1
|
Miao H, Wang H, Feng X, Jiao H. One-step spray pyrolysis synthesis of ZnO/Ag hollow spheres for enhanced visible-light-driven antibacterial applications and wound healing. Dalton Trans 2025. [PMID: 39760334 DOI: 10.1039/d4dt02581d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2025]
Abstract
ZnO/Ag hollow particles were synthesized via a one-step spray pyrolysis method for enhanced antibacterial activity and wound healing applications. The hollow structure and uniform distribution of Ag nanoparticles within the ZnO matrix were confirmed by X-ray diffraction (XRD), transmission electron microscopy (TEM), and X-ray photoelectron spectroscopy (XPS). UV-Vis spectroscopy and Tauc plot analysis revealed a reduction in the bandgap, attributed to the surface plasmon resonance (SPR) of Ag, improving light absorption in the visible range. Antibacterial tests against Escherichia coli (E. coli) and methicillin-resistant Staphylococcus aureus (MRSA) showed that ZnO/Ag composites exhibited significantly enhanced antibacterial efficacy under visible light compared to pure ZnO. The antibacterial mechanism was investigated using electron paramagnetic resonance (EPR) spectroscopy, which confirmed the generation of reactive oxygen species (˙OH and ˙O2-). These results indicate that ZnO/Ag hollow composites are promising candidates for antibacterial coatings and wound healing applications, especially under visible light activation.
Collapse
Affiliation(s)
- Hailong Miao
- Anaesthesiology department, Honghui Hospital, Xi'an Jiaotong University, Xi'an, 710054, China.
| | - Haili Wang
- Anaesthesiology department, Honghui Hospital, Xi'an Jiaotong University, Xi'an, 710054, China.
| | - Xiaoyue Feng
- Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Third Hospital of Shanxi Medical University, Tongji Shanxi Hospital, Taiyuan, 030032, China.
| | - Hongwei Jiao
- Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Third Hospital of Shanxi Medical University, Tongji Shanxi Hospital, Taiyuan, 030032, China.
| |
Collapse
|
2
|
Cetin FN, Mignon A, Van Vlierberghe S, Kolouchova K. Polymer- and Lipid-Based Nanostructures Serving Wound Healing Applications: A Review. Adv Healthc Mater 2025; 14:e2402699. [PMID: 39543796 DOI: 10.1002/adhm.202402699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 10/18/2024] [Indexed: 11/17/2024]
Abstract
Management of hard-to-heal wounds often requires specialized care that surpasses the capabilities of conventional treatments. Even the most advanced commercial products lack the functionality to meet the needs of hard-to-heal wounds, especially those complicated by active infection, extreme bleeding, and chronic inflammation. The review explores how supramolecular nanovesicles and nanoparticles-such as dendrimers, micelles, polymersomes, and lipid-based nanocarriers-can be key to introducing advanced wound healing and monitoring properties to address the complex needs of hard-to-heal wounds. Their potential to enable advanced functions essential for next-generation wound healing products-such as hemostatic functions, transdermal penetration, macrophage polarization, targeted delivery, and controlled release of active pharmaceutical ingredients (antibiotics, gaseous products, anti-inflammatory drugs, growth factors)-is discussed via an extensive overview of the recent reports. These studies highlight that the integration of supramolecular systems in wound care is crucial for advancing toward a new generation of wound healing products and addressing significant gaps in current wound management practices. Current strategies and potential improvements regarding personalized therapies, transdermal delivery, and the promising critically evaluated but underexplored polymer-based nanovesicles, including polymersomes and proteinosomes, for wound healing.
Collapse
Affiliation(s)
- Fatma N Cetin
- Department of Organic and Macromolecular Chemistry, Ghent University, Krijgslaan 281, Gent, 9000, Belgium
| | - Arn Mignon
- Department of Engineering Technology, KU Leuven, Andreas Vesaliusstraat 13, Leuven, 3000, Belgium
| | - Sandra Van Vlierberghe
- Department of Organic and Macromolecular Chemistry, Ghent University, Krijgslaan 281, Gent, 9000, Belgium
| | - Kristyna Kolouchova
- Department of Organic and Macromolecular Chemistry, Ghent University, Krijgslaan 281, Gent, 9000, Belgium
| |
Collapse
|
3
|
Zubair M, Hussain S, Ur-Rehman M, Hussain A, Akram ME, Shahzad S, Rauf Z, Mujahid M, Ullah A. Trends in protein derived materials for wound care applications. Biomater Sci 2024; 13:130-160. [PMID: 39569610 DOI: 10.1039/d4bm01099j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2024]
Abstract
Natural resource based polymers, especially those derived from proteins, have attracted significant attention for their potential utilization in advanced wound care applications. Protein based wound care materials provide superior biocompatibility, biodegradability, and other functionalities compared to conventional dressings. The effectiveness of various fabrication techniques, such as electrospinning, phase separation, self-assembly, and ball milling, is examined in the context of developing protein-based materials for wound healing. These methods produce a wide range of forms, including hydrogels, scaffolds, sponges, films, and bioinspired nanomaterials, each designed for specific types of wounds and different stages of healing. This review presents a comprehensive analysis of recent research that investigates the transformation of proteins into materials for wound healing applications. Our focus is on essential proteins, such as keratin, collagen, gelatin, silk, zein, and albumin, and we emphasize their distinct traits and roles in wound care management. Protein-based wound care materials show promising potential in biomedical engineering, offering improved healing capabilities and reduced risks of infection. It is crucial to explore the potential use of these materials in clinical settings while also addressing the challenges that may arise from their commercialization in the future.
Collapse
Affiliation(s)
- Muhammad Zubair
- Lipids Utilization Lab, Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, Alberta, Canada T6G 2P5.
| | - Saadat Hussain
- LEJ Nanotechnology Center, HEJ Research Institute of Chemistry, ICCBS, University of Karachi, Karachi-75270, Pakistan
| | - Mujeeb- Ur-Rehman
- LEJ Nanotechnology Center, HEJ Research Institute of Chemistry, ICCBS, University of Karachi, Karachi-75270, Pakistan
| | - Ajaz Hussain
- Institute of Chemical Sciences, Bahauddin Zakariya University, Multan 60800, Punjab, Pakistan
| | - Muhammad Ehtisham Akram
- Institute of Chemical Sciences, Bahauddin Zakariya University, Multan 60800, Punjab, Pakistan
| | - Sohail Shahzad
- Department of Chemistry, University of Sahiwal, Sahiwal 57000, Pakistan
| | - Zahid Rauf
- Pakistan Forest Institute (PFI), Peshawar 25130, Khyber Pakhtunkhwa, Pakistan
| | - Maria Mujahid
- Department of Chemistry, University of Sahiwal, Sahiwal 57000, Pakistan
| | - Aman Ullah
- Lipids Utilization Lab, Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, Alberta, Canada T6G 2P5.
| |
Collapse
|
4
|
Kusnadi K, Herdiana Y, Rochima E, Putra ON, Mohd Gazzali A, Muchtaridi M. Collagen-Based Nanoparticles as Drug Delivery System in Wound Healing Applications. Int J Nanomedicine 2024; 19:11321-11341. [PMID: 39524919 PMCID: PMC11550700 DOI: 10.2147/ijn.s485588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2024] [Accepted: 10/11/2024] [Indexed: 11/16/2024] Open
Abstract
Background Conventional wound dressings often adhere to wounds and can cause secondary injury due to their lack of anti-inflammatory and antibacterial properties. In contrast, collagen-based nanoparticles (NPs) as drug delivery systems exhibit both biocompatibility and biodegradability, presenting a promising avenue for accelerating wound healing processes. Aims of Study This review aims to provide a comprehensive overview of the mechanisms involved in wound healing, description of the attributes of ideal wound dressings, understanding of wound healing efficacy of collagen, exploring NPs-mediated drug delivery mechanisms in wound therapy, detailing the synthesis and fabrication techniques of collagen-based NPs, and delineating the applications of various collagen-based NPs infused wound dressings on wound healing. Methodology This review synthesizes relevant literature from reputable databases such as Scopus, Science Direct, Google Scholar, and PubMed. Results A diverse array of collagen-based NPs, including nanopolymers, metal NPs, nanoemulsions, nanoliposomes, and nanofibers, demonstrate pronounced efficacy in promoting wound closure and tissue regeneration. The incorporation of collagen-based NPs has not only become an agent for the delivery of therapeutics but also actively contributes to the wound healing cascade. Conclusion In conclusion, In brief, the use of collagen-based NPs presents a compelling strategy for expediting wound healing processes.
Collapse
Affiliation(s)
- Kusnadi Kusnadi
- Department of Pharmacy Analysis and Medicinal Chemistry, Faculty of Pharmacy, Universitas Padjadjaran, Sumedang, 45363, Indonesia
- Department of Pharmacy, Politeknik Harapan Bersama, Tegal, Central Java, 52147, Indonesia
| | - Yedi Herdiana
- Department of Pharmacy Analysis and Medicinal Chemistry, Faculty of Pharmacy, Universitas Padjadjaran, Sumedang, 45363, Indonesia
| | - Emma Rochima
- Department of Fishery, Faculty of Fisheries and Marine Sciences, Universitas Padjadjaran, Sumedang, West Java, 45363, Indonesia
| | - Okta Nama Putra
- Department of Pharmacy Analysis and Medicinal Chemistry, Faculty of Pharmacy, Universitas Padjadjaran, Sumedang, 45363, Indonesia
- Research Center for Agroindustry, National Research and Innovation Agency (BRIN), Cibinong, Jawa Barat, 16911, Indonesia
| | - Amirah Mohd Gazzali
- School of Pharmaceutical Sciences, Universiti Sains Malaysia, Gelugor, Penang, 11800, Malaysia
| | - Muchtaridi Muchtaridi
- Department of Pharmacy Analysis and Medicinal Chemistry, Faculty of Pharmacy, Universitas Padjadjaran, Sumedang, 45363, Indonesia
- Research Collaboration Centre for Radiopharmaceuticals Theranostic, National Research and Innovation Agency (BRIN), Sumedang, West Java, 45363, Indonesia
| |
Collapse
|
5
|
Bharathi VU, Thambidurai S. Phytofabrication of biocompatible chitosan-based ZnO nanocomposite aided by Cissus quadrangularis extract enriched with antimicrobial and antioxidant potential. Int J Biol Macromol 2024; 271:132677. [PMID: 38820903 DOI: 10.1016/j.ijbiomac.2024.132677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 05/04/2024] [Accepted: 05/24/2024] [Indexed: 06/02/2024]
Abstract
A dynamic chitosan-based ZnO nanocomposite (NC) was fabricated via a cost-effective formulation and an eco-friendly procedure utilizing Cissus quadrangularis (CQ) plant extract. This study investigates the antimicrobial and antioxidant properties, together with the cytocompatibility aspects of chitosan-incorporated ZnO nanocomposite (CS-ZnO/CQE). The formation and structural morphology of the nanocomposites were examined using FTIR, UV-Vis, XRD, XPS, BET, TGA, SEM, and TEM techniques. The antibacterial test results demonstrated the greatest inhibitory zone diameter against S. aureus (19 ± 1.00 mm) and E. coli (17 ± 1.05 mm), assessed through agar well diffusion method. Also, the composite exhibited a DPPH inhibition rate of 78.7 ± 0.34 %, indicating its high effectiveness in neutralizing free radicals. In addition, the nanocomposite exhibited less toxicity towards human erythrocytes, HDF and HEK-293 cells as a result of the biocompatibility exhibited by CS, ZnO, and CQ plant extract. Likewise, it has exceptional cell migratory capacity and possesses biodegradability factors. These observations strongly suggest the potential of CS-ZnO/CQE as a cutting-edge antibacterial and antioxidant agent to be implemented in the medical sector.
Collapse
Affiliation(s)
- V Umaiya Bharathi
- Bio-nanomaterials Research Lab, Department of Industrial Chemistry, School of chemical Sciences, Alagappa University, Karaikudi 630003, Tamil Nadu, India
| | - S Thambidurai
- Bio-nanomaterials Research Lab, Department of Industrial Chemistry, School of chemical Sciences, Alagappa University, Karaikudi 630003, Tamil Nadu, India.
| |
Collapse
|
6
|
Zhang H, Zhang X, Cao Q, Wu S, Wang XQ, Peng N, Zeng D, Liao J, Xu H. Facile fabrication of chitin/ZnO composite hydrogels for infected wound healing. Biomater Sci 2022; 10:5888-5899. [PMID: 36040455 DOI: 10.1039/d2bm00340f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
When ordinary wounds are infected, the skin's self-healing capacity declines; thus appropriate dressings with both antibacterial ability and healing ability for bacteria-associated wounds are indispensable. In this work, multifunctional chitin/ZnO composite hydrogels have been designed as an infected full-thickness skin wound-healing material. The hydrogels are fabricated by a facile one-pot strategy through the sequential addition of commercial ZnO powders into aqueous alkaline chitin solutions, crosslinking and regeneration. The regenerated nanoscale ZnO particles aggregate into microscale particles and are embedded in the chitin matrix with tight interactions, including hydrogen bonding and coordination interactions. The decoration of ZnO endows the chitin/ZnO composite hydrogels with excellent antibacterial activity against Escherichia coli (E. coli) and Staphylococcus aureus (S. aureus), with acceptable biocompatibility. More importantly, the chitin/ZnO composite hydrogels show an outstanding accelerated infectious full-thickness wound-healing performance with more fibroblast proliferation, more collagen deposition, and more neogenesis of the epithelium and granulation tissue. Therefore, it is expected that the chitin/ZnO composite hydrogels can serve as competitive skin wound dressings for the prevention and control of infections.
Collapse
Affiliation(s)
- Hongli Zhang
- Key Laboratory of Coal Conversion and New Carbon Materials of Hubei Province School of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, Wuhan 430081, China.
| | - Xu Zhang
- State Key Laboratory of Oral Diseases, National Clinical Research Centre for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China.
| | - Qi Cao
- Key Laboratory of Coal Conversion and New Carbon Materials of Hubei Province School of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, Wuhan 430081, China.
| | - Shuangquan Wu
- Zhongnan Hospital of Wuhan University, Institute of Hepatobiliary Diseases of Wuhan University, Transplant Center of Wuhan University, Hubei Key Laboratory of Medical Technology on Transplantation, Wuhan 430071, China
| | - Xiao-Qiang Wang
- Key Laboratory of Coal Conversion and New Carbon Materials of Hubei Province School of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, Wuhan 430081, China.
| | - Na Peng
- Key Laboratory of Coal Conversion and New Carbon Materials of Hubei Province School of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, Wuhan 430081, China.
| | - Danlin Zeng
- Key Laboratory of Coal Conversion and New Carbon Materials of Hubei Province School of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, Wuhan 430081, China.
| | - Jinfeng Liao
- State Key Laboratory of Oral Diseases, National Clinical Research Centre for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China.
| | - Huan Xu
- Key Laboratory of Coal Conversion and New Carbon Materials of Hubei Province School of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, Wuhan 430081, China.
| |
Collapse
|
7
|
Biogenic Collagen-Nano ZnO Composite Membrane as Potential Wound Dressing Material: Structural Characterization, Antibacterial Studies and In Vivo Wound Healing Studies. J Inorg Organomet Polym Mater 2022. [DOI: 10.1007/s10904-022-02351-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
8
|
Nanocarriers as Active Ingredients Enhancers in the Cosmetic Industry-The European and North America Regulation Challenges. Molecules 2022; 27:molecules27051669. [PMID: 35268769 PMCID: PMC8911847 DOI: 10.3390/molecules27051669] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 02/14/2022] [Accepted: 03/01/2022] [Indexed: 02/07/2023] Open
Abstract
“Flawless skin is the most universally desired human feature” is an iconic statement by Desmond Morris. Skin indicates one´s health and is so important that it affects a person’s emotional and psychological behavior, these facts having propelled the development of the cosmetics industry. It is estimated that in 2023, this industry will achieve more than 800 billion dollars. This boost is due to the development of new cosmetic formulations based on nanotechnology. Nanocarriers have been able to solve problems related to active ingredients regarding their solubility, poor stability, and release. Even though nanocarriers have evident benefits, they also present some problems related to the high cost, low shelf life, and toxicity. Regulation and legislation are two controversial topics regarding the use of nanotechnology in the field of cosmetics. In this area, the U.S. FDA has taken the lead and recommended several biosafety studies and post-market safety evaluations. The lack of a global definition that identifies nanomaterials as a cosmetic ingredient is a hindrance to the development of global legislation. In the EU, the legislation regarding the biosafety of nanomaterials in cosmetics is stricter. “The cost is not the only important issue, safety and the application of alternative testing methods for toxicity are of crucial importance as well”.
Collapse
|
9
|
Ortega F, Versino F, López OV, García MA. Biobased composites from agro-industrial wastes and by-products. EMERGENT MATERIALS 2022; 5:873-921. [PMID: 34849454 PMCID: PMC8614084 DOI: 10.1007/s42247-021-00319-x] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Accepted: 10/14/2021] [Indexed: 05/09/2023]
Abstract
The greater awareness of non-renewable natural resources preservation needs has led to the development of more ecological high-performance polymeric materials with new functionalities. In this regard, biobased composites are considered interesting options, especially those obtained from agro-industrial wastes and by-products. These are low-cost raw materials derived from renewable sources, which are mostly biodegradable and would otherwise typically be discarded. In this review, recent and innovative academic studies on composites obtained from biopolymers, natural fillers and active agents, as well as green-synthesized nanoparticles are presented. An in-depth discussion of biobased composites structures, properties, manufacture, and life-cycle assessment (LCA) is provided along with a wide up-to-date overview of the most recent works in the field with appropriate references. Potential uses of biobased composites from agri-food residues such as active and intelligent food packaging, agricultural inputs, tissue engineering, among others are described, considering that the specific characteristics of these materials should match the proposed application.
Collapse
Affiliation(s)
- Florencia Ortega
- Centro de Investigación y Desarrollo en Criotecnología de Alimentos (CIDCA), UNLP-CONICET-CICPBA, 47 y 116 (1900), La Plata, Argentina
| | - Florencia Versino
- Centro de Investigación y Desarrollo en Criotecnología de Alimentos (CIDCA), UNLP-CONICET-CICPBA, 47 y 116 (1900), La Plata, Argentina
| | - Olivia Valeria López
- Planta Piloto de Ingeniería Química (PLAPIQUI), UNS-CONICET, Camino La Carrindanga km.7 (8000), Bahía Blanca, Argentina
| | - María Alejandra García
- Centro de Investigación y Desarrollo en Criotecnología de Alimentos (CIDCA), UNLP-CONICET-CICPBA, 47 y 116 (1900), La Plata, Argentina
| |
Collapse
|