1
|
Nasir A, Rehman MU, Khan T, Husn M, Khan M, Khan A, Nuh AM, Jiang W, Farooqi HMU, Bai Q. Advances in nanotechnology-assisted photodynamic therapy for neurological disorders: a comprehensive review. ARTIFICIAL CELLS, NANOMEDICINE, AND BIOTECHNOLOGY 2024; 52:84-103. [PMID: 38235991 DOI: 10.1080/21691401.2024.2304814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Accepted: 01/03/2024] [Indexed: 01/19/2024]
Abstract
Neurological disorders such as neurodegenerative diseases and nervous system tumours affect more than one billion people throughout the globe. The physiological sensitivity of the nervous tissue limits the application of invasive therapies and leads to poor treatment and prognosis. One promising solution that has generated attention is Photodynamic therapy (PDT), which can potentially revolutionise the treatment landscape for neurological disorders. PDT attracted substantial recognition for anticancer efficacy and drug conjugation for targeted drug delivery. This review thoroughly explained the basic principles of PDT, scientific interventions and advances in PDT, and their complicated mechanism in treating brain-related pathologies. Furthermore, the merits and demerits of PDT in the context of neurological disorders offer a well-rounded perspective on its feasibility and challenges. In conclusion, this review encapsulates the significant potential of PDT in transforming the treatment landscape for neurological disorders, emphasising its role as a non-invasive, targeted therapeutic approach with multifaceted applications.
Collapse
Affiliation(s)
- Abdul Nasir
- Medical Research Center, Second Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Mujeeb Ur Rehman
- Department of Zoology, Islamia College University, Peshawar, Pakistan
| | - Tamreez Khan
- Department of Zoology, Abdul Wali Khan University, Mardan, Pakistan
| | - Mansoor Husn
- Department of Biochemistry, Abdul Wali Khan University, Mardan, Pakistan
| | - Manzar Khan
- Department of Zoology, Hazara University Mansehra, Mansehra, Pakistan
| | - Ahmad Khan
- Department of Psychology, University of Karachi, Karachi, Pakistan
| | - Abdifatah Mohamed Nuh
- Department of Obstetrics and Gynecology, Second Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Wei Jiang
- Medical Research Center, Second Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | | | - Qain Bai
- Medical Research Center, Second Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| |
Collapse
|
2
|
Seyam S, Choukaife H, Al Rahal O, Alfatama M. Colonic targeting insulin-loaded trimethyl chitosan nanoparticles coated pectin for oral delivery: In vitro and In vivo studies. Int J Biol Macromol 2024; 281:136549. [PMID: 39401622 DOI: 10.1016/j.ijbiomac.2024.136549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2024] [Revised: 10/08/2024] [Accepted: 10/11/2024] [Indexed: 10/25/2024]
Abstract
Colon-targeted delivery offers several benefits for oral protein delivery, such as low proteolytic enzyme activity, a natural pH environment, and extended residence time, which improve the bioavailability of the encapsulated protein. Therefore, we hypothesize that developing a novel colonic nanocarrier system, featuring modified chitosan that is soluble at physiological pH and coated with a colon-degradable polymer, will provide an effective delivery system for oral insulin. This study aims to synthesize insulin-loaded pectin-trimethyl chitosan nanoparticles (Ins-P-TMC-NPs) as an oral insulin delivery system and to evaluate its efficacy both in vitro and in vivo. N-trimethyl chitosan (TMC), synthesized via a methylation method, was used to prepare insulin-TMC nanoparticles coated with pectin via the ionic gelation method. The nanoparticles were characterized for their physicochemical properties, cumulative release profile, and surface morphology. The in vitro biological cytotoxicity and cellular uptake of the nanoparticles were evaluated against HT-29 cells. The in vivo blood glucose-lowering effect and histological toxicity were assessed in diabetic male Sprague-Dawley rats. The results showed that Ins-P-TMC-NPs were spherical, with an average size of 379.40 ± 40.26 nm, a polydispersity index of 24.10 ± 1.03 %, a zeta potential of +17.20 ± 0.52 mV, and a loading efficiency of 83.21 ± 1.23 %. Compared to uncoated TMC nanoparticles, Ins-P-TMC-NPs reduced insulin loss in simulated gastrointestinal fluid by approximately 67.23 ± 0.97 % and provided controlled insulin release in simulated colonic fluid. In vitro bioactivity studies revealed that Ins-P-TMC-NPs were non-toxic, with cell viability of 91.12 ± 0.91 % after 24 h of treatment, and exhibited high cellular uptake in the HT-29 cell line with a fluorescence intensity of 37.80 ± 2.40 after 4 h of incubation. Furthermore, the in vivo study demonstrated a sustained reduction in blood glucose levels after oral administration of Ins-P-TMC-NPs, peaking after 8 h with a blood glucose reduction of 87 ± 1.03 %. Histological sections showed no signs of toxicity when compared to those of healthy rats. Overall, the developed colon-targeted oral insulin delivery system exhibits strong potential as a candidate for effective oral insulin administration.
Collapse
Affiliation(s)
- Salma Seyam
- Faculty of Pharmacy, Universiti Sultan Zainal Abidin, Besut Campus, Besut 22200, Terengganu, Malaysia; Advanced Medical and Dental Institute, Universiti Sains Malaysia, Bertam, 13200 Kepala Batas, Penang, Malaysia
| | - Hazem Choukaife
- Faculty of Pharmacy, Universiti Sultan Zainal Abidin, Besut Campus, Besut 22200, Terengganu, Malaysia
| | - Okba Al Rahal
- School of Chemistry, University of Birmingham, Edgbaston, Birmingham B15 2TT, United Kingdom
| | - Mulham Alfatama
- Faculty of Pharmacy, Universiti Sultan Zainal Abidin, Besut Campus, Besut 22200, Terengganu, Malaysia.
| |
Collapse
|
3
|
Ali N, Farhan M, Malik S, Khan A, Ali S, Kianat S, Ghazal S, Sawera, Salim B, Al Balushi RA, Al-Hinaai MM, Al-Harthy T. Robust regenerable metal-selenide-chitosan photocatalyst for the effective removal of Bromothymol Blue (BB) from wastewater. Int J Biol Macromol 2024; 281:136419. [PMID: 39383922 DOI: 10.1016/j.ijbiomac.2024.136419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 09/24/2024] [Accepted: 10/06/2024] [Indexed: 10/11/2024]
Abstract
Water scarcity has been a crucial debate in recent years regarding the critical scenario of water pollution. The water body is continuously contaminated by organic effluents of textile industries, including pigmented dye pollutants. To tackle water bodies contamination, there is a need to develop an eco-friendly and efficient method for removing toxic dyes. Herein, ternary metal selenide nanocomposites of barium nickel selenide (NBSe-NPs) were synthesized by the solvothermal method supported by chitosan microsphere (NBSe-NPs-CM). Recovery of the catalyst was convenient by capping nanoparticles in the microsphere to maintain effective stability, biocompatibility, and well-designed surface coating. FTIR spectrum verified nanocomposite synthesis and chitosan microsphere (NBSe-CM) formation. SEM observations of nanocomposites and NBSe-CM indicated an average size of 13.78 nm and 253 μm, respectively. The presence of barium, nickel, and selenium elements in the NBS-NPs was verified by EDX analysis. The nanocomposites had a crystallite size of 15.73 nm. The photocatalyst exhibited a narrow bandgap of only 1.3 eV based on Tauc's plot. In addition, the synthesized microsphere demonstrated an efficient photocatalytic degradation (97 %) of Bromothymol Blue dye within 100 min under optimized operating conditions (pH of 6.0, dye concentration of 40 ppm, catalyst dosage of 0.25 g). The photocatalysis process followed the pseudo-first-order kinetics. The repeatability studies showed a slight decline in the catalyst's efficiency after four successive cycles. The DFT study shows that the NBSe-CM is energetically stable with more considerable negative binding energy, and the dye molecule interacts more strongly with the NBSe-CM surface. The findings highlight the exceptional characteristics of the newly designed ternary-metal-selenide-containing chitosan-microspheres for degrading dye contaminants from textile effluents.
Collapse
Affiliation(s)
- Nisar Ali
- Department of Basic and Applied Sciences, College of Applied and Health Sciences, A'Sharqiyah University, P.O. Box 42, Ibra P.O. 400, Sultanate of Oman.
| | - Muhammad Farhan
- Institute of Chemical Sciences, University of Peshawar, Khyber Pakhtunkhwa 25120, Pakistan
| | - Sumeet Malik
- Institute of Chemical Sciences, University of Peshawar, Khyber Pakhtunkhwa 25120, Pakistan
| | - Adnan Khan
- Institute of Chemical Sciences, University of Peshawar, Khyber Pakhtunkhwa 25120, Pakistan.
| | - Sarmad Ali
- Institute of Solid-State Physics, Key Laboratory of Photovoltaic and Energy Conservation Materials, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China
| | - Seemran Kianat
- Institute of Chemical Sciences, University of Peshawar, Khyber Pakhtunkhwa 25120, Pakistan
| | - Sobia Ghazal
- Institute of Chemical Sciences, University of Peshawar, Khyber Pakhtunkhwa 25120, Pakistan
| | - Sawera
- Institute of Chemical Sciences, University of Peshawar, Khyber Pakhtunkhwa 25120, Pakistan
| | - Benish Salim
- Institute of Chemical Sciences, University of Peshawar, Khyber Pakhtunkhwa 25120, Pakistan
| | - Rayya Ahmed Al Balushi
- Department of Basic and Applied Sciences, College of Applied and Health Sciences, A'Sharqiyah University, P.O. Box 42, Ibra P.O. 400, Sultanate of Oman
| | - Mohammad M Al-Hinaai
- Department of Basic and Applied Sciences, College of Applied and Health Sciences, A'Sharqiyah University, P.O. Box 42, Ibra P.O. 400, Sultanate of Oman
| | - Thuraya Al-Harthy
- Department of Basic and Applied Sciences, College of Applied and Health Sciences, A'Sharqiyah University, P.O. Box 42, Ibra P.O. 400, Sultanate of Oman
| |
Collapse
|
4
|
Salazar-Sesatty HA, Montoya-Hinojosa EI, Villarreal-Salazar V, Alvizo-Baez CA, Camacho-Ortiz A, Terrazas-Armendariz LD, Luna-Cruz IE, Alcocer-González JM, Villarreal-Treviño L, Flores-Treviño S. Biofilm Eradication and Inhibition of Methicillin-Resistant Staphylococcus Clinical Isolates by Curcumin-Chitosan Magnetic Nanoparticles. Jpn J Infect Dis 2024; 77:260-268. [PMID: 38825455 DOI: 10.7883/yoken.jjid.2024.034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/04/2024]
Abstract
Biofilm-producing methicillin-resistant Staphylococcus aureus (MRSA) and coagulase-negative staphylococci (MR-CoNS) pose clinical challenges in treating healthcare-associated infections. As alternative antimicrobial options are needed, in this study, we aimed to determine the effect of curcumin-chitosan magnetic nanoparticles (Cur-Chi-MNP) on the biofilms of staphylococcal clinical isolates. MRSA and CoNS clinical isolates were identified using matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. Antimicrobial susceptibility testing was performed using the broth microdilutions. Nanoparticles were synthesized by the co-precipitation of magnetic nanoparticles (MNP) and encapsulated by the ionotropic gelation of curcumin (Cur) and chitosan (Chi). Biofilm inhibition and eradication by nanoparticles, with and without the addition of oxacillin (OXA), were assessed in Staphylococcus strains. Cur-Chi-MNP showed antimicrobial activity against planktonic cells of MRSA and MR-CoNS strains and inhibited MRSA biofilm. The addition of OXA to Cur-Chi-MNP increased the biofilm inhibition and eradication activity against all staphylococcal strains (P = 0.0007), and higher biofilm activity was observed in the early biofilm stages. Cur-Chi-MNP showed antimicrobial and biofilm inhibitory activities against S. aureus. Addition of OXA increased biofilm inhibition and eradication activity against all staphylococcal strains. A combination treatment of Cur-Chi-MNP and OXA could potentially be used to treat staphylococcal biofilm-associated infections in the early stages before the establishment of biofilm bacterial cells.
Collapse
Affiliation(s)
| | | | | | | | - Adrián Camacho-Ortiz
- Department of Infectious Diseases, University Hospital Dr. José Eleuterio González and School of Medicine, Autonomous University of Nuevo Leon, Mexico
| | | | | | | | - Licet Villarreal-Treviño
- Departament of Microbiology, School of Biological Sciences, Autonomous University of Nuevo Leon, Mexico
| | - Samantha Flores-Treviño
- Department of Infectious Diseases, University Hospital Dr. José Eleuterio González and School of Medicine, Autonomous University of Nuevo Leon, Mexico
| |
Collapse
|
5
|
Gláucia-Silva F, Torres JVP, Torres-Rêgo M, Daniele-Silva A, Furtado AA, Ferreira SDS, Chaves GM, Xavier-Júnior FH, Rocha Soares KS, da Silva-Júnior AA, Fernandes-Pedrosa MDF. Tityus stigmurus-Venom-Loaded Cross-Linked Chitosan Nanoparticles Improve Antimicrobial Activity. Int J Mol Sci 2024; 25:9893. [PMID: 39337380 PMCID: PMC11432167 DOI: 10.3390/ijms25189893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 09/07/2024] [Accepted: 09/12/2024] [Indexed: 09/30/2024] Open
Abstract
The rapid resistance developed by pathogenic microorganisms against the current antimicrobial pool represents a serious global public health problem, leading to the search for new antibiotic agents. The scorpion Tityus stigmurus, an abundant species in Northeastern Brazil, presents a rich arsenal of bioactive molecules in its venom, with high potential for biotechnological applications. However, venom cytotoxicity constitutes a barrier to the therapeutic application of its different components. The objective of this study was to produce T. stigmurus-venom-loaded cross-linked chitosan nanoparticles (Tsv/CN) at concentrations of 0.5% and 1.0% to improve their biological antimicrobial activity. Polymeric nanoparticles were formed with a homogeneous particle size and spherical shape. Experimental formulation parameters were verified in relation to mean size (<180 nm), zeta potential, polydispersity index and encapsulation efficiency (>78%). Tsv/CN 1.0% demonstrated an ability to increase the antimicrobial venom effect against Staphylococcus aureus bacteria, exhibiting an MIC value of 44.6 μg/mL. It also inhibited different yeast species of the Candida genus, and Tsv/CN 0.5% and 1.0% led to a greater inhibitory effect of C. tropicalis and C. parapsilosis strains, presenting MIC values between 22.2 and 5.5 µg/mL, respectively. These data demonstrate the biotechnological potential of these nanosystems to obtain a new therapeutic agent with potential antimicrobial activity.
Collapse
Affiliation(s)
- Fiamma Gláucia-Silva
- Laboratory of Technology and Pharmaceutical Biotechnology (Tecbiofar), Faculty of Pharmacy, Federal University of Rio Grande do Norte, General Gustavo Cordeiro de Farias Avenue, S/N, Petrópolis, Natal 59012-570, Brazil; (F.G.-S.); (J.V.P.T.); (M.T.-R.); (A.D.-S.); (A.A.F.); (S.d.S.F.); (K.S.R.S.); (A.A.d.S.-J.)
| | - João Vicente Pereira Torres
- Laboratory of Technology and Pharmaceutical Biotechnology (Tecbiofar), Faculty of Pharmacy, Federal University of Rio Grande do Norte, General Gustavo Cordeiro de Farias Avenue, S/N, Petrópolis, Natal 59012-570, Brazil; (F.G.-S.); (J.V.P.T.); (M.T.-R.); (A.D.-S.); (A.A.F.); (S.d.S.F.); (K.S.R.S.); (A.A.d.S.-J.)
| | - Manoela Torres-Rêgo
- Laboratory of Technology and Pharmaceutical Biotechnology (Tecbiofar), Faculty of Pharmacy, Federal University of Rio Grande do Norte, General Gustavo Cordeiro de Farias Avenue, S/N, Petrópolis, Natal 59012-570, Brazil; (F.G.-S.); (J.V.P.T.); (M.T.-R.); (A.D.-S.); (A.A.F.); (S.d.S.F.); (K.S.R.S.); (A.A.d.S.-J.)
- Graduate Program of Chemistry, Chemistry Institute, Federal University of Rio Grande do Norte, Senador Salgado Filho Avenue, 3000, Lagoa Nova, Natal 59012-570, Brazil
| | - Alessandra Daniele-Silva
- Laboratory of Technology and Pharmaceutical Biotechnology (Tecbiofar), Faculty of Pharmacy, Federal University of Rio Grande do Norte, General Gustavo Cordeiro de Farias Avenue, S/N, Petrópolis, Natal 59012-570, Brazil; (F.G.-S.); (J.V.P.T.); (M.T.-R.); (A.D.-S.); (A.A.F.); (S.d.S.F.); (K.S.R.S.); (A.A.d.S.-J.)
| | - Allanny Alves Furtado
- Laboratory of Technology and Pharmaceutical Biotechnology (Tecbiofar), Faculty of Pharmacy, Federal University of Rio Grande do Norte, General Gustavo Cordeiro de Farias Avenue, S/N, Petrópolis, Natal 59012-570, Brazil; (F.G.-S.); (J.V.P.T.); (M.T.-R.); (A.D.-S.); (A.A.F.); (S.d.S.F.); (K.S.R.S.); (A.A.d.S.-J.)
| | - Sarah de Sousa Ferreira
- Laboratory of Technology and Pharmaceutical Biotechnology (Tecbiofar), Faculty of Pharmacy, Federal University of Rio Grande do Norte, General Gustavo Cordeiro de Farias Avenue, S/N, Petrópolis, Natal 59012-570, Brazil; (F.G.-S.); (J.V.P.T.); (M.T.-R.); (A.D.-S.); (A.A.F.); (S.d.S.F.); (K.S.R.S.); (A.A.d.S.-J.)
| | - Guilherme Maranhão Chaves
- Laboratory of Medical and Molecular Micology, Department of Clinical and Toxicological Analyses, Faculty of Pharmacy, Federal University of Rio Grande do Norte, General Gustavo Cordeiro de Farias Avenue, S/N, Petrópolis, Natal 59012-570, Brazil;
| | - Francisco Humberto Xavier-Júnior
- Laboratory of Pharmaceutical Biotechnology (BioTecFarm), Department of Pharmaceutical Sciences, Federal University of Paraiba, Campus Universitário I, Castelo Branco III, Cidade Universitária, João Pessoa 58051-900, Brazil;
| | - Karla Samara Rocha Soares
- Laboratory of Technology and Pharmaceutical Biotechnology (Tecbiofar), Faculty of Pharmacy, Federal University of Rio Grande do Norte, General Gustavo Cordeiro de Farias Avenue, S/N, Petrópolis, Natal 59012-570, Brazil; (F.G.-S.); (J.V.P.T.); (M.T.-R.); (A.D.-S.); (A.A.F.); (S.d.S.F.); (K.S.R.S.); (A.A.d.S.-J.)
- Laboratory of Pharmaceutical Biotechnology (BioTecFarm), Department of Pharmaceutical Sciences, Federal University of Paraiba, Campus Universitário I, Castelo Branco III, Cidade Universitária, João Pessoa 58051-900, Brazil;
| | - Arnóbio Antônio da Silva-Júnior
- Laboratory of Technology and Pharmaceutical Biotechnology (Tecbiofar), Faculty of Pharmacy, Federal University of Rio Grande do Norte, General Gustavo Cordeiro de Farias Avenue, S/N, Petrópolis, Natal 59012-570, Brazil; (F.G.-S.); (J.V.P.T.); (M.T.-R.); (A.D.-S.); (A.A.F.); (S.d.S.F.); (K.S.R.S.); (A.A.d.S.-J.)
| | - Matheus de Freitas Fernandes-Pedrosa
- Laboratory of Technology and Pharmaceutical Biotechnology (Tecbiofar), Faculty of Pharmacy, Federal University of Rio Grande do Norte, General Gustavo Cordeiro de Farias Avenue, S/N, Petrópolis, Natal 59012-570, Brazil; (F.G.-S.); (J.V.P.T.); (M.T.-R.); (A.D.-S.); (A.A.F.); (S.d.S.F.); (K.S.R.S.); (A.A.d.S.-J.)
| |
Collapse
|
6
|
Jiang T, Wang Y, Yu Z, Du L. Synthesis, characterization of chitosan/tripolyphosphate nanoparticles loaded with 4-chloro-2-methylphenoxyacetate sodium salt and its herbicidal activity against Bidens pilosa L. Sci Rep 2024; 14:18754. [PMID: 39138325 PMCID: PMC11322333 DOI: 10.1038/s41598-024-69438-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Accepted: 08/05/2024] [Indexed: 08/15/2024] Open
Abstract
Herbicides are widely used to control weeds in agriculture filed, however, the excessive use of the conventional formulation causes harmful side effects on the environment. To relieve this problem, natural polymer nanoparticles as herbicide carrier were rapidly developed and applied in recent years. In the present study, chitosan/tripolyphosphate (CS/TPP) nanoparticles were synthesized as nanocarrier to load herbicide 4-chloro-2-methylphenoxyacetate sodium salt (MCPA-Na). The encapsulation efficiency (EE) of 51.32% was obtained through measuring indirectly by high performance liquid chromatography (HPLC). The free and MCPA-Na-loaded CS/TPP nanoparticles were characterized by using dynamic light scattering (DLS), zeta potential, Fourier transform infrared spectroscopy (FTIR), and scanning electron microscopy (SEM). The encapsulation of MCPA-Na in CS/TPP nanoparticles resulted in the change of MCPA-Na release profile in different pH media and displayed effective sustained-release under neutral condition. The evaluation of herbicidal activity against Bidens pilosa L. showed that the efficacy enhancement of MCPA-Na was realized after encapsulation in CS/TPP nanoparticles. The proposed herbicide nanoformulation presented a good potential as a sustainable alternative for weed control in agriculture.
Collapse
Affiliation(s)
- Tianying Jiang
- Guangxi Key Laboratory of Electrochemical Energy Materials, School of Chemistry and Chemical Engineering, Guangxi University, Nanning, 530004, China
| | - Yanhui Wang
- Guangxi Key Laboratory of Biology for Crop Diseases and Insect Pests, Plant Protection Research Institute, Guangxi Academy of Agricultural Sciences, Nanning, 530007, China
| | - Zhiyu Yu
- Guangxi Key Laboratory of Electrochemical Energy Materials, School of Chemistry and Chemical Engineering, Guangxi University, Nanning, 530004, China
| | - Liangwei Du
- Guangxi Key Laboratory of Electrochemical Energy Materials, School of Chemistry and Chemical Engineering, Guangxi University, Nanning, 530004, China.
| |
Collapse
|
7
|
Oumerri J, Qayouh H, Arteni AA, Six JL, Lahcini M, Ferji K. One-pot Formulation of Cationic Oligochitosan Coated Nanoparticles via Photo- Polymerization Induced Self-Assembly. Chemphyschem 2024; 25:e202400291. [PMID: 38646967 DOI: 10.1002/cphc.202400291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 04/13/2024] [Accepted: 04/15/2024] [Indexed: 04/25/2024]
Abstract
During last few decades, oligochitosan (OCS)-coated nanoparticles have received great interest for nanomedicine, food and environment applications. However, their current formulation techniques are time-consuming with multi-synthesis/purification steps and sometimes require the use of organic solvents, crosslinkers and surfactants. Herein, we report a facile and rapid one-pot synthesis of OCS-based nanoparticles using photo-initiated reversible addition fragmentation chain transfer polymerization-induced self-assembly (Photo-RAFT PISA) under UV-irradiation at room temperature. To achieve this, OCS was first functionalized by a chain transfer agent (CTA) resulting in a macromolecular chain transfer agent (OCS-CTA), which will act as a reactive electrostatic/steric stabilizer. Owing to its UV-sensitivity, OCS-CTA was then used as photo-iniferter to initiate the polymerization of 2-hydroxypropyl methacrylate (HPMA) in aqueous acidic buffer, resulting in OCS-g-PHPMA amphiphilic grafted copolymers which self-assemble into nano-objects. Transmission electron microscopy and light scattering analysis reveal formation of spherical nanostructures.
Collapse
Affiliation(s)
- Jihad Oumerri
- Laboratoire de chimie physique macromoleculaire (LCPM), Université de Lorraine, CNRS, 1 rue Grandville, F-54000, NANCY, France
- LCO2MC, Cadi Ayyad University, Bd Abdelkrim Al Khattabi, 40000, Marrakech, Morocco
| | - Hicham Qayouh
- LCO2MC, Cadi Ayyad University, Bd Abdelkrim Al Khattabi, 40000, Marrakech, Morocco
| | - Ana Andreea Arteni
- Cryo-Electron Microscopy Facility, Institute for Integrative Biology of the Cell (I2BC), Université Paris-Saclay, CEA, CNRS, 1 Av. de la Terrasse Bâtiment 21, 91198, Gif-sur-Yvette, France
| | - Jean-Luc Six
- Laboratoire de chimie physique macromoleculaire (LCPM), Université de Lorraine, CNRS, 1 rue Grandville, F-54000, NANCY, France
| | - Mohammed Lahcini
- LCO2MC, Cadi Ayyad University, Bd Abdelkrim Al Khattabi, 40000, Marrakech, Morocco
- Mohammed VI Polytechnic University (UM6P), Lot 660, ISSB-P, 43150, Benguerir, Morocco
| | - Khalid Ferji
- Laboratoire de chimie physique macromoleculaire (LCPM), Université de Lorraine, CNRS, 1 rue Grandville, F-54000, NANCY, France
| |
Collapse
|
8
|
Wang Z, Pang S, Liu X, Dong Z, Tian Y, Ashrafizadeh M, Rabiee N, Ertas YN, Mao Y. Chitosan- and hyaluronic acid-based nanoarchitectures in phototherapy: Combination cancer chemotherapy, immunotherapy and gene therapy. Int J Biol Macromol 2024; 273:132579. [PMID: 38795895 DOI: 10.1016/j.ijbiomac.2024.132579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 05/18/2024] [Accepted: 05/20/2024] [Indexed: 05/28/2024]
Abstract
Cancer phototherapy has been introduced as a new potential modality for tumor suppression. However, the efficacy of phototherapy has been limited due to a lack of targeted delivery of photosensitizers. Therefore, the application of biocompatible and multifunctional nanoparticles in phototherapy is appreciated. Chitosan (CS) as a cationic polymer and hyaluronic acid (HA) as a CD44-targeting agent are two widely utilized polymers in nanoparticle synthesis and functionalization. The current review focuses on the application of HA and CS nanostructures in cancer phototherapy. These nanocarriers can be used in phototherapy to induce hyperthermia and singlet oxygen generation for tumor ablation. CS and HA can be used for the synthesis of nanostructures, or they can functionalize other kinds of nanostructures used for phototherapy, such as gold nanorods. The HA and CS nanostructures can combine chemotherapy or immunotherapy with phototherapy to augment tumor suppression. Moreover, the CS nanostructures can be functionalized with HA for specific cancer phototherapy. The CS and HA nanostructures promote the cellular uptake of genes and photosensitizers to facilitate gene therapy and phototherapy. Such nanostructures specifically stimulate phototherapy at the tumor site, with particle toxic impacts on normal cells. Moreover, CS and HA nanostructures demonstrate high biocompatibility for further clinical applications.
Collapse
Affiliation(s)
- Zheng Wang
- Department of Neurosurgery, Liaocheng Traditional Chinese Medicine Hospital, Liaocheng 252000, Shandong, PR China
| | - Shuo Pang
- Department of Urinary Surgery, Jinan Third People's Hospital, Jinan, Shandong 250101, PR China
| | - Xiaoli Liu
- Department of Dermatology, First Medical Center of Chinese People's Liberation Army (PLA) General Hospital, Beijing, China
| | - Zi Dong
- Department of Gastroenterology, Lincang People's Hospital, Lincang, China
| | - Yu Tian
- School of Public Health, Benedictine University, Lisle, United States
| | - Milad Ashrafizadeh
- Department of General Surgery, Institute of Precision Diagnosis and Treatment of Digestive System Tumors, Carson International Cancer Center, Shenzhen University General Hospital, Shenzhen University, Shenzhen, Guangdong 518055, China; International Association for Diagnosis and Treatment of Cancer, Shenzhen, Guangdong 518055, China; Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, Shanghai 200032, China; Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong 250000, China.
| | - Navid Rabiee
- Department of Biomaterials, Saveetha Dental College and Hospitals, SIMATS, Saveetha University, Chennai, 600077 India
| | - Yavuz Nuri Ertas
- Department of Biomedical Engineering, Erciyes University, Kayseri 38039, Türkiye; ERNAM-Nanotechnology Research and Application Center, Erciyes University, Kayseri 38039, Türkiye; UNAM-National Nanotechnology Research Center, Bilkent University, Ankara 06800, Türkiye.
| | - Ying Mao
- Department of Oncology, Suining Central Hospital, Suining City, Sichuan, China.
| |
Collapse
|
9
|
Ahmed ME, Mohamed MI, Ahmed HY, Elaasser MM, Kandile NG. Fabrication and characterization of unique sustain modified chitosan nanoparticles for biomedical applications. Sci Rep 2024; 14:13869. [PMID: 38879643 PMCID: PMC11180141 DOI: 10.1038/s41598-024-64017-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Accepted: 06/04/2024] [Indexed: 06/19/2024] Open
Abstract
Chitosan (CS) is a biopolymer that offers a wide range in biomedical applications due to its biocompatibility, biodegradability, low toxicity and antimicrobial activity. Syringaldehyde (1) is a naturally occurring organic compound characterized by its use in multiple fields such as pharmaceuticals, food, cosmetics, textiles and biological applications. Herein, development of chitosan derivative with physicochemical and anticancer properties via Schiff base formation from the reaction of chitosan with sustainable eco-friendly syringaldehyde yielded the (CS-1) derivative. Moreover, in the presence of polyethylene glycol diglycidyl ether (PEGDGE) or sodium tripolyphosphate (TPP) as crosslinkers gave chitosan derivatives (CS-2) and (CS-3NPs) respectively. The chemical structures of the new chitosan derivatives were confirmed using different tools. (CS-3NPs) nanoparticle showed improvement in crystallinity, and (CS-2) derivative revealed the highest thermal stability compared to virgin chitosan. The cytotoxicity activity of chitosan and its derivatives were evaluated against HeLa (human cervical carcinoma) and HEp-2 (Human Larynx carcinoma) cell lines. The highest cytotoxicity activity was exhibited by (CS-3NPs) compared to virgin chitosan against HeLa cell growth inhibition and apoptosis of 90.38 ± 1.46% and 30.3% respectively and IC50 of 108.01 ± 3.94 µg/ml. From the above results, it can be concluded that chitosan nanoparticle (CS-3NPs) has good therapeutic value as a potential antitumor agent against the HeLa cancer cell line.
Collapse
Affiliation(s)
- Marwa ElS Ahmed
- Chemistry Department, Faculty of Women for Art, Science and Education, Ain Shams University, Heliopolis, Cairo, 11757, Egypt
| | - Mansoura I Mohamed
- Chemistry Department, Faculty of Women for Art, Science and Education, Ain Shams University, Heliopolis, Cairo, 11757, Egypt.
| | - Hanaa Y Ahmed
- Regional Center for Mycology and Biotechnology, Al-Azhar University, Nasr City, Cairo, 11787, Egypt
| | - Mahmoud M Elaasser
- Regional Center for Mycology and Biotechnology, Al-Azhar University, Nasr City, Cairo, 11787, Egypt
| | - Nadia G Kandile
- Chemistry Department, Faculty of Women for Art, Science and Education, Ain Shams University, Heliopolis, Cairo, 11757, Egypt
| |
Collapse
|
10
|
Bhatia N, Kumari A, Singh RR, Kumar G, Kandwal A, Sharma R. Green synthesis of chitosan-encapsulated CuO nanocomposites for efficient degradation of cephalosporin antibiotics in contaminated water. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:33638-33650. [PMID: 38687453 DOI: 10.1007/s11356-024-33476-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Accepted: 04/23/2024] [Indexed: 05/02/2024]
Abstract
The synthesis and characterization of chitosan encapsulated copper oxide nanocomposites (CuNPs) using plant extracts for the photocatalytic degradation of second-generation antibiotics, cefixime and cefuroxime, were investigated. The study revealed that the presence of diverse chemical components in the plant extract significantly influenced the size of the CuNPs, with transmission electron microscopy (TEM) showing spherical shapes and sizes ranging from 11-35 nm. The encapsulation process was confirmed by an increase in size for certain samples, indicating successful encapsulation. X-ray photoelectron spectroscopy (XPS) analysis further elucidated the chemical makeup, confirming the valency state of Cu2+ and the presence of Cu-O bonding, with no contaminants detected. Photocatalytic activity assessments demonstrated that the copper oxide nanocomposites exhibited significant degradation capabilities against both antibiotics under UV light irradiation, with encapsulated nanocomposites (EnCu30) showing up to 96.18% degradation of cefuroxime within 60 min. The study highlighted the influence of chitosan encapsulation on enhancing photocatalytic performance, attributed to its high adsorption capability. Recycling studies confirmed the sustainability of the Cu nanocomposites, maintaining over 89% degradation rate after five consecutive cycles. This research underscores the potential of green-synthesized CuNPs as efficient, stable photocatalysts for the degradation of harmful antibiotics, contributing to environmental sustainability and public health protection.
Collapse
Affiliation(s)
- Nishat Bhatia
- Department of Chemistry, Career Point University, Hamirpur Campus, Hamirpur, 176041, Himachal Pradesh, India
- Centre for Nano-Science & Technology, CPU, Hamirpur Campus, Hamirpur, 176041, Himachal Pradesh, India
| | - Asha Kumari
- Department of Chemistry, Career Point University, Hamirpur Campus, Hamirpur, 176041, Himachal Pradesh, India
- Centre for Nano-Science & Technology, CPU, Hamirpur Campus, Hamirpur, 176041, Himachal Pradesh, India
| | - Ragini Raj Singh
- Nanotechnology Laboratory, Department of Physics and Material Sciences, Jaypee University of Information Technology (JUIT), Waknaghat, Solan, 173234, Himachal Pradesh, India
| | - Gulshan Kumar
- Centre for Nano-Science & Technology, CPU, Hamirpur Campus, Hamirpur, 176041, Himachal Pradesh, India
- Division Botany, Department of Bio-Sciences, Career Point University, Hamirpur Campus, Hamirpur, 176041, Himachal Pradesh, India
| | - Abhishek Kandwal
- School of Physics and Materials Science, Shoolini University, Bajhol, Solan, 173229, H.P, India
| | - Rahul Sharma
- Department of Chemistry, Career Point University, Hamirpur Campus, Hamirpur, 176041, Himachal Pradesh, India.
- Centre for Nano-Science & Technology, CPU, Hamirpur Campus, Hamirpur, 176041, Himachal Pradesh, India.
| |
Collapse
|
11
|
Arshia MH, Shahvelayati AS, Sheshmani S, Hajiaghababaei L, Ghasri MRA. Hydrogen bond-mediated self-assembly of Tin (II) oxide wrapped with Chitosan/[BzPy]Cl network: An effective bionanocomposite for textile wastewater remediation. Heliyon 2024; 10:e24771. [PMID: 38322939 PMCID: PMC10845255 DOI: 10.1016/j.heliyon.2024.e24771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2023] [Revised: 11/25/2023] [Accepted: 01/14/2024] [Indexed: 02/08/2024] Open
Abstract
A novel and efficient bionanocomposite was synthesized by incorporating SnO into chitosan (Ch) and a room-temperature ionic liquid (RTIL). The bionanocomposite was synthesized in benzoyl pyridinium chloride [BzPy]Cl to maintain the unique properties of SnO, chitosan, and the ionic liquid. Adsorption and photodegradation processes were applied to evaluate the bionanocomposite for removing azo and anthraquinone dyes and textile wastewater. SnO/[BzPy]Cl and SnO/[BzPy]Cl/Ch samples were prepared and characterized using various techniques, including FT-IR, SEM, XRD, EDAX, XPS, DSC, TGA, nitrogen adsorption/desorption isotherm, and DRS analysis. SEM analysis revealed a hierarchical roughened rose flower-like morphology for the biocomposite. The band gap energies of SnO/[BzPy]Cl and SnO/[BzPy]Cl/chitosan were found to be 3.9 and 3.3 eV, respectively, indicating a reduction in the band gap energy with the introduction of [BzPy]Cl and chitosan. SnO/[BzPy]Cl/Ch showed high removal rates (92-95 %) for Fast Red, Blue 15, Red 120, Blue 94, Yellow 160, and Acid Orange 7 dyes. The adsorption kinetics followed a pseudo-second-order model. In addition, the effect of different photodegradation parameters such as solution pH, dye concentrations, contact time, and amount of photocatalyst, was studied. Given the optimal results obtained in removing azo and anthraquinone dyes, the SnO/[BzPy]Cl/Ch nanocomposite was used as an efficient nanocomposite for removing dyes from textile wastewater. The highest removal efficiency was found to be 95.8 %, obtained under ultraviolet and visible light. Furthermore, BOD and COD reduction analysis showed significant reductions, indicating the excellent performance of the photocatalyst.
Collapse
Affiliation(s)
- Mohammad Hossein Arshia
- Department of Chemistry, College of Basic Sciences, Yadegar-e- Imam Khomeini (RAH) Shahre Rey Branch, Islamic Azad University, Tehran, Iran
- Research Center for New Technologies in Chemistry and Related Sciences, Yadegar-e-Imam Khomeini (RAH) Shahre Rey Branch, Islamic Azad University, Tehran, Iran
| | - Ashraf S. Shahvelayati
- Department of Chemistry, College of Basic Sciences, Yadegar-e- Imam Khomeini (RAH) Shahre Rey Branch, Islamic Azad University, Tehran, Iran
- Research Center for New Technologies in Chemistry and Related Sciences, Yadegar-e-Imam Khomeini (RAH) Shahre Rey Branch, Islamic Azad University, Tehran, Iran
| | - Shabnam Sheshmani
- Department of Chemistry, College of Basic Sciences, Yadegar-e- Imam Khomeini (RAH) Shahre Rey Branch, Islamic Azad University, Tehran, Iran
- Research Center for New Technologies in Chemistry and Related Sciences, Yadegar-e-Imam Khomeini (RAH) Shahre Rey Branch, Islamic Azad University, Tehran, Iran
| | - Leila Hajiaghababaei
- Department of Chemistry, College of Basic Sciences, Yadegar-e- Imam Khomeini (RAH) Shahre Rey Branch, Islamic Azad University, Tehran, Iran
- Research Center for New Technologies in Chemistry and Related Sciences, Yadegar-e-Imam Khomeini (RAH) Shahre Rey Branch, Islamic Azad University, Tehran, Iran
| | - Mohammad Reza Allahgholi Ghasri
- Department of Chemistry, College of Basic Sciences, Yadegar-e- Imam Khomeini (RAH) Shahre Rey Branch, Islamic Azad University, Tehran, Iran
- Research Center for New Technologies in Chemistry and Related Sciences, Yadegar-e-Imam Khomeini (RAH) Shahre Rey Branch, Islamic Azad University, Tehran, Iran
| |
Collapse
|
12
|
Namazi NI, Alrbyawi H, Alanezi AA, Almuqati AF, Shams A, Ali HSM. Nanoparticles of Thiolated Xanthan Gum for the Oral Delivery of Miconazole Nitrate: In Vitro and In Vivo Evaluation. Pharmaceutics 2024; 16:225. [PMID: 38399279 PMCID: PMC10892260 DOI: 10.3390/pharmaceutics16020225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 01/23/2024] [Accepted: 01/24/2024] [Indexed: 02/25/2024] Open
Abstract
The objective of this research was to develop a mucoadhesive delivery system that improves permeation for the administration of poorly absorbed oral medications. Thiolation of xanthan gum (XGM) was carried out by esterification with mercaptobutyric acid. Fourier-transformed infrared spectroscopy was used to confirm thiol-derivatization. Using Ellman's technique, it was revealed that the xanthan-mercaptobutyric acid conjugate had 4.7 mM of thiol groups in 2 mg/mL of polymeric solution. Using mucosa of sheep intestine, the mucoadhesive properties of XGM and thiolated xanthan gum (TXGM) nanoparticles were investigated and we found that TXGM had a longer bioadhesion time than XGM. The disulfide link that forms between mucus and thiolated XGM explains why it has better mucoadhesive properties than XGM. A study on in vitro miconazole (MCZ) release using phosphate buffer (pH 6.8) found that TXGM nanoparticles released MCZ more steadily than MCZ dispersion did. A 1-fold increase in the permeation of MCZ was observed from nanoparticles using albino rat intestine compared to MCZ. Albino rats were used to test the pharmacokinetics of MCZ, and the results showed a 4.5-fold increase in bioavailability. In conclusion, the thiolation of XGM enhances its bioavailability, controlled release of MCZ for a long period of time, and mucoadhesive activity.
Collapse
Affiliation(s)
- Nader I. Namazi
- Department of Pharmaceutics and Pharmaceutical Industries, College of Pharmacy, Taibah University, Madinah 41477, Saudi Arabia; (H.A.); (H.S.M.A.)
| | - Hamad Alrbyawi
- Department of Pharmaceutics and Pharmaceutical Industries, College of Pharmacy, Taibah University, Madinah 41477, Saudi Arabia; (H.A.); (H.S.M.A.)
| | - Abdulkareem Ali Alanezi
- Department of Pharmaceutics, College of Pharmacy, University of Hafr Al-Batin, Hafr Al-Batin 31991, Saudi Arabia;
| | - Afaf F Almuqati
- Department of Pharmaceutical Chemistry, College of Pharmacy, University of Hafr Al-Batin, Hafr Al-Batin 31991, Saudi Arabia;
| | - Anwar Shams
- Department of Pharmacology, College of Medicine, Taif University, Taif 21944, Saudi Arabia;
- Centre of Biomedical Sciences Research (CBSR), Deanship of Scientific Research, Taif University, Taif 21974, Saudi Arabia
- High Altitude Research Center, Taif University, Taif 21944, Saudi Arabia
| | - Hany S. M. Ali
- Department of Pharmaceutics and Pharmaceutical Industries, College of Pharmacy, Taibah University, Madinah 41477, Saudi Arabia; (H.A.); (H.S.M.A.)
- Department of Pharmaceutics, Faculty of Pharmacy, Assiut University, Assiut 71526, Egypt
| |
Collapse
|
13
|
Zhang X, Cheng F, Islam MR, Li H. The fabrication of the chitosan-based bioink for in vitro tissue repair and regeneration: A review. Int J Biol Macromol 2024; 257:128504. [PMID: 38040155 DOI: 10.1016/j.ijbiomac.2023.128504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Revised: 11/24/2023] [Accepted: 11/28/2023] [Indexed: 12/03/2023]
Abstract
The repair and regeneration of the injured tissues or organs is a major challenge for biomedicine, and the emerging 3D bioprinting technology as a class of promising techniques in biomedical research for the development of tissue engineering and regenerative medicine. Chitosan-based bioinks, as the natural biomaterials, are considered as ideal materials for 3D bioprinting to design and fabricate the various scaffold due to their unique dynamic reversibility and fantastic biological properties. Our review aims to provide an overview of chitosan-based bioinks for in vitro tissue repair and regeneration, starting from modification of chitosan that affect these bioprinting processes. In addition, we summarize the advances in chitosan-based bioinks used in the various 3D printing strategies. Moreover, the biomedical applications of chitosan-based bioinks are discussed, primarily centered on regenerative medicine and tissue modeling engineering. Finally, current challenges and future opportunities in this field are discussed. The combination of chitosan-based bioinks and 3D bioprinting will hold promise for developing novel biomedical scaffolds for tissue or organ repair and regeneration.
Collapse
Affiliation(s)
- Xiao Zhang
- School of Materials Science and Engineering, School of Chemistry and Chemical Engineering, MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, Harbin Institute of Technology, Harbin, Heilongjiang 150001, PR China
| | - Feng Cheng
- School of Materials Science and Engineering, School of Chemistry and Chemical Engineering, MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, Harbin Institute of Technology, Harbin, Heilongjiang 150001, PR China.
| | - Md Rashidul Islam
- College of Light Industry and Textile, Qiqihar University, Qiqihar, Heilongjiang 161000, PR China
| | - Hongbin Li
- School of Materials Science and Engineering, School of Chemistry and Chemical Engineering, MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, Harbin Institute of Technology, Harbin, Heilongjiang 150001, PR China; College of Light Industry and Textile, Qiqihar University, Qiqihar, Heilongjiang 161000, PR China.
| |
Collapse
|
14
|
Ali S, Ahmad N, Dar MA, Manan S, Rani A, Alghanem SMS, Khan KA, Sethupathy S, Elboughdiri N, Mostafa YS, Alamri SA, Hashem M, Shahid M, Zhu D. Nano-Agrochemicals as Substitutes for Pesticides: Prospects and Risks. PLANTS (BASEL, SWITZERLAND) 2023; 13:109. [PMID: 38202417 PMCID: PMC10780915 DOI: 10.3390/plants13010109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 12/23/2023] [Accepted: 12/25/2023] [Indexed: 01/12/2024]
Abstract
This review delves into the mesmerizing technology of nano-agrochemicals, specifically pesticides and herbicides, and their potential to aid in the achievement of UN SDG 17, which aims to reduce hunger and poverty globally. The global market for conventional pesticides and herbicides is expected to reach USD 82.9 billion by 2027, growing 2.7% annually, with North America, Europe, and the Asia-Pacific region being the biggest markets. However, the extensive use of chemical pesticides has proven adverse effects on human health as well as the ecosystem. Therefore, the efficacy, mechanisms, and environmental impacts of conventional pesticides require sustainable alternatives for effective pest management. Undoubtedly, nano-agrochemicals have the potential to completely transform agriculture by increasing crop yields with reduced environmental contamination. The present review discusses the effectiveness and environmental impact of nanopesticides as promising strategies for sustainable agriculture. It provides a concise overview of green nano-agrochemical synthesis and agricultural applications, and the efficacy of nano-agrochemicals against pests including insects and weeds. Nano-agrochemical pesticides are investigated due to their unique size and exceptional performance advantages over conventional ones. Here, we have focused on the environmental risks and current state of nano-agrochemicals, emphasizing the need for further investigations. The review also draws the attention of agriculturists and stakeholders to the current trends of nanomaterial use in agriculture especially for reducing plant diseases and pests. A discussion of the pros and cons of nano-agrochemicals is paramount for their application in sustainable agriculture.
Collapse
Affiliation(s)
- Shehbaz Ali
- Biofuels Institute, School of Emergency Management, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China; (S.A.); (M.A.D.); (S.M.); (S.S.)
| | - Naveed Ahmad
- Joint Center for Single Cell Biology, Shanghai Collaborative Innovation Center of Agri-Seeds, School of Agriculture and Biology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China;
| | - Mudasir A. Dar
- Biofuels Institute, School of Emergency Management, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China; (S.A.); (M.A.D.); (S.M.); (S.S.)
| | - Sehrish Manan
- Biofuels Institute, School of Emergency Management, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China; (S.A.); (M.A.D.); (S.M.); (S.S.)
| | - Abida Rani
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Bahauddin Zakariya University, Multan 60800, Pakistan;
| | | | - Khalid Ali Khan
- Applied College, Mahala Campus and the Unit of Bee Research and Honey Production/Research Center for Advanced Materials Science (RCAMS), King Khalid University, P.O. Box 9004, Abha 61413, Saudi Arabia;
| | - Sivasamy Sethupathy
- Biofuels Institute, School of Emergency Management, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China; (S.A.); (M.A.D.); (S.M.); (S.S.)
| | - Noureddine Elboughdiri
- Chemical Engineering Department, College of Engineering, University of Ha’il, P.O. Box 2440, Ha’il 81441, Saudi Arabia;
- Chemical Engineering Process Department, National School of Engineers Gabes, University of Gabes, Gabes 6029, Tunisia
| | - Yasser S. Mostafa
- Department of Biology, College of Science, King Khalid University, P.O. Box 9004, Abha 61413, Saudi Arabia; (Y.S.M.); (S.A.A.)
| | - Saad A. Alamri
- Department of Biology, College of Science, King Khalid University, P.O. Box 9004, Abha 61413, Saudi Arabia; (Y.S.M.); (S.A.A.)
| | - Mohamed Hashem
- Department of Botany and Microbiology, Faculty of Science, Assiut University, Assiut 71515, Egypt;
| | - Muhammad Shahid
- Department of Bioinformatics and Biotechnology, Government College University, Faisalabad 38000, Pakistan
| | - Daochen Zhu
- Biofuels Institute, School of Emergency Management, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China; (S.A.); (M.A.D.); (S.M.); (S.S.)
| |
Collapse
|
15
|
Abo El-Ela FI, Hassan WH, Amer AM, El-Dek SI. Antifungal Activity of Chitosan Polymeric Nanoparticles and Correlation with Their pH Against Mucor circinelloides Causing Mucormycosis, Along with Penicillium notatum and Aspergillus Species. Curr Microbiol 2023; 81:47. [PMID: 38135799 PMCID: PMC10746780 DOI: 10.1007/s00284-023-03555-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Accepted: 11/10/2023] [Indexed: 12/24/2023]
Abstract
Mucormycosis is uncommon, yet it is more prevalent among individuals with underlying health conditions and those who are immunocompromised. Chitosan is studied because of its appealing properties and diverse applications. The purpose of this work is to synthesize chitosan nanoparticles (CSNPs) by ionic gelation method at various pH levels and test them against Mucor and other filamentous fungus. Field Emission Scanning Electron Microscope, Zeta sizer, Zeta potential, and Fourier Transformed Infrared Spectroscopy were used to characterize CSNPs. Hydrodynamic size increased considerably with increasing pH. Our CSNPs were tested against fungal isolates of Aspergillus Flavus RCMB 02783, Aspergillus Fumigatus RCMB 02564, and Aspergillus Niger RCMB 02588, Penicillium Notatum (NCPF 2881) and (M. circinelloides CNRMA 03.894) causing mucromycosis. Antifungal activity was investigated using Minimum inhibitory concentration (MIC), Minimum Fungicidal concentration (MFC), Disc diffusion assay, and Antifungal inhibitory percentages methods. The best antifungal efficacy results were obtained through CSNPs prepared at pH = 4.4 at very low concentration for MIC (1.03 or 2.75 μg/mL) with 100% M. circinelloides inhibition followed by pH = 4.6 with MIC (73 or 208 μg/mL) and 93% M. cirecinelloides inhibition %. Future usage of these materials in masks or wound dressing to avoid fungal infections, including mucormycosis following COVID-19, penicillium, and aspergillosis toxicity and infections.
Collapse
Affiliation(s)
- Fatma I Abo El-Ela
- Department of Pharmacology, Faculty of Veterinary Medicine, Beni-Suef University, Beni-Suef, 62511, Egypt.
| | - Walid Hamdy Hassan
- Department of Microbiology, Mycology and Immunology, Faculty of Veterinary Medicine, Beni-Suef University, Beni-Suef, 62511, Egypt
| | - Alaa M Amer
- Materials Science and Nanotechnology Department, Faculty of Postgraduate Studies for Advanced Sciences, Beni-Suef University, Beni-Suef, 62511, Egypt
| | - S I El-Dek
- Materials Science and Nanotechnology Department, Faculty of Postgraduate Studies for Advanced Sciences, Beni-Suef University, Beni-Suef, 62511, Egypt
| |
Collapse
|
16
|
Dellali M, Zanoune K, Hamcerencu M, Logigan CL, Popa M, Mahmoudi H. Superparamagnetic Hybrid Nanospheres Based on Chitosan Obtained by Double Crosslinking in a Reverse Emulsion for Cancer Treatment. Polymers (Basel) 2023; 15:4493. [PMID: 38231926 PMCID: PMC10708392 DOI: 10.3390/polym15234493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 10/24/2023] [Accepted: 11/16/2023] [Indexed: 01/19/2024] Open
Abstract
Nowadays, the Magnetically Targeted Drug Delivery System (MTDDS) is among the most attractive and promising strategies for delivering drugs to the target site. The present study aimed to obtain a biopolymer-magnetite-drug nanosystem via a double crosslinking (ionic and covalent) technique in reverse emulsion, which ensures the mechanical stability of the polymer support in the form of original hybrid nanospheres (NSMs) loaded with biologically active principles (the 5-Fluorouracil (5-FU)) as a potential treatment for cancer. Obtained NSMs were characterized in terms of structure (FT-IR), size (DLS), morphology (SEM), swelling, and 5-FU entrapment/release properties, which were dependent on the synthesis parameters (polymer concentration, dispersion speed, and amount of ionic crosslinking agent). SEM analysis results revealed that NSMs presented a spherical shape and are homogeneous and separated. Moreover, NSMs' ability to load/release 5-FU was tested in vitro, the results confirming, as expected, their dependence on the varied synthesis process and NSM swelling ability in physiological liquids. The drug transport mechanism through the polymer matrix of its release is the Fickian type. The morphological, bio-material characteristics and the ability to include and release an antitumor drug highlight the utility of the NSMs obtained for targeting and treating some tumor diseases.
Collapse
Affiliation(s)
- Mohammed Dellali
- Faculty of Technology, University Hassiba Benbouali of Chlef, Chlef BP 151 02000, Algeria; (M.D.); (K.Z.); (H.M.)
- Laboratory of Natural Bio-Resources, University Hassiba Benbouali of Chlef, Chlef BP 151 02000, Algeria
| | - Kheira Zanoune
- Faculty of Technology, University Hassiba Benbouali of Chlef, Chlef BP 151 02000, Algeria; (M.D.); (K.Z.); (H.M.)
- Laboratory of Natural Bio-Resources, University Hassiba Benbouali of Chlef, Chlef BP 151 02000, Algeria
| | - Mihaela Hamcerencu
- CQFD Composites, Village Industriel de la Fonderie, François Spoerry Street, No. 65, 68100 Mulhouse, France;
- Department of Natural and Synthetic Polymers, Gheorghe Asachi Technical University of Iasi, Bld. Prof. Dr. Doc. Dimitrie Mangeron Street, No. 73, 700050 Iasi, Romania
| | - Corina-Lenuța Logigan
- Department of Natural and Synthetic Polymers, Gheorghe Asachi Technical University of Iasi, Bld. Prof. Dr. Doc. Dimitrie Mangeron Street, No. 73, 700050 Iasi, Romania
| | - Marcel Popa
- Department of Natural and Synthetic Polymers, Gheorghe Asachi Technical University of Iasi, Bld. Prof. Dr. Doc. Dimitrie Mangeron Street, No. 73, 700050 Iasi, Romania
- Faculty of Medical Dentistry, “Apollonia” University of Iasi, Pacurari Street, No. 11, 700511 Iasi, Romania
- Academy of Romanian Scientists, Ilfov Street, No. 3, Sector 5, 050094 Bucharest, Romania
| | - Hacene Mahmoudi
- Faculty of Technology, University Hassiba Benbouali of Chlef, Chlef BP 151 02000, Algeria; (M.D.); (K.Z.); (H.M.)
| |
Collapse
|
17
|
Ghahremani-Nasab M, Akbari-Gharalari N, Rahmani Del Bakhshayesh A, Ghotaslou A, Ebrahimi-Kalan A, Mahdipour M, Mehdipour A. Synergistic effect of chitosan-alginate composite hydrogel enriched with ascorbic acid and alpha-tocopherol under hypoxic conditions on the behavior of mesenchymal stem cells for wound healing. Stem Cell Res Ther 2023; 14:326. [PMID: 37953287 PMCID: PMC10642036 DOI: 10.1186/s13287-023-03567-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Accepted: 11/08/2023] [Indexed: 11/14/2023] Open
Abstract
BACKGROUND In regenerative medicine, especially skin tissue engineering, the focus is on enhancing the quality of wound healing. Also, several constructs with different regeneration potentials have been used for skin tissue engineering. In this study, the regenerative properties of chitosan-alginate composite hydrogels in skin wound healing under normoxic and hypoxic conditions were investigated in vitro. METHODS The ionic gelation method was used to prepare chitosan/alginate (CA) hydrogel containing CA microparticles and bioactive agents [ascorbic acid (AA) and α-tocopherol (TP)]. After preparing composite hydrogels loaded with AA and TP, the physicochemical properties such as porosity, pore size, swelling, weight loss, wettability, drug release, and functional groups were analyzed. Also, the hemo-biocompatibility of composite hydrogels was evaluated by a hemolysis test. Then, the rat bone marrow mesenchymal stem cells (rMSCs) were seeded onto the hydrogels after characterization by flow cytometry. The survival rate was analyzed using MTT assay test. The hydrogels were also investigated by DAPI and H&E staining to monitor cell proliferation and viability. To induce hypoxia, the cells were exposed to CoCl2. To evaluate the regenerative potential of rMSCs cultured on CA/AA/TP hydrogels under hypoxic conditions, the expression of the main genes involved in the healing of skin wounds, including HIF-1α, VEGF-A, and TGF-β1, was investigated by real-time PCR. RESULTS The results demonstrated that the prepared composite hydrogels were highly porous, with interconnected pores that ranged in sizes from 20 to 188 μm. The evaluation of weight loss showed that the prepared hydrogels have the ability to biodegrade according to the goals of wound healing. The reduction percentage of CA/AA/TP mass in 21 days was reported as 21.09 ± 0.52%. Also, based on wettability and hemolysis tests of the CA/AA/TP, hydrophilicity (θ = 55.6° and 53.7°) and hemocompatibility with a hemolysis ratio of 1.36 ± 0.19 were evident for them. Besides, MTT assay, DAPI, and H&E staining also showed that the prepared hydrogels provide a suitable substrate for cell growth and proliferation. Finally, based on real-time PCR, increased expression levels of VEGF and TGF-β1 were observed in rMSCs in hypoxic conditions cultured on the prepared hydrogels. CONCLUSIONS In conclusion, this study provides evidence that 3D CA/AA/TP composite hydrogels seeded by rMSCs in hypoxic conditions have great potential to improve wound healing.
Collapse
Affiliation(s)
- Maryam Ghahremani-Nasab
- Department of Tissue Engineering, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Naeimeh Akbari-Gharalari
- Department of Neurosciences and Cognition, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Azizeh Rahmani Del Bakhshayesh
- Department of Tissue Engineering, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Armita Ghotaslou
- Department of Medical Biotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Abbas Ebrahimi-Kalan
- Department of Neurosciences and Cognition, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mahdi Mahdipour
- Stem Cell Research Centre, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ahmad Mehdipour
- Department of Tissue Engineering, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
18
|
Vrinda PK, Amal R, Abhirami N, Mini DA, Kumar VJR, Devipriya SP. Co-exposure of microplastics and heavy metals in the marine environment and remediation techniques: a comprehensive review. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:114822-114843. [PMID: 37922080 DOI: 10.1007/s11356-023-30679-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Accepted: 10/21/2023] [Indexed: 11/05/2023]
Abstract
Microplastics (MPs) and heavy metals are significant pollutants in the marine environment, necessitating effective remediation strategies to prevent their release into the sea through sewage and industrial effluent. This comprehensive review explores the current understanding of the co-exposure of MPs and heavy metal-enriched MPs, highlighting the need for effective remediation methods. Various mechanisms, including surface ion complexation, hydrogen bonding, and electrostatic forces, contribute to the adsorption of heavy metals onto MPs, with factors like surface area and environmental exposure duration playing crucial roles. Additionally, biofilm formation on MPs alters their chemical properties, influencing metal adsorption behaviors. Different thermodynamic models are used to explain the adsorption mechanisms of heavy metals on MPs. The adsorption process is influenced by various factors, including the morphological characteristics of MPs, their adsorption capacity, and environmental conditions. Additionally, the desorption of heavy metals from MPs has implications for their bioavailability and poses risks to marine organisms, emphasizing the importance of source reduction and remedial measures. Hybrid approaches that combine both conventional and modern technologies show promise for the efficient removal of MPs and heavy metals from marine environments. This review identifies critical gaps in existing research that should be addressed in future studies including standardized sampling methods to ensure accurate data, further investigation into the specific interactions between MPs and metals, and the development of hybrid technologies at an industrial scale. Overall, this review sheds light on the adsorption and desorption mechanisms of heavy metal-enriched MPs, underscoring the necessity of implementing effective remediation strategies.
Collapse
Affiliation(s)
- Punmoth Kalyadan Vrinda
- Department of Ocean Studies and Marine Biology, Pondicherry University, Port Blair, 744112, Andaman and Nicobar Islands, India
| | - Radhakrishnan Amal
- School of Environmental Studies, Cochin University of Science and Technology, Kochi, India, 682022
| | - Nandakumar Abhirami
- Department of Aquatic Environment Management, Central Institute of Fisheries Education, Versova, Mumbai, Maharashtra, 400061, India
| | - Divya Alex Mini
- Department of Aquatic Environment Management, Kerala University of Fisheries and Ocean Studies, Panangad, Kochi, 682508, Kerala, India
| | | | | |
Collapse
|
19
|
Oh H, Lee JS, Kim S, Lee JH, Shin YC, Choi WI. Super-Antioxidant Vitamin A Derivatives with Improved Stability and Efficacy Using Skin-Permeable Chitosan Nanocapsules. Antioxidants (Basel) 2023; 12:1913. [PMID: 38001766 PMCID: PMC10669859 DOI: 10.3390/antiox12111913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 10/24/2023] [Accepted: 10/24/2023] [Indexed: 11/26/2023] Open
Abstract
Retinyl palmitate (RP) is a retinol ester with strong antioxidant and anti-inflammatory properties as an antiwrinkle agent. However, it has poor aqueous solubility and easily degrades into inactive forms for topical applications. Therefore, we developed chitosan-coated nanocapsules (ChiNCs) to encapsulate RP using a simple nanoprecipitation method for protection against physiological conditions and to enable deep skin penetration. The as-prepared RP-loaded nanocapsules (RP@ChiNCs) loaded with approximately 5 wt.% RP exhibited a hydrodynamic diameter of 86 nm and surface charge of 24 mV. They had adequate stability to maintain their physicochemical properties after lyophilization in a biological buffer. Notably, ChiNCs provided RP with remarkable protection against degradation for 4 weeks at 37 °C. Thus, RP@ChiNCs exhibited good antioxidant activity in situ for sufficiently long periods without considerable changes in their efficacy. Furthermore, ChiNCs enhanced the skin penetration of lipophilic RP based on the inherent nature of chitosan. RP@ChiNCs exhibited good in vitro antioxidant and anti-inflammatory effects without causing any cytotoxicity in dermal fibroblasts. Accordingly, they promoted cell proliferation in a wound-scratch test and enhanced collagen synthesis. These results suggest that RP@ChiNCs are promising candidates for cosmetic and biomedical applications.
Collapse
Affiliation(s)
- Hyeryeon Oh
- Center for Bio-Healthcare Materials, Bio-Convergence Materials R&D Division, Korea Institute of Ceramic Engineering and Technology, 202, Osongsaengmyeong 1-ro, Cheongju 28160, Republic of Korea; (H.O.); (J.S.L.); (S.K.)
- School of Materials Science and Engineering, Gwangju Institute of Science and Technology, 123, Cheomdan-gwagiro, Gwangju 61005, Republic of Korea
| | - Jin Sil Lee
- Center for Bio-Healthcare Materials, Bio-Convergence Materials R&D Division, Korea Institute of Ceramic Engineering and Technology, 202, Osongsaengmyeong 1-ro, Cheongju 28160, Republic of Korea; (H.O.); (J.S.L.); (S.K.)
- School of Materials Science and Engineering, Gwangju Institute of Science and Technology, 123, Cheomdan-gwagiro, Gwangju 61005, Republic of Korea
| | - Sunghyun Kim
- Center for Bio-Healthcare Materials, Bio-Convergence Materials R&D Division, Korea Institute of Ceramic Engineering and Technology, 202, Osongsaengmyeong 1-ro, Cheongju 28160, Republic of Korea; (H.O.); (J.S.L.); (S.K.)
| | - Jeung-Hoon Lee
- SKINMED Co., Ltd., Daejeon 34028, Republic of Korea; (J.-H.L.); (Y.C.S.)
| | - Yong Chul Shin
- SKINMED Co., Ltd., Daejeon 34028, Republic of Korea; (J.-H.L.); (Y.C.S.)
- Amicogen Inc., 64 Dongburo, 1259, Jinju 52621, Republic of Korea
| | - Won Il Choi
- Center for Bio-Healthcare Materials, Bio-Convergence Materials R&D Division, Korea Institute of Ceramic Engineering and Technology, 202, Osongsaengmyeong 1-ro, Cheongju 28160, Republic of Korea; (H.O.); (J.S.L.); (S.K.)
| |
Collapse
|
20
|
Popova E, Tikhomirova V, Beznos O, Chesnokova N, Grigoriev Y, Taliansky M, Kost O. A Direct Comparison of Peptide Drug Delivery Systems Based on the Use of Hybrid Calcium Phosphate/Chitosan Nanoparticles versus Unmixed Calcium Phosphate or Chitosan Nanoparticles In Vitro and In Vivo. Int J Mol Sci 2023; 24:15532. [PMID: 37958515 PMCID: PMC10648411 DOI: 10.3390/ijms242115532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 10/13/2023] [Accepted: 10/20/2023] [Indexed: 11/15/2023] Open
Abstract
Nanocarriers provide a number of undeniable advantages that could improve the bioavailability of active agents for human, animal, and plant cells. In this study, we compared hybrid nanoparticles (HNPs) consisting of a calcium phosphate core coated with chitosan with unmixed calcium phosphate (CaP) and chitosan nanoparticles (CSNPs) as carriers of a model substrate, enalaprilat. This tripeptide analog is an inhibitor of angiotensin-converting enzyme and was chosen by its ability to lower intraocular pressure (IOP). In particular, we evaluated the physicochemical characteristics of the particles using dynamic light scattering (DLS) and scanning electron microscopy (SEM) and analyzed their ability to incorporate and release enalaprilat. HNPs exhibited the highest drug loading capacity and both HNPs and CSNPs demonstrated slow drug release. The comparison of the physiological effects of enalaprilat-loaded CaP particles, HNPs, and CSNPs in terms of their impact on IOP in rabbits revealed a clear advantage of hybrid nanoparticles over both inorganic and chitosan nanoparticles. These results could have important mechanistic implications for developing nano-based delivery systems for other medical, veterinary, and agricultural applications.
Collapse
Affiliation(s)
- Ekaterina Popova
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, 117997 Moscow, Russia; (E.P.); (V.T.); (M.T.)
- Chemistry Faculty, M.V. Lomonosov Moscow State University, 119991 Moscow, Russia
| | - Victoria Tikhomirova
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, 117997 Moscow, Russia; (E.P.); (V.T.); (M.T.)
- Chemistry Faculty, M.V. Lomonosov Moscow State University, 119991 Moscow, Russia
| | - Olga Beznos
- Helmholtz National Medical Research Center of Eye Diseases, 105062 Moscow, Russia; (O.B.); (N.C.)
| | - Natalia Chesnokova
- Helmholtz National Medical Research Center of Eye Diseases, 105062 Moscow, Russia; (O.B.); (N.C.)
| | - Yuri Grigoriev
- Shubnikov Institute of Crystallography, Federal Scientific Research Center Crystallography and Photonics, Russian Academy of Sciences, 119333 Moscow, Russia;
| | - Michael Taliansky
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, 117997 Moscow, Russia; (E.P.); (V.T.); (M.T.)
| | - Olga Kost
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, 117997 Moscow, Russia; (E.P.); (V.T.); (M.T.)
- Chemistry Faculty, M.V. Lomonosov Moscow State University, 119991 Moscow, Russia
| |
Collapse
|
21
|
Tian B, Hua S, Liu J. Multi-functional chitosan-based nanoparticles for drug delivery: Recent advanced insight into cancer therapy. Carbohydr Polym 2023; 315:120972. [PMID: 37230614 DOI: 10.1016/j.carbpol.2023.120972] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 04/26/2023] [Accepted: 04/29/2023] [Indexed: 05/27/2023]
Abstract
Cancer therapy continues to be a major global concern, with conventional treatments suffering from low efficacy, untargeted drug delivery, and severe side effects. Recent research in nanomedicine suggests that nanoparticles' unique physicochemical properties can be leveraged to surmount the limitations of conventional cancer treatment. Chitosan-based nanoparticles have gained significant attention due to their high drug-carrying capacity, non-toxicity, biocompatibility, and long circulation time. Chitosan is utilized in cancer therapies as a carrier to accurately deliver active ingredients to tumor sites. This review focuses on clinical studies and current market offerings of anticancer drugs. The unique nature of tumor microenvironments presents new opportunities for the development of smart drug delivery systems, and this review explores the design and preparation of chitosan-based smart nanoparticles. Further, we discuss the therapeutic efficacies of these nanoparticles based on various in vitro and in vivo findings. Finally, we present a forward-looking perspective on the challenges and prospects of chitosan-based nanoparticles in cancer therapy, intending to provide fresh ideas for advancing cancer treatment strategies.
Collapse
Affiliation(s)
- Bingren Tian
- Institute of Medical Sciences, General Hospital of Ningxia Medical University, Yinchuan, Ningxia 750004, China; Key Laboratory of Ningxia Stem Cell and Regenerative Medicine, General Hospital of Ningxia Medical University, Yinchuan, Ningxia 750004, China.
| | - Shiyao Hua
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao
| | - Jiayue Liu
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao.
| |
Collapse
|
22
|
Gaglio SC, Perduca M, Zipeto D, Bardi G. Efficiency of Chitosan Nanocarriers in Vaccinology for Mucosal Immunization. Vaccines (Basel) 2023; 11:1333. [PMID: 37631901 PMCID: PMC10459455 DOI: 10.3390/vaccines11081333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 08/02/2023] [Accepted: 08/04/2023] [Indexed: 08/29/2023] Open
Abstract
The mucosal barrier constitutes a huge surface area, close to 40 m2 in humans, located mostly in the respiratory, gastrointestinal and urogenital tracts and ocular cavities. It plays a crucial role in tissue interactions with the microbiome, dietary antigens and other environmental materials. Effective vaccinations to achieve highly protective mucosal immunity are evolving strategies to counteract several serious diseases including tuberculosis, diphtheria, influenzae B, severe acute respiratory syndrome, Human Papilloma Virus infection and Acquired Immune Deficiency Syndrome. Interestingly, one of the reasons behind the rapid spread of severe acute respiratory syndrome coronavirus 2 variants has been the weakness of local immunization at the level of the respiratory mucosa. Mucosal vaccines can outperform parenteral vaccination as they specifically elicit protective mucosal immune responses blocking infection and transmission. In this scenario, chitosan-based nanovaccines are promising adjuvants-carrier systems that rely on the ability of chitosan to cross tight junctions and enhance particle uptake due to chitosan-specific mucoadhesive properties. Indeed, chitosan not only improves the adhesion of antigens to the mucosa promoting their absorption but also shows intrinsic immunostimulant abilities. Furthermore, by finely tuning the colloidal properties of chitosan, it can provide sustained antigen release to strongly activate the humoral defense. In the present review, we agnostically discuss the potential reasons why chitosan-based vaccine carriers, that efficiently elicit strong immune responses in experimental setups and in some pre-clinical/clinical studies, are still poorly considered for therapeutic formulations.
Collapse
Affiliation(s)
- Salvatore Calogero Gaglio
- Department of Biotechnology, University of Verona, Cà Vignal 1, Strada Le Grazie 15, 37134 Verona, Italy;
| | - Massimiliano Perduca
- Department of Biotechnology, University of Verona, Cà Vignal 1, Strada Le Grazie 15, 37134 Verona, Italy;
| | - Donato Zipeto
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Strada Le Grazie 8, 37134 Verona, Italy
| | - Giuseppe Bardi
- Nanobiointeractions & Nanodiagnostics, Istituto Italiano di Tecnologia, Via Morego 30, 16163 Genova, Italy
| |
Collapse
|
23
|
Güncüm E, Işıklan N, Anlaş C, Bulut E, Bakırel T. Preparation, characterization, and evaluation of antibacterial and cytotoxic activity of chitosan-polyethylene glycol nanoparticles loaded with amoxicillin as a novel drug delivery system. JOURNAL OF BIOMATERIALS SCIENCE. POLYMER EDITION 2023; 34:1660-1682. [PMID: 36756763 DOI: 10.1080/09205063.2023.2179269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 01/28/2023] [Accepted: 02/08/2023] [Indexed: 02/10/2023]
Abstract
In this study, nanoparticles of amoxicillin (AMX) were prepared using chitosan (CHI) and polyethylene glycol (PEG). The physicochemical properties of the particles were investigated by FT-IR, DSC, SEM, and zeta potential analyses. The nanoparticles showed a spherical shape, and the average size of formulations was within the range of 696.20 ± 24.86 - 359.53 ± 7.41 nm. Zeta potential data demonstrated that the formulations had positive surface charges with a zeta potential range of 21.38 ± 2.28 - 7.73 ± 1.66 mV. FTIR analysis showed that the drug was successfully entrapped in the nanoparticles. DSC results suggested that the drug was present in amorphous form in the polymer matrix. In vitro release studies demonstrated that the release pattern consisted of two phases, with an initial burst release followed by a controlled and sustained release. The MTT assay results on mouse fibroblast cell line indicated that the prepared formulations did not affect the viability of the cells. In the in vitro antibacterial activity test, it was found that the drug-loaded nanoparticles have AMX-equivalent antibacterial activity against E. coli, and S. aureus. These findings revealed that the obtained nanoparticles might be a promising and safe nanocarrier system for efficient delivery of AMX.
Collapse
Affiliation(s)
- Enes Güncüm
- Faculty of Veterinary Medicine, Department of Pharmacology and Toxicology, Kırıkkale University, Yahşihan, Kırıkkale, Turkey
| | - Nuran Işıklan
- Faculty of Science and Arts, Department of Chemistry, Kırıkkale University, Yahşihan, Kırıkkale, Turkey
| | - Ceren Anlaş
- Faculty of Veterinary Medicine, Department of Pharmacology and Toxicology, Istanbul University- Cerrahpasa, Buyukcekmece, Istanbul, Turkey
| | - Elif Bulut
- Department of Zoonotic and Vector-borne Diseases, Republic of Turkey Ministry of Health, Ankara, Turkey
| | - Tülay Bakırel
- Faculty of Veterinary Medicine, Department of Pharmacology and Toxicology, Istanbul University- Cerrahpasa, Buyukcekmece, Istanbul, Turkey
| |
Collapse
|
24
|
Mukarram M, Ali J, Dadkhah-Aghdash H, Kurjak D, Kačík F, Ďurkovič J. Chitosan-induced biotic stress tolerance and crosstalk with phytohormones, antioxidants, and other signalling molecules. FRONTIERS IN PLANT SCIENCE 2023; 14:1217822. [PMID: 37538057 PMCID: PMC10394624 DOI: 10.3389/fpls.2023.1217822] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Accepted: 06/30/2023] [Indexed: 08/05/2023]
Abstract
Several polysaccharides augment plant growth and productivity and galvanise defence against pathogens. Such elicitors have ecological superiority over traditional growth regulators, considering their amplified biocompatibility, biodegradability, bioactivity, non-toxicity, ubiquity, and inexpensiveness. Chitosan is a chitin-derived polysaccharide that has recently been spotlighted among plant scientists. Chitosan supports plant growth and development and protects against microbial entities such as fungi, bacteria, viruses, nematodes, and insects. In this review, we discuss the current knowledge of chitosan's antimicrobial and insecticidal potential with recent updates. These effects are further explored with the possibilities of chitosan's active correspondence with phytohormones such as jasmonic acid (JA), salicylic acid (SA), indole acetic acid (IAA), abscisic acid (ABA), and gibberellic acid (GA). The stress-induced redox shift in cellular organelles could be substantiated by the intricate participation of chitosan with reactive oxygen species (ROS) and antioxidant metabolism, including hydrogen peroxide (H2O2), superoxide dismutase (SOD), catalase (CAT), and peroxidase (POD). Furthermore, we propose how chitosan could be intertwined with cellular signalling through Ca2+, ROS, nitric oxide (NO), transcription factors (TFs), and defensive gene activation.
Collapse
Affiliation(s)
- Mohammad Mukarram
- Department of Phytology, Faculty of Forestry, Technical University in Zvolen, Zvolen, Slovakia
| | - Jamin Ali
- Centre for Applied Entomology and Parasitology, School of Life Sciences, Keele University, Newcastle-under-Lyme, Staffordshire, United Kingdom
| | - Hamed Dadkhah-Aghdash
- Department of Plant Biology, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Daniel Kurjak
- Department of Integrated Forest and Landscape Protection, Faculty of Forestry, Technical University in Zvolen, Zvolen, Slovakia
| | - František Kačík
- Department of Chemistry and Chemical Technologies, Faculty of Wood Sciences and Technology, Technical University in Zvolen, Zvolen, Slovakia
| | - Jaroslav Ďurkovič
- Department of Phytology, Faculty of Forestry, Technical University in Zvolen, Zvolen, Slovakia
| |
Collapse
|
25
|
Domingues JM, Miranda CS, Homem NC, Felgueiras HP, Antunes JC. Nanoparticle Synthesis and Their Integration into Polymer-Based Fibers for Biomedical Applications. Biomedicines 2023; 11:1862. [PMID: 37509502 PMCID: PMC10377033 DOI: 10.3390/biomedicines11071862] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 06/23/2023] [Accepted: 06/26/2023] [Indexed: 07/30/2023] Open
Abstract
The potential of nanoparticles as effective drug delivery systems combined with the versatility of fibers has led to the development of new and improved strategies to help in the diagnosis and treatment of diseases. Nanoparticles have extraordinary characteristics that are helpful in several applications, including wound dressings, microbial balance approaches, tissue regeneration, and cancer treatment. Owing to their large surface area, tailor-ability, and persistent diameter, fibers are also used for wound dressings, tissue engineering, controlled drug delivery, and protective clothing. The combination of nanoparticles with fibers has the power to generate delivery systems that have enhanced performance over the individual architectures. This review aims at illustrating the main possibilities and trends of fibers functionalized with nanoparticles, focusing on inorganic and organic nanoparticles and polymer-based fibers. Emphasis on the recent progress in the fabrication procedures of several types of nanoparticles and in the description of the most used polymers to produce fibers has been undertaken, along with the bioactivity of such alliances in several biomedical applications. To finish, future perspectives of nanoparticles incorporated within polymer-based fibers for clinical use are presented and discussed, thus showcasing relevant paths to follow for enhanced success in the field.
Collapse
Affiliation(s)
- Joana M Domingues
- Centre for Textile Science and Technology (2C2T), Campus of Azurém, University of Minho, 4800-058 Guimarães, Portugal
| | - Catarina S Miranda
- Centre for Textile Science and Technology (2C2T), Campus of Azurém, University of Minho, 4800-058 Guimarães, Portugal
| | - Natália C Homem
- Simoldes Plastics S.A., Rua Comendador António da Silva Rodrigues 165, 3720-193 Oliveira de Azeméis, Portugal
| | - Helena P Felgueiras
- Centre for Textile Science and Technology (2C2T), Campus of Azurém, University of Minho, 4800-058 Guimarães, Portugal
| | - Joana C Antunes
- Centre for Textile Science and Technology (2C2T), Campus of Azurém, University of Minho, 4800-058 Guimarães, Portugal
- Fibrenamics, Institute of Innovation on Fiber-Based Materials and Composites, Campus of Azurém, University of Minho, 4800-058 Guimarães, Portugal
| |
Collapse
|
26
|
Saberi Riseh R, Vatankhah M, Hassanisaadi M, Kennedy JF. Chitosan-based nanocomposites as coatings and packaging materials for the postharvest improvement of agricultural product: A review. Carbohydr Polym 2023; 309:120666. [PMID: 36906369 DOI: 10.1016/j.carbpol.2023.120666] [Citation(s) in RCA: 24] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 01/17/2023] [Accepted: 02/01/2023] [Indexed: 02/08/2023]
Abstract
The perishability nature of harvested fruits and vegetables, along with the effect of environmental factors, storage conditions, and transportation, reduce the products' quality and shelf-life. Considerable efforts have been allocated to alternate conventional coatings based on new edible biopolymers for packaging. Chitosan is an attractive alternative to synthetic plastic polymers due to its biodegradability, antimicrobial activity, and film-forming properties. However, its conservative properties can be improved by adding active compounds, limiting microbial agents' growth and biochemical and physical damages, and enhancing the stored products' quality, shelf-life, and consumer acceptability. Most of the research on chitosan-based coatings focuses on antimicrobial or antioxidant properties. Along with the advancement of polymer science and nanotechnology, novel chitosan blends with multiple functionalities are required and should be fabricated using numerous strategies, especially for application during storage. This review discusses recent developments in using chitosan as a matrix to fabricate bioactive edible coatings and their positive impacts on increasing the quality and shelf-life of fruits and vegetables.
Collapse
Affiliation(s)
- Roohallah Saberi Riseh
- Department of Plant Protection, Faculty of Agriculture, Vali-e-Asr University of Rafsanjan, Imam Khomeini Square, Rafsanjan 7718897111, Iran.
| | - Masoumeh Vatankhah
- Department of Plant Protection, Faculty of Agriculture, Vali-e-Asr University of Rafsanjan, Imam Khomeini Square, Rafsanjan 7718897111, Iran
| | - Mohadeseh Hassanisaadi
- Department of Plant Protection, Faculty of Agriculture, Vali-e-Asr University of Rafsanjan, Imam Khomeini Square, Rafsanjan 7718897111, Iran
| | - John F Kennedy
- Chembiotech Laboratories Ltd, WR15 8FF Tenbury Wells, United Kingdom.
| |
Collapse
|
27
|
Maleki H, Doostan M, Farzaei MH, Seifi P, Miraghaee S, Doostan M. Achillea wilhelmsii-Incorporated Chitosan@Eudragit Nanoparticles Intended for Enhanced Ulcerative Colitis Treatment. AAPS PharmSciTech 2023; 24:112. [PMID: 37118443 DOI: 10.1208/s12249-023-02568-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Accepted: 04/15/2023] [Indexed: 04/30/2023] Open
Abstract
Achillea wilhelmsii (A. wilhelmsii) contains several therapeutic phytochemicals, proposing a protective effect on inflammatory responses in autoimmune diseases such as ulcerative colitis (UC). However, its activities against UC encounter multiple obstacles. The current study aimed to formulate a colon-specific delivery of A. wilhelmsii for treating UC using chitosan nanoparticles (NPs) and Eudragit S100 as a mucoadhesive and pH-sensitive polymer, respectively. Core chitosan NP was loaded with A. wilhelmsii extract, followed by coating with Eudragit S100. Then, physicochemical characterizations of prepared NPs were conducted, and the anti-UC activity in the rat model was evaluated. The relevant physicochemical characterizations indicated the spherical NPs with an average particle size of 305 ± 34 nm and high encapsulation efficiency (88.6 ± 7.3%). The FTIR (Fourier transform infrared) analysis revealed the Eudragit coating and the extract loading, as well as the high radical scavenging ability of A. wilhelmsii was confirmed. The loaded NPs prevented the extract release in an acidic pH-mimicking medium and presented a complete release thereafter at a colonic pH. The loaded NPs markedly mitigated the induced UC lesions in rats, reflected by reducing inflammation, ulcer severity, and UC-related symptoms. Further, histopathological analysis exhibited reducing the extent of the inflammation and damage to colon tissue, and the determination of the involved pro-inflammatory cytokines in serum showed a significant reduction relative to free extract. The present results show that chitosan NPs containing A. wilhelmsii extract coated with Eudragit having proper physicochemical properties and substantial anti-inflammatory activity can significantly improve colonic lesions caused by UC.
Collapse
Affiliation(s)
- Hassan Maleki
- Pharmaceutical Sciences Research Center, Faculty of Pharmacy School, Kermanshah University of Medical Sciences, Daneshgah Street, PO Box: 67145-1673, Kermanshah, 6734667149, Iran.
- Nano Drug Delivery Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran.
| | - Maryam Doostan
- Pharmaceutical Sciences Research Center, Faculty of Pharmacy School, Kermanshah University of Medical Sciences, Daneshgah Street, PO Box: 67145-1673, Kermanshah, 6734667149, Iran
| | - Mohammad Hosein Farzaei
- Pharmaceutical Sciences Research Center, Faculty of Pharmacy School, Kermanshah University of Medical Sciences, Daneshgah Street, PO Box: 67145-1673, Kermanshah, 6734667149, Iran
| | - Parisa Seifi
- Pharmaceutical Sciences Research Center, Faculty of Pharmacy School, Kermanshah University of Medical Sciences, Daneshgah Street, PO Box: 67145-1673, Kermanshah, 6734667149, Iran
| | - Shahram Miraghaee
- Medical Biology Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Mahtab Doostan
- Department of Medical Nanotechnology, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
28
|
Wang X, Tarahomi M, Sheibani R, Xia C, Wang W. Progresses in lignin, cellulose, starch, chitosan, chitin, alginate, and gum/carbon nanotube (nano)composites for environmental applications: A review. Int J Biol Macromol 2023; 241:124472. [PMID: 37076069 DOI: 10.1016/j.ijbiomac.2023.124472] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 04/04/2023] [Accepted: 04/12/2023] [Indexed: 04/21/2023]
Abstract
Water sources are becoming increasingly scarce, and they are contaminated by industrial, residential, and agricultural waste-derived organic and inorganic contaminants. These contaminants may pollute the air, water, and soil in addition to invading the ecosystem. Because carbon nanotubes (CNTs) can undergo surface modification, they can combine with other substances to create nanocomposites (NCs), including biopolymers, metal nanoparticles, proteins, and metal oxides. Furthermore, biopolymers are significant classes of organic materials that are widely used for various applications. They have drawn attention due to their benefits such as environmental friendliness, availability, biocompatibility, safety, etc. As a result, the synthesis of a composite made of CNT and biopolymers can be very effective for a variety of applications, especially those involving the environment. In this review, we reported environmental applications (including removal of dyes, nitro compounds, hazardous materialsو toxic ions, etc.) of composites made of CNT and biopolymers such as lignin, cellulose, starch, chitosan, chitin, alginate, and gum. Also, the effect of different factors such as the medium pH, the pollutant concentration, temperature, and contact time on the adsorption capacity (AC) and the catalytic activity of the composite in the reduction or degradation of various pollutants has been systematically explained.
Collapse
Affiliation(s)
- Xuan Wang
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing, Jiangsu 210037, China
| | - Mehrasa Tarahomi
- Amirkabir University of Technology-Mahshahr Campus, University St., Nahiyeh San'ati, Mahshahr, Khouzestan, Iran
| | - Reza Sheibani
- Amirkabir University of Technology-Mahshahr Campus, University St., Nahiyeh San'ati, Mahshahr, Khouzestan, Iran.
| | - Changlei Xia
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing, Jiangsu 210037, China.
| | - Weidong Wang
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing, Jiangsu 210037, China
| |
Collapse
|
29
|
Xu J, Li Y, Yang J, Zhou S, Situ W. Plasma etching effect on the molecular structure of chitosan-based hydrogels and its biological properties. Int J Biol Macromol 2023; 230:123257. [PMID: 36646344 DOI: 10.1016/j.ijbiomac.2023.123257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 01/05/2023] [Accepted: 01/10/2023] [Indexed: 01/15/2023]
Abstract
To reasonably use hydrogels in healthcare field, this study four kinds of chitosan (CTS)-based hydrogels with different molecular structures. With plasma etching, the morphology, chemical groups' proportion, and hydrophilicity of the hydrogel surface were changed. At 40 min of modification, the ratios of CO and NH2 on the CTS40-based hydrogel surface increased and reached their maximum values of 40.31 % and 89.17 %, respectively. Combined with the changes in hydrophilic chemical groups and the hydrogel's network structure, the hydrogel surface's wettability changed after plasma etching. From the results, CTS40-based hydrogel showed the lowest contact angle (77.40 ± 3.89°) with 80 min modification due to its dense network structure of CTS and appropriate ratio of hydrophilic groups on the surface. With these molecular structural changes, the antibacterial properties of CTS-based hydrogels against Staphylococcus aureus were improved. Moreover, the functional components delivery system coating with these CTS-based hydrogels showed colon-site controlled-release property. The hydrogels also facilitated the growth of Caco2 and Hic cells, which had 72.74 %-453.27 % cell viability of Caco2 cells on the surface. Therefore, the antibacterial property and biocompatibility of plasma modified CTS-based hydrogels have been demonstrated. The mechanism between molecular structure changes of CTS with plasma etching and its properties was discussed, which would provide a promising carrier material for utilizing healthcare field.
Collapse
Affiliation(s)
- Juncong Xu
- College of Food Science, South China Agricultural University, Guangzhou 510642, China
| | - Yaoyuan Li
- College of Food Science, South China Agricultural University, Guangzhou 510642, China
| | - Jingwen Yang
- College of Food Science, South China Agricultural University, Guangzhou 510642, China
| | - Subin Zhou
- College of Food Science, South China Agricultural University, Guangzhou 510642, China
| | - Wenbei Situ
- College of Food Science, South China Agricultural University, Guangzhou 510642, China.
| |
Collapse
|
30
|
Irfan MM, Shah SU, Shah KU, Anton N, Idoux-Gillet Y, Conzatti G, Shah KU, Perennes E, Vandamme T. Impact of formulation design and lyophilisation on the physicochemical characteristics of finasteride nanosystems. J Microencapsul 2023; 40:106-123. [PMID: 36749573 DOI: 10.1080/02652048.2023.2178537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
The fundamental purpose of this study was to develop a stable lyophilised finasteride nanosystem (FNS-NS) for topical delivery. The FNS-NS was fabricated using an ultrasonication technique. The impact of two different cryoprotectants on the physicochemical characteristics of FNS-NS before and after lyophilisation was thoroughly investigated. The lyophilised FNS-NS had spherical shape with particle size lied between 188.6 nm ± 4.4 and 298.7 nm ± 4.7, low PDI values (0.26 ± 0.02 to 0.32 ± 0.02) and zeta potential ranging from -38.3 to +53.3 mV. The confocal laser microscopy depicted a comparatively higher cellular internalisation achieved for undecorated FNS-NS with respect to its chitosan-decorated counterpart. The lyophilised FNS-NS was stable for 90 days at proper storage conditions. The FNS-NS with 15% trehalose had appropriate physicochemical attributes that could be a promising carrier for topical delivery to treat androgenic alopecia.
Collapse
Affiliation(s)
- Malik Muhammad Irfan
- Gomal Centre of Pharmaceutical Sciences (GCPS), Faculty of Pharmacy, Gomal University, Dera Ismail Khan, Pakistan
- Faculty of Pharmacy, Universite de Strasbourg, Illkirch, Strasbourg, France
- INSERM, Regenerative Nanomedicine UMR 1260, Centre de Recherche en Biomédecine de Strasbourg (CRBS), Université de Strasbourg, Strasbourg, France
| | - Shefaat Ullah Shah
- Gomal Centre of Pharmaceutical Sciences (GCPS), Faculty of Pharmacy, Gomal University, Dera Ismail Khan, Pakistan
| | | | - Nicolas Anton
- Faculty of Pharmacy, Universite de Strasbourg, Illkirch, Strasbourg, France
- INSERM, Regenerative Nanomedicine UMR 1260, Centre de Recherche en Biomédecine de Strasbourg (CRBS), Université de Strasbourg, Strasbourg, France
| | - Ysia Idoux-Gillet
- INSERM, Regenerative Nanomedicine UMR 1260, Centre de Recherche en Biomédecine de Strasbourg (CRBS), Université de Strasbourg, Strasbourg, France
| | - Guillaume Conzatti
- Faculty of Pharmacy, Universite de Strasbourg, Illkirch, Strasbourg, France
- INSERM, Regenerative Nanomedicine UMR 1260, Centre de Recherche en Biomédecine de Strasbourg (CRBS), Université de Strasbourg, Strasbourg, France
| | - Kifayat Ullah Shah
- Gomal Centre of Pharmaceutical Sciences (GCPS), Faculty of Pharmacy, Gomal University, Dera Ismail Khan, Pakistan
| | - Elise Perennes
- INSERM, Regenerative Nanomedicine UMR 1260, Centre de Recherche en Biomédecine de Strasbourg (CRBS), Université de Strasbourg, Strasbourg, France
| | - Thierry Vandamme
- Faculty of Pharmacy, Universite de Strasbourg, Illkirch, Strasbourg, France
- INSERM, Regenerative Nanomedicine UMR 1260, Centre de Recherche en Biomédecine de Strasbourg (CRBS), Université de Strasbourg, Strasbourg, France
| |
Collapse
|
31
|
Sun X, Zhang X, Li F. Aggregation emission of AuNCs induced by chitosan self-assembled multilayers and sensitive sensing for water content in ethanol. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2023; 15:837-842. [PMID: 36722892 DOI: 10.1039/d2ay01876d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
AuNCs with chemical groups such as -NH2 and -COOH were synthesized using glutathione as the stabilizer and reducing agent. The aggregation emission of AuNCs in solution-induced self-assembled multilayers (SAMs) were first studied. Scanning electron microscopy and quartz crystal microbalance were used to characterize the morphology and aggregation process of AuNCs. Further AuNC SAMs were used for the solid-liquid interface sensing of water content in ethanol, and the sensitivity is obviously improved as compared with that in the pure solution phase. This aggregation emission induced by SAMs would have a good application prospect in analysis.
Collapse
Affiliation(s)
- Xiangying Sun
- College of Materials Science and Engineering, Huaqiao University, No. 668 Jimei Avenue, Jimei District, Xiamen 361021, China.
- Key Laboratory of Molecular Designing and Green Conversions, Fujian University, China
| | - Xuefeng Zhang
- College of Materials Science and Engineering, Huaqiao University, No. 668 Jimei Avenue, Jimei District, Xiamen 361021, China.
- Key Laboratory of Molecular Designing and Green Conversions, Fujian University, China
| | - Fang Li
- College of Materials Science and Engineering, Huaqiao University, No. 668 Jimei Avenue, Jimei District, Xiamen 361021, China.
- Key Laboratory of Molecular Designing and Green Conversions, Fujian University, China
| |
Collapse
|
32
|
Gungor-Ak A, Turan I, Sayan-Ozacmak H, Karatas A. Chitosan nanoparticles as promising tool for berberine delivery: Formulation, characterization and in vivo evaluation. J Drug Deliv Sci Technol 2023. [DOI: 10.1016/j.jddst.2023.104203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|
33
|
Xu Y, Li Q, Ge P, Mao H, Yang C. Chitosan nanoparticles attenuate intestinal damage and inflammatory responses in LPS-challenged weaned piglets via prevention of IκB degradation. J Anim Physiol Anim Nutr (Berl) 2023; 107:173-181. [PMID: 34820921 DOI: 10.1111/jpn.13664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 10/31/2021] [Accepted: 11/02/2021] [Indexed: 01/10/2023]
Abstract
Chitosan nanoparticles (CNP), widely applied as oral drug/gene/vaccine carrier, were found to have anti-inflammatory properties. In this study, the effects of CNP on lipopolysaccharide (LPS)-induced intestinal damage in weaned piglets and the related mechanisms were investigated. Twenty-four weaned piglets (Duroc × Landrace × Yorkshire, 21 ± 2 day of age, initial mass: 8.58 ± 0.59 kg) were randomly assigned into four groups: control, LPS, CNP and CNP + LPS. The control and LPS groups were fed a corn-soybean meal-based control diet, whereas the CNP and CNP + LPS groups were fed a control diet supplemented with 400 mg/kg CNP. After 28 days of feeding, piglets in LPS and CNP + LPS groups were injected with LPS (100 μg/kg); meanwhile, the piglets in control and CNP groups were injected with sterile saline. After 4 h from the LPS challenge, pigs were sacrificed to collect the intestinal samples for analysis. The results showed that CNP could attenuate the intestinal damages and inflammatory response stimulated by LPS treatment. LPS induced dramatically higher levels of CD177+ neutrophils invasion in jejunum mucosa (p < 0.01), which accompanied by increased secretion of marks of inflammation (p < 0.01) compared with the control, whereas CNP administration obviously inhibited LPS-induced CD177+ neutrophils invasion (p < 0.01) and secretion of marks of inflammation, such as interleukin-8 (p < 0.05), intercellular adhesion molecule-1 (p < 0.05) secretion in jejunum mucosa compared with LPS group. Moreover, CNP was shown to inhibit IκB-α degradation in cytoplasm, which resulted in reduced nuclear translocation of NF-κB p65 in LPS-challenged piglets. These findings suggest that CNP attenuates intestinal damage and inflammatory responses in LPS-challenged weaned piglets by impairing the NF-κB signalling pathway.
Collapse
Affiliation(s)
- Yinglei Xu
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, College of Animal Science and Technology • College of Veterinary Medicine, Zhejiang A&F University, Hangzhou, China
| | - Qing Li
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, College of Animal Science and Technology • College of Veterinary Medicine, Zhejiang A&F University, Hangzhou, China
| | - Pu Ge
- Pathophysiology Department of ChongQing Medical University, Chongqing, China
| | - Huiling Mao
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, College of Animal Science and Technology • College of Veterinary Medicine, Zhejiang A&F University, Hangzhou, China
| | - Caimei Yang
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, College of Animal Science and Technology • College of Veterinary Medicine, Zhejiang A&F University, Hangzhou, China
| |
Collapse
|
34
|
Esposto BS, Pinho SGB, Thomazini M, Ramos AP, Tapia-Blácido DR, Martelli-Tosi M. TPP-chitosomes as potential encapsulation system to protect carotenoid-rich extract obtained from carrot by-product: A comparison with liposomes and chitosomes. Food Chem 2022; 397:133857. [PMID: 35944334 DOI: 10.1016/j.foodchem.2022.133857] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2021] [Revised: 07/21/2022] [Accepted: 08/02/2022] [Indexed: 01/13/2023]
Abstract
The objectives of this study were to extract bioactive compounds from carrot by-products and evaluate their chemical stability after encapsulation in liposomes (L) coated either with chitosan (Ch) or using sodium tripolyphosphate for chitosan complexation (TPP-Ch). The main compounds quantified in this study were carotenoids and total phenolic compounds, which reached encapsulation efficiencies higher than 75%. The TPP-Ch charged with carrot extract showed greater particle size (90.5 nm) and zeta potential (+22 mV) than vesicles without coating (68.0 nm and -2 mV, respectively), indicating that liposomes were successfully coated with chitosan. Regarding results of the carotenoid's encapsulated stability, TPP-Ch particles were more efficient preventing their degradation in all the experimental conditions studied (40 and 70 °C). It is significant that loaded TPP-Ch particles demonstrated similar results for the stability of carotenoid-rich extracts in ethanol, which would therefore be suitable for application in food industry or any aqueous matrices.
Collapse
Affiliation(s)
- Bruno Stefani Esposto
- Departamento de Química, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, Av. Bandeirantes 3900, CEP 14040-901 Ribeirão Preto-SP, Brazil
| | - Sabrina Guarda Botelho Pinho
- Departamento de Engenharia de Alimentos, Faculdade de Zootecnia e Engenharia de Alimentos, Universidade de São Paulo, Av. Duque de Caxias Norte 225, CEP 13635-900 Pirassununga-SP, Brazil
| | - Marcelo Thomazini
- Departamento de Engenharia de Alimentos, Faculdade de Zootecnia e Engenharia de Alimentos, Universidade de São Paulo, Av. Duque de Caxias Norte 225, CEP 13635-900 Pirassununga-SP, Brazil
| | - Ana Paula Ramos
- Departamento de Química, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, Av. Bandeirantes 3900, CEP 14040-901 Ribeirão Preto-SP, Brazil
| | - Delia Rita Tapia-Blácido
- Departamento de Química, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, Av. Bandeirantes 3900, CEP 14040-901 Ribeirão Preto-SP, Brazil
| | - Milena Martelli-Tosi
- Departamento de Química, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, Av. Bandeirantes 3900, CEP 14040-901 Ribeirão Preto-SP, Brazil; Departamento de Engenharia de Alimentos, Faculdade de Zootecnia e Engenharia de Alimentos, Universidade de São Paulo, Av. Duque de Caxias Norte 225, CEP 13635-900 Pirassununga-SP, Brazil.
| |
Collapse
|
35
|
Temperature-responsive hydrogel for tumor embolization therapy. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2022.104107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
36
|
Fleitas-Salazar N, Lamazares E, Pedroso-Santana S, Kappes T, Pérez-Alonso A, Hidalgo Á, Altamirano C, Sánchez O, Fernández K, Toledo JR. Long-term release of bioactive interferon-alpha from PLGA-chitosan microparticles: in vitro and in vivo studies. BIOMATERIALS ADVANCES 2022; 143:213167. [PMID: 36356469 DOI: 10.1016/j.bioadv.2022.213167] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 08/12/2022] [Accepted: 10/18/2022] [Indexed: 06/16/2023]
Abstract
Effective cytokine treatments often require high- and multiple-dose due to the short half-life of these molecules. Here, porcine interferon-alpha (IFNα) is encapsulated in PLGA-chitosan microparticles (IFNα-MPs) to accomplish both slow drug release and drug protection from degradation. A procedure that combines emulsion and spray-drying techniques yielded almost spherical microspheres with an average diameter of 3.00 ± 1.50 μm. SEM, Microtrac, and Z-potential analyses of three IFNα-MP batches showed similar results, indicating the process is reproducible. These studies supported molecular evidence obtained in FTIR analysis, which indicated a compact structure of IFNα-MPs. Consistently, IFNα release kinetics assessed in vitro followed a zero-order behavior typical of sustained release from a polymeric matrix. This study showed that IFNα-MPs released bioactive molecules for at least 15 days, achieving IFNα protection. In addition, pigs treated with IFNα-MPs exhibited overexpression of IFNα-stimulated genes 16 days after treatment. Instead, the expression levels of these genes decreased after day 4th in pigs treated with non-encapsulated IFNα. In vitro and in vivo experiments demonstrated that the formulation improved the prophylactic and therapeutic potential of IFNα, accomplishing molecule protection and long-term release for at least two weeks. The procedure used to obtain IFNα-MPs is reproducible, scalable, and suitable for encapsulating other drugs.
Collapse
Affiliation(s)
- Noralvis Fleitas-Salazar
- Biotecnology and Biopharmaceuticals Laboratory, Departamento de Fisiopatología, Facultad de Ciencias Biológicas, Universidad de Concepción, Barrio Universitario s/n, Concepción CP. 4030000, Chile
| | - Emilio Lamazares
- Biotecnology and Biopharmaceuticals Laboratory, Departamento de Fisiopatología, Facultad de Ciencias Biológicas, Universidad de Concepción, Barrio Universitario s/n, Concepción CP. 4030000, Chile
| | - Seidy Pedroso-Santana
- Biotecnology and Biopharmaceuticals Laboratory, Departamento de Fisiopatología, Facultad de Ciencias Biológicas, Universidad de Concepción, Barrio Universitario s/n, Concepción CP. 4030000, Chile
| | - Tomás Kappes
- Laboratory of Biomaterials, Departamento de Ingeniería Química, Facultad de Ingeniería, Universidad de Concepción, Barrio Universitario s/n, Concepción CP. 4030000, Chile
| | - Alain Pérez-Alonso
- Departamento de Electrónica e Informática, Universidad Técnica Federico Santa María, Concepción CP. 4030000, Chile
| | - Ángela Hidalgo
- Biotecnology and Biopharmaceuticals Laboratory, Departamento de Fisiopatología, Facultad de Ciencias Biológicas, Universidad de Concepción, Barrio Universitario s/n, Concepción CP. 4030000, Chile
| | - Claudia Altamirano
- Laboratorio de Cultivos Celulares, Escuela de Ingeniería Bioquímica, Pontificia Universidad Católica de Valparaíso, 2362803 Valparaíso, Chile
| | - Oliberto Sánchez
- Recombinant Biopharmaceuticals Laboratory, Departamento de Farmacología, Facultad de Ciencias Biológicas, Universidad de Concepción, Barrio Universitario s/n, Concepción CP. 4030000, Chile
| | - Katherina Fernández
- Laboratory of Biomaterials, Departamento de Ingeniería Química, Facultad de Ingeniería, Universidad de Concepción, Barrio Universitario s/n, Concepción CP. 4030000, Chile
| | - Jorge R Toledo
- Biotecnology and Biopharmaceuticals Laboratory, Departamento de Fisiopatología, Facultad de Ciencias Biológicas, Universidad de Concepción, Barrio Universitario s/n, Concepción CP. 4030000, Chile.
| |
Collapse
|
37
|
Magneto-hydrothermal triple-convection in a W-shaped porous cavity containing oxytactic bacteria. Sci Rep 2022; 12:18053. [PMID: 36302788 PMCID: PMC9614012 DOI: 10.1038/s41598-022-18401-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Accepted: 08/10/2022] [Indexed: 01/24/2023] Open
Abstract
Bioconvective heat and mass transport phenomena have recently been the subject of interest in diverse fields of applications pertaining to the motion of fluids and their thermophysical properties. The transport processes in a system involving triple convective phenomena, irregular geometry, and boundary conditions constitute a complex phenomenon. This work aims to explore the mixed thermo-bioconvection of magnetically susceptible fluid containing copper nanoparticles and oxytactic bacteria in a novel W-shaped porous cavity. The buoyant convention is generated due to the isothermal heating at the wavy bottom wall, whereas the mixed convection is induced due to the shearing motion of the top-cooled sliding wall. Furthermore, the bioconvection is induced due to the manifestation of oxytactic bacteria or organisms. The inclined sidewalls are insulated. The geometry is packed with water based Cu nanoparticle mixed porous structure, which is subjected to a magnetizing field acted horizontally. The complex transport equations are transformed into nondimensional forms, which are then computed using the finite volume-based developed code. The coupled triple-convective flow physics are explored for a wide range of involved controlling parameters, which could provide helpful insight to the system designer for its proper operation. The shape of geometry can be considered one of the important parameters to control the heat and mass transport phenomena. In general, the influence of amplitude (δ) is more compared to the waviness number (m) of the undulations. The magnitude of heat (Nu) and mass (Sh) transfer rate for the W-shaped cavity is high compared to conventional square and trapezoidal-shaped cavities. The output of the analysis could be very helpful for the designer for modeling devices operating on nanotechnology-based bioconvection, microbial fuel cells, and others.
Collapse
|
38
|
pH-responsive magnolol nanocapsule-embedded magnolol-grafted-chitosan hydrochloride hydrogels for promoting wound healing. Carbohydr Polym 2022; 292:119643. [DOI: 10.1016/j.carbpol.2022.119643] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 05/07/2022] [Accepted: 05/17/2022] [Indexed: 12/23/2022]
|
39
|
Logigan CL, Delaite C, Tiron CE, Peptu C, Popa M, Peptu CA. Chitosan Grafted Poly (Ethylene Glycol) Methyl Ether Acrylate Particulate Hydrogels for Drug Delivery Applications. Gels 2022; 8:gels8080494. [PMID: 36005095 PMCID: PMC9407074 DOI: 10.3390/gels8080494] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 08/01/2022] [Accepted: 08/05/2022] [Indexed: 11/16/2022] Open
Abstract
Chitosan (CS) crosslinking has been thoroughly investigated, but the chemical reactions leading to submicronic hydrogel formulations pose problems due to various physical/chemical interactions that limit chitosan processability. The current study employs the chemical modification of chitosan by Michael addition of poly (ethylene glycol) methyl ether acrylate (PEGA) to the amine groups to further prepare chitosan particulate hydrogels (CPH). Thus, modified CS is subjected to a double crosslinking, ionic and covalent, in water/oil emulsion. The studied process parameters are polymer concentration, stirring speed, and quantity of ionic crosslinker. The CPH were structurally and morphologically characterized through infrared spectroscopy, scanning electron microscopy, light scattering granulometry, and zeta potential, showing that modified CS allows better control of dimensional properties and morphology as compared with neat CS. Swelling properties were studied in acidic and neutral pH conditions, showing that pH-dependent behavior was maintained after grafting and double crosslinking. The applicability of the prepared materials was further tested for drug loading and in vitro delivery of levofloxacin (LEV), showing excellent capacity. CPH were found to be cyto- and hemocompatible demonstrating their potential for effective use as a controlled release system for different biomedical applications.
Collapse
Affiliation(s)
- Corina-Lenuța Logigan
- Department of Natural and Synthetic Polymers, Faculty of Chemical Engineering and Environmental Protection “Cristofor Simionescu”, “Gheorghe Asachi” Technical University of Iași, 700483 Iași, Romania
| | - Christelle Delaite
- Laboratory of Photochemistry and Macromolecular Engineering, Institute J.B. Donnet, University of Haute Alsace, Mulhouse, Street des Frères Lumière, F-68093 Mulhouse, France
| | - Crina-Elena Tiron
- Regional Institute of Oncology, General Henri Mathias Berthelot Street, 2–4, 700483 Iași, Romania
| | - Cristian Peptu
- “Petru Poni” Institute of Macromolecular Chemistry, Aleea Grigore Ghica Voda, 41A, 700487 Iași, Romania
| | - Marcel Popa
- Department of Natural and Synthetic Polymers, Faculty of Chemical Engineering and Environmental Protection “Cristofor Simionescu”, “Gheorghe Asachi” Technical University of Iași, 700483 Iași, Romania
- Faculty of Medical Dentistry, “Apollonia” University of Iasi, Pacurari Street, 11, Iasi 6600, Romania Muzicii Street, No. 2, 700511 Iași, Romania
- Academy of Romanian Scientists, Splaiul Independentei Street, No 54, 050094 Bucharest, Romania
| | - Cătălina Anișoara Peptu
- Department of Natural and Synthetic Polymers, Faculty of Chemical Engineering and Environmental Protection “Cristofor Simionescu”, “Gheorghe Asachi” Technical University of Iași, 700483 Iași, Romania
- Correspondence:
| |
Collapse
|
40
|
M. O. Lépori C, Soledad Orellano M, Mariano Correa N, Silber JJ, Darío Falcone R. Understanding the interfacial properties of bmim-AOT reverse micelles for their application as nanoreactors. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.120238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
|
41
|
Chitin and Chitosan: Prospective Biomedical Applications in Drug Delivery, Cancer Treatment, and Wound Healing. Mar Drugs 2022; 20:md20070460. [PMID: 35877753 PMCID: PMC9319611 DOI: 10.3390/md20070460] [Citation(s) in RCA: 55] [Impact Index Per Article: 27.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 07/10/2022] [Accepted: 07/13/2022] [Indexed: 11/20/2022] Open
Abstract
Chitin and its derivative chitosan are highly abundant polymers in nature, appearing in both the shells and exoskeletons of various marine and non-marine species. Since they possess favorable properties, such as biocompatibility, biodegradability, non-toxicity, and non-immunogenicity, they have gained recent attention due to their enormous potential biomedical applications. The polycationic surface of chitosan enables it to form hydrogenic and ionic bonds with drug molecules, which is one of its most useful properties. Because chitosan is biocompatible, it can therefore be used in drug delivery systems. The development of chitosan-based nanoparticles has also contributed to the significance of chitin as a drug delivery system that can deliver drugs topically. Furthermore, chitin can be used in cancer treatment as a vehicle for delivering cancer drugs to a specific site and has an antiproliferative effect by reducing the viability of cells. Finally, chitosan can be used as a wound dressing in order to promote the faster regeneration of skin epithelial cells and collagen production by fibroblasts. As discussed in this review, chitin and chitosan have diverse applications in the medical field. Recognizing the biomedical applications of these two polymers is essential for future research in tissue engineering and nanobiotechnology.
Collapse
|
42
|
Costa B, Boueri B, Oliveira C, Silveira I, Ribeiro AJ. Lipoplexes and polyplexes as nucleic acids delivery nanosystems: The current state and future considerations. Expert Opin Drug Deliv 2022; 19:577-594. [DOI: 10.1080/17425247.2022.2075846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Affiliation(s)
- Bruno Costa
- University of Coimbra, Faculty of Pharmacy, Azinhaga de Santa Comba, 3000-548 Coimbra, Portugal
| | - Beatriz Boueri
- University of Coimbra, Faculty of Pharmacy, Azinhaga de Santa Comba, 3000-548 Coimbra, Portugal
| | - Claudia Oliveira
- Group Genetics of Cognitive Dysfunction, IBMC - Instituto de Biologia Molecular e Celular, I3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen, 208, 4200-135, Porto, Portugal
| | - Isabel Silveira
- University of Coimbra, Faculty of Pharmacy, Azinhaga de Santa Comba, 3000-548 Coimbra, Portugal
- Group Genetics of Cognitive Dysfunction, IBMC - Instituto de Biologia Molecular e Celular, I3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen, 208, 4200-135, Porto, Portugal
| | - Antonio J. Ribeiro
- University of Coimbra, Faculty of Pharmacy, Azinhaga de Santa Comba, 3000-548 Coimbra, Portugal
- Group Genetics of Cognitive Dysfunction, IBMC - Instituto de Biologia Molecular e Celular, I3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen, 208, 4200-135, Porto, Portugal
| |
Collapse
|
43
|
Understanding the role of electrostatic interactions on the association of 5-fluorouracil to chitosan-TPP nanoparticles. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.128417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
44
|
Loo HL, Goh BH, Lee LH, Chuah LH. Application of chitosan nanoparticles in skin wound healing. Asian J Pharm Sci 2022; 17:299-332. [PMID: 35782330 PMCID: PMC9237591 DOI: 10.1016/j.ajps.2022.04.001] [Citation(s) in RCA: 42] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2021] [Revised: 03/31/2022] [Accepted: 04/01/2022] [Indexed: 12/25/2022] Open
Abstract
The rising prevalence of impaired wound healing and the consequential healthcare burdens have gained increased attention over recent years. This has prompted research into the development of novel wound dressings with augmented wound healing functions. Nanoparticle (NP)-based delivery systems have become attractive candidates in constructing such wound dressings due to their various favourable attributes. The non-toxicity, biocompatibility and bioactivity of chitosan (CS)-based NPs make them ideal candidates for wound applications. This review focusses on the application of CS-based NP systems for use in wound treatment. An overview of the wound healing process was presented, followed by discussion on the properties and suitability of CS and its NPs in wound healing. The wound healing mechanisms exerted by CS-based NPs were then critically analysed and discussed in sections, namely haemostasis, infection prevention, inflammatory response, oxidative stress, angiogenesis, collagen deposition, and wound closure time. The results of the studies were thoroughly reviewed, and contradicting findings were identified and discussed. Based on the literature, the gap in research and future prospects in this research area were identified and highlighted. Current evidence shows that CS-based NPs possess superior wound healing effects either used on their own, or as drug delivery vehicles to encapsulate wound healing agents. It is concluded that great opportunities and potentials exist surrounding the use of CSNPs in wound healing.
Collapse
|
45
|
Allawadhi P, Singh V, Govindaraj K, Khurana I, Sarode LP, Navik U, Banothu AK, Weiskirchen R, Bharani KK, Khurana A. Biomedical applications of polysaccharide nanoparticles for chronic inflammatory disorders: Focus on rheumatoid arthritis, diabetes and organ fibrosis. Carbohydr Polym 2022; 281:118923. [PMID: 35074100 DOI: 10.1016/j.carbpol.2021.118923] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 10/19/2021] [Accepted: 11/17/2021] [Indexed: 12/16/2022]
Abstract
Polysaccharides are biopolymers distinguished by their complex secondary structures executing various roles in microorganisms, plants, and animals. They are made up of long monomers of similar type or as a combination of other monomeric chains. Polysaccharides are considered superior as compared to other polymers due to their diversity in charge and size, biodegradability, abundance, bio-compatibility, and less toxicity. These natural polymers are widely used in designing of nanoparticles (NPs) which possess wide applications in therapeutics, diagnostics, delivery and protection of bioactive compounds or drugs. The side chain reactive groups of polysaccharides are advantageous for functionalization with nanoparticle-based conjugates or therapeutic agents such as small molecules, proteins, peptides and nucleic acids. Polysaccharide NPs show excellent pharmacokinetic and drug delivery properties, facilitate improved oral absorption, control the release of drugs, increases in vivo retention capability, targeted delivery, and exert synergistic effects. This review updates the usage of polysaccharides based NPs particularly cellulose, chitosan, hyaluronic acid, alginate, dextran, starch, cyclodextrins, pullulan, and their combinations with promising applications in diabetes, organ fibrosis and arthritis.
Collapse
Affiliation(s)
- Prince Allawadhi
- Department of Biosciences and Bioengineering, Indian Institute of Technology (IIT) Roorkee, Roorkee, Uttarakhand, 247667, India
| | - Vishakha Singh
- Department of Biosciences and Bioengineering, Indian Institute of Technology (IIT) Roorkee, Roorkee, Uttarakhand, 247667, India
| | - Kannan Govindaraj
- Department of Developmental BioEngineering, Technical Medicine Centre, University of Twente, Enschede, the Netherlands
| | - Isha Khurana
- Department of Pharmaceutical Chemistry, University Institute of Pharmaceutical Sciences (UIPS), Panjab University, Chandigarh 160014, India
| | - Lopmudra P Sarode
- Department of Pharmaceutical Sciences, Rashtrasant Tukadoji Maharaj Nagpur University, Nagpur 440033, Maharashtra, India
| | - Umashanker Navik
- Department of Pharmacology, Central University of Punjab, Ghudda, Bathinda 151401, Punjab, India
| | - Anil Kumar Banothu
- Department of Veterinary Pharmacology and Toxicology, College of Veterinary Science (CVSc), Rajendranagar, Hyderabad 500030, PVNRTVU, Telangana, India
| | - Ralf Weiskirchen
- Institute of Molecular Pathobiochemistry, Experimental Gene Therapy and Clinical Chemistry (IFMPEGKC), RWTH Aachen University Hospital, Pauwelsstr. 30, D-52074 Aachen, Germany.
| | - Kala Kumar Bharani
- Department of Veterinary Pharmacology and Toxicology, College of Veterinary Science (CVSc), Warangal 506166, PVNRTVU, Telangana, India.
| | - Amit Khurana
- Department of Veterinary Pharmacology and Toxicology, College of Veterinary Science (CVSc), Rajendranagar, Hyderabad 500030, PVNRTVU, Telangana, India; Institute of Molecular Pathobiochemistry, Experimental Gene Therapy and Clinical Chemistry (IFMPEGKC), RWTH Aachen University Hospital, Pauwelsstr. 30, D-52074 Aachen, Germany; Department of Veterinary Pharmacology and Toxicology, College of Veterinary Science (CVSc), Warangal 506166, PVNRTVU, Telangana, India; Centre for Biomedical Engineering (CBME), Indian Institute of Technology (IIT) Delhi, Hauz Khas, New Delhi 110016, India.
| |
Collapse
|
46
|
Yang M, Lv X, Zhan S, Lu M, Zhang X, Qiu T. Glutathione-sensitive IPI-549 nanoparticles synergized with photodynamic Chlorin e6 for the treatment of breast cancer. NANOTECHNOLOGY 2022; 33:235101. [PMID: 35193121 DOI: 10.1088/1361-6528/ac57ac] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Accepted: 02/22/2022] [Indexed: 06/14/2023]
Abstract
We combined phosphoinositol-3-kinin inhibitor IPI-549 and photodynamic Chlorin e6 (Ce6) on carboxymethyl chitosan to develop a novel drug delivery nanoparticle (NP) system (Ce6/CMCS-DSP-IPI549) and evaluate its glutathione (GSH) sensitivity and targeting ability for breast cancer treatment. The NPs were spherical with a uniform size of 218.8 nm, a stable structure over 7 days. The maximum encapsulation efficiency was 64.42%, and NPs drug loading was 8.05%. The NPs released drugs within tumor cells due to their high GSH concentration, while they maintained structural integrity in normal cells, which have low GSH concentration. The cumulative release rates of IPI-549 and Ce6 at 108 h were 70.67% and 40.35% (at GSH 10 mM) and 8.11% and 2.71% (at GSH 2μM), respectively. The NPs showed a strong inhibitory effect on 4T1 cells yet did not affect human umbilical vein endothelial cells (HUVECs). After irradiation by a 660 nm infrared laser for 72 h, the survival rate of 4T1 cells was 15.51%. Cellular uptake studies indicated that the NPs could accurately release drugs into tumor cells. In addition, the NPs had a good photodynamic effect and promoted the release of reactive oxygen species to damage tumor cells. Overall, the combination therapy of IPI-549 and Ce6 is safe and effective, and may provide a new avenue for the treatment of breast cancer.
Collapse
Affiliation(s)
- Mengjia Yang
- School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, Wuhan 430070, People's Republic of China
- Xi'an Medical College, Xi'an 710309, People's Republic of China
| | - Xiaojun Lv
- School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, Wuhan 430070, People's Republic of China
- Hubei Institute for Drug Control, Wuhan 430064, People's Republic of China
| | - Siwen Zhan
- School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, Wuhan 430070, People's Republic of China
| | - Mengli Lu
- School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, Wuhan 430070, People's Republic of China
| | - Xueqiong Zhang
- School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, Wuhan 430070, People's Republic of China
| | - Tong Qiu
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, People's Republic of China
| |
Collapse
|
47
|
Gao J, Song M, Li T, Zhao Y, Wang A. Water-soluble carboxymethyl chitosan (WSCC)-modified single-walled carbon nanotubes (SWCNTs) provide efficient adsorption of Pb(ii) from water. RSC Adv 2022; 12:6821-6830. [PMID: 35424645 PMCID: PMC8981766 DOI: 10.1039/d2ra00066k] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Accepted: 02/23/2022] [Indexed: 12/25/2022] Open
Abstract
Nanocomposites play a key role in the removal of toxic metal(loid)s from environmental water. In this study, we investigated the adsorption capability of water-soluble carboxymethyl chitosan (WSCC)-modified functionally oxidized single walled carbon nanotubes (oSWCNTs) for rapid and efficient removal of toxic Pb(ii) from water. The WSCC–oSWCNTs nanocomposite was prepared by an acid treatment of SWCNTs followed by an ultrasonic dispersion process using WSCC as dispersant. The morphology and chemical characteristics of the WSCC–oSWCNTs nanocomposite were further identified using various characterization techniques (i.e., transmission electron microscopy, TEM; scanning electron microscopy, SEM; Raman spectra; Fourier transform infrared spectroscopy, FTIR; X-ray photoelectron spectroscopy, XPS; nitrogen adsorption–desorption isotherm test). The efficiency of the adsorption process in batch experiments was investigated via determining various factor effects (i.e. WSCC–oSWCNTs nanocomposite concentration, solution pH, initial Pb(ii) concentration, contact time, and reaction temperature). Kinetic results showed that the adsorption process followed a pseudo-second-order, while an isotherm results study showed that the adsorption process followed the Langmuir and Freundlich isotherm models at the same time. In addition, the van't Hoff equation was used to calculate thermodynamic parameters for assessing the endothermic properties and spontaneity of the adsorption process. The WSCC–oSWCNTs nanocomposite manifested a high adsorption capacity for Pb(ii) (113.63 mg g−1) via electrostatic interactions and ion-exchange, as its adsorption rate could reach up to 98.72%. This study, therefore, provides a novel adsorbent for the removal and detection of harmful residues (i.e. toxic metal(loid)s) from environmental water, such as industry wastewater treatment and chemical waste management. A water-dispersible WSCC–oSWCNTs nanocomposite prepared for efficient Pb(ii) uptake from water. The removal efficiency is still higher than 80% after 4 adsorption–desorption cycles, and the Pb(ii) can be adsorbed with high selectivity and stability.![]()
Collapse
Affiliation(s)
- Jinling Gao
- College of Science, Heilongjiang Bayi Agricultural University Daqing 163319 China
| | - Mingzhe Song
- College of Science, Heilongjiang Bayi Agricultural University Daqing 163319 China
| | - Tongtong Li
- College of Science, Heilongjiang Bayi Agricultural University Daqing 163319 China
| | - Yuyao Zhao
- College of Science, Heilongjiang Bayi Agricultural University Daqing 163319 China
| | - Anxu Wang
- College of Science, Heilongjiang Bayi Agricultural University Daqing 163319 China
| |
Collapse
|
48
|
Dong Z, Wang R, Wang M, Meng Z, Wang X, Han M, Guo Y, Wang X. Preparation of Naringenin Nanosuspension and Its Antitussive and Expectorant Effects. Molecules 2022; 27:molecules27030741. [PMID: 35164006 PMCID: PMC8837938 DOI: 10.3390/molecules27030741] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 12/24/2021] [Accepted: 12/27/2021] [Indexed: 11/29/2022] Open
Abstract
Naringenin (NRG) is a natural flavonoid compound abundantly present in citrus fruits and has the potential to treat respiratory disorders. However, the clinical therapeutic effect of NRG is limited by its low bioavailability due to poor solubility. To enhance the solubility, naringenin nanosuspensions (NRG-NSps) were prepared by applying tocopherol polyethylene glycol succinate (TPGS) as the nanocarrier via the media-milling method. The particle size, morphology, and drug-loading content of NRG-NSps were examined, and the stability was evaluated by detecting particle size changes in different physiological media. NRG-NSps exhibited a flaky appearance with a mean diameter of 216.9 nm, and the drug-loading content was 66.7%. NRG-NSps exhibited good storage stability and media stability. NRG-NSps presented a sustainable release profile, and the cumulative drug-release rate approached approximately 95% within 7 d. NRG-NSps improved the antitussive effect significantly compared with the original NRG, the cough frequency was decreased from 22 to 15 times, and the cough incubation period was prolonged from 85.3 to 121.6 s. Besides, NRG-NSps also enhanced expectorant effects significantly, and phenol red secretion was increased from 1.02 to 1.45 μg/mL. These results indicate that NRG-NSps could enhance the bioavailability of NRG significantly and possess a potential clinical application.
Collapse
Affiliation(s)
- Zhengqi Dong
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, No. 151, Malianwa North Road, Haidian District, Beijing 100193, China; (Z.D.); (M.W.); (Z.M.); (X.W.); (M.H.)
| | - Rui Wang
- College of Pharmacy, Heilongjiang University of Chinese Medicine, Harbin 150040, China;
| | - Mingyue Wang
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, No. 151, Malianwa North Road, Haidian District, Beijing 100193, China; (Z.D.); (M.W.); (Z.M.); (X.W.); (M.H.)
- College of Pharmacy, Heilongjiang University of Chinese Medicine, Harbin 150040, China;
| | - Zheng Meng
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, No. 151, Malianwa North Road, Haidian District, Beijing 100193, China; (Z.D.); (M.W.); (Z.M.); (X.W.); (M.H.)
- College of Pharmacy, Harbin University of Commerce, No. 138, Tongda Street, Daoli District, Harbin 150076, China
| | - Xiaotong Wang
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, No. 151, Malianwa North Road, Haidian District, Beijing 100193, China; (Z.D.); (M.W.); (Z.M.); (X.W.); (M.H.)
- College of Pharmacy, Heilongjiang University of Chinese Medicine, Harbin 150040, China;
| | - Meihua Han
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, No. 151, Malianwa North Road, Haidian District, Beijing 100193, China; (Z.D.); (M.W.); (Z.M.); (X.W.); (M.H.)
| | - Yifei Guo
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, No. 151, Malianwa North Road, Haidian District, Beijing 100193, China; (Z.D.); (M.W.); (Z.M.); (X.W.); (M.H.)
- Correspondence: (Y.G.); (X.W.); Tel.: +86-010-57833264 (X.W.)
| | - Xiangtao Wang
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, No. 151, Malianwa North Road, Haidian District, Beijing 100193, China; (Z.D.); (M.W.); (Z.M.); (X.W.); (M.H.)
- Correspondence: (Y.G.); (X.W.); Tel.: +86-010-57833264 (X.W.)
| |
Collapse
|
49
|
Yee Kuen C, Masarudin MJ. Chitosan Nanoparticle-Based System: A New Insight into the Promising Controlled Release System for Lung Cancer Treatment. Molecules 2022; 27:473. [PMID: 35056788 PMCID: PMC8778092 DOI: 10.3390/molecules27020473] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 03/15/2021] [Accepted: 03/25/2021] [Indexed: 12/24/2022] Open
Abstract
Lung cancer has been recognized as one of the most often diagnosed and perhaps most lethal cancer diseases worldwide. Conventional chemotherapy for lung cancer-related diseases has bumped into various limitations and challenges, including non-targeted drug delivery, short drug retention period, low therapeutic efficacy, and multidrug resistance (MDR). Chitosan (CS), a natural polymer derived from deacetylation of chitin, and comprised of arbitrarily distributed β-(1-4)-linked d-glucosamine (deacetylated unit) and N-acetyl-d-glucosamine (acetylated unit) that exhibits magnificent characteristics, including being mucoadhesive, biodegradable, and biocompatible, has emerged as an essential element for the development of a nano-particulate delivery vehicle. Additionally, the flexibility of CS structure due to the free protonable amino groups in the CS backbone has made it easy for the modification and functionalization of CS to be developed into a nanoparticle system with high adaptability in lung cancer treatment. In this review, the current state of chitosan nanoparticle (CNP) systems, including the advantages, challenges, and opportunities, will be discussed, followed by drug release mechanisms and mathematical kinetic models. Subsequently, various modification routes of CNP for improved and enhanced therapeutic efficacy, as well as other restrictions of conventional drug administration for lung cancer treatment, are covered.
Collapse
Affiliation(s)
- Cha Yee Kuen
- Department of Cell and Molecular Biology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia;
| | - Mas Jaffri Masarudin
- Department of Cell and Molecular Biology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia;
- UPM-MAKNA Cancer Research Laboratory, Institute of Biosciences, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia
| |
Collapse
|
50
|
Niculescu AG, Grumezescu AM. Applications of Chitosan-Alginate-Based Nanoparticles-An Up-to-Date Review. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:186. [PMID: 35055206 PMCID: PMC8778629 DOI: 10.3390/nano12020186] [Citation(s) in RCA: 56] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 01/02/2022] [Accepted: 01/04/2022] [Indexed: 02/07/2023]
Abstract
Chitosan and alginate are two of the most studied natural polymers that have attracted interest for multiple uses in their nano form. The biomedical field is one of the domains benefiting the most from the development of nanotechnology, as increasing research interest has been oriented to developing chitosan-alginate biocompatible delivery vehicles, antimicrobial agents, and vaccine adjuvants. Moreover, these nanomaterials of natural origin have also become appealing for environmental protection (e.g., water treatment, environmental-friendly fertilizers, herbicides, and pesticides) and the food industry. In this respect, the present paper aims to discuss some of the newest applications of chitosan-alginate-based nanomaterials and serve as an inception point for further research in the field.
Collapse
Affiliation(s)
- Adelina-Gabriela Niculescu
- Department of Science and Engineering of Oxide Materials and Nanomaterials, Faculty of Applied Chemistry and Materials Science, Politehnica University of Bucharest, 011061 Bucharest, Romania;
| | - Alexandru Mihai Grumezescu
- Department of Science and Engineering of Oxide Materials and Nanomaterials, Faculty of Applied Chemistry and Materials Science, Politehnica University of Bucharest, 011061 Bucharest, Romania;
- Research Institute of the University of Bucharest—ICUB, University of Bucharest, 050657 Bucharest, Romania
- Academy of Romanian Scientists, Ilfov No. 3, 050044 Bucharest, Romania
| |
Collapse
|