, People’s Republic of China
- These authors contributed equally
| | - Bo Han
- Department of Pharmacy, Daqing Branch, Harbin Medical University, Daqing, People’s Republic of China
- These authors contributed equally
| | - Tianjian Tong
- Department of Chemical and Biological Engineering, Iowa State University, Ames, IA 50011, United States of America
| | - Xin Jin
- Department of Pharmacology, Medical College, University of Shaoxing, Shaoxing, People’s Republic of China
| | - Yanbo Peng
- Department of Pharmaceutical Engineering, China Pharmaceutical University, 639 Longmian Rd, Nanjing 211198, People’s Republic of China
| | - Meitong Guo
- Department of Pharmacology, Medical College, University of Shaoxing, Shaoxing, People’s Republic of China
| | - Bian Li
- Department of Pharmacology, Medical College, University of Shaoxing, Shaoxing, People’s Republic of China
| | - Jiaxin Ding
- Department of Pharmacology, Medical College, University of Shaoxing, Shaoxing, People’s Republic of China
| | - Qingfei Kong
- Department of Neurobiology, Harbin Medical University, Heilongjiang Provincial Key Laboratory of Neurobiology, Harbin, Heilongjiang 150086, People’s Republic of China
| | - Qun Wang
- Department of Chemical and Biological Engineering, Iowa State University, Ames, IA 50011, United States of America
| |
Collapse
|
11
|
Hess F, Kipping T, Weitschies W, Krause J. Understanding the Interaction of Thermal, Rheological, and Mechanical Parameters Critical for the Processability of Polyvinyl Alcohol-Based Systems during Hot Melt Extrusion. Pharmaceutics 2024; 16:472. [PMID: 38675133 PMCID: PMC11055164 DOI: 10.3390/pharmaceutics16040472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 03/18/2024] [Accepted: 03/26/2024] [Indexed: 04/28/2024] Open
Abstract
Hot melt extrusion (HME) is a common manufacturing process used in the pharmaceutical industry to improve the solubility of poorly soluble active pharmaceutical ingredients (API). The goal is to create an amorphous solid dispersion (ASD) where the amorphous form of the API is stabilized within a polymer matrix. Traditionally, the development of pharmaceutically approved polymers has focused on requirements such as thermal properties, solubility, drug-polymer interactions, and biocompatibility. The mechanical properties of the material have often been neglected in the design of new polymers. However, new downstream methods require more flexible polymers or suitable plasticizer polymer combinations. In this study, two grades of the polymer polyvinyl alcohol (PVA), which is already established for HME, are investigated in terms of their mechanical, rheological, and thermal properties. The mechanical properties of the extruded filaments were tested by the three-point bending test. The rheological behavior was analyzed by oscillating plate measurements. Thermal analysis was performed by differential scanning calorimetry (DSC). In addition, the solid and liquid plasticizers mannitol, sorbitol, triacetin, triethyl citrate, polyethylene glycol, and glycerol were evaluated for use with PVA and their impact on the polymer properties was elaborated. Finally, the effects of the plasticizers are compared to each other, and the correlations are analyzed statistically using principal component analysis (PCA). Thereby, a clear ranking of the plasticizer effects was established, and a deeper understanding of the polymer-plasticizer interactions was created.
Collapse
Affiliation(s)
- Florian Hess
- Merck Life Science KGaA, Frankfurter Straße 250, 64293 Darmstadt, Germany
- Department of Biopharmaceutic and Pharmaceutical Technology, Institute of Pharmacy, University of Greifswald, Felix-Hausdorff-Straße 3, 17487 Greifswald, Germany
| | - Thomas Kipping
- Merck Life Science KGaA, Frankfurter Straße 250, 64293 Darmstadt, Germany
| | - Werner Weitschies
- Department of Biopharmaceutic and Pharmaceutical Technology, Institute of Pharmacy, University of Greifswald, Felix-Hausdorff-Straße 3, 17487 Greifswald, Germany
| | - Julius Krause
- Department of Biopharmaceutic and Pharmaceutical Technology, Institute of Pharmacy, University of Greifswald, Felix-Hausdorff-Straße 3, 17487 Greifswald, Germany
| |
Collapse
|
12
|
Podgórski R, Wojasiński M, Ciach T. Pushing boundaries in 3D printing: Economic pressure filament extruder for producing polymeric and polymer-ceramic filaments for 3D printers. HARDWAREX 2023; 16:e00486. [PMID: 37964896 PMCID: PMC10641689 DOI: 10.1016/j.ohx.2023.e00486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 09/19/2023] [Accepted: 10/26/2023] [Indexed: 11/16/2023]
Abstract
3D printing technology can deliver tailored, bioactive, and biodegradable bone implants. However, producing the new, experimental material for a 3D printer could be the first and one of the most challenging steps of the whole bone implant 3D printing process. Production of polymeric and polymer-ceramic filaments involves using costly filament extruders and significantly consuming expensive medical-grade materials. Commercial extruders frequently require a large amount of raw material for experimental purposes, even for small quantities of filament. In our publication, we propose a simple system for pressure filament extruding, which allows obtaining up to 1-meter-long filament suitable for fused filament fabrication-type 3D printers, requiring only 30 g of material to begin work. Our device is based on stainless steel pipes used as a container for material, a basic electric heating system with a proportional-integral-derivative controller, and a pressurised air source with an air pressure regulator. We tested our device on various mixes of polylactide and polycaprolactone with β-tricalcium phosphate and demonstrated the possibility of screening production and testing of new materials for 3D-printed bone implants.
Collapse
Affiliation(s)
- Rafał Podgórski
- Warsaw University of Technology, Faculty of Chemical and Process Engineering, Department of Biotechnology and Bioprocess Engineering, Laboratory of Biomedical Engineering, Waryńskiego 1, 00-645 Warsaw, Poland
| | - Michał Wojasiński
- Warsaw University of Technology, Faculty of Chemical and Process Engineering, Department of Biotechnology and Bioprocess Engineering, Laboratory of Biomedical Engineering, Waryńskiego 1, 00-645 Warsaw, Poland
| | - Tomasz Ciach
- Warsaw University of Technology, Faculty of Chemical and Process Engineering, Department of Biotechnology and Bioprocess Engineering, Laboratory of Biomedical Engineering, Waryńskiego 1, 00-645 Warsaw, Poland
- Centre for Advanced Materials and Technologies CEZAMAT, Poleczki 19, 02-822 Warsaw, Poland
| |
Collapse
|
13
|
Alogla A. Enhancing antioxidant delivery through 3D printing: a pathway to advanced therapeutic strategies. Front Bioeng Biotechnol 2023; 11:1256361. [PMID: 37860625 PMCID: PMC10583562 DOI: 10.3389/fbioe.2023.1256361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Accepted: 09/22/2023] [Indexed: 10/21/2023] Open
Abstract
The rapid advancement of 3D printing has transformed industries, including medicine and pharmaceuticals. Integrating antioxidants into 3D-printed structures offers promising therapeutic strategies for enhanced antioxidant delivery. This review explores the synergistic relationship between 3D printing and antioxidants, focusing on the design and fabrication of antioxidant-loaded constructs. Incorporating antioxidants into 3D-printed matrices enables controlled release and localized delivery, improving efficacy while minimizing side effects. Customization of physical and chemical properties allows tailoring of antioxidant release kinetics, distribution, and degradation profiles. Encapsulation techniques such as direct mixing, coating, and encapsulation are discussed. Material selection, printing parameters, and post-processing methods significantly influence antioxidant release kinetics and stability. Applications include wound healing, tissue regeneration, drug delivery, and personalized medicine. This comprehensive review aims to provide insights into 3D printing-assisted antioxidant delivery systems, facilitating advancements in medicine and improved patient outcomes for oxidative stress-related disorders.
Collapse
Affiliation(s)
- Ageel Alogla
- Industrial Engineering Department, College of Engineering (AlQunfudhah), Umm Al-Qura University, Mecca, Saudi Arabia
| |
Collapse
|
14
|
Yu W, Sun L, Li M, Peng Y, Wei C, Lei W, Qiu R, Ge Y. Effect of Modification and Hydrothermal Ageing on Properties of 3D-Printed Wood Flour-Poly(butylene succinate)-Poly(lactic acid) Biocomposites. Polymers (Basel) 2023; 15:3697. [PMID: 37765551 PMCID: PMC10535038 DOI: 10.3390/polym15183697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 09/01/2023] [Accepted: 09/05/2023] [Indexed: 09/29/2023] Open
Abstract
Wood flour-poly(butylene succinate)-poly(lactic acid) biocomposite samples were prepared by fused-deposition-molding 3D-printing technology, and modifications with glycerol and a silane coupling agent (KH550) were carried out. The samples were then hydrothermally aged. Modification with glycerol and KH550 enhanced the hydrophilicity of the samples and increased their tensile strength. Hydrothermal aging clearly whitened the surfaces of all the samples and made them more hydrophobic. Meanwhile, their tensile properties and thermal stability became poor; a higher hydrothermal aging temperature affected the mechanical properties more negatively. The modified samples turned out to be more resistant to the hydrothermal aging, and modification with KH550 could improve the anti-hydrothermal aging properties of the samples better than that with glycerol, where the tensile properties and the cross-sectional morphologies of the fractured specimens were concerned. Generally, the effects of hydrothermal aging temperature on the physico-mechanical properties of the printed specimens were greater than those by hydrothermal aging time.
Collapse
Affiliation(s)
- Wangwang Yu
- School of Mechanical Engineering, Nanjing Vocational University of Industry Technology, Nanjing 210023, China
| | - Liwei Sun
- College of Science, Nanjing Forestry University, Nanjing 210037, China
| | - Meihui Li
- College of Science, Nanjing Forestry University, Nanjing 210037, China
| | - Youxue Peng
- College of Science, Nanjing Forestry University, Nanjing 210037, China
| | - Chaohui Wei
- College of Science, Nanjing Forestry University, Nanjing 210037, China
| | - Wen Lei
- College of Science, Nanjing Forestry University, Nanjing 210037, China
| | - Rui Qiu
- College of Science, Nanjing Forestry University, Nanjing 210037, China
| | - Ying Ge
- College of Science, Nanjing Forestry University, Nanjing 210037, China
| |
Collapse
|
15
|
Nguyen KTT, Zillen D, van Heijningen FFM, van Bommel KJC, van Ee RJ, Frijlink HW, Hinrichs WLJ. Surface Engineering Methods for Powder Bed Printed Tablets to Optimize External Smoothness and Facilitate the Application of Different Coatings. Pharmaceutics 2023; 15:2193. [PMID: 37765163 PMCID: PMC10537163 DOI: 10.3390/pharmaceutics15092193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 08/18/2023] [Accepted: 08/20/2023] [Indexed: 09/29/2023] Open
Abstract
In a previous attempt to achieve ileo-colonic targeting of bovine intestinal alkaline phosphatase (BIAP), we applied a pH-dependent coating, the ColoPulse coating, directly on powder bed printed (PBP) tablets. However, the high surface roughness necessitated an additional sub-coating layer [Nguyen, K. T. T., Pharmaceutics 2022]. In this study, we aimed to find a production method for PBP tablets containing BIAP that allows the direct application of coating systems. Alterations of the printing parameters, binder content, and printing layer height, when combined, were demonstrated to create visually less rough PBP tablets. The addition of ethanol vapor treatment further improved the surface's smoothness significantly. These changes enabled the direct application of the ColoPulse, or enteric coating, without a sub-coating. In vitro release testing showed the desired ileo-colonic release or upper-intestinal release for ColoPulse or enteric-coated tablets, respectively. Tablets containing BIAP, encapsulated within an inulin glass, maintained a high enzymatic activity (over 95%) even after 2 months of storage at 2-8 °C. Importantly, the coating process did not affect the activity of BIAP. In this study, we demonstrate, for the first time, the successful production of PBP tablets with surfaces that are directly coatable with the ColoPulse coating while preserving the stability of the encapsulated biopharmaceutical, BIAP.
Collapse
Affiliation(s)
- Khanh T. T. Nguyen
- Department of Pharmaceutical Technology and Biopharmacy, University of Groningen, 9700 RB Groningen, The Netherlands; (K.T.T.N.); (D.Z.); (H.W.F.)
| | - Daan Zillen
- Department of Pharmaceutical Technology and Biopharmacy, University of Groningen, 9700 RB Groningen, The Netherlands; (K.T.T.N.); (D.Z.); (H.W.F.)
| | - Franca F. M. van Heijningen
- The Netherlands Organization for Applied Scientific Research (TNO), 5656 AE Eindhoven, The Netherlands; (F.F.M.v.H.); (K.J.C.v.B.); (R.J.v.E.)
| | - Kjeld J. C. van Bommel
- The Netherlands Organization for Applied Scientific Research (TNO), 5656 AE Eindhoven, The Netherlands; (F.F.M.v.H.); (K.J.C.v.B.); (R.J.v.E.)
| | - Renz J. van Ee
- The Netherlands Organization for Applied Scientific Research (TNO), 5656 AE Eindhoven, The Netherlands; (F.F.M.v.H.); (K.J.C.v.B.); (R.J.v.E.)
| | - Henderik W. Frijlink
- Department of Pharmaceutical Technology and Biopharmacy, University of Groningen, 9700 RB Groningen, The Netherlands; (K.T.T.N.); (D.Z.); (H.W.F.)
| | - Wouter L. J. Hinrichs
- Department of Pharmaceutical Technology and Biopharmacy, University of Groningen, 9700 RB Groningen, The Netherlands; (K.T.T.N.); (D.Z.); (H.W.F.)
| |
Collapse
|
16
|
Fazal T, Murtaza BN, Shah M, Iqbal S, Rehman MU, Jaber F, Dera AA, Awwad NS, Ibrahium HA. Recent developments in natural biopolymer based drug delivery systems. RSC Adv 2023; 13:23087-23121. [PMID: 37529365 PMCID: PMC10388836 DOI: 10.1039/d3ra03369d] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2023] [Accepted: 07/24/2023] [Indexed: 08/03/2023] Open
Abstract
Targeted delivery of drug molecules to diseased sites is a great challenge in pharmaceutical and biomedical sciences. Fabrication of drug delivery systems (DDS) to target and/or diagnose sick cells is an effective means to achieve good therapeutic results along with a minimal toxicological impact on healthy cells. Biopolymers are becoming an important class of materials owing to their biodegradability, good compatibility, non-toxicity, non-immunogenicity, and long blood circulation time and high drug loading ratio for both macros as well as micro-sized drug molecules. This review summarizes the recent trends in biopolymer-based DDS, forecasting their broad future clinical applications. Cellulose chitosan, starch, silk fibroins, collagen, albumin, gelatin, alginate, agar, proteins and peptides have shown potential applications in DDS. A range of synthetic techniques have been reported to design the DDS and are discussed in the current study which is being successfully employed in ocular, dental, transdermal and intranasal delivery systems. Different formulations of DDS are also overviewed in this review article along with synthesis techniques employed for designing the DDS. The possibility of these biopolymer applications points to a new route for creating unique DDS with enhanced therapeutic qualities for scaling up creative formulations up to the clinical level.
Collapse
Affiliation(s)
- Tanzeela Fazal
- Department of Chemistry, Abbottabad University of Science and Technology Pakistan
| | - Bibi Nazia Murtaza
- Department of Zoology, Abbottabad University of Science and Technology Pakistan
| | - Mazloom Shah
- Department of Chemistry, Faculty of Science, Grand Asian University Sialkot Pakistan
| | - Shahid Iqbal
- Department of Chemistry, School of Natural Sciences (SNS), National University of Science and Technology (NUST) H-12 Islamabad 46000 Pakistan
| | - Mujaddad-Ur Rehman
- Department of Microbiology, Abbottabad University of Science & Technology Pakistan
| | - Fadi Jaber
- Department of Biomedical Engineering, Ajman University Ajman UAE
- Center of Medical and Bio-Allied Health Sciences Research, Ajman University Ajman UAE
| | - Ayed A Dera
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Khalid University Abha Saudi Arabia
| | - Nasser S Awwad
- Chemistry Department, Faculty of Science, King Khalid University P.O. Box 9004 Abha 61413 Saudi Arabia
| | - Hala A Ibrahium
- Biology Department, Faculty of Science, King Khalid University P.O. Box 9004 Abha 61413 Saudi Arabia
| |
Collapse
|
17
|
Xu X, Wang H, Shen L, Yang Q, Yang Y. Application and evaluation of fused deposition modeling technique in customized medical products. Int J Pharm 2023; 640:122999. [PMID: 37254286 DOI: 10.1016/j.ijpharm.2023.122999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Revised: 04/23/2023] [Accepted: 04/25/2023] [Indexed: 06/01/2023]
Abstract
The fused deposition modeling (FDM) technique has enormous potential for developing customized medical products with complicated structures. In this study, the application of the FDM technique to three medical products was investigated, and the risk factors affecting product quality were evaluated. For FDM-printed matrix and reservoir preparations, special attention should be paid to spacing width reduction and layered coating thickness. Therefore, spacing printing fidelity and interlayer bonding strength was established as unique indexes to characterize the effectiveness and safety of FDM-printed medicine. For FDM-printed orthopedic implants, layer height affected the dimensional deviation of surface morphology, which could be digitally evaluated. Moreover, internal structure affected the biomechanical behavior, which could be investigated using in silico simulation. The results reveal the broad application of FDM technology in customized medical products and might help to establish scientific and reasonable evaluation systems for them.
Collapse
Affiliation(s)
- Xiaocui Xu
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, China
| | - Huihui Wang
- Department of Pharmacy, Tianjin Medical University General Hospital Airport Hospital, Tianjin, China
| | - Lian Shen
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, China
| | - Qingliang Yang
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, China
| | - Yan Yang
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, China.
| |
Collapse
|
18
|
Doolaanea A, Latif N, Singh S, Kumar M, Safa'at MF, Alfatama M, Edros R, Bhatia A. A Review on Physicochemical Properties of Polymers Used as Filaments in 3D-Printed Tablets. AAPS PharmSciTech 2023; 24:116. [PMID: 37160772 DOI: 10.1208/s12249-023-02570-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Accepted: 04/17/2023] [Indexed: 05/11/2023] Open
Abstract
Three-dimensional (3D) printing technology has presently been explored widely in the field of pharmaceutical research to produce various conventional as well as novel dosage forms such as tablets, capsules, oral films, pellets, subcutaneous implants, scaffolds, and vaginal rings. The use of this innovative method is a good choice for its advanced technologies and the ability to make tailored medicine specifically for individual patient. There are many 3D printing systems that are used to print tablets, implants, and vaginal rings. Among the available systems, the fused deposition modeling (FDM) is widely utilized. The FDM has been regarded as the best choice of printer as it shows high potential in the production of tablets as a unit dose in 3D printing medicine manufacturing. In order to design a 3D-printed tablet or other dosage forms, the physicochemical properties of polymers play a vital role. One should have proper knowledge about the polymer's properties so that one can select appropriate polymers in order to design 3D-printed dosage form. This review highlighted the various physicochemical properties of polymers that are currently used as filaments in 3D printing. In this manuscript, the authors also discussed various systems that are currently adopted in the 3D printing.
Collapse
Affiliation(s)
- AbdAlmonem Doolaanea
- Department of Pharmaceutical Technology, Kulliyyah of Pharmacy, International Islamic University Malaysia (IIUM), Jalan Sultan Ahmad Shah, 25200, Kuantan, Pahang, Malaysia.
- IKOP SdnBhd, Kulliyyah of Pharmacy, International Islamic University Malaysia (IIUM), Jalan Sultan Ahmad Shah, 25200, Kuantan, Pahang, Malaysia.
| | - NurFaezah Latif
- Department of Pharmaceutical Technology, Kulliyyah of Pharmacy, International Islamic University Malaysia (IIUM), Jalan Sultan Ahmad Shah, 25200, Kuantan, Pahang, Malaysia
| | - Shubham Singh
- Department of Pharmaceutical Sciences and Technology, Maharaja Ranjit Singh Punjab Technical University (MRSPTU), Bathinda, 151001, Punjab, India
| | - Mohit Kumar
- Department of Pharmaceutical Sciences and Technology, Maharaja Ranjit Singh Punjab Technical University (MRSPTU), Bathinda, 151001, Punjab, India
| | | | - Mulham Alfatama
- Faculty of Pharmacy, Universiti Sultan Zainal Abidin, Besut Campus, 22200, Besut, Terengganu, Malaysia
| | - Raihana Edros
- Faculty of Chemical and Process Engineering Technology, Universiti Malaysia Pahang, 26300, Kuantan, Pahang, Malaysia
| | - Amit Bhatia
- Department of Pharmaceutical Sciences and Technology, Maharaja Ranjit Singh Punjab Technical University (MRSPTU), Bathinda, 151001, Punjab, India.
| |
Collapse
|
19
|
Elbadawi M, Basit A, Gaisford S. Energy Consumption and Carbon Footprint of 3D Printing in Pharmaceutical Manufacture. Int J Pharm 2023; 639:122926. [PMID: 37030639 DOI: 10.1016/j.ijpharm.2023.122926] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 03/30/2023] [Accepted: 04/01/2023] [Indexed: 04/10/2023]
Abstract
Achieving carbon neutrality is seen as an important goal in order to mitigate the effects of climate change, as carbon dioxide is a major greenhouse gas that contributes to global warming. Many countries, cities and organizations have set targets to become carbon neutral. The pharmaceutical sector is no exception, being a major contributor of carbon emissions (emitting approximately 55% more than the automotive sector for instance) and hence is in need of strategies to reduce its environmental impact. Three-dimensional (3D) printing is an advanced pharmaceutical fabrication technology that has the potential to replace traditional manufacturing tools. Being a new technology, the environmental impact of 3D printed medicines has not been investigated, which is a barrier to its uptake by the pharmaceutical industry. Here, the energy consumption (and carbon emission) of 3D printers is considered, focusing on technologies that have successfully been demonstrated to produce solid dosage forms. The energy consumption of 6 benchtop 3D printers was measured during standby mode and printing. On standby, energy consumption ranged from 0.03 to 0.17 kWh. The energy required for producing 10 printlets ranged from 0.06 to 3.08 kWh, with printers using high temperatures consuming more energy. Carbon emissions ranged between 11.60-112.16 g CO2 (eq) per 10 printlets, comparable with traditional tableting. Further analyses revealed that decreasing printing temperature was found to reduce the energy demand considerably, suggesting that developing formulations that are printable at lower temperatures can reduce CO2 emissions. The study delivers key initial insights into the environmental impact of a potentially transformative manufacturing technology and provides encouraging results in demonstrating that 3D printing can deliver quality medicines without being environmentally detrimental.
Collapse
Affiliation(s)
- Moe Elbadawi
- UCL School of Pharmacy, University College London, 29-39 Brunswick Square, London WC1N 1AX, UK
| | - Abdul Basit
- UCL School of Pharmacy, University College London, 29-39 Brunswick Square, London WC1N 1AX, UK
| | - Simon Gaisford
- UCL School of Pharmacy, University College London, 29-39 Brunswick Square, London WC1N 1AX, UK.
| |
Collapse
|
20
|
Development of multifunctional drug delivery system via hot-melt extrusion paired with fused deposition modeling 3D printing techniques. Eur J Pharm Biopharm 2023; 183:102-111. [PMID: 36632906 DOI: 10.1016/j.ejpb.2023.01.004] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 01/02/2023] [Accepted: 01/06/2023] [Indexed: 01/09/2023]
Abstract
The model of core-shell structured tablets is gaining increased interest due to its advantages in controlled-release and combinational drug delivery. Through the encapsulation of the drug by the outer shell, this model exhibits huge potential for reduced administration frequency, improved taste-masking, and personalized medication strategy. Although different types of core-shell tablets have been recently developed, most of them focused on the embedding of the solid tablets. Therefore there is still a need to investigate an optimized model in which multiple dosage forms can be loaded. This work uses hot-melt extrusion and fused deposition modeling 3D printing (FDM 3DP) techniques to develop a multifunctional core-shell model for controlled drug delivery. Acetaminophen (APAP) was used as the model drug. Hydroxypropyl cellulose (HPC) and hydroxypropyl methylcellulose (HPMC) was used as the matrix materials. Polyethylene oxide (PEO) and Eudragit RS PO (E RSPO) were used to adjust the printability while the E RSPO was expected to act as an extended-release agent due to its hydrophobicity. Liquid, semi-solid and solid dosage forms could be successfully loaded into the produced shells. The formulations were characterized by scanning electron microscopy, three point-bend tests, differential scanning calorimetry, and dissolution studies. The dissolution results suggested the modified-release character of the designed model. Overall, the designed core-shell model could be successfully produced via hot-melt extrusion paired with FDM 3DP techniques and could be utilized for the delivery of distinct dosage forms which improve the on-demand formulation development for patient-centered medication.
Collapse
|
21
|
Saxena A, Malviya R. 3D Printable Drug Delivery Systems: Next-generation Healthcare Technology and Regulatory Aspects. Curr Pharm Des 2023; 29:2814-2826. [PMID: 38018197 DOI: 10.2174/0113816128275872231105183036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2023] [Revised: 10/07/2023] [Accepted: 10/10/2023] [Indexed: 11/30/2023]
Abstract
A revolutionary shift in healthcare has been sparked by the development of 3D printing, propelling us into an era replete with boundless opportunities for personalized DDS (Drug Delivery Systems). Precise control of the kinetics of drug release can be achieved through 3D printing, improving treatment efficacy and patient compliance. Additionally, 3D printing facilitates the co-administration of multiple drugs, simplifying treatment regimens. The technology offers rapid prototyping and manufacturing capabilities, reducing development timelines and costs. The seamless integration of advanced algorithms and artificial neural networks (ANN) augments the precision and efficacy of 3D printing, propelling us toward the forefront of personalized medicine. This comprehensive review delves into the regulatory frontiers governing 3D printable drug delivery systems, with an emphasis on adhering to rigorous safety protocols to ensure the well-being of patients by leveraging the latest advancements in 3D printing technologies powered by artificial intelligence. The paradigm promises superior therapeutic outcomes and optimized medication experiences and sets the stage for an immersive future within the Metaverse, wherein healthcare seamlessly converges with virtual environments to unlock unparalleled possibilities for personalized treatments.
Collapse
Affiliation(s)
- Anmol Saxena
- Department of Pharmacy, School of Medical and Allied Sciences, Galgotias University, Greater Noida, Uttar Pradesh, India
| | - Rishabha Malviya
- Department of Pharmacy, School of Medical and Allied Sciences, Galgotias University, Greater Noida, Uttar Pradesh, India
| |
Collapse
|
22
|
Bowles B, Muwaffak Z, Hilton S. 3D printed pharmaceutical products. 3D Print Med 2023. [DOI: 10.1016/b978-0-323-89831-7.00006-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
|
23
|
Mogan J, Harun WSW, Kadirgama K, Ramasamy D, Foudzi FM, Sulong AB, Tarlochan F, Ahmad F. Fused Deposition Modelling of Polymer Composite: A Progress. Polymers (Basel) 2022; 15:polym15010028. [PMID: 36616377 PMCID: PMC9823360 DOI: 10.3390/polym15010028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 11/04/2022] [Accepted: 11/10/2022] [Indexed: 12/24/2022] Open
Abstract
Additive manufacturing (AM) highlights developing complex and efficient parts for various uses. Fused deposition modelling (FDM) is the most frequent fabrication procedure used to make polymer products. Although it is widely used, due to its low characteristics, such as weak mechanical properties and poor surface, the types of polymer material that may be produced are limited, affecting the structural applications of FDM. Therefore, the FDM process utilises the polymer composition to produce a better physical product. The review's objective is to systematically document all critical information on FDMed-polymer composite processing, specifically for part fabrication. The review covers the published works on the FDMed-polymer composite from 2011 to 2021 based on our systematic literature review of more than 150 high-impact related research articles. The base and filler material used, and the process parameters including layer height, nozzle temperature, bed temperature, and screw type are also discussed in this review. FDM is utilised in various biomedical, automotive, and other manufacturing industries. This study is expected to be one of the essential pit-stops for future related works in the FDMed-polymeric composite study.
Collapse
Affiliation(s)
- J Mogan
- Institute of Postgraduate Studies, Universiti Malaysia Pahang, Gambang, Kuantan 26300, Pahang, Malaysia
| | - W. S. W. Harun
- Department of Mechanical Engineering, College of Engineering, Universiti Malaysia Pahang, Gambang, Kuantan 26300, Pahang, Malaysia
- Correspondence:
| | - K. Kadirgama
- Faculty of Mechanical and Automotive Engineering Technology, Universiti Malaysia Pahang, Gambang, Kuantan 26300, Pahang, Malaysia
| | - D. Ramasamy
- Department of Mechanical Engineering, College of Engineering, Universiti Malaysia Pahang, Gambang, Kuantan 26300, Pahang, Malaysia
| | - F. M. Foudzi
- Department of Mechanical and Manufacturing Engineering, Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, Bangi 43600, Selangor, Malaysia
| | - A. B. Sulong
- Department of Mechanical and Manufacturing Engineering, Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, Bangi 43600, Selangor, Malaysia
| | - F. Tarlochan
- Department of Mechanical and Industrial Engineering, College of Engineering, Qatar University, Doha P.O. Box 2713, Qatar
| | - F. Ahmad
- Department of Mechanical Engineering, Universiti Teknologi Petronas, Seri Iskandar 32610, Perak, Malaysia
| |
Collapse
|
24
|
Gazzaniga A, Moutaharrik S, Filippin I, Foppoli A, Palugan L, Maroni A, Cerea M. Time-Based Formulation Strategies for Colon Drug Delivery. Pharmaceutics 2022; 14:pharmaceutics14122762. [PMID: 36559256 PMCID: PMC9783935 DOI: 10.3390/pharmaceutics14122762] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 12/02/2022] [Accepted: 12/05/2022] [Indexed: 12/14/2022] Open
Abstract
Despite poor absorption properties, delivery to the colon of bioactive compounds administered by the oral route has become a focus of pharmaceutical research over the last few decades. In particular, the high prevalence of Inflammatory Bowel Disease has driven interest because of the need for improved pharmacological treatments, which may provide high local drug concentrations and low systemic exposure. Colonic release has also been explored to deliver orally biologics having gut stability and permeability issues. For colon delivery, various technologies have been proposed, among which time-dependent systems rely on relatively constant small intestine transit time. Drug delivery platforms exploiting this physiological feature provide a lag time programmed to cover the entire small intestine transit and control the onset of release. Functional polymer coatings or capsule plugs are mainly used for this purpose, working through different mechanisms, such as swelling, dissolution/erosion, rupturing and/or increasing permeability, all activated by aqueous fluids. In addition, enteric coating is generally required to protect time-controlled formulations during their stay in the stomach and rule out the influence of variable gastric emptying. In this review, the rationale and main delivery technologies for oral colon delivery based on the time-dependent strategy are presented and discussed.
Collapse
|
25
|
Pawar R, Pawar A. 3D printing of pharmaceuticals: approach from bench scale to commercial development. FUTURE JOURNAL OF PHARMACEUTICAL SCIENCES 2022; 8:48. [PMID: 36466365 PMCID: PMC9702622 DOI: 10.1186/s43094-022-00439-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Accepted: 11/11/2022] [Indexed: 11/28/2022] Open
Abstract
Background The three-dimensional (3D) printing is paradigm shift in the healthcare sector. 3D printing is platform technologies in which complex products are developed with less number of additives. The easy development process gives edge over the conventional methods. Every individual needs specific dose treatment. 'One size fits all' is the current traditional approach that can shift to more individual specific in 3D printing. The present review aims to cover different perspectives regarding selection of drug, polymer and technological aspects for 3D printing. With respect to clinical practice, regulatory issue and industrial potential are also discussed in this paper. Main body The individualization of medicines with patient centric dosage form will become reality in upcoming future. It provides individual's need of dose by considering genetic profile, physiology and diseased condition. The tailormade dosages with unique drug loading and release profile of different geometrical shapes and sizes can easily deliver therapeutic dose. The technology can fulfill growing demand of efficiency in the dose accuracy for the patient oriented sectors like pediatric, geriatric and also easy to comply with cGMP requirements of regulated market. The clinical practice can focus on prescribing each individual's necessity of dose. Conclusion In the year 2015, FDA approved first 3D printed drug product, which is initiator in the new phase of manufacturing of pharmaceuticals. The tailormade formulations can be made in future for personalized medications. Regulatory approval from agencies can bring the 3DP product into the market. In the future, formulators can bring different sector-specific products for personalized need through 3DP pharmaceutical product. Graphical Abstract
Collapse
Affiliation(s)
- Ranjitsinh Pawar
- Department of Pharmaceutics, Poona College of Pharmacy, Bharati Vidyapeeth (Deemed to Be University), Pune, Maharashtra 411038 India
| | - Atmaram Pawar
- Department of Pharmaceutics, Poona College of Pharmacy, Bharati Vidyapeeth (Deemed to Be University), Pune, Maharashtra 411038 India
| |
Collapse
|
26
|
Krueger L, Miles JA, Popat A. 3D printing hybrid materials using fused deposition modelling for solid oral dosage forms. J Control Release 2022; 351:444-455. [PMID: 36184971 DOI: 10.1016/j.jconrel.2022.09.032] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 09/12/2022] [Accepted: 09/14/2022] [Indexed: 11/17/2022]
Abstract
3D printing in the pharmaceutical and healthcare settings is expanding rapidly, such as the rapid prototyping of orthotics, dental retainers, drug-loaded implants, and pharmaceutical solid oral dosage forms. Through 3D printing, we have the capability to precisely control dose, release kinetics, and several aesthetic features of dosage forms such as colour, shape, and texture. Additionally, polypills can be created with combinations of medications in one solid dosage form at completely customisable strengths that would be extremely difficult to obtain commercially. As the technology and formulations developed through 3D printing are expanding, the development of new hybrid materials to obtain superior formulations are also gaining momentum. In this review we collate data on the importance of developing hybrid formulations of polymers, drugs and excipients necessary to produce reliable and high-quality 3D printed dosage forms with a special emphasis on fused deposition modelling (FDM). FDM technology is one of the most widely used forms of 3D printing and has demonstrated compatibility with unique polymer-based hybrids to allow for enhanced drug delivery, protection of thermolabile drugs, modifiable release kinetics, and more. The data collated covers different categories of hybrids as well as the methods used to fabricate them, and their respective effects on the properties of 3D printed solid oral dosage forms. Therefore, this review will provide an overview of upcoming and emerging trends in pharmaceutical 3D printing formulation compositions.
Collapse
Affiliation(s)
- Liam Krueger
- School of Pharmacy, The University of Queensland, Woolloongabba 4102, Australia
| | - Jared A Miles
- School of Pharmacy, The University of Queensland, Woolloongabba 4102, Australia.
| | - Amirali Popat
- School of Pharmacy, The University of Queensland, Woolloongabba 4102, Australia.
| |
Collapse
|
27
|
Gallo L, Peña JF, Palma SD, Real JP, Cotabarren I. Design and production of 3D printed oral capsular devices for the modified release of urea in ruminants. Int J Pharm 2022; 628:122353. [DOI: 10.1016/j.ijpharm.2022.122353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 10/24/2022] [Accepted: 10/25/2022] [Indexed: 11/06/2022]
|
28
|
Hilgeroth PS, Thümmler JF, Binder WH. 3D Printing of Triamcinolone Acetonide in Triblock Copolymers of Styrene–Isobutylene–Styrene as a Slow-Release System. Polymers (Basel) 2022; 14:polym14183742. [PMID: 36145892 PMCID: PMC9504042 DOI: 10.3390/polym14183742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 08/31/2022] [Accepted: 09/01/2022] [Indexed: 11/29/2022] Open
Abstract
Additive manufacturing has a wide range of applications and has opened up new methods of drug formulation, in turn achieving attention in medicine. We prepared styrene–isobutylene–styrene triblock copolymers (SIBS; Mn = 10 kDa–25 kDa, PDI 1,3–1,6) as a drug carrier for triamcinolone acetonide (TA), further processed by fused deposition modeling to create a solid drug release system displaying improved bioavailability and applicability. Living carbocationic polymerization was used to exert control over block length and polymeric architecture. Thermorheological properties of the SIBS polymer (22.3 kDa, 38 wt % S) were adjusted to the printability of SIBS/TA mixtures (1–5% of TA), generating an effective release system effective for more than 60 days. Continuous drug release and morphological investigations were conducted to probe the influence of the 3D printing process on the drug release, enabling 3D printing as a formulation method for a slow-release system of Triamcinolone.
Collapse
|
29
|
Parulski C, Gresse E, Jennotte O, Felten A, Ziemons E, Lechanteur A, Evrard B. Fused deposition modeling 3D printing of solid oral dosage forms containing amorphous solid dispersions: How to elucidate drug dissolution mechanisms through surface spectral analysis techniques? Int J Pharm 2022; 626:122157. [PMID: 36055443 DOI: 10.1016/j.ijpharm.2022.122157] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 08/26/2022] [Accepted: 08/27/2022] [Indexed: 11/27/2022]
Abstract
Many active principles belong to the second class of the Biopharmaceutics Classification System due to their low aqueous solubility. Elaboration of new solid oral forms by hot-melt extrusion and fused deposition modeling appears as a promising tool to increase the dissolution rate of these drugs. Indeed, hot-melt extrusion allows the amorphisation of drugs and forms with complex geometries are built by 3D printing. Therefore, the goal of this work is to enhance the dissolution rate of poorly soluble drugs using hot-melt extrusion coupled with fused deposition modeling. Four formulations containing Affinisol® 15LV, Kollidon® VA64 and a challenging amount of itraconazole (25% (wt.)) were successfully printed into forms of 20, 50 and 80% infill densities. Differential scanning calorimetry analysis has shown that itraconazole remained amorphous during 52 weeks. The drug release rate was highly improved compared to itraconazole in a crystalline form. The dissolution rate was influenced by the infill density and the polymer composition of printed forms which could modify respectively the surface to volume ratio and the distribution of the components in the printed forms. One formulation printed with 20% infill density even had a solubility profile similar to that of Sporanox®, the commercialized drug product in Belgium.
Collapse
Affiliation(s)
- Chloé Parulski
- Laboratory of Pharmaceutical Technology and Biopharmacy, Center for Interdisciplinary Research on Medicines (CIRM), Department of Pharmacy, University of Liege (ULiege), Avenue Hippocrate 15, 4000 Liege, Belgium.
| | - Eva Gresse
- Laboratory of Pharmaceutical Technology and Biopharmacy, Center for Interdisciplinary Research on Medicines (CIRM), Department of Pharmacy, University of Liege (ULiege), Avenue Hippocrate 15, 4000 Liege, Belgium
| | - Olivier Jennotte
- Laboratory of Pharmaceutical Technology and Biopharmacy, Center for Interdisciplinary Research on Medicines (CIRM), Department of Pharmacy, University of Liege (ULiege), Avenue Hippocrate 15, 4000 Liege, Belgium
| | - Alexandre Felten
- Synthesis, Irradiation and Analysis of Materials (SIAM) platform, University of Namur, Rue de Bruxelles 61, 5000 Namur, Belgium
| | - Eric Ziemons
- Laboratory of Pharmaceutical Analytical Chemistry, Center for Interdisciplinary Research on Medicines (CIRM), ViBra-Sante Hub, Department of Pharmacy, University of Liege (ULiege), Avenue Hippocrate 15, 4000 Liege, Belgium
| | - Anna Lechanteur
- Laboratory of Pharmaceutical Technology and Biopharmacy, Center for Interdisciplinary Research on Medicines (CIRM), Department of Pharmacy, University of Liege (ULiege), Avenue Hippocrate 15, 4000 Liege, Belgium
| | - Brigitte Evrard
- Laboratory of Pharmaceutical Technology and Biopharmacy, Center for Interdisciplinary Research on Medicines (CIRM), Department of Pharmacy, University of Liege (ULiege), Avenue Hippocrate 15, 4000 Liege, Belgium
| |
Collapse
|
30
|
Indirect Additive Manufacturing: A Valid Approach to Modulate Sorption/Release Profile of Molecules from Chitosan Hydrogels. Polymers (Basel) 2022; 14:polym14132530. [PMID: 35808575 PMCID: PMC9269287 DOI: 10.3390/polym14132530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 06/14/2022] [Accepted: 06/20/2022] [Indexed: 02/04/2023] Open
Abstract
This work studied the influence of hydrogel’s physical properties (geometry and hierarchical roughness) on the in vitro sorption/release profiles of molecules. To achieve this goal, chitosan (CS) solutions were cast in 3D-printed (3DP) molds presenting intricate shapes (cubic and half-spherical with/without macro surface roughness) and further immersed in alkaline solutions of NaOH and NaCl. The resulting physically crosslinked hydrogels were mechanically stable in aqueous environments and successfully presented the shapes and geometries imparted by the 3DP molds. Sorption and release profiles were evaluated using methyl orange (MO) and paracetamol (PMOL) as model molecules, respectively. Results revealed that distinct MO sorption/PMOL release profiles were obtained according to the sample’s shape and presence/absence of hierarchical roughness. MO sorption capacity of CS samples presented both dependencies of hierarchical surface and geometry parameters. Hence, cubic samples without a hierarchical surface presented the highest (up to 1.2 × greater) dye removal capacity. Moreover, PMOL release measurements were more dependent on the surface area of hydrogels, where semi-spherical samples with hierarchical roughness presented the fastest (~1.13 × faster) drug delivery profiles. This work demonstrates that indirect 3DP (via fused filament fabrication (FFF) technology) could be a simple strategy to obtain hydrogels with distinct sorption/release profiles.
Collapse
|
31
|
Bácskay I, Ujhelyi Z, Fehér P, Arany P. The Evolution of the 3D-Printed Drug Delivery Systems: A Review. Pharmaceutics 2022; 14:pharmaceutics14071312. [PMID: 35890208 PMCID: PMC9318419 DOI: 10.3390/pharmaceutics14071312] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 06/15/2022] [Accepted: 06/18/2022] [Indexed: 11/16/2022] Open
Abstract
Since the appearance of the 3D printing in the 1980s it has revolutionized many research fields including the pharmaceutical industry. The main goal is to manufacture complex, personalized products in a low-cost manufacturing process on-demand. In the last few decades, 3D printing has attracted the attention of numerous research groups for the manufacturing of different drug delivery systems. Since the 2015 approval of the first 3D-printed drug product, the number of publications has multiplied. In our review, we focused on summarizing the evolution of the produced drug delivery systems in the last 20 years and especially in the last 5 years. The drug delivery systems are sub-grouped into tablets, capsules, orodispersible films, implants, transdermal delivery systems, microneedles, vaginal drug delivery systems, and micro- and nanoscale dosage forms. Our classification may provide guidance for researchers to more easily examine the publications and to find further research directions.
Collapse
Affiliation(s)
- Ildikó Bácskay
- Healthcare Industry Institute, University of Debrecen, Nagyerdei körút 98, H-4032 Debrecen, Hungary
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Debrecen, Nagyerdei körút 98, H-4032 Debrecen, Hungary
| | - Zoltán Ujhelyi
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Debrecen, Nagyerdei körút 98, H-4032 Debrecen, Hungary
| | - Pálma Fehér
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Debrecen, Nagyerdei körút 98, H-4032 Debrecen, Hungary
| | - Petra Arany
- Healthcare Industry Institute, University of Debrecen, Nagyerdei körút 98, H-4032 Debrecen, Hungary
| |
Collapse
|
32
|
李 志, 钱 浩, 范 田. [Preparation and in vitro evaluation of fused deposition modeling 3D printed compound tablets of captopril and hydrochlorothiazide]. BEIJING DA XUE XUE BAO. YI XUE BAN = JOURNAL OF PEKING UNIVERSITY. HEALTH SCIENCES 2022; 54:572-577. [PMID: 35701138 PMCID: PMC9197697 DOI: 10.19723/j.issn.1671-167x.2022.03.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Indexed: 06/15/2023]
Abstract
OBJECTIVE To explore the feasibility of preparing compound tablets for the treatment of hypertension by fused deposition modeling (FDM) 3D printing technology and to evaluate the quality of the printed compound tablets in vitro. METHODS Polyvinyl alcohol (PVA) filaments were used as the exci-pient to prepare the shell of tablet. The ellipse-shaped tablets (the length of major axes of ellipse was 20 mm, the length of the minor axes of ellipse was 10 mm, the height of tablet was 5 mm) with two separate compartments were designed and printed using FDM 3D printer. The height of layer was 0.2 mm, and the thickness of roof or floor was 0.6 mm. The thickness of shell was 1.2 mm, and the thickness of the partition wall between the two compartments was 0.6 mm. Two cardiovascular drugs, captopril (CTP) and hydrochlorothiazide (HCT), were selected as model drugs for the printed compound tablet and filled in the two compartments of the tablet, respectively. The microscopic morphology of the tablets was observed by scanning electron microscopy (SEM). The weight variation of the tablets was investigated by electronic scale. The hardness of the tablets was measured by a single-column mechanical test system. The contents of the drugs in the tablets were determined by high performance liquid chromatography (HPLC), and the dissolution apparatus was used to measure the in vitro drug release of the tablets. RESULTS The prepared FDM 3D printed compound tablets were all in good shape without printing defects. The average weight of the tablets was (644.3±6.55) mg. The content of CTP and HCT was separately (52.3±0.26) mg and (49.6±0.74) mg. A delayed in vitro release profile was observed for CTP and HCT, and the delayed release time for CTP and HCT in vitro was 20 min and 40 min, respectively. The time for 70% of CTP and HCT released was separately 30 min and 60 min. CONCLUSION CTP and HCT compound tablets were successfully prepared by FDM 3D printing technology, and the printed tablets were of good qualities.
Collapse
Affiliation(s)
- 志胜 李
- />北京大学药学院药剂学系, 北京大学药学院分子药剂学与新释药系统北京市重点实验室, 北京 100191Department of Pharmaceutics, Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery Systems, Peking University School of Pharmaceutical Sciences, Beijing 100191, China
| | - 浩楠 钱
- />北京大学药学院药剂学系, 北京大学药学院分子药剂学与新释药系统北京市重点实验室, 北京 100191Department of Pharmaceutics, Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery Systems, Peking University School of Pharmaceutical Sciences, Beijing 100191, China
| | - 田园 范
- />北京大学药学院药剂学系, 北京大学药学院分子药剂学与新释药系统北京市重点实验室, 北京 100191Department of Pharmaceutics, Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery Systems, Peking University School of Pharmaceutical Sciences, Beijing 100191, China
| |
Collapse
|
33
|
Omari S, Ashour EA, Elkanayati R, Alyahya M, Almutairi M, Repka MA. Formulation development of loratadine immediate- release tablets using hot-melt extrusion and 3D printing technology. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2022.103505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
34
|
Additive Manufacturing Strategies for Personalized Drug Delivery Systems and Medical Devices: Fused Filament Fabrication and Semi Solid Extrusion. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27092784. [PMID: 35566146 PMCID: PMC9100145 DOI: 10.3390/molecules27092784] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/12/2022] [Revised: 04/15/2022] [Accepted: 04/22/2022] [Indexed: 12/26/2022]
Abstract
Novel additive manufacturing (AM) techniques and particularly 3D printing (3DP) have achieved a decade of success in pharmaceutical and biomedical fields. Highly innovative personalized therapeutical solutions may be designed and manufactured through a layer-by-layer approach starting from a digital model realized according to the needs of a specific patient or a patient group. The combination of patient-tailored drug dose, dosage, or diagnostic form (shape and size) and drug release adjustment has the potential to ensure the optimal patient therapy. Among the different 3D printing techniques, extrusion-based technologies, such as fused filament fabrication (FFF) and semi solid extrusion (SSE), are the most investigated for their high versatility, precision, feasibility, and cheapness. This review provides an overview on different 3DP techniques to produce personalized drug delivery systems and medical devices, highlighting, for each method, the critical printing process parameters, the main starting materials, as well as advantages and limitations. Furthermore, the recent developments of fused filament fabrication and semi solid extrusion 3DP are discussed. In this regard, the current state of the art, based on a detailed literature survey of the different 3D products printed via extrusion-based techniques, envisioning future directions in the clinical applications and diffusion of such systems, is summarized.
Collapse
|
35
|
Fused deposition modeling three-dimensional printing of flexible polyurethane intravaginal rings with controlled tunable release profiles for multiple active drugs. Drug Deliv Transl Res 2022; 12:906-924. [PMID: 35211869 PMCID: PMC8870081 DOI: 10.1007/s13346-022-01133-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/05/2022] [Indexed: 11/23/2022]
Abstract
We designed and engineered novel intravaginal ring (IVR) medical devices via fused deposition modeling (FDM) three-dimensional (3D) printing for controlled delivery of hydroxychloroquine, IgG, gp120 fragment (encompassing the CD4 binding site), and coumarin 6 PLGA-PEG nanoparticles (C6NP). The hydrophilic polyurethanes were utilized to 3D-print reservoir-type IVRs containing a tunable release controlling membrane (RCM) with varying thickness and adaptable micro porous structures (by altering the printing patterns and interior fill densities) for controlled sustained drug delivery over 14 days. FDM 3D printing of IVRs were optimized and implemented using a lab-developed Cartesian 3D printer. The structures were investigated by scanning electron microscopy (SEM) imaging and in vitro release was performed using 5 mL of daily-replenished vaginal fluid simulant (pH 4.2). The release kinetics of the IVR segments were tunable with various RCM (outer diameter to inner diameter ratio ranging from 1.12 to 2.61) produced from FDM 3D printing by controlling the printing perimeter to provide daily zero-order release of HCQ ranging from 23.54 ± 3.54 to 261.09 ± 32.49 µg/mL/day. IgG, gp120 fragment, and C6NP release rates demonstrated pattern and in-fill density-dependent characteristics. The current study demonstrated the utility of FDM 3D printing to rapidly fabricate complex micro-structures for tunable and sustained delivery of a variety of compounds including HCQ, IgG, gp120 fragment, and C6NP from IVRs in a controlled manner.
Collapse
|
36
|
Li R, Pan Y, Chen D, Xu X, Yan G, Fan T. Design, Preparation and In Vitro Evaluation of Core–Shell Fused Deposition Modelling 3D-Printed Verapamil Hydrochloride Pulsatile Tablets. Pharmaceutics 2022; 14:pharmaceutics14020437. [PMID: 35214169 PMCID: PMC8876819 DOI: 10.3390/pharmaceutics14020437] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 02/10/2022] [Accepted: 02/14/2022] [Indexed: 02/04/2023] Open
Abstract
The aim of the study was to investigate core–shell pulsatile tablets by combining the advantages of FDM 3D printing and traditional pharmaceutical technology, which are suitable for a patient’s individual medication and chronopathology. The tablets were designed and prepared with the commercial verapamil hydrochloride tablets as core inside and the fused deposition modelling (FDM) 3D-printed shell outside. Filaments composed of hydroxypropylmethyl cellulose (HPMC) and polyethylenglycol (PEG) 400 were prepared by hot melt extrusion (HME) and used for fabrication of the shell. Seven types of printed shells were designed for the tablets by adjusting the filament composition, geometric structure and thickness of the shell. A series of evaluations were then performed on the 3D-printed core–shell tablets, including the morphology, weight, hardness, thermogravimetric analysis (TGA), differential scanning calorimetry (DSC), X-ray powder diffraction (XRD), in vitro drug release and CT imaging. The results showed that the tablets prepared by FDM 3D printing appeared intact without any defects. All the excipients of the tablet shells were thermally stable during the extruding and printing process. The weight, hardness and in vitro drug release of the tablets were affected by the filament composition, geometric structure and thickness of the shell. The pulsatile tablets achieved personalized lag time ranging from 4 h to 8 h in the drug release test in phosphate-buffered solution (pH 6.8). Therefore, the 3D-printed core–shell pulsatile tablets in this study presented good potential in personalized administration, thereby improving the therapeutic effects of the drug for circadian rhythm disease.
Collapse
Affiliation(s)
- Rui Li
- The State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China; (R.L.); (Y.P.); (D.C.)
- School Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery Systems, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Yue Pan
- The State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China; (R.L.); (Y.P.); (D.C.)
- School Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery Systems, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Di Chen
- The State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China; (R.L.); (Y.P.); (D.C.)
- School Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery Systems, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Xiangyu Xu
- School of Mechanical Engineering and Automation, Beihang University, Beijing 100191, China; (X.X.); (G.Y.)
| | - Guangrong Yan
- School of Mechanical Engineering and Automation, Beihang University, Beijing 100191, China; (X.X.); (G.Y.)
| | - Tianyuan Fan
- The State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China; (R.L.); (Y.P.); (D.C.)
- School Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery Systems, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
- Correspondence: ; Tel.: +86-10-8280-5123
| |
Collapse
|
37
|
Azlin MNM, Ilyas RA, Zuhri MYM, Sapuan SM, Harussani MM, Sharma S, Nordin AH, Nurazzi NM, Afiqah AN. 3D Printing and Shaping Polymers, Composites, and Nanocomposites: A Review. Polymers (Basel) 2022; 14:180. [PMID: 35012202 PMCID: PMC8747384 DOI: 10.3390/polym14010180] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Revised: 11/11/2021] [Accepted: 11/13/2021] [Indexed: 02/04/2023] Open
Abstract
Sustainable technologies are vital due to the efforts of researchers and investors who have allocated significant amounts of money and time to their development. Nowadays, 3D printing has been accepted by the main industry players, since its first establishment almost 30 years ago. It is obvious that almost every industry is related to technology, which proves that technology has a bright future. Many studies have shown that technologies have changed the methods for developing particular products. Three-dimensional printing has evolved tremendously, and currently, many new types of 3D printing machines have been introduced. In this paper, we describe the historical development of 3D printing technology including its process, types of printing, and applications on polymer materials.
Collapse
Affiliation(s)
- M. N. M. Azlin
- Department of Textile Technology, School of Industrial Technology, Universiti Teknologi MARA, Cawangan Negeri Sembilan, Kampus Kuala Pilah, Kuala Pilah 72000, Malaysia
- Institute of Tropical Forestry and Forest Products, Universiti Putra Malaysia, Serdang 43400, Malaysia
| | - R. A. Ilyas
- Faculty of Engineering, School of Chemical and Energy Engineering, Universiti Teknologi Malaysia (UTM), Johor Bahru 81310, Malaysia;
- Centre for Advanced Composite Materials (CACM), Universiti Teknologi Malaysia (UTM), Johor Bahru 81310, Malaysia
| | - M. Y. M. Zuhri
- Institute of Tropical Forestry and Forest Products, Universiti Putra Malaysia, Serdang 43400, Malaysia
- Advanced Engineering Materials and Composites Research Centre (AEMC), Department of Mechanical and Manufacturing Engineering, Universiti Putra Malaysia, Serdang 43400, Malaysia; (M.M.H.); (A.N.A.)
| | - S. M. Sapuan
- Institute of Tropical Forestry and Forest Products, Universiti Putra Malaysia, Serdang 43400, Malaysia
- Advanced Engineering Materials and Composites Research Centre (AEMC), Department of Mechanical and Manufacturing Engineering, Universiti Putra Malaysia, Serdang 43400, Malaysia; (M.M.H.); (A.N.A.)
| | - M. M. Harussani
- Advanced Engineering Materials and Composites Research Centre (AEMC), Department of Mechanical and Manufacturing Engineering, Universiti Putra Malaysia, Serdang 43400, Malaysia; (M.M.H.); (A.N.A.)
| | - Shubham Sharma
- Department of Mechanical Engineering, IK Gujral Punjab Technical University, Main Campus, Kapurthala 144603, India;
- Department of Mechanical Engineering, University Centre for Research and Development and Chandigarh Universiti, Pubjab 140413, India
| | - A. H. Nordin
- Faculty of Engineering, School of Chemical and Energy Engineering, Universiti Teknologi Malaysia (UTM), Johor Bahru 81310, Malaysia;
| | - N. M. Nurazzi
- Centre for Defence Foundation Studies, Universiti Pertahanan Nasional Malaysia (UPNM), Kem Perdana Sungai Besi, Kuala Lumpur 57000, Malaysia;
| | - A. N. Afiqah
- Advanced Engineering Materials and Composites Research Centre (AEMC), Department of Mechanical and Manufacturing Engineering, Universiti Putra Malaysia, Serdang 43400, Malaysia; (M.M.H.); (A.N.A.)
| |
Collapse
|
38
|
Recent Trends in Assessment of Cellulose Derivatives in Designing Novel and Nanoparticulate-Based Drug Delivery Systems for Improvement of Oral Health. Polymers (Basel) 2021; 14:polym14010092. [PMID: 35012115 PMCID: PMC8747402 DOI: 10.3390/polym14010092] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 12/21/2021] [Accepted: 12/25/2021] [Indexed: 12/22/2022] Open
Abstract
Natural polymers are revolutionizing current pharmaceutical dosage forms design as excipient and gained huge importance because of significant influence in formulation development and drug delivery. Oral health refers to the health of the teeth, gums, and the entire oral-facial system that allows us to smile, speak, and chew. Since years, biopolymers stand out due to their biocompatibility, biodegradability, low toxicity, and stability. Polysaccharides such as cellulose and their derivatives possess properties like novel mechanical robustness and hydrophilicity that can be easily fabricated into controlled-release dosage forms. Cellulose attracts the dosage design attention because of constant drug release rate from the precursor nanoparticles. This review discusses the origin, extraction, preparation of cellulose derivatives and their use in formulation development of nanoparticles having multidisciplinary applications as pharmaceutical excipient and in drug delivery, as bacterial and plant cellulose have great potential for application in the biomedical area, including dentistry, protein and peptide delivery, colorectal cancer treatment, and in 3D printable dosage forms.
Collapse
|
39
|
Gottschalk N, Quodbach J, Elia AG, Hess F, Bogdahn M. Determination of feed forces to improve process understanding of Fused Deposition Modeling 3D printing and to ensure mass conformity of printed solid oral dosage forms. Int J Pharm 2021; 614:121416. [PMID: 34958898 DOI: 10.1016/j.ijpharm.2021.121416] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 12/17/2021] [Accepted: 12/18/2021] [Indexed: 02/02/2023]
Abstract
Fused Deposition Modeling is a suitable technique for the production of personalized solid oral dosage forms. For widespread application, it is necessary to be able to print a wide range of different formulations to address individual therapeutic needs. Due to the complexity of formulation composition (e.g., due to different compounds, excipients for enhancement of release and mechanical properties) and limited mechanical understanding, determination of suitable printing parameters is challenging. To address this challenge, we have developed a feed force tester using a Texture Analyser setup that mimics the actual printing process. Feed force data were compared to the mass of tablets printed from technical materials as well as pharmaceutical filaments of ketoconazole at high drug loads of 20 and 40% and polyvinyl alcohol. By determining a feed force limit for the 3D printer from feed force data of several formulations printed, it was possible to specify the operable printing range, where printing is reproducible and printed mass corresponds the target mass. Based on these results, rational optimization of the printing process in terms of speed, time and temperature for different materials and formulations is possible.
Collapse
Affiliation(s)
- Nadine Gottschalk
- Institute of Pharmaceutics and Biopharmaceutics, Heinrich Heine University, Düsseldorf, Germany; Merck KGaA, Darmstadt, Germany
| | - Julian Quodbach
- Institute of Pharmaceutics and Biopharmaceutics, Heinrich Heine University, Düsseldorf, Germany
| | | | | | | |
Collapse
|
40
|
Choudhury D, Sharma PK, Suryanarayana Murty U, Banerjee S. Stereolithography-assisted fabrication of 3D printed polymeric film for topical berberine delivery: in-vitro, ex-vivo and in-vivo investigations. J Pharm Pharmacol 2021; 74:1477-1488. [PMID: 34850065 DOI: 10.1093/jpp/rgab158] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Accepted: 10/25/2021] [Indexed: 11/14/2022]
Abstract
OBJECTIVES 3D printed polymeric film intended for topical delivery of berberine (BBR) was developed using stereolithography (SLA) to enhance its local concentrations. PEGDMA was utilized as photopolymerizing resin, with PEG 400 as an inert component to facilitate BBR solubilization and permeation. METHODS Three batches of topical films were printed by varying resin and PEG 400 compositions. In-vitro physicochemical characterizations of the 3D printed films were performed using several analytical techniques including ex-vivo drug permeation studies. In-vivo skin irritation studies were also conducted to assess the skin irritation potential. KEY FINDINGS Films were 3D printed according to design specifications with minimal variations. Microscopic analysis confirmed 3D architecture, while thermal and X-ray diffraction studies revealed amorphous BBR entrapment. Drug permeation study showed effective ex-vivo diffusion up to 344.32 ± 61.20 µg/cm2 after 24.0 h possessing a higher ratio of PEG 400. In-vivo skin irritation studies have suggested the non-irritant nature of printed films. CONCLUSIONS Results indicated the suitability of SLA 3D printing for topical application in the treatment of skin diseases. The presence of PEG 400 in the printed 3D films facilitated BBR diffusion, resulting in an improved flux in ex-vivo model and non-irritant properties in vivo.
Collapse
Affiliation(s)
- Dinesh Choudhury
- Department of Pharmaceutics, National Institute of Pharmaceutical Education & Research (NIPER)-Guwahati, Changsari, Assam, India.,National Centre for Pharmacoengineering, NIPER-Guwahati, Changsari, Assam, India
| | - Peeyush Kumar Sharma
- Department of Pharmaceutics, National Institute of Pharmaceutical Education & Research (NIPER)-Guwahati, Changsari, Assam, India.,National Centre for Pharmacoengineering, NIPER-Guwahati, Changsari, Assam, India
| | | | - Subham Banerjee
- Department of Pharmaceutics, National Institute of Pharmaceutical Education & Research (NIPER)-Guwahati, Changsari, Assam, India.,National Centre for Pharmacoengineering, NIPER-Guwahati, Changsari, Assam, India
| |
Collapse
|
41
|
Ragelle H, Rahimian S, Guzzi EA, Westenskow PD, Tibbitt MW, Schwach G, Langer R. Additive manufacturing in drug delivery: Innovative drug product design and opportunities for industrial application. Adv Drug Deliv Rev 2021; 178:113990. [PMID: 34600963 DOI: 10.1016/j.addr.2021.113990] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 07/21/2021] [Accepted: 09/21/2021] [Indexed: 02/06/2023]
Abstract
Additive manufacturing (AM) or 3D printing is enabling new directions in product design. The adoption of AM in various industrial sectors has led to major transformations. Similarly, AM presents new opportunities in the field of drug delivery, opening new avenues for improved patient care. In this review, we discuss AM as an innovative tool for drug product design. We provide a brief overview of the different AM processes and their respective impact on the design of drug delivery systems. We highlight several enabling features of AM, including unconventional release, customization, and miniaturization, and discuss several applications of AM for the fabrication of drug products. This includes products that have been approved or are in development. As the field matures, there are also several new challenges to broad implementation in the pharmaceutical landscape. We discuss several of these from the regulatory and industrial perspectives and provide an outlook for how these issues may be addressed. The introduction of AM into the field of drug delivery is an enabling technology and many new drug products can be created through productive collaboration of engineers, materials scientists, pharmaceutical scientists, and industrial partners.
Collapse
|
42
|
Eleftheriadis GK, Genina N, Boetker J, Rantanen J. Modular design principle based on compartmental drug delivery systems. Adv Drug Deliv Rev 2021; 178:113921. [PMID: 34390776 DOI: 10.1016/j.addr.2021.113921] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2021] [Revised: 07/21/2021] [Accepted: 08/09/2021] [Indexed: 12/28/2022]
Abstract
The current manufacturing solutions for oral solid dosage forms are fundamentally based on technologies from the 19th century. This approach is well suited for mass production of one-size-fits-all products; however, it does not allow for a straight-forward personalization and mass customization of the pharmaceutical end-product. In order to provide better therapies to the patients, a need for innovative manufacturing concepts and product design principles has been rising. Additive manufacturing opens up a possibility for compartmentalization of drug products, including design of spatially separated multidrug and functional excipient compartments. This compartmentalized solution can be further expanded to modular design thinking. Modular design is referring to combination of building blocks containing a given amount of drug compound(s) and related functional excipients into a larger final product. Implementation of modular design principles is paving the way for implementing the emerging personalization potential within health sciences by designing compartmental and reactive product structures that can be manufactured based on the individual needs of each patient. This review will introduce the existing compartmentalized product design principles and discuss the integration of these into edible electronics allowing for innovative control of drug release.
Collapse
Affiliation(s)
| | - Natalja Genina
- Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, DK-2100 Copenhagen, Denmark
| | - Johan Boetker
- Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, DK-2100 Copenhagen, Denmark
| | - Jukka Rantanen
- Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, DK-2100 Copenhagen, Denmark.
| |
Collapse
|
43
|
Deshmane S, Kendre P, Mahajan H, Jain S. Stereolithography 3D printing technology in pharmaceuticals: a review. Drug Dev Ind Pharm 2021; 47:1362-1372. [PMID: 34663145 DOI: 10.1080/03639045.2021.1994990] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Three-dimensional printing (3DP) technology is an innovative tool used in manufacturing medical devices, producing alloys, replacing biological tissues, producing customized dosage forms and so on. Stereolithography (SLA), a 3D printing technique, is very rapid and highly accurate and produces finished products of uniform quality. 3D formulations have been optimized with a perfect tool of artificial intelligence learning techniques. Complex designs/shapes can be fabricated through SLA using the photopolymerization principle. Different 3DP technologies are introduced and the most promising of these, SLA, and its commercial applications, are focused on. The high speed and effectiveness of SLA are highlighted. The working principle of SLA, the materials used and applications of the technique in a wide range of different sectors are highlighted in this review. An innovative idea of 3D printing customized pharmaceutical dosage forms is also presented. SLA compromises several advantages over other methods, such as cost effectiveness, controlled integrity of materials and greater speed. The development of SLA has allowed the development of printed pharmaceutical devices. Considering the present trends, it is expected that SLA will be used along with conventional methods of manufacturing of 3D model. This 3D printing technology may be utilized as a novel tool for delivering drugs on demand. This review will be useful for researchers working on 3D printing technologies.
Collapse
Affiliation(s)
- Subhash Deshmane
- Department of Pharmaceutics, Rajarshi Shahu College of Pharmacy, Malvihir, India
| | - Prakash Kendre
- Department of Pharmaceutics, Rajarshi Shahu College of Pharmacy, Malvihir, India
| | - Hitendra Mahajan
- Department of Pharmaceutics, R. C. Patel Institute of Pharmaceutical Education and Research, Shirpur, India
| | - Shirish Jain
- Department of Pharmaceutics, Rajarshi Shahu College of Pharmacy, Malvihir, India
| |
Collapse
|
44
|
Parhi R, Jena GK. An updated review on application of 3D printing in fabricating pharmaceutical dosage forms. Drug Deliv Transl Res 2021; 12:2428-2462. [PMID: 34613595 DOI: 10.1007/s13346-021-01074-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/27/2021] [Indexed: 01/22/2023]
Abstract
The concept of "one size fits all" followed by the conventional healthcare system has drawbacks in providing precise pharmacotherapy due to variation in the pharmacokinetics of different patients leading to serious consequences such as side effects. In this regard, digital-based three-dimensional printing (3DP), which refers to fabricating 3D printed pharmaceutical dosage forms with variable geometry in a layer-by-layer fashion, has become one of the most powerful and innovative tools in fabricating "personalized medicine" to cater to the need of therapeutic benefits for patients to the maximum extent. This is achieved due to the tremendous potential of 3DP in tailoring various drug delivery systems (DDS) in terms of size, shape, drug loading, and drug release. In addition, 3DP has a huge impact on special populations including pediatrics, geriatrics, and pregnant women with unique or frequently changing medical needs. The areas covered in the present article are as follows: (i) the difference between traditional and 3DP manufacturing tool, (ii) the basic processing steps involved in 3DP, (iii) common 3DP methods with their pros and cons, (iv) various DDS fabricated by 3DP till date with discussing few research studies in each class of DDS, (v) the drug loading principles into 3D printed dosage forms, and (vi) regulatory compliance.
Collapse
Affiliation(s)
- Rabinarayan Parhi
- Department of Pharmaceutical Sciences, Susruta School of Medical and Paramedical Sciences, Assam University (A Central University), Silchar-788011, Assam, India.
| | - Goutam Kumar Jena
- Roland Institute of Pharmaceutical Sciences, Berhampur-7600010, Odisha, India
| |
Collapse
|
45
|
Polymers in pharmaceutical additive manufacturing: A balancing act between printability and product performance. Adv Drug Deliv Rev 2021; 177:113923. [PMID: 34390775 DOI: 10.1016/j.addr.2021.113923] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2021] [Revised: 07/08/2021] [Accepted: 08/09/2021] [Indexed: 12/19/2022]
Abstract
Materials and manufacturing processes share a common purpose of enabling the pharmaceutical product to perform as intended. This review on the role of polymeric materials in additive manufacturing of oral dosage forms, focuses on the interface between the polymer and key stages of the additive manufacturing process, which determine printability. By systematically clarifying and comparing polymer functional roles and properties for a variety of AM technologies, together with current and emerging techniques to characterize these properties, suggestions are provided to stimulate the use of readily available and sometimes underutilized pharmaceutical polymers in additive manufacturing. We point to emerging characterization techniques and digital tools, which can be harnessed to manage existing trade-offs between the role of polymers in printer compatibility versus product performance. In a rapidly evolving technological space, this serves to trigger the continued development of 3D printers to suit a broader variety of polymers for widespread applications of pharmaceutical additive manufacturing.
Collapse
|
46
|
Figueiredo S, Fernandes AI, Carvalho FG, Pinto JF. Performance and paroxetine stability in tablets manufactured by fused deposition modelling-based 3D printing. J Pharm Pharmacol 2021; 74:67-76. [PMID: 34591102 DOI: 10.1093/jpp/rgab138] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Accepted: 09/06/2021] [Indexed: 11/14/2022]
Abstract
OBJECTIVES The objective of this study was to develop a method for the preparation and characterization of paroxetine (PRX) tablets, obtained by coupling hot-melt extrusion and fused deposition modelling (FDM)-based three-dimensional printing (3DP) technology. The impact of the printing process parameters on the drug stability and on the tablets performance was assessed. METHODS Tablets were obtained by FDM of hot-melt extruded PRX-loaded filaments. Physicochemical, thermal, spectroscopic, diffractometric analysis and in-vitro dissolution tests of the intermediate products and the finished dosage forms were performed. KEY FINDINGS The characterization of printed tablets evidenced mass and dimensions uniformity, and consistency of drug content and dissolution profile. The formation of amorphous solid dispersions and interaction of formulation components throughout the manufacturing process were demonstrated. Layer thickness, printing temperature, printing and travelling speeds, and infill were the most impacting process parameters on both the physicochemical properties and the in-vitro performance of the 3D-printed tablets. CONCLUSIONS PRX tablets, meeting compendial limits, were manufactured by 3DP, envisaging their clinical use as individually designed dosage forms. The assessment of the impact of processing parameters on the printed tablets provided insights, which will ultimately allow streamlining of the 3D process set-up for quicker and easier production of patient-centric medicines.
Collapse
Affiliation(s)
- Sara Figueiredo
- iMed.ULisboa, Faculdade de Farmácia da Universidade de Lisboa, Lisboa, Portugal
| | - Ana I Fernandes
- CiiEM, Instituto Universitário Egas Moniz, Caparica, Portugal
| | - Fátima G Carvalho
- Infosaúde - Laboratório de Estudos Farmacêuticos, Barcarena, Portugal
| | - João F Pinto
- iMed.ULisboa, Faculdade de Farmácia da Universidade de Lisboa, Lisboa, Portugal
| |
Collapse
|
47
|
Pitzanti G, Mathew E, Andrews GP, Jones DS, Lamprou DA. 3D Printing: an appealing technology for the manufacturing of solid oral dosage forms. J Pharm Pharmacol 2021; 74:1427-1449. [PMID: 34529072 DOI: 10.1093/jpp/rgab136] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Accepted: 08/25/2021] [Indexed: 01/12/2023]
Abstract
OBJECTIVES The traditional manufacturing methods of solid oral dosage forms (SODFs) are reported to be time-consuming, highly expensive and not tailored to the patient's needs. Three-dimensional printing (3DP) is an innovative emerging technology that can help to overcome these issues. The aim of this review is to describe the most employed 3DP technologies, materials and the state of the art on 3DP SODFs. Characterization techniques of 3DP SODFs, challenges and regulatory issues are also discussed. KEY FINDINGS The interest in the investigation of the suitability of 3DP as an alternative strategy for the fabrication of SODFs is growing. Different 3DP technologies and starting materials have been investigated for the development of SODFs. Numerous SODFs with complex geometries and composition, and with different release patterns, have been successfully manufactured via 3DP. Despite that, just one 3DP SODF has reached the market. SUMMARY 3DP can be a promising alternative to the classical SODFs manufacturing methods. However, numerous technically and regulatory challenges still need to be addressed in order 3DP to be extensively used in the pharmaceutical sector.
Collapse
Affiliation(s)
| | | | | | - David S Jones
- School of Pharmacy, Queen's University Belfast, Belfast, UK
| | | |
Collapse
|
48
|
Choudhury D, Murty US, Banerjee S. 3D printing and enteric coating of a hollow capsular device with controlled drug release characteristics prepared using extruded Eudragit® filaments. Pharm Dev Technol 2021; 26:1010-1020. [PMID: 34412566 DOI: 10.1080/10837450.2021.1970765] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
This work focuses on the extrusion of a brittle, tacky, cationic copolymer i.e. Eudragit® E-100 to prepare filament and subsequent 3D printing of hollow capsular device using the extruded filament. An optimum amount of talc and triethyl citrate was used for the possible extrusion of the polymer. There was no thermal and chemical degradation of the polymer observed after extrusion confirmed by DSC and FTIR analysis. Microscopic analysis of the printed capsule showed the layer-by-layer manner of 3D printing. Capsule parts were printed according to the set dimensions (00 size) with minimal deviation. Printed capsule showed the soluble behaviour in gastric fluid pH 1.2 where within 15 min the encapsulated drug encounters with the dissolution medium and almost 70% drug was dissolved within 4 hr. In case of phosphate buffer pH 6.8, the printed capsule showed a longed swelling behaviour up to 12 hr and then gradually bursting of capsule occurred wherein more than 90% encapsulated drug was dissolved within 36 hr. Enteric coating of the printed capsule showed similar behaviour in alkaline medium that observed with non-enteric capsule. This indicates the potential application of this printed capsules for both gastric and intestinal specific delayed drug delivery by a single step enteric coating process.
Collapse
Affiliation(s)
- Dinesh Choudhury
- Department of Pharmaceutics, National Institute of Pharmaceutical Education & Research (NIPER)-Guwahati, Changsari, India.,National Centre for Pharmacoengineering, NIPER-Guwahati, Changsari, India
| | | | - Subham Banerjee
- Department of Pharmaceutics, National Institute of Pharmaceutical Education & Research (NIPER)-Guwahati, Changsari, India.,National Centre for Pharmacoengineering, NIPER-Guwahati, Changsari, India
| |
Collapse
|
49
|
Statistical design of experiment-based formulation development and optimization of 3D printed oral controlled release drug delivery with multi target product profile. JOURNAL OF PHARMACEUTICAL INVESTIGATION 2021. [DOI: 10.1007/s40005-021-00542-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
50
|
Cui M, Pan H, Li L, Fang D, Sun H, Qiao S, Li X, Pan W. Exploration and Preparation of Patient-specific Ciprofloxacin Implants Drug Delivery System Via 3D Printing Technologies. J Pharm Sci 2021; 110:3678-3689. [PMID: 34371072 DOI: 10.1016/j.xphs.2021.08.004] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2021] [Revised: 08/04/2021] [Accepted: 08/04/2021] [Indexed: 12/24/2022]
Abstract
A suitable drug-loaded implant delivery system that can effectively release antibacterial drug in the postoperative lesion area and help repair bone infection is very significant in the clinical treatment of bone defect. The work was aimed to investigate the feasibility of applying three-dimensional (3D) printing technology to prepare drug-loaded implants for bone repair. Semi-solid extrusion (SSE) and Fuse deposition modeling® (FDM) technologies were implemented and ciprofloxacin (CIP) was chosen as the model drug. All of the implants exhibited a smooth surface, good mechanical properties and satisfactory structural integrity as well as accurate dimensional size. In vitro drug release showed that the implants made by 3D printing technologies slowed down the initial drug burst effect and expressed a long-term sustained release behavior, compared with the implants prepared with traditional method. In addition, the patient-specific macrostructure implants, consisting of interconnected and different shapes pores, were created using unique lay down patterns. As a result, the weakest burst release effect and the sustained drug release were achieved in the patient-specific implants with linear pattern. These results clearly stated that 3D printing technology offers a viable approach to prepare control-releasing implants with patient-specific macro-porosity and presents novel strategies for treating bone infections.
Collapse
Affiliation(s)
- Mengsuo Cui
- School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang 110016, China
| | - Hao Pan
- School of Pharmacy, Liaoning University, 66 Chongshan Middle Road, Shenyang 110036, China
| | - Lu Li
- Wuya College of Innovation, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang 110016, China
| | - Dongyang Fang
- School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang 110016, China
| | - Haowei Sun
- School of Traditional Chinese Medicine, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang 110016, China
| | - Sen Qiao
- School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang 110016, China
| | - Xin Li
- School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang 110016, China
| | - Weisan Pan
- School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang 110016, China.
| |
Collapse
|