1
|
Xiong Y, Feng YX, Chang M, Wang Q, Yin SN, Jian LY, Ren DF. Formulated chitosan-sodium tripolyphosphate nanoparticles for co-encapsulation of ellagic acid and anti-inflammatory peptide: characterization, stability and anti-inflammatory activity. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2023; 103:3447-3456. [PMID: 36812130 DOI: 10.1002/jsfa.12521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 01/13/2023] [Accepted: 02/22/2023] [Indexed: 06/18/2023]
Abstract
BACKGROUND Chitosan (CS) and tripolyphosphate (TPP) can be combined in the development of a material with synergistic properties and promising potential for the conservation of food products. In this study, ellagic acid (EA) and anti-inflammatory peptide (FPL)-loaded CS nanoparticles (FPL/EA NPs) were prepared using the ionic gelation method and optimal preparation conditions were obtained through a single factor design. RESULTS The synthesized nanoparticles (NPs) were characterized using a scanning electron microscope (SEM), Fourier-transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), and differential scanning calorimetry (DSC). Nanoparticles were spherical, with an average size of 308.33 ± 4.61 nm, a polydispersity index (PDI) of 0.254, a zeta potential of +31.7 ± 0.08 mV, and a high encapsulation capacity (22.16 ± 0.79%). An in vitro release study showed that EA/FPL had a sustainable release from FPL/EA NPs. The stability of the FPL/EA NPs was evaluated for 90 days at 0, 25, and 37 °C. Significant anti-inflammatory activity of FPL/EA NPs was verified by nitric oxide (NO) and tumor necrosis factor-α (TNF-α) reduction. CONCLUSION These characteristics support the use of CS nanoparticles to encapsulate EA and FPL and improve their bioactivity in food products. © 2023 Society of Chemical Industry.
Collapse
Affiliation(s)
- Yu Xiong
- Beijing Key Laboratory of Food Processing and Safety in Forestry, Department of Food Science and Engineering, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, People's Republic of China
| | - Yan-Xia Feng
- Beijing Key Laboratory of Food Processing and Safety in Forestry, Department of Food Science and Engineering, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, People's Republic of China
| | - Min Chang
- Beijing Key Laboratory of Food Processing and Safety in Forestry, Department of Food Science and Engineering, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, People's Republic of China
| | - Qian Wang
- Beijing Key Laboratory of Food Processing and Safety in Forestry, Department of Food Science and Engineering, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, People's Republic of China
| | - Sheng-Nan Yin
- Beijing Key Laboratory of Food Processing and Safety in Forestry, Department of Food Science and Engineering, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, People's Republic of China
| | - Liu-Yu Jian
- Beijing Key Laboratory of Food Processing and Safety in Forestry, Department of Food Science and Engineering, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, People's Republic of China
| | - Di-Feng Ren
- Beijing Key Laboratory of Food Processing and Safety in Forestry, Department of Food Science and Engineering, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, People's Republic of China
| |
Collapse
|
2
|
Elmowafy M, Shalaby K, Elkomy MH, Alsaidan OA, Gomaa HAM, Abdelgawad MA, Mostafa EM. Polymeric Nanoparticles for Delivery of Natural Bioactive Agents: Recent Advances and Challenges. Polymers (Basel) 2023; 15:1123. [PMID: 36904364 PMCID: PMC10007077 DOI: 10.3390/polym15051123] [Citation(s) in RCA: 51] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 02/16/2023] [Accepted: 02/20/2023] [Indexed: 02/25/2023] Open
Abstract
In the last few decades, several natural bioactive agents have been widely utilized in the treatment and prevention of many diseases owing to their unique and versatile therapeutic effects, including antioxidant, anti-inflammatory, anticancer, and neuroprotective action. However, their poor aqueous solubility, poor bioavailability, low GIT stability, extensive metabolism as well as short duration of action are the most shortfalls hampering their biomedical/pharmaceutical applications. Different drug delivery platforms have developed in this regard, and a captivating tool of this has been the fabrication of nanocarriers. In particular, polymeric nanoparticles were reported to offer proficient delivery of various natural bioactive agents with good entrapment potential and stability, an efficiently controlled release, improved bioavailability, and fascinating therapeutic efficacy. In addition, surface decoration and polymer functionalization have opened the door to improving the characteristics of polymeric nanoparticles and alleviating the reported toxicity. Herein, a review of the state of knowledge on polymeric nanoparticles loaded with natural bioactive agents is presented. The review focuses on frequently used polymeric materials and their corresponding methods of fabrication, the needs of such systems for natural bioactive agents, polymeric nanoparticles loaded with natural bioactive agents in the literature, and the potential role of polymer functionalization, hybrid systems, and stimuli-responsive systems in overcoming most of the system drawbacks. This exploration may offer a thorough idea of viewing the polymeric nanoparticles as a potential candidate for the delivery of natural bioactive agents as well as the challenges and the combating tools used to overcome any hurdles.
Collapse
Affiliation(s)
- Mohammed Elmowafy
- Department of Pharmaceutics, College of Pharmacy, Jouf University, Sakaka P.O. Box 2014, Saudi Arabia
| | - Khaled Shalaby
- Department of Pharmaceutics, College of Pharmacy, Jouf University, Sakaka P.O. Box 2014, Saudi Arabia
| | - Mohammed H. Elkomy
- Department of Pharmaceutics, College of Pharmacy, Jouf University, Sakaka P.O. Box 2014, Saudi Arabia
| | - Omar Awad Alsaidan
- Department of Pharmaceutics, College of Pharmacy, Jouf University, Sakaka P.O. Box 2014, Saudi Arabia
| | - Hesham A. M. Gomaa
- Department of Pharmacology, College of Pharmacy, Jouf University, Sakaka P.O. Box 2014, Saudi Arabia
| | - Mohamed A. Abdelgawad
- Department of Pharmaceutical Chemistry, College of Pharmacy, Jouf University, Sakaka P.O. Box 2014, Saudi Arabia
| | - Ehab M. Mostafa
- Department of Pharmacognosy, College of Pharmacy, Jouf University, Sakaka P.O. Box 2014, Saudi Arabia
| |
Collapse
|
3
|
Sorasitthiyanukarn FN, Muangnoi C, Gomez CB, Suksamrarn A, Rojsitthisak P, Rojsitthisak P. Potential Oral Anticancer Therapeutic Agents of Hexahydrocurcumin-Encapsulated Chitosan Nanoparticles against MDA-MB-231 Breast Cancer Cells. Pharmaceutics 2023; 15:pharmaceutics15020472. [PMID: 36839794 PMCID: PMC9959490 DOI: 10.3390/pharmaceutics15020472] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2022] [Revised: 01/23/2023] [Accepted: 01/28/2023] [Indexed: 02/04/2023] Open
Abstract
Hexahydrocurcumin-encapsulated chitosan nanoparticles (HHC-CS-NPs) were formulated by oil-in-water emulsification and ionotropic gelation and optimized using the Box-Behnken design. The particle size, zeta potential, and encapsulation efficiency of the optimized HHC-CS-NPs were 256 ± 14 nm, 27.3 ± 0.7 mV, and 90.6 ± 1.7%, respectively. The TEM analysis showed a spherical shape and a dense structure with a narrow size distribution. The FT-IR analysis indicated no chemical interaction between the excipients and the drugs in the nanoparticles, but the existence of the drugs was molecularly dispersed in the nanoparticle matrices. The drug release profile showed a preliminary burst release followed by a sustained release under simulated gastrointestinal (GI) and physiological conditions. A stability study suggested that the HHC-CS-NPs were stable under UV light, simulated GI, and body fluids. The in vitro bioaccessibility and bioavailability of the HHC-CS-NPs were 2.2 and 6.1 times higher than those of the HHC solution, respectively. The in vitro evaluation of the antioxidant, anti-inflammatory, and cytotoxic effects of the optimized HHC-CS-NPs demonstrated that the CS-NPs significantly improved the biological activities of HHC in radical scavenging, hemolysis protection activity, anti-protein denaturation, and cytotoxicity against MDA-MB-231 breast cancer cells. Western blot analysis showed that the apoptotic protein expression of Bax, cytochrome C, caspase-3, and caspase-9, were significantly up-regulated, whereas the anti-apoptotic protein Bcl-2 expression was down-regulated in the HHC-CS-NP-treated cells. Our findings suggest that the optimized HHC-CS-NPs can be further developed as an efficient oral treatment for breast cancer.
Collapse
Affiliation(s)
- Feuangthit N. Sorasitthiyanukarn
- Metallurgy and Materials Science Research Institute, Chulalongkorn University, Bangkok 10330, Thailand
- Center of Excellent in Natural Products for Ageing and Chronic Diseases, Chulalongkorn University, Bangkok 10330, Thailand
| | | | - Clinton B. Gomez
- Department of Industrial Pharmacy, College of Pharmacy, University of the Philippines Manila, Manila 1000, Metro Manila, Philippines
| | - Apichart Suksamrarn
- Department of Chemistry and Center of Excellence for Innovation in Chemistry, Faculty of Science, Ramkhamhaeng University, Bangkok 10240, Thailand
| | - Pranee Rojsitthisak
- Metallurgy and Materials Science Research Institute, Chulalongkorn University, Bangkok 10330, Thailand
- Center of Excellent in Natural Products for Ageing and Chronic Diseases, Chulalongkorn University, Bangkok 10330, Thailand
- Correspondence: ; Tel.: +662-218-4221; Fax: +662-611-7586
| | - Pornchai Rojsitthisak
- Center of Excellent in Natural Products for Ageing and Chronic Diseases, Chulalongkorn University, Bangkok 10330, Thailand
- Department of Food and Pharmaceutical Chemistry, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok 10330, Thailand
| |
Collapse
|
4
|
Alcantara KP, Nalinratana N, Chutiwitoonchai N, Castillo AL, Banlunara W, Vajragupta O, Rojsitthisak P, Rojsitthisak P. Enhanced Nasal Deposition and Anti-Coronavirus Effect of Favipiravir-Loaded Mucoadhesive Chitosan-Alginate Nanoparticles. Pharmaceutics 2022; 14:pharmaceutics14122680. [PMID: 36559173 PMCID: PMC9782217 DOI: 10.3390/pharmaceutics14122680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 11/23/2022] [Accepted: 11/25/2022] [Indexed: 12/03/2022] Open
Abstract
Favipiravir (FVR) is a repurposed antiviral drug for treating mild to moderate cases of the novel coronavirus disease 2019 (COVID-19). However, its poor solubility and permeability limit its clinical efficacy. To overcome its physicochemical and pharmacokinetic limitations, we statistically designed a mucoadhesive chitosan-alginate nanoparticles (MCS-ALG-NPs) as a new carrier for FVR using response surface methodology, which provided suitable characteristics for transmucosal delivery. The use of mucoadhesive polymers for intranasal administration promotes the residence time and contact of FVR in the mucus membrane. The optimized FVR-MCS-ALG-NPs demonstrated superior mucoadhesion, higher permeation and deposition in the nasal mucosa, and a significant increase in the inhibition of viral replication over 35-fold compared with free FVR. The overall results suggest that MCS-ALG-NPs could be used as an effective mucoadhesive carrier to enhance the activity of FVR against COVID-19.
Collapse
Affiliation(s)
- Khent Primo Alcantara
- Center of Excellence in Natural Products for Ageing and Chronic Diseases, Chulalongkorn University, Bangkok 10330, Thailand
- Pharmaceutical Sciences and Technology Program, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok 10330, Thailand
| | - Nonthaneth Nalinratana
- Center of Excellence in Natural Products for Ageing and Chronic Diseases, Chulalongkorn University, Bangkok 10330, Thailand
- Department of Pharmacology and Physiology, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok 10330, Thailand
| | - Nopporn Chutiwitoonchai
- National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency, Pathum Thani 12120, Thailand
| | - Agnes L. Castillo
- Faculty of Pharmacy, The Graduate School, Research Center for the Natural and Applied Sciences (RCNAS), University of Santo Tomas, Manila 1008, Philippines
| | - Wijit Banlunara
- Department of Pathology, Faculty of Veterinary Science, Chulalongkorn University, Bangkok 10330, Thailand
| | - Opa Vajragupta
- Center of Excellence in Natural Products for Ageing and Chronic Diseases, Chulalongkorn University, Bangkok 10330, Thailand
- Molecular Probes for Imaging Research Network, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok 10330, Thailand
| | - Pornchai Rojsitthisak
- Center of Excellence in Natural Products for Ageing and Chronic Diseases, Chulalongkorn University, Bangkok 10330, Thailand
- Department of Food and Pharmaceutical Chemistry, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok 10330, Thailand
- Correspondence: ; Tel.: +66-2-218-8310
| | - Pranee Rojsitthisak
- Center of Excellence in Natural Products for Ageing and Chronic Diseases, Chulalongkorn University, Bangkok 10330, Thailand
- Metallurgy and Materials Science Research Institute, Chulalongkorn University, Bangkok 10330, Thailand
| |
Collapse
|
5
|
Herdiana Y, Wathoni N, Shamsuddin S, Muchtaridi M. Cytotoxicity Enhancement in MCF-7 Breast Cancer Cells with Depolymerized Chitosan Delivery of α-Mangostin. Polymers (Basel) 2022; 14:polym14153139. [PMID: 35956654 PMCID: PMC9371181 DOI: 10.3390/polym14153139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Revised: 07/22/2022] [Accepted: 07/26/2022] [Indexed: 12/10/2022] Open
Abstract
The application of α-mangostin (AMG) in breast cancer research has wide intentions. Chitosan-based nanoparticles (CSNPs) have attractive prospects for developing anticancer drugs, especially in their high flexibility for modification to enhance their anticancer action. This research aimed to study the impact of depolymerized chitosan (CS) on the cytotoxicity enhancement of AMG in MCF-7 breast cancer cells. CSNPs effectivity depends on size, shape, crystallinity degree, and charge surface. Modifying CS molecular weight (MW) is expected to influence CSNPs’ characteristics, impacting size, shape, crystallinity degree, and charge surface. CSNPs are developed using the method of ionic gelation with sodium tripolyphosphate (TPP) as a crosslinker and spray pyrolysis procedure. Nanoparticles’ (NPs) sizes vary from 205.3 ± 81 nm to 450.9 ± 235 nm, ZP charges range from +10.56 mV to +51.56 mV, and entrapment efficiency from 85.35% to 90.45%. The morphology of NPs are all the same spherical forms. In vitro release studies confirmed that AMG–Chitosan–High Molecular Weight (AMG–CS–HMW) and AMG–Chitosan–Low Molecular Weight (AMG–CS–LMW) had a sustained-release system profile. MW has a great influence on surface, drug release, and cytotoxicity enhancement of AMG in CSNPs to MCF-7 cancer cells. The preparations AMG–CS–HMW and AMG–CS–LMW NPs considerably enhanced the cytotoxicity of MCF-7 cells with IC50 values of 5.90 ± 0.08 µg/mL and 4.90 ± 0.16 µg/mL, respectively, as compared with the non-nano particle formulation with an IC50 of 8.47 ± 0.29 µg/mL. These findings suggest that CSNPs can enhance the physicochemical characteristics and cytotoxicity of AMG in breast cancer treatment.
Collapse
Affiliation(s)
- Yedi Herdiana
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Universitas Padjadjaran, Sumedang 45363, Indonesia;
- Correspondence: (Y.H.); (M.M.)
| | - Nasrul Wathoni
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Universitas Padjadjaran, Sumedang 45363, Indonesia;
| | - Shaharum Shamsuddin
- School of Health Sciences, Universiti Sains Malaysia, Kubang Kerian 16150, Malaysia;
- Nanobiotech Research Initiative, Institute for Research in Molecular Medicine (INFORMM), Universiti Sains Malaysia, Penang 11800, Malaysia
- USM-RIKEN Interdisciplinary Collaboration on Advanced Sciences (URICAS), Universiti Sains Malaysia, Penang 11800, Malaysia
| | - Muchtaridi Muchtaridi
- Department of Pharmaceutical Analysis and Medicinal Chemistry, Faculty of Pharmacy, Universitas Padjadjaran, Sumedang 45363, Indonesia
- Correspondence: (Y.H.); (M.M.)
| |
Collapse
|
6
|
Zhang J, Wang L, Tan W, Li Q, Dong F, Guo Z. Preparation of chitosan-rosmarinic acid derivatives with enhanced antioxidant and anti-inflammatory activities. Carbohydr Polym 2022; 296:119943. [DOI: 10.1016/j.carbpol.2022.119943] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 07/20/2022] [Accepted: 07/30/2022] [Indexed: 02/06/2023]
|
7
|
Chen F, Liu Q. Demystifying phytoconstituent-derived nanomedicines in their immunoregulatory and therapeutic roles in inflammatory diseases. Adv Drug Deliv Rev 2022; 186:114317. [PMID: 35533788 DOI: 10.1016/j.addr.2022.114317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 04/15/2022] [Accepted: 04/30/2022] [Indexed: 11/28/2022]
Abstract
In the past decades, phytoconstituents have appeared as critical mediators for immune regulations among various diseases, both in eukaryotes and prokaryotes. These bioactive molecules, showing a broad range of biological functions, would hold tremendous promise for developing new therapeutics. The discovery of phytoconstituents' capability of functionally regulating immune cells and associating cytokines, suppressing systemic inflammation, and remodeling immunity have rapidly promoted the idea of their employment as anti-inflammatory agents. In this review, we discuss various roles of phyto-derived medicines in the field of inflammatory diseases, including chronic inflammation, autoimmune diseases, and acute inflammatory disease such as COVID-19. Nevertheless, traditional phyto-derived medicines often concurred with their clinical administration limitations, such as their lack of cell specificity, inefficient cytoplasmic delivery, and rapid clearance by the immune system. As alternatives, phyto-derived nano-approaches may provide significant benefits. Both unmodified and engineered nanocarriers present the potential to serve as phytoconstituent delivery systems to improve therapeutic physio-chemical properties and pharmacokinetic profiles. Thus, the development of phytoconstituents' nano-delivery designs, their new and perspective approaches for therapeutical applications are elaborated herein.
Collapse
Affiliation(s)
- Fengqian Chen
- Translational Research Program, Department of Anesthesiology and Center for Shock Trauma Anesthesiology Research, University of Maryland School of Medicine, Baltimore, MD 21201, United States
| | - Qi Liu
- Department of Dermatology, Johns Hopkins University School of Medicine, Cancer Research Building II, Suite 216, 1550 Orleans Street, Baltimore, MD 21231, United States.
| |
Collapse
|
8
|
Paulazzi AR, Alves BO, Zilli GAL, Dos Santos AE, Petry F, Soares KD, Danielli LJ, Pedroso J, Apel MA, Aguiar GPS, Siebel AM, Oliveira JV, Müller LG. Curcumin and n-acetylcysteine cocrystal produced with supercritical solvent: characterization, solubility, and preclinical evaluation of antinociceptive and anti-inflammatory activities. Inflammopharmacology 2022; 30:327-341. [PMID: 35006455 DOI: 10.1007/s10787-021-00917-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Accepted: 12/23/2021] [Indexed: 12/26/2022]
Abstract
Curcumin presents a promising anti-inflammatory potential, but its low water-solubility and bioavailability hinder its application. In this sense, cocrystallization represents a tool for improving physicochemical properties, solubility, permeability, and bioavailability of new drug candidates. Thus, the aim of this work was to produce curcumin cocrystals (with n-acetylcysteine as coformer, which possesses anti-inflammatory and antioxidant activities), by the anti-solvent gas technique using supercritical carbon dioxide, and to test its antinociceptive and anti-inflammatory potential. The cocrystal was characterized by differential scanning calorimetry, powder X-ray diffraction and scanning electron microscopy. The cocrystal solubility and antichemotaxic activity were also assessed in vitro. Antinociceptive and anti-inflammatory activities were carried out in vivo using the acetic acid-induced abdominal writhing and carrageenan-induced paw oedema assays in mice. The results demonstrated the formation of a new crystalline structure, thereby confirming the successful formation of the cocrystal. The higher solubility of the cocrystal compared to pure curcumin was verified in acidic and neutral pH, and the cocrystal inhibited the chemotaxis of neutrophils in vitro. In vivo assays showed that cocrystal presents increased antinociceptive and anti-inflammatory potency when compared to pure curcumin, which could be related to an improvement in its bioavailability.
Collapse
Affiliation(s)
- Alessandro R Paulazzi
- Department of Chemical and Food Engineering, Federal University of Santa Catarina, UFSC, Florianópolis, SC, Brazil
| | - Bianca O Alves
- Molecular Genetics and Ecotoxicology Laboratory, Community University of Chapecó Region, Chapecó, SC, Brazil
| | - Gabriela A L Zilli
- Molecular Genetics and Ecotoxicology Laboratory, Community University of Chapecó Region, Chapecó, SC, Brazil
| | - Aline E Dos Santos
- Department of Chemical and Food Engineering, Federal University of Santa Catarina, UFSC, Florianópolis, SC, Brazil
| | - Fernanda Petry
- Molecular Genetics and Ecotoxicology Laboratory, Community University of Chapecó Region, Chapecó, SC, Brazil
| | - Krissie D Soares
- Pharmaceutical Sciences Graduate Program, Federal University of Rio Grande Do Sul, Porto Alegre, RS, Brazil
| | - Letícia J Danielli
- Pharmaceutical Sciences Graduate Program, Federal University of Rio Grande Do Sul, Porto Alegre, RS, Brazil
| | - Jefferson Pedroso
- Molecular Genetics and Ecotoxicology Laboratory, Community University of Chapecó Region, Chapecó, SC, Brazil
| | - Miriam A Apel
- Pharmaceutical Sciences Graduate Program, Federal University of Rio Grande Do Sul, Porto Alegre, RS, Brazil
| | - Gean Pablo S Aguiar
- Molecular Genetics and Ecotoxicology Laboratory, Community University of Chapecó Region, Chapecó, SC, Brazil.,Graduate Program in Environmental Sciences, Community University of Chapecó Region (Unochapecó), Servidão Anjo da Guarda, nº 295-D, Bairro Efapi, Chapecó, SC, 89809-900, Brazil
| | - Anna M Siebel
- Molecular Genetics and Ecotoxicology Laboratory, Community University of Chapecó Region, Chapecó, SC, Brazil.,Graduate Program in Environmental Sciences, Community University of Chapecó Region (Unochapecó), Servidão Anjo da Guarda, nº 295-D, Bairro Efapi, Chapecó, SC, 89809-900, Brazil
| | - J Vladimir Oliveira
- Department of Chemical and Food Engineering, Federal University of Santa Catarina, UFSC, Florianópolis, SC, Brazil
| | - Liz Girardi Müller
- Molecular Genetics and Ecotoxicology Laboratory, Community University of Chapecó Region, Chapecó, SC, Brazil. .,Graduate Program in Environmental Sciences, Community University of Chapecó Region (Unochapecó), Servidão Anjo da Guarda, nº 295-D, Bairro Efapi, Chapecó, SC, 89809-900, Brazil.
| |
Collapse
|
9
|
Curcumin-loaded nanocapsules: Influence of surface characteristics on technological parameters and potential antimalarial activity. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2021; 118:111356. [DOI: 10.1016/j.msec.2020.111356] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Revised: 07/06/2020] [Accepted: 08/02/2020] [Indexed: 12/11/2022]
|
10
|
Lebaudy E, Fournel S, Lavalle P, Vrana NE, Gribova V. Recent Advances in Antiinflammatory Material Design. Adv Healthc Mater 2021; 10:e2001373. [PMID: 33052031 DOI: 10.1002/adhm.202001373] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Revised: 09/28/2020] [Indexed: 12/14/2022]
Abstract
Implants and prostheses are widely used to replace damaged tissues or to treat various diseases. However, besides the risk of bacterial or fungal infection, an inflammatory response usually occurs. Here, recent progress in the field of anti-inflammatory biomaterials is described. Different materials and approaches are used to decrease the inflammatory response, including hydrogels, nanoparticles, implant surface coating by polymers, and a variety of systems for anti-inflammatory drug delivery. Complex multifunctional systems dealing with inflammation, microbial infection, bone regeneration, or angiogenesis are also described. New promising stimuli-responsive systems, such as pH- and temperature-responsive materials, are also being developed that would enable an "intelligent" antiinflammatory response when the inflammation occurs. Together, different approaches hold promise for creation of novel multifunctional smart materials allowing better implant integration and tissue regeneration.
Collapse
Affiliation(s)
- Eloïse Lebaudy
- Institut National de la Santé et de la Recherche Médicale INSERM Unité 1121 Biomaterials and Bioengineering 11 rue Humann Strasbourg Cedex 67085 France
- Faculté de Chirurgie Dentaire Université de Strasbourg Strasbourg 67000 France
| | - Sylvie Fournel
- Université de Strasbourg CNRS 3Bio team Laboratoire de Conception et Application de Molécules Bioactives UMR 7199 Faculté de Pharmacie 74 route du Rhin Illkirch Cedex 67401 France
| | - Philippe Lavalle
- Institut National de la Santé et de la Recherche Médicale INSERM Unité 1121 Biomaterials and Bioengineering 11 rue Humann Strasbourg Cedex 67085 France
- Faculté de Chirurgie Dentaire Université de Strasbourg Strasbourg 67000 France
- SPARTHA Medical 14B Rue de la Canardiere Strasbourg 67100 France
| | | | - Varvara Gribova
- Institut National de la Santé et de la Recherche Médicale INSERM Unité 1121 Biomaterials and Bioengineering 11 rue Humann Strasbourg Cedex 67085 France
- Faculté de Chirurgie Dentaire Université de Strasbourg Strasbourg 67000 France
| |
Collapse
|
11
|
Araya-Sibaja AM, Wilhelm K, González-Aguilar GA, Vega-Baudrit JR, Salazar-López NJ, Domínguez-Avila JA, Navarro-Hoyos M. Curcumin Loaded and Co-loaded Nanosystems: A Review from a Biological Activity Enhancement Perspective. Pharm Nanotechnol 2020; 9:85-100. [PMID: 33371864 DOI: 10.2174/2211738508666201228150659] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Revised: 10/21/2020] [Accepted: 11/04/2020] [Indexed: 11/22/2022]
Abstract
BACKGROUND Curcumin is a natural phenolic compound exhibiting multiple bioactivities that have been evaluated in vitro, in vivo as well as through clinical studies in humans. Some of them include antimicrobial, antioxidant, anti-inflammatory, and central nervous system protective effects. Further, curcumin is generally recognized as a safe substance because of its low toxicity. However, its molecular structure is susceptible to changes in pH, oxidation, photodegradation, low aqueous solubility, and biotransformation compromising its bioavailability; these drawbacks are successfully addressed through nanotechnology. OBJECTIVE The present review systematizes findings on the enhancement of curcumin's beneficial effects when it is loaded and co-loaded into different types of nanosystems covering liposomes, polymeric and solid-lipid nanoparticles, nanostructured lipid carrier, lipid-polymeric hybrids, self- -assembled and protein-based core-shell systems in relation to its antimicrobial, antioxidant, anti-inflammatory and central nervous system protective bioactivities. CONCLUSION Curcumin is a versatile molecule capable of exerting antimicrobial, antioxidant, anti- inflammatory, and central nervous system protective effects in an enhanced manner using the possibilities offered by the nanotechnology-based approach. Its enhanced bioactivities are associated with increments in solubility, stability, bioavailability, as well as in improved intracellular uptake and cell internalization. These advantages, in addition to curcumin's low toxicity, indicate the potential of curcumin to be loaded and co-loaded into nanosystems capable of providing a controlled release and targeted administration.
Collapse
Affiliation(s)
- Andrea M Araya-Sibaja
- Laboratorio Nacional de Nanotecnología LANOTEC-CeNAT-CONARE, 1174-1200, Pavas, San José, Costa Rica
| | - Krissia Wilhelm
- Laboratorio Nacional de Nanotecnología LANOTEC-CeNAT-CONARE, 1174-1200, Pavas, San José, Costa Rica
| | - Gustavo A González-Aguilar
- Laboratorio de Antioxidantes y Alimentos Funcionales, Centro de Investigación en Alimentación y Desarrollo (CIAD), A.C., Carretera Gustavo Enrique Astiazarán Rosas No. 46, Col. La Victoria, Hermosillo, Sonora 83304, Mexico
| | - José R Vega-Baudrit
- Laboratorio Nacional de Nanotecnología LANOTEC-CeNAT-CONARE, 1174-1200, Pavas, San José, Costa Rica
| | - Norma J Salazar-López
- Laboratorio de Antioxidantes y Alimentos Funcionales, Centro de Investigación en Alimentación y Desarrollo (CIAD), A.C., Carretera Gustavo Enrique Astiazarán Rosas No. 46, Col. La Victoria, Hermosillo, Sonora 83304, Mexico
| | - Jesús A Domínguez-Avila
- Cátedras CONACYT-Centro de Investigación en Alimentación y Desarrollo A.C. Carretera Gustavo Enrique Astiazarán Rosas No. 46, Col. La Victoria, Hermosillo, Sonora 83304, Mexico
| | - Mirtha Navarro-Hoyos
- BIODESS, Escuela de Química, Universidad de Costa Rica, San Pedro de Montes de Oca, 2060, San José, Costa Rica
| |
Collapse
|
12
|
Amphiphilic polymeric nanoparticles encapsulating curcumin: Antioxidant, anti-inflammatory and biocompatibility studies. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2020; 121:111793. [PMID: 33579443 DOI: 10.1016/j.msec.2020.111793] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Revised: 11/19/2020] [Accepted: 12/02/2020] [Indexed: 02/06/2023]
Abstract
Oxidative stress and inflammation are two related processes common to many diseases. Curcumin is a natural compound with both antioxidant and anti-inflammatory properties, among others, that is recently being used as a natural occurring product alternative to traditional drugs. However, it has a hydrophobic nature that compromises its solubility in physiological fluids and its circulation time and also presents cytotoxicity problems in its free form, limiting the range of concentrations to be used. In order to overcome these drawbacks and taking advantage of the benefits of nanotechnology, the aim of this work is the development of curcumin loaded polymeric nanoparticles that can provide a controlled release of the drug and enlarge their application in the treatment of inflammatory and oxidative stress related diseases. Specifically, the vehicle is a bioactive terpolymer based on a α-tocopheryl methacrylate, 1-vinyl-2-pyrrolidone and N-vinylcaprolactam. Nanoparticles were obtained by nanoprecipitation and characterized in terms of size, morphology, stability, encapsulation efficiency and drug release. In vitro cellular assays were performed in human articular chondrocyte and RAW 264.7 cultures to assess cytotoxicity, cellular uptake, antioxidant and anti-inflammatory properties. The radical scavenging activity of the systems was confirmed by the DPPH test and the quantification of cellular reactive oxygen species. The anti-inflammatory potential of these systems was demonstrated by the reduction of different pro-inflammatory factors such as IL-8, MCP and MIP in chondrocytes; and nitric oxide, IL-6, TNF-α and MCP-1, among others, in RAW 264.7. Finally, the in vivo biocompatibility was confirmed in a rat model by subcutaneously injecting the nanoparticle dispersions. The reduction of curcumin toxicity and the antioxidant, anti-inflammatory and biocompatibility properties open the door to deeper in vitro and in vivo research on these curcumin loaded polymeric nanoparticles to treat inflammation and oxidative stress based diseases.
Collapse
|
13
|
Molecular Insight into the Anti-Inflammatory Effects of the Curcumin Ester Prodrug Curcumin Diglutaric Acid In Vitro and In Vivo. Int J Mol Sci 2020; 21:ijms21165700. [PMID: 32784830 PMCID: PMC7461142 DOI: 10.3390/ijms21165700] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Revised: 07/30/2020] [Accepted: 08/03/2020] [Indexed: 12/14/2022] Open
Abstract
Curcumin diglutaric acid (CurDG), an ester prodrug of curcumin, has the potential to be developed as an anti-inflammatory agent due to its improved solubility and stability. In this study, the anti-inflammatory effects of CurDG were evaluated. The effects of CurDG on inflammatory mediators were evaluated in LPS-stimulated RAW 264.7 macrophage cells. CurDG reduced the increased levels of NO, IL-6, and TNF- α, as well as iNOS and COX-2 expression in cells to a greater extent than those of curcumin, along with the potent inhibition of MAPK (ERK1/2, JNK, and p38) activity. The anti-inflammatory effects were assessed in vivo by employing a carrageenan-induced mouse paw edema model. Oral administration of CurDG demonstrated significant anti-inflammatory effects in a dose-dependent manner in mice. The effects were significantly higher compared to those of curcumin at the corresponding doses (p < 0.05). Moreover, 25 mg/kg curcumin did not exert a significant anti-inflammatory effect for the overall time course as indicated by the area under the curve data, while the equimolar dose of CurDG produced significant anti-inflammatory effects comparable with 50, 100, and 200 mg/kg curcumin (p < 0.05). Similarly, CurDG significantly reduced the proinflammatory cytokine expression in paw edema tissues compared to curcumin (p < 0.05). These results provide the first experimental evidence for CurDG as a promising anti-inflammatory agent.
Collapse
|
14
|
Ratnatilaka Na Bhuket P, Wichitnithad W, Sudtanon O, Rojsitthisak P. A stability-indicating UPLC method for the determination of curcumin diethyl disuccinate, an ester prodrug of curcumin, in raw materials. Heliyon 2020; 6:e04561. [PMID: 32904269 PMCID: PMC7452553 DOI: 10.1016/j.heliyon.2020.e04561] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Revised: 07/05/2020] [Accepted: 07/22/2020] [Indexed: 12/12/2022] Open
Abstract
A stability-indicating reversed-phase ultra-performance liquid chromatographic (UPLC) method for quantitative analysis of curcumin diethyl disuccinate (CDD) in raw materials was developed for applications in product development and quality control. Chromatographic separation was performed using the Waters ACQUITY UPLC® H-Class system consisting of an ACQUITY UPLC® BEH C18 (1.7 μm, 2.1 × 50 mm) column and a photodiode array detector set at a wavelength of 400 nm. The mobile phase consisting of 2%v/v acetic acid in water and acetonitrile was delivered at a flow rate of 0.3 mL/min under gradient elution program. The method was validated according to the ICH Q2(R1) guideline for the validation of analytical procedures. The method was found to be linear over the concentration range of 8-12 μg/mL with the coefficient of determination >0.995. The accuracy of the method established as %recovery ranged from 98.3 - 100.8%. The precision of the method expressed as %CV was found to be <1%. The coelution of degradation products from six stress test conditions was not observed. The method was robust under the variation of chromatographic parameters. The method was successfully applied in the determination of CDD content in raw materials.
Collapse
Affiliation(s)
| | - Wisut Wichitnithad
- Natural Products for Ageing and Chronic Diseases Research Unit, Chulalongkorn University, Bangkok, 10330, Thailand
- Department of Analytical Development, Pharma Nueva Co., Ltd., Bangkok, 10900, Thailand
| | - Orawan Sudtanon
- Department of Analytical Development, Pharma Nueva Co., Ltd., Bangkok, 10900, Thailand
| | - Pornchai Rojsitthisak
- Natural Products for Ageing and Chronic Diseases Research Unit, Chulalongkorn University, Bangkok, 10330, Thailand
- Department of Food and Pharmaceutical Chemistry, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok, 10330, Thailand
| |
Collapse
|
15
|
Jiang T, Liao W, Charcosset C. Recent advances in encapsulation of curcumin in nanoemulsions: A review of encapsulation technologies, bioaccessibility and applications. Food Res Int 2020; 132:109035. [PMID: 32331634 DOI: 10.1016/j.foodres.2020.109035] [Citation(s) in RCA: 135] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Revised: 01/22/2020] [Accepted: 01/25/2020] [Indexed: 12/27/2022]
Abstract
Curcumin is widely acknowledged for its beneficial activities. However, its application has remained challenging due to its low aqueous solubility, biochemical/structural degradation and poor bioavailability. For these reasons, many researches are aimed at overcoming these limitations using lipid-based nanosystems to encapsulate curcumin, especially nanoemulsions. This review highlights the theoretical aspects and recent advances of preparation technologies (phase inversion temperature, phase inversion composition, ultrasonication, high pressure homogenization and microfluidization) for encapsulation of curcumin in nanoemulsions. Additionally, the specific factors in designing nanoemulsions systems that affect the chemical stability and in vitro bioaccessibility of the encapsulated curcumin are discussed. Also, the importance of nanoemulsions in improving antioxidant, anti-inflammatory and anticancer activities of curcumin is underlined. Curcumin-loaded nanoemulsions preparation technologies have been proposed to provide efficient, systematic, and practical protocols for improved applications of curcumin. Additionally, key factors that influence curcumin delivery include the nature of emulsifier, the type and the amount of carrier oil and emulsifier-curcumin interactions. The pharmacological activities of curcumin including antioxidant, anti-inflammatory and anticancer activities can be improved by nanoemulsions.
Collapse
Affiliation(s)
- Tian Jiang
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS, LAGEPP UMR 5007, 43 boulevard du 11 novembre 1918, F-69100 Villeurbanne, France
| | - Wei Liao
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS, LAGEPP UMR 5007, 43 boulevard du 11 novembre 1918, F-69100 Villeurbanne, France
| | - Catherine Charcosset
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS, LAGEPP UMR 5007, 43 boulevard du 11 novembre 1918, F-69100 Villeurbanne, France.
| |
Collapse
|