1
|
Kamal R, Awasthi A, Pundir M, Thakur S. Healing the diabetic wound: Unlocking the secrets of genes and pathways. Eur J Pharmacol 2024; 975:176645. [PMID: 38759707 DOI: 10.1016/j.ejphar.2024.176645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 05/03/2024] [Accepted: 05/13/2024] [Indexed: 05/19/2024]
Abstract
Diabetic wounds (DWs) are open sores that can occur anywhere on a diabetic patient's body. They are often complicated by infections, hypoxia, oxidative stress, hyperglycemia, and reduced growth factors and nucleic acids. The healing process involves four phases: homeostasis, inflammation, proliferation, and remodeling, regulated by various cellular and molecular events. Numerous genes and signaling pathways such as VEGF, TGF-β, NF-κB, PPAR-γ, MMPs, IGF, FGF, PDGF, EGF, NOX, TLR, JAK-STAT, PI3K-Akt, MAPK, ERK, JNK, p38, Wnt/β-catenin, Hedgehog, Notch, Hippo, FAK, Integrin, and Src pathways are involved in these events. These pathways and genes are often dysregulated in DWs leading to impaired healing. The present review sheds light on the pathogenesis, healing process, signaling pathways, and genes involved in DW. Further, various therapeutic strategies that target these pathways and genes via nanotechnology are also discussed. Additionally, clinical trials on DW related to gene therapy are also covered in the present review.
Collapse
Affiliation(s)
- Raj Kamal
- Department of Quality Assurance, ISF College of Pharmacy, Moga, Punjab, 142001, India
| | - Ankit Awasthi
- Department of Pharmaceutics, ISF College of Pharmacy, Moga, Punjab, 142001, India.
| | - Mandeep Pundir
- School of Pharmaceutical Sciences, RIMT University, Punjab, 142001, India; Chitkara College of Pharmacy, Chitkara University, Punjab, 142001, India
| | - Shubham Thakur
- Department of Pharmaceutics, ISF College of Pharmacy, Moga, Punjab, 142001, India
| |
Collapse
|
2
|
Galarraga-Vinueza ME, Barootchi S, Nevins ML, Nevins M, Miron RJ, Tavelli L. Twenty-five years of recombinant human growth factors rhPDGF-BB and rhBMP-2 in oral hard and soft tissue regeneration. Periodontol 2000 2024; 94:483-509. [PMID: 37681552 DOI: 10.1111/prd.12522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 08/19/2023] [Accepted: 08/21/2023] [Indexed: 09/09/2023]
Abstract
Contemporary oral tissue engineering strategies involve recombinant human growth factor approaches to stimulate diverse cellular processes including cell differentiation, migration, recruitment, and proliferation at grafted areas. Recombinant human growth factor applications in oral hard and soft tissue regeneration have been progressively researched over the last 25 years. Growth factor-mediated surgical approaches aim to accelerate healing, tissue reconstruction, and patient recovery. Thus, regenerative approaches involving growth factors such as recombinant human platelet-derived growth factor-BB (rhPDGF-BB) and recombinant human bone morphogenetic proteins (rhBMPs) have shown certain advantages over invasive traditional surgical approaches in severe hard and soft tissue defects. Several clinical studies assessed the outcomes of rhBMP-2 in diverse clinical applications for implant site development and bone augmentation. Current evidence regarding the clinical benefits of rhBMP-2 compared to conventional therapies is inconclusive. Nevertheless, it seems that rhBMP-2 can promote faster wound healing processes and enhance de novo bone formation, which may be particularly favorable in patients with compromised bone healing capacity or limited donor sites. rhPDGF-BB has been extensively applied for periodontal regenerative procedures and for the treatment of gingival recessions, showing consistent and positive outcomes. Nevertheless, current evidence regarding its benefits at implant and edentulous sites is limited. The present review explores and depicts the current applications, outcomes, and evidence-based clinical recommendations of rhPDGF-BB and rhBMPs for oral tissue regeneration.
Collapse
Affiliation(s)
- Maria Elisa Galarraga-Vinueza
- Tufts University School of Dental Medicine, Boston, Massachusetts, USA
- School of Dentistry, Universidad de las Américas (UDLA), Quito, Ecuador
| | - Shayan Barootchi
- Department of Periodontics and Oral Medicine, University of Michigan School of Dentistry, Ann Arbor, Michigan, USA
- Center for Clinical Research and Evidence Synthesis in Oral Tissue Regeneration (CRITERION), Boston, Massachusetts, USA
| | - Marc L Nevins
- Division of Periodontology, Department of Oral Medicine, Infection and Immunity, Harvard School of Dental Medicine, Boston, Massachusetts, USA
| | - Myron Nevins
- Division of Periodontology, Department of Oral Medicine, Infection and Immunity, Harvard School of Dental Medicine, Boston, Massachusetts, USA
| | - Richard J Miron
- Department of Periodontology, University of Bern, Bern, Switzerland
| | - Lorenzo Tavelli
- Center for Clinical Research and Evidence Synthesis in Oral Tissue Regeneration (CRITERION), Boston, Massachusetts, USA
- Division of Periodontology, Department of Oral Medicine, Infection and Immunity, Harvard School of Dental Medicine, Boston, Massachusetts, USA
| |
Collapse
|
3
|
Zheng SY, Wan XX, Kambey PA, Luo Y, Hu XM, Liu YF, Shan JQ, Chen YW, Xiong K. Therapeutic role of growth factors in treating diabetic wound. World J Diabetes 2023; 14:364-395. [PMID: 37122434 PMCID: PMC10130901 DOI: 10.4239/wjd.v14.i4.364] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 01/16/2023] [Accepted: 03/21/2023] [Indexed: 04/12/2023] Open
Abstract
Wounds in diabetic patients, especially diabetic foot ulcers, are more difficult to heal compared with normal wounds and can easily deteriorate, leading to amputation. Common treatments cannot heal diabetic wounds or control their many complications. Growth factors are found to play important roles in regulating complex diabetic wound healing. Different growth factors such as transforming growth factor beta 1, insulin-like growth factor, and vascular endothelial growth factor play different roles in diabetic wound healing. This implies that a therapeutic modality modulating different growth factors to suit wound healing can significantly improve the treatment of diabetic wounds. Further, some current treatments have been shown to promote the healing of diabetic wounds by modulating specific growth factors. The purpose of this study was to discuss the role played by each growth factor in therapeutic approaches so as to stimulate further therapeutic thinking.
Collapse
Affiliation(s)
- Shen-Yuan Zheng
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha 410008, Hunan Province, China
- Department of Anatomy and Neurobiology, School of Basic Medical Science, Central South University, Changsha 410013, Hunan Province, China
| | - Xin-Xing Wan
- Department of Endocrinology, Third Xiangya Hospital, Central South University, Changsha 410013, Hunan Province, China
| | - Piniel Alphayo Kambey
- Department of Neurobiology and Anatomy, Xuzhou Medical University, Xuzhou 221004, Jiangsu Province, China
| | - Yan Luo
- Clinical Medicine Eight-Year Program, Xiangya School of Medicine, Central South University, Changsha 410013, Hunan Province, China
| | - Xi-Min Hu
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha 410008, Hunan Province, China
- Department of Anatomy and Neurobiology, School of Basic Medical Science, Central South University, Changsha 410013, Hunan Province, China
| | - Yi-Fan Liu
- Clinical Medicine Eight-Year Program, Xiangya School of Medicine, Central South University, Changsha 410013, Hunan Province, China
| | - Jia-Qi Shan
- Clinical Medicine Eight-Year Program, Xiangya School of Medicine, Central South University, Changsha 410013, Hunan Province, China
| | - Yu-Wei Chen
- Clinical Medicine Eight-Year Program, Xiangya School of Medicine, Central South University, Changsha 410013, Hunan Province, China
| | - Kun Xiong
- Department of Anatomy and Neurobiology, School of Basic Medical Science, Central South University, Changsha 410013, Hunan Province, China
- Key Laboratory of Emergency and Trauma, College of Emergency and Trauma, Hainan Medical University, Haikou 571199, Hainan Province, China
- Hunan Key Laboratory of Ophthalmology, Central South University, Changsha 410013, Hunan Province, China
| |
Collapse
|
4
|
Role of Innate Immune Cells in Chronic Diabetic Wounds. J Indian Inst Sci 2023. [DOI: 10.1007/s41745-022-00355-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/17/2023]
|
5
|
Tavelli L, Chen CYJ, Barootchi S, Kim DM. Efficacy of biologics for the treatment of periodontal infrabony defects: An American Academy of Periodontology best evidence systematic review and network meta-analysis. J Periodontol 2022; 93:1803-1826. [PMID: 36279121 DOI: 10.1002/jper.22-0120] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 04/05/2022] [Accepted: 04/05/2022] [Indexed: 01/05/2023]
Abstract
BACKGROUND A large variety of biomaterials, biologics and membranes have been utilized in the past 40 years for the regenerative treatment of periodontal infrabony defects. Biologic agents have progressively gained popularity among clinicians and are routinely used for periodontal regeneration. In alignment with the goals of the American Academy of Periodontology (AAP) Best Evidence Consensus (BEC) on the use of biologic mediators in contemporary clinical practice, the aim of this sytematic review was to evaluate the effect of biologic agents, specifically autogenous blood-dervied products (ABPs), enamel matrix derivative (EMD) and recombinant human platelet-derived growth factor-BB (rhPDGF-BB), on the regenerative outcomes of infrabony defects. METHODS A detailed systematic search was conducted to identify eligible randomized control trials (RCTs) reporting the outcomes of periodontal regenerative therapy using biologics for the treatment of infrabony defects. A frequentist mixed-modeling approach to network meta-analysis (NMA), characterized by the assessment of three individual components for the treatment of an infrabony defect (the bone graft material [BG], the biologic agent, the application of a barrier membrane) was performed to evaluate and compare the relative efficacy of the different components, on the outcomes of different therapeutic modalities of periodontal regeneration. RESULTS A total of 153 eligible RCTs were included, with 150 studies contributing to the NMA. The quantitative analysis showed that the addition of biologic agents to bone graft significantly improves the clinical and radiographic outcomes, as compared to BG and flap procedures alone. Barrier membranes enhanced the regenerative outcomes of BG but did not provide further benefits in combination with biologics. The type of BG (autogenous, allogeneic, xenogeneic or alloplastic) and the biologic agent (EMD, platelet-rich fibrin [PRF], platelet-rich plasma [PRP] or rhPDGF-BB) played a significant role on the final outcomes of infrabony defects. Allogeneic and xenogeneic BGs exhibited statistically significantly superior clinical gain than synthetic and autogenous BGs (p < 0.05 in all the comparisons), while rhPDGF-BB and PRF demonstrated significantly higher stability of the gingival margin (p < 0.01) and radiographic bone fill/gain (p < 0.05), together with greater, although not statistically significant, clinical attachment level gain and pocket depth reduction, than EMD and PRP. Overall, rhPDGF-BB exhibited the largest effect size for most parameters, including clinical attachment level gain, pocket depth reduction, less gingival recession and radiographic linear bone gain. Considering the relatively high number of trials presenting an unclear or high risk of bias, the strength of recommendation supporting the use of PRP was judged weak, while the recommendation for EMD, PRF and rhPDGF-BB was deemed in favor. CONCLUSIONS Biologics enhance the outcomes of periodontal regenerative therapy. Combination therapies involving BGs + biologics or BGs + barrier membrane demonstrated to be superior to monotherapies. The choice of the type of BG and biologic agent seems to have significant impact on the clinical and radiographic outcomes of infrabony defects.
Collapse
Affiliation(s)
- Lorenzo Tavelli
- Department of Oral Medicine, Infection, and Immunity, Division of Periodontology, Harvard School of Dental Medicine, Boston, Massachusetts, USA
| | - Chia-Yu Jennifer Chen
- Department of Oral Medicine, Infection, and Immunity, Division of Periodontology, Harvard School of Dental Medicine, Boston, Massachusetts, USA
| | - Shayan Barootchi
- Department of Periodontics & Oral Medicine, University of Michigan School of Dentistry, Ann Arbor, Michigan, USA
| | - David M Kim
- Department of Oral Medicine, Infection, and Immunity, Division of Periodontology, Harvard School of Dental Medicine, Boston, Massachusetts, USA
| |
Collapse
|
6
|
Tavelli L, Barootchi S, Rodriguez MV, Mancini L, Majzoub J, Travan S, Sugai J, Chan H, Kripfgans O, Wang H, Giannobile WV. Recombinant human platelet-derived growth factor improves root coverage of a collagen matrix for multiple adjacent gingival recessions: A triple-blinded, randomized, placebo-controlled trial. J Clin Periodontol 2022; 49:1169-1184. [PMID: 35871600 PMCID: PMC9796054 DOI: 10.1111/jcpe.13706] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2021] [Revised: 07/10/2022] [Accepted: 07/16/2022] [Indexed: 12/30/2022]
Abstract
AIM To evaluate the efficacy of recombinant human platelet-derived growth factor (rhPDGF)-BB combined with a cross-linked collagen matrix (CCM) for the treatment of multiple adjacent gingival recession type 1 defects (MAGRs) in combination with the coronally advanced flap (CAF). MATERIALS AND METHODS Thirty patients were enrolled in this triple-blind, randomized, placebo-controlled trial and treated with either CAF + CCM + rhPDGF, or CAF + CCM + saline. The primary outcome was mean root coverage (mRC) at 6 months. Complete root coverage, gain in gingival thickness (GT), keratinized tissue width, volumetric and ultrasonographic changes, and patient-reported outcome measures were also assessed. Mixed-modelling regression analyses were used for statistical comparisons. RESULTS At 6 months, the mRC of the CCM + rhPDGF and CCM alone groups were 88.25% and 77.72%, respectively (p = .02). A significant gain in GT was consistently observed for both treatment arms, and more so for the patients receiving the matrix containing rhPDGF through time (0.51 vs. 0.80 mm, on average, p = .01). The rhPDGF + CCM treated patients presented greater volume gain, higher soft tissue thickness, and a superior aesthetic score. CONCLUSION rhPDGF enhances the clinical, volumetric, and aesthetic outcomes of MAGRs above the results achieved with CAF + CCM alone (ClinicalTrials.gov NCT04462237).
Collapse
Affiliation(s)
- Lorenzo Tavelli
- Department of Oral Medicine, Infection, and Immunity, Division of PeriodontologyHarvard School of Dental MedicineBostonMassachusettsUSA,Department of Periodontics and Oral MedicineUniversity of Michigan School of DentistryAnn ArborMichiganUSA,Center for clinical Research and evidence synthesis In oral TissuE RegeneratION (CRITERION)BostonMassachusettsUSA
| | - Shayan Barootchi
- Department of Periodontics and Oral MedicineUniversity of Michigan School of DentistryAnn ArborMichiganUSA,Center for clinical Research and evidence synthesis In oral TissuE RegeneratION (CRITERION)BostonMassachusettsUSA
| | - Maria Vera Rodriguez
- Department of Periodontics and Oral MedicineUniversity of Michigan School of DentistryAnn ArborMichiganUSA,Postgraduate Periodontics, Division of PeriodonticsColumbia University College of Dental MedicineNew YorkNew YorkUSA
| | - Leonardo Mancini
- Department of Life, Health and Environmental SciencesUniversity of L'AquilaL'AquilaItaly
| | - Jad Majzoub
- Department of Periodontics and Oral MedicineUniversity of Michigan School of DentistryAnn ArborMichiganUSA
| | - Suncica Travan
- Department of Periodontics and Oral MedicineUniversity of Michigan School of DentistryAnn ArborMichiganUSA
| | - Jim Sugai
- Department of Periodontics and Oral MedicineUniversity of Michigan School of DentistryAnn ArborMichiganUSA
| | - Hsun‐Liang Chan
- Department of Periodontics and Oral MedicineUniversity of Michigan School of DentistryAnn ArborMichiganUSA
| | - Oliver Kripfgans
- Biointerfaces Institute and Department of Biomedical EngineeringCollege of EngineeringAnn ArborMichiganUSA,Department of RadiologyUniversity of Michigan Medical SchoolAnn ArborMichiganUSA
| | - Hom‐Lay Wang
- Department of Periodontics and Oral MedicineUniversity of Michigan School of DentistryAnn ArborMichiganUSA
| | - William V. Giannobile
- Department of Oral Medicine, Infection, and Immunity, Division of PeriodontologyHarvard School of Dental MedicineBostonMassachusettsUSA,Center for clinical Research and evidence synthesis In oral TissuE RegeneratION (CRITERION)BostonMassachusettsUSA
| |
Collapse
|
7
|
Ouyang L, Qiu D, Fu X, Wu A, Yang P, Yang Z, Wang Q, Yan L, Xiao R. Overexpressing HPGDS in adipose-derived mesenchymal stem cells reduces inflammatory state and improves wound healing in type 2 diabetic mice. Stem Cell Res Ther 2022; 13:395. [PMID: 35922870 PMCID: PMC9351105 DOI: 10.1186/s13287-022-03082-w] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Accepted: 07/21/2022] [Indexed: 12/27/2022] Open
Abstract
Background In diabetes, delayed wound healing was considered as the result of excessive recruitment and retention of pro-inflammatory cells and factors. Hematopoietic prostaglandin D synthase (HPGDS) was identified from differently expressed genes of diabetic human foot skin. HPGDS is responsible for the production of prostaglandin D2 (PGD2), an inflammatory mediator. Therefore, we aim to explore whether HPGDS could be a therapeutic target in the diabetic wound (DW). Method In this study, we compared gene expression profilings of diabetic human foot skin and non-diabetic human foot skin from the Gene Expression Omnibus database. We detected the characteristics of immune components in diabetic mice wound and investigated the role and underlying mechanism of the differently expressed Hpgds for the diabetic wound healing. For in vivo studies, we engineered ADSC to overexpress Hpgds (ADSCHpgds) and evaluated its effects on diabetic wound healing using a full-thickness skin wound model. For in vitro studies, we evaluated the role of ADSCHpgds conditioned medium and PGD2 on Lipopolysaccharide (LPS) induced macrophage. Results Hpgds was significantly down-regulated in type 2 diabetic mice wound and its deficiency delayed normal wound healing. ADSCHpgds accelerated DW healing by reducing neutrophil and CD8T cell recruitment, promoting M2 macrophage polarization and increasing the production of growth factors. ADSCHpgds conditioned medium showed superior capability in promoting M2 macrophage transition than conditioned medium derived from ADSC alone. Conclusion Our results demonstrated that Hpgds is required for wound healing, and ADSCHpgds could accelerate DW healing by improving anti-inflammatory state and normalizing the proliferation phase of wound healing in mice. These findings provide a new insight in the therapeutic strategy of diabetic wound. Supplementary Information The online version contains supplementary material available at 10.1186/s13287-022-03082-w.
Collapse
Affiliation(s)
- Long Ouyang
- Research Center of Plastic Surgery Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, People's Republic of China
| | - Daojing Qiu
- Research Center of Plastic Surgery Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, People's Republic of China
| | - Xin Fu
- Research Center of Plastic Surgery Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, People's Republic of China
| | - Aiping Wu
- Suzhou Institute of Systems Medicine, Suzhou, Jiangsu, People's Republic of China
| | - Pengyuan Yang
- Key Laboratory of Infection and Immunity of CAS, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, People's Republic of China
| | - Zhigang Yang
- Research Center of Plastic Surgery Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, People's Republic of China
| | - Qian Wang
- Research Center of Plastic Surgery Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, People's Republic of China
| | - Li Yan
- Research Center of Plastic Surgery Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, People's Republic of China
| | - Ran Xiao
- Research Center of Plastic Surgery Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, People's Republic of China.
| |
Collapse
|
8
|
Awasthi A, Vishwas S, Gulati M, Corrie L, Kaur J, Khursheed R, Alam A, Alkhayl FF, Khan FR, Nagarethinam S, Kumar R, Arya K, Kumar B, Chellappan DK, Gupta G, Dua K, Singh SK. Expanding arsenal against diabetic wounds using nanomedicines and nanomaterials: Success so far and bottlenecks. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2022.103534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
9
|
Yamaguchi R, Guo X, Zheng J, Zhang J, Han J, Shioya A, Uramoto H, Mochizuki T, Yamada S. PRDX4 Improved Aging-Related Delayed Wound Healing in Mice. J Invest Dermatol 2021; 141:2720-2729. [PMID: 34029576 DOI: 10.1016/j.jid.2021.04.015] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Revised: 03/15/2021] [Accepted: 04/14/2021] [Indexed: 01/09/2023]
Abstract
Aging-related delayed wound healing is an issue of concern worldwide. Oxidative stress is involved in wound healing. Antioxidative enzymes have various roles in this process. PRDX4, a member of the PRDX family, is upregulated after injury. To investigate the effects of PRDX4 on aging-related wound healing, we subjected C57BL/6J (wild-type), human Prdx4‒transgenic (i.e., hPrdx4+/+), Prdx4-knockout (i.e., Prdx4-/y) mice of three age groups (young, adult, and aged) to skin wound formation. The overexpression of PRDX4 accelerated wound healing in adult and aged mice but not in young mice. Aged hPrdx4+/+ mice showed reduced oxidative stress and inflammation, lower numbers of neutrophils, increased macrophage infiltration, increased angiogenesis, and increased GF levels. The granulation tissue of adult and aged hPrdx4+/+ mice was richer in fibroblasts than that in the matched wild-type mice. PRDX4 deficiency was associated with mortality in adult and aged mice. In vitro, the overexpression of PRDX4 promoted the proliferation and migration of fibroblasts derived from adult or aged mice and made fibroblasts more resistant to the cytotoxicity of hydrogen peroxide. PRDX4 is essential for wound healing and can improve the healing process from multiple aspects, suggesting that it may be very beneficial to wound treatment, especially for the elderly.
Collapse
Affiliation(s)
- Reimon Yamaguchi
- Department of Pathology and Laboratory Medicine, School of Medicine, Kanazawa Medical University, Uchinada, Japan; Department of Dermatology, School of Medicine, Kanazawa Medical University, Uchinada, Japan
| | - Xin Guo
- Department of Pathology and Laboratory Medicine, School of Medicine, Kanazawa Medical University, Uchinada, Japan.
| | - Jianbo Zheng
- Department of Pathology and Laboratory Medicine, School of Medicine, Kanazawa Medical University, Uchinada, Japan
| | - Jing Zhang
- Department of Pathology and Laboratory Medicine, School of Medicine, Kanazawa Medical University, Uchinada, Japan
| | - Jia Han
- Department of Pathology and Laboratory Medicine, School of Medicine, Kanazawa Medical University, Uchinada, Japan
| | - Akihiro Shioya
- Department of Pathology and Laboratory Medicine, School of Medicine, Kanazawa Medical University, Uchinada, Japan
| | - Hidetaka Uramoto
- Department of Thoracic Surgery, School of Medicine, Kanazawa Medical University, Uchinada, Japan
| | - Takashi Mochizuki
- Department of Dermatology, School of Medicine, Kanazawa Medical University, Uchinada, Japan
| | - Sohsuke Yamada
- Department of Pathology and Laboratory Medicine, School of Medicine, Kanazawa Medical University, Uchinada, Japan
| |
Collapse
|
10
|
Ye G, Feng Y, Mi Z, Wang D, Lin S, Chen F, Cui J, Yu Y. Expression and Functional Characterization of c-Fos Gene in Chinese Fire-Bellied Newt Cynops Orientalis. Genes (Basel) 2021; 12:genes12020205. [PMID: 33573315 PMCID: PMC7912203 DOI: 10.3390/genes12020205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Revised: 01/27/2021] [Accepted: 01/28/2021] [Indexed: 11/16/2022] Open
Abstract
c-Fos is an immediate-early gene that modulates cellular responses to a wide variety of stimuli and also plays an important role in tissue regeneration. However, the sequence and functions of c-Fos are still poorly understood in newts. This study describes the molecular cloning and characterization of the c-Fos gene (Co-c-Fos) of the Chinese fire-bellied newt, Cynops orientalis. The full-length Co-c-Fos cDNA sequence consists of a 1290 bp coding sequence that encoded 429 amino acids. The alignment and phylogenetic analyses reveal that the amino acid sequence of Co-c-Fos shared a conserved basic leucine zipper domain, including a nuclear localization sequence and a leucine heptad repeat. The Co-c-Fos mRNA is widely expressed in various tissues and is highly and uniformly expressed along the newt limb. After limb amputation, the expression of Co-c-Fos mRNA was immediately upregulated, but rapidly declined. However, the significant upregulation of Co-c-Fos protein expression was sustained for 24 h, overlapping with the wound healing stage of C. orientalis limb regeneration. To investigate if Co-c-Fos participate in newt wound healing, a skin wound healing model is employed. The results show that the treatment of T-5224, a selective c-Fos inhibitor, could largely impair the healing process of newt’s skin wound, as well as the injury-induced matrix metalloproteinase-3 upregulation, which is fundamental to wound epithelium formation. These data suggest that Co-c-Fos might participate in wound healing by modulating the expression of its potential target gene matrix metalloproteinase-3. Our study provides important insights into mechanisms that are responsible for the initiation of newt limb regeneration.
Collapse
Affiliation(s)
- Gang Ye
- Lab of Tissue Engineering, College of Life Sciences, Northwest University, Xi’an 710069, China; (G.Y.); (Y.F.); (Z.M.); (D.W.); (S.L.); (F.C.); (J.C.)
| | - Yalong Feng
- Lab of Tissue Engineering, College of Life Sciences, Northwest University, Xi’an 710069, China; (G.Y.); (Y.F.); (Z.M.); (D.W.); (S.L.); (F.C.); (J.C.)
| | - Zhaoxiang Mi
- Lab of Tissue Engineering, College of Life Sciences, Northwest University, Xi’an 710069, China; (G.Y.); (Y.F.); (Z.M.); (D.W.); (S.L.); (F.C.); (J.C.)
| | - Du Wang
- Lab of Tissue Engineering, College of Life Sciences, Northwest University, Xi’an 710069, China; (G.Y.); (Y.F.); (Z.M.); (D.W.); (S.L.); (F.C.); (J.C.)
| | - Shuai Lin
- Lab of Tissue Engineering, College of Life Sciences, Northwest University, Xi’an 710069, China; (G.Y.); (Y.F.); (Z.M.); (D.W.); (S.L.); (F.C.); (J.C.)
| | - Fulin Chen
- Lab of Tissue Engineering, College of Life Sciences, Northwest University, Xi’an 710069, China; (G.Y.); (Y.F.); (Z.M.); (D.W.); (S.L.); (F.C.); (J.C.)
- Provincial Key Laboratory of Biotechnology of Shaanxi, Northwest University, Xi’an 710069, China
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, School of Medicine, Northwest University, Xi’an 710069, China
| | - Jihong Cui
- Lab of Tissue Engineering, College of Life Sciences, Northwest University, Xi’an 710069, China; (G.Y.); (Y.F.); (Z.M.); (D.W.); (S.L.); (F.C.); (J.C.)
- Provincial Key Laboratory of Biotechnology of Shaanxi, Northwest University, Xi’an 710069, China
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, School of Medicine, Northwest University, Xi’an 710069, China
| | - Yuan Yu
- Lab of Tissue Engineering, College of Life Sciences, Northwest University, Xi’an 710069, China; (G.Y.); (Y.F.); (Z.M.); (D.W.); (S.L.); (F.C.); (J.C.)
- Provincial Key Laboratory of Biotechnology of Shaanxi, Northwest University, Xi’an 710069, China
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, School of Medicine, Northwest University, Xi’an 710069, China
- Correspondence:
| |
Collapse
|
11
|
Deptuła M, Karpowicz P, Wardowska A, Sass P, Sosnowski P, Mieczkowska A, Filipowicz N, Dzierżyńska M, Sawicka J, Nowicka E, Langa P, Schumacher A, Cichorek M, Zieliński J, Kondej K, Kasprzykowski F, Czupryn A, Janus Ł, Mucha P, Skowron P, Piotrowski A, Sachadyn P, Rodziewicz-Motowidło S, Pikuła M. Development of a Peptide Derived from Platelet-Derived Growth Factor (PDGF-BB) into a Potential Drug Candidate for the Treatment of Wounds. Adv Wound Care (New Rochelle) 2020; 9:657-675. [PMID: 33124966 PMCID: PMC7698658 DOI: 10.1089/wound.2019.1051] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Accepted: 09/13/2019] [Indexed: 12/16/2022] Open
Abstract
Objective: This study evaluated the use of novel peptides derived from platelet-derived growth factor (PDGF-BB) as potential wound healing stimulants. One of the compounds (named PDGF2) was subjected for further research after cytotoxicity and proliferation assays on human skin cells. Further investigation included evaluation of: migration and chemotaxis of skin cells, immunological and allergic safety, the transcriptional analyses of adipose-derived stem cells (ASCs) and dermal fibroblasts stimulated with PDGF2, and the use of dorsal skin wound injury model to evaluate the effect of wound healing in mice. Approach: Colorimetric lactate dehydrogenase and tetrazolium assays were used to evaluate the cytotoxicity and the effect on proliferation. PDGF2 effect on migration and chemotaxis was also checked. Immunological safety and allergic potential were evaluated with a lymphocyte activation and basophil activation test. Transcriptional profiles of ASCs and primary fibroblasts were assessed after stimulation with PDGF2. Eight-week-old BALB/c female mice were used for dorsal skin wound injury model. Results: PDGF2 showed low cytotoxicity, pro-proliferative effects on human skin cells, high immunological safety, and accelerated wound healing in mouse model. Furthermore, transcriptomic analysis of ASCs and fibroblasts revealed the activation of processes involved in wound healing and indicated its safety. Innovation: A novel peptide derived from PDGF-BB was proved to be safe drug candidate in wound healing. We also present a multifaceted in vitro model for the initial screening of new compounds that may be potentially useful in wound healing stimulation. Conclusion: The results show that peptide derived from PDGF-BB is a promising drug candidate for wound treatment.
Collapse
Affiliation(s)
- Milena Deptuła
- Laboratory of Tissue Engineering and Regenerative Medicine, Department of Embryology, Medical University of Gdansk, Gdansk, Poland
| | - Przemysław Karpowicz
- Department of Biomedical Chemistry, Faculty of Chemistry, University of Gdansk, Gdansk, Poland
| | - Anna Wardowska
- Laboratory of Tissue Engineering and Regenerative Medicine, Department of Embryology, Medical University of Gdansk, Gdansk, Poland
- Department of Clinical Immunology and Transplantology, Medical University of Gdansk, Gdansk, Poland
| | - Piotr Sass
- Laboratory for Regenerative Biotechnology, Gdansk University of Technology, Gdansk, Poland
| | - Paweł Sosnowski
- Laboratory for Regenerative Biotechnology, Gdansk University of Technology, Gdansk, Poland
| | | | | | - Maria Dzierżyńska
- Department of Biomedical Chemistry, Faculty of Chemistry, University of Gdansk, Gdansk, Poland
| | - Justyna Sawicka
- Department of Biomedical Chemistry, Faculty of Chemistry, University of Gdansk, Gdansk, Poland
| | - Ewa Nowicka
- Department of Clinical Anatomy, Medical University of Gdansk, Gdansk, Poland
| | - Paulina Langa
- Department of Clinical Immunology and Transplantology, Medical University of Gdansk, Gdansk, Poland
| | | | | | - Jacek Zieliński
- Department of Surgical Oncology, and Medical University of Gdansk, Gdansk, Poland
| | - Karolina Kondej
- Department of Plastic Surgery, Medical University of Gdansk, Gdansk, Poland
| | | | - Artur Czupryn
- Laboratory of Neurobiology, Nencki Institute of Experimental Biology PAS, Warsaw, Poland
| | | | - Piotr Mucha
- Department of Biochemistry, and Faculty of Chemistry, University of Gdansk, Gdansk, Poland
| | - Piotr Skowron
- Department of Molecular Biotechnology, Faculty of Chemistry, University of Gdansk, Gdansk, Poland
| | | | - Paweł Sachadyn
- Laboratory for Regenerative Biotechnology, Gdansk University of Technology, Gdansk, Poland
| | | | - Michał Pikuła
- Laboratory of Tissue Engineering and Regenerative Medicine, Department of Embryology, Medical University of Gdansk, Gdansk, Poland
- Department of Clinical Immunology and Transplantology, Medical University of Gdansk, Gdansk, Poland
| |
Collapse
|
12
|
Kim N, Choi KU, Lee E, Lee S, Oh J, Kim WK, Woo SH, Kim DY, Kim WH, Kweon OK. Therapeutic effects of platelet derived growth factor overexpressed-mesenchymal stromal cells and sheets in canine skin wound healing model. Histol Histopathol 2019; 35:751-767. [PMID: 31876285 DOI: 10.14670/hh-18-196] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Adipose-derived mesenchymal stromal cells (Ad-MSCs) have excellent potential for skin wound repair. Moreover, platelet-derived growth factor (PDGF) has strong wound healing properties. The purpose of the present study was to compare the healing effects of PDGF-overexpressing canine allogeneic Ad-MSCs (PDGF-MSCs) and their cell sheets (PDGF-CSs) as compared to unexpressed Ad-MSCs (U-MSCs) and their cell sheets (UCSs) in a cutaneous wound healing model induced upon dogs. In in vitro study, the expression of immunomodulatory and growth factors was assessed by qRT-PCR. In in vivo study, cells and sheets were transplanted into a square-shaped full-thickness (1.5×1.5 cm) skin defect model created in 12 dogs. After 5 and 10 days, wounds were harvested and evaluated macroscopically and histopathologically. The qRT-PCR results showed that the PDGF-B gene was significantly upregulated (p<0.05) in PDGF-CS and PDGF-MSCs groups. Upon gross analysis of the wound, all stromal cells and their sheet groups showed accelerated (p<0.05) cutaneous wound healing compared to the negative control groups. As compared to U-MSCs and UCSs, the PDGF-MSCs showed significant epithelization on days 5 and 10 of healing, whereas PDGF-CSs showed improved epithelization only on day 10. In the granulation tissue analysis, PDGF-CSs and UCSs promoted more formation (p<0.05) of upper granulation tissue, collagen, and activated fibroblasts than PDGF-MSCs, and U-MSCs. Especially, the PDGF-CSs presented the highest formation and maturation of granulation tissue among all groups. All considered, PDGF overexpressed stromal cells or cells sheets can improve cutaneous wound healing in a canine model.
Collapse
Affiliation(s)
- Namyul Kim
- BK21 PLUS Program for Creative Veterinary Science Research, Research Institute for Veterinary Science, College of Veterinary Medicine, Seoul National University, Seoul, Korea
| | - Kyeong Uk Choi
- BK21 PLUS Program for Creative Veterinary Science Research, Research Institute for Veterinary Science, College of Veterinary Medicine, Seoul National University, Seoul, Korea
| | - Eunbee Lee
- BK21 PLUS Program for Creative Veterinary Science Research, Research Institute for Veterinary Science, College of Veterinary Medicine, Seoul National University, Seoul, Korea
| | - Seoyun Lee
- BK21 PLUS Program for Creative Veterinary Science Research, Research Institute for Veterinary Science, College of Veterinary Medicine, Seoul National University, Seoul, Korea
| | - Jiwon Oh
- BK21 PLUS Program for Creative Veterinary Science Research, Research Institute for Veterinary Science, College of Veterinary Medicine, Seoul National University, Seoul, Korea
| | - Woo Keyoung Kim
- BK21 PLUS Program for Creative Veterinary Science Research, Research Institute for Veterinary Science, College of Veterinary Medicine, Seoul National University, Seoul, Korea
| | - Sang-Ho Woo
- BK21 PLUS Program for Creative Veterinary Science Research, Research Institute for Veterinary Science, College of Veterinary Medicine, Seoul National University, Seoul, Korea.,Department of Veterinary Pathology and Research Institute for Veterinary Science, College of Veterinary Medicine, Seoul National University, Seoul, Korea
| | - Dae-Yong Kim
- BK21 PLUS Program for Creative Veterinary Science Research, Research Institute for Veterinary Science, College of Veterinary Medicine, Seoul National University, Seoul, Korea.,Department of Veterinary Pathology and Research Institute for Veterinary Science, College of Veterinary Medicine, Seoul National University, Seoul, Korea
| | - Wan-Hee Kim
- BK21 PLUS Program for Creative Veterinary Science Research, Research Institute for Veterinary Science, College of Veterinary Medicine, Seoul National University, Seoul, Korea
| | - Oh-Kyeong Kweon
- BK21 PLUS Program for Creative Veterinary Science Research, Research Institute for Veterinary Science, College of Veterinary Medicine, Seoul National University, Seoul, Korea.
| |
Collapse
|
13
|
CD271 promotes STZ-induced diabetic wound healing and regulates epidermal stem cell survival in the presence of the pTrkA receptor. Cell Tissue Res 2019; 379:181-193. [PMID: 31768712 DOI: 10.1007/s00441-019-03125-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Accepted: 09/22/2019] [Indexed: 12/12/2022]
Abstract
Diabetes mellitus (DM) often causes delayed wound healing in patients, which can lead to limb loss, disability, and even death. Many conventional therapeutic strategies have been proposed, but there is still no effective therapy for DM wounds. This study aimed to explore the effects of CD271 and phosphorylated tyrosine kinase receptor A (pTrkA) on the migration and proliferation abilities of epidermal stem cells (eSCs) and on the activation of DM wound healing. We investigated the interventional effects of CD271-overexpressing eSC (CD271 eSC) treatment and pTrkA inhibition (through k252a treatment) on delayed wound healing using mice with streptozotocin-induced DM. The migration and proliferation abilities of control eSCs, CD271 eSCs, and k252a-treated CD271 eSCs were observed under high-glucose conditions. Decreases in CD271 and increases in pTrkA were observed in DM mouse skin compared with control mouse skin; in addition, the rate of wound closure in DM mice was promoted by CD271 eSC treatment but delayed by pTrkA inhibition. Furthermore, the CD271 eSC migration and proliferation were greater than of control eSCs. Compared with that of CD271 eSCs, the number of CD271+k252a eSCs decreased significantly under high-glucose conditions. In parallel, the expression levels of the pERK, pAkt, and pJNK pathways increased in CD271 eSCs and decreased in CD271+k252a eSCs under high glucose. Our findings demonstrate that CD271 and pTrkA affect DM wound closure by promoting the eSC migration and proliferation. This mechanism involving the pERK, pAkt, and pJNK pathways might be a new therapeutic target for the treatment of delayed wound re-epithelialization in DM.
Collapse
|
14
|
Patel S, Srivastava S, Singh MR, Singh D. Mechanistic insight into diabetic wounds: Pathogenesis, molecular targets and treatment strategies to pace wound healing. Biomed Pharmacother 2019; 112:108615. [PMID: 30784919 DOI: 10.1016/j.biopha.2019.108615] [Citation(s) in RCA: 463] [Impact Index Per Article: 92.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Revised: 01/19/2019] [Accepted: 01/23/2019] [Indexed: 12/15/2022] Open
Abstract
Wound management in diabetic patient is of an extreme clinical and social concern. The delayed and impaired healing makes it more critical for research focus. The research on impaired healing process is proceeding hastily evident by new therapeutic approaches other than conventional such as single growth factor, dual growth factor, skin substitutes, cytokine stimulators, cytokine inhibitors, matrix metalloproteinase inhibitors, gene and stem cell therapy, extracellular matrix and angiogenesis stimulators. Although numerous studies are available that support delayed wound healing in diabetes but detailed mechanistic insight including factors involved and their role still needs to be revealed. This review mainly focuses on the molecular cascades of cytokines (with growth factors) and erstwhile factors responsible for delayed wound healing, molecular targets and recent advancements in complete healing and its cure. Present article briefed recent pioneering information on possible molecular targets and treatment strategies including clinical trials to clinicians and researchers working in similar area.
Collapse
Affiliation(s)
- Satish Patel
- University Institute of Pharmacy, Pt. Ravishankar Shukla University, 492010, Raipur, C.G., India
| | - Shikha Srivastava
- University Institute of Pharmacy, Pt. Ravishankar Shukla University, 492010, Raipur, C.G., India
| | - Manju Rawat Singh
- University Institute of Pharmacy, Pt. Ravishankar Shukla University, 492010, Raipur, C.G., India
| | - Deependra Singh
- University Institute of Pharmacy, Pt. Ravishankar Shukla University, 492010, Raipur, C.G., India.
| |
Collapse
|
15
|
Yan JX, Liao X, Li SH, Liu HW, Chang HY, Dong N, Wu YD, She WL, Xie GH. Effects of Carbon Arc Lamp Irradiation on Wound Healing in a Rat Cutaneous Full-Thickness Wound Model. PHOTOBIOMODULATION PHOTOMEDICINE AND LASER SURGERY 2019; 37:17-24. [PMID: 31050942 DOI: 10.1089/photob.2018.4447] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Affiliation(s)
- Jian-Xin Yan
- Department of Plastic Surgery, The First Affiliated Hospital of Jinan University, Innovative Technology Research Institute of Tissue Repair and Regeneration, Key Laboratory of Regenerative Medicine, Ministry of Education, Guangzhou, P.R. China
| | - Xuan Liao
- Department of Plastic Surgery, The First Affiliated Hospital of Jinan University, Innovative Technology Research Institute of Tissue Repair and Regeneration, Key Laboratory of Regenerative Medicine, Ministry of Education, Guangzhou, P.R. China
| | - Sheng-Hong Li
- Department of Plastic Surgery, The First Affiliated Hospital of Jinan University, Innovative Technology Research Institute of Tissue Repair and Regeneration, Key Laboratory of Regenerative Medicine, Ministry of Education, Guangzhou, P.R. China
| | - Hong-Wei Liu
- Department of Plastic Surgery, The First Affiliated Hospital of Jinan University, Innovative Technology Research Institute of Tissue Repair and Regeneration, Key Laboratory of Regenerative Medicine, Ministry of Education, Guangzhou, P.R. China
| | - Han-Yu Chang
- Department of Plastic Surgery, The First Affiliated Hospital of Jinan University, Innovative Technology Research Institute of Tissue Repair and Regeneration, Key Laboratory of Regenerative Medicine, Ministry of Education, Guangzhou, P.R. China
| | - Nan Dong
- Department of Gynecology and Obstetrics, The First Affiliated Hospital of Jinan University, Guangzhou, P.R. China
| | - Yin-Di Wu
- Department of Plastic Surgery, The First Affiliated Hospital of Jinan University, Innovative Technology Research Institute of Tissue Repair and Regeneration, Key Laboratory of Regenerative Medicine, Ministry of Education, Guangzhou, P.R. China
| | - Wen-Li She
- Department of Plastic Surgery, The First Affiliated Hospital of Jinan University, Innovative Technology Research Institute of Tissue Repair and Regeneration, Key Laboratory of Regenerative Medicine, Ministry of Education, Guangzhou, P.R. China
| | - Guang-Hui Xie
- Department of Plastic Surgery, The First Affiliated Hospital of Jinan University, Innovative Technology Research Institute of Tissue Repair and Regeneration, Key Laboratory of Regenerative Medicine, Ministry of Education, Guangzhou, P.R. China
| |
Collapse
|
16
|
Hozzein WN, Badr G, Badr BM, Allam A, Ghamdi AA, Al-Wadaan MA, Al-Waili NS. Bee venom improves diabetic wound healing by protecting functional macrophages from apoptosis and enhancing Nrf2, Ang-1 and Tie-2 signaling. Mol Immunol 2018; 103:322-335. [PMID: 30366166 DOI: 10.1016/j.molimm.2018.10.016] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2018] [Revised: 10/06/2018] [Accepted: 10/14/2018] [Indexed: 02/07/2023]
Abstract
Impaired wound healing is a serious complication of diabetes that negatively affects the patient's socioeconomic life. Multiple mechanisms contribute to impaired diabetic wound healing including deficient recruitment of wound macrophages/neutrophils and impaired neovascularization. Bee venom (BV) has been used as an anti-inflammatory agent for the treatment of several diseases. Nevertheless, the impacts of BV on the diabetic wound healing have been poorly studied. In the present study, we investigated the molecular mechanisms underlying BV treatment on diabetic wound healing in a type I diabetic mouse model. Three experimental groups were used: group 1, non-diabetic control mice; group 2, vehicle-diabetic mice; and group 3, BV-treated diabetic mice. We found that the diabetic mice exhibited impaired wound closure characterized by a significant decrease in collagen and β-defensin-2 (BD-2) expression compared to control non-diabetic mice. The impairment of diabetic wound healing is attributed to increased ROS levels and abolished antioxidant enzymes activity in the wounded tissues. Additionally, wounded tissue in diabetic mice revealed aberrantly decreased levels of Ang-1 and Nrf2 (the agonist ligands of Tie-2) followed by a marked reduction in the phosphorylation of Tie2 and downstream signaling eNOS, AKT and ERK. Impaired diabetic wound healing was also characterized by a significant reduction in activities of total antioxidant enzymes followed by a marked reduction in the levels of CCL2, CCL3 and CXCL2; which led to impaired recruitment and functions of wound macrophages/neutrophils; and significant reduction in the expression of CD31, a marker for neovascularization and angiogenesis of the injured tissue. Interestingly, BV treatment significantly enhanced wound closure in diabetic mice by increasing collagen and BD-2 expression and restoring the levels of Ang-1 and Nrf2 and hence enhancing the Tie-2 downstream signaling. Most importantly, treatment of diabetic mice with BV significantly restored the activities of wounded tissue antioxidant enzymes and the levels of chemokines, and subsequently rescued wound macrophages from mitochondrial membrane potential-induced apoptosis. Our findings reveal the immune-enhancing effects of BV for improving healing process of diabetic wounds and provide the first insight concerning the underlying molecular mechanisms.
Collapse
Affiliation(s)
- Wael N Hozzein
- Bioproducts Research Chair, Department of Zoology, College of Science, King Saud University, Riyadh, Saudi Arabia; Botany Department, Faculty of Science, Beni-Suef University, Beni-Suef, Egypt
| | - Gamal Badr
- Zoology Department, Faculty of Science, Assiut University, 71516, Assiut, Egypt; Laboratory of Immunology and Molecular Physiology, Zoology Department, Faculty of Science, Assiut University, 71516, Assiut, Egypt.
| | - Badr M Badr
- Radiation Biology Department, National Centre for Radiation Research and Technology (NCRRT), Cairo, Egypt
| | - Ahmed Allam
- Zoology Department, Faculty of Science, Beni-Suef University, Beni-Suef, Egypt
| | - Ahmad Al Ghamdi
- Chair of Engineer Abdullah Baqshan for Bee Research, College of Food and Agriculture Sciences, King Saud University, Riyadh, Saudi Arabia
| | - Mohammed A Al-Wadaan
- Bioproducts Research Chair, Department of Zoology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | | |
Collapse
|
17
|
Yan JX, Liao X, Li SH, Liu HW, Chang HY, Dong N, Wu YD, She WL, Xie GH. Effects of Carbon Arc Lamp Irradiation on Wound Healing in a Rat Cutaneous Full-Thickness Wound Model. Photomed Laser Surg 2018:pho.2018.4447. [PMID: 30335572 DOI: 10.1089/pho.2018.4447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
OBJECTIVE The objective of the present study was to investigate the application of a carbon arc lamp on wound healing in a rat cutaneous full-thickness wound model. BACKGROUND DATA In clinical practice, wound healing has been promoted by irradiation with a carbon arc lamp. However, the corresponding mechanism has not been clearly defined. METHODS A cutaneous full-thickness wound on the back of rats was irradiated using a carbon arc lamp at a wavelength peak range of 620-740 nm with 54 J/cm2. Injured sham-irradiated control rats were used as the control. The rats were euthanized after 7, 14, and 21 days, while wound reepithelialization and healing quality were examined by histological analyses with comparison between groups. Cell proliferation was observed by 5-bromo-2'-deoxyuridine (BrdU) immunohistochemical staining. RESULTS Irradiation by the carbon arc lamp significantly accelerated wound healing. The wound-healing rate in the treated group at day 21 was 98.42% ± 0.56%, compared with 93.58% ± 1.26% in the control group (p < 0.05). Significant increases in the length of epithelial edges, collagen content, and microvessel density were observed in the wound sites in the treated group at days 7, 14, and 21 (p < 0.05). Moreover, the number of BrdU-labeled cells increased in the wound edge at days 7 and 14 due to irradiation (p < 0.05). CONCLUSIONS The results demonstrated that the carbon arc lamp can promote wound healing together with improvement in its quality by stimulating cell proliferation.
Collapse
Affiliation(s)
- Jian-Xin Yan
- 1 Department of Plastic Surgery, The First Affiliated Hospital of Jinan University , Innovative Technology Research Institute of Tissue Repair and Regeneration, Key Laboratory of Regenerative Medicine, Ministry of Education, Guangzhou, P.R. China
| | - Xuan Liao
- 1 Department of Plastic Surgery, The First Affiliated Hospital of Jinan University , Innovative Technology Research Institute of Tissue Repair and Regeneration, Key Laboratory of Regenerative Medicine, Ministry of Education, Guangzhou, P.R. China
| | - Sheng-Hong Li
- 1 Department of Plastic Surgery, The First Affiliated Hospital of Jinan University , Innovative Technology Research Institute of Tissue Repair and Regeneration, Key Laboratory of Regenerative Medicine, Ministry of Education, Guangzhou, P.R. China
| | - Hong-Wei Liu
- 1 Department of Plastic Surgery, The First Affiliated Hospital of Jinan University , Innovative Technology Research Institute of Tissue Repair and Regeneration, Key Laboratory of Regenerative Medicine, Ministry of Education, Guangzhou, P.R. China
| | - Han-Yu Chang
- 1 Department of Plastic Surgery, The First Affiliated Hospital of Jinan University , Innovative Technology Research Institute of Tissue Repair and Regeneration, Key Laboratory of Regenerative Medicine, Ministry of Education, Guangzhou, P.R. China
| | - Nan Dong
- 2 Department of Gynecology and Obstetrics, The First Affiliated Hospital of Jinan University , Guangzhou, P.R. China
| | - Yin-Di Wu
- 1 Department of Plastic Surgery, The First Affiliated Hospital of Jinan University , Innovative Technology Research Institute of Tissue Repair and Regeneration, Key Laboratory of Regenerative Medicine, Ministry of Education, Guangzhou, P.R. China
| | - Wen-Li She
- 1 Department of Plastic Surgery, The First Affiliated Hospital of Jinan University , Innovative Technology Research Institute of Tissue Repair and Regeneration, Key Laboratory of Regenerative Medicine, Ministry of Education, Guangzhou, P.R. China
| | - Guang-Hui Xie
- 1 Department of Plastic Surgery, The First Affiliated Hospital of Jinan University , Innovative Technology Research Institute of Tissue Repair and Regeneration, Key Laboratory of Regenerative Medicine, Ministry of Education, Guangzhou, P.R. China
| |
Collapse
|
18
|
Arias JI, Parra N, Beato C, Torres CG, Hamilton-West C, Rosas C, Ferreira A. Different Trypanosoma cruzi calreticulin domains mediate migration and proliferation of fibroblasts in vitro and skin wound healing in vivo. Arch Dermatol Res 2018; 310:639-650. [DOI: 10.1007/s00403-018-1851-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2018] [Revised: 07/10/2018] [Accepted: 08/03/2018] [Indexed: 12/19/2022]
|
19
|
Zheng Z, Liu Y, Huang W, Mo Y, Lan Y, Guo R, Cheng B. Neurotensin-loaded PLGA/CNC composite nanofiber membranes accelerate diabetic wound healing. ARTIFICIAL CELLS NANOMEDICINE AND BIOTECHNOLOGY 2018; 46:493-501. [PMID: 29653498 DOI: 10.1080/21691401.2018.1460372] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Diabetic foot ulcers (DFUs) are a threat to human health and can lead to amputation and even death. Recently neurotensin (NT), an inflammatory modulator in wound healing, was found to be beneficial for diabetic wound healing. As we demonstrated previously, polylactide-polyglycolide (PLGA) and cellulose nanocrystals (CNCs) (PLGA/CNC) nanofiber membranes show good cytocompatibility and facilitate fibroblast adhesion, spreading and proliferation. PLGA/CNC nanofiber membranes are novel materials that have not been used previously as NT carriers in diabetic wounds. This study aims to explore the therapeutic efficacy and possible mechanisms of NT-loaded PLGA/CNC nanofiber membranes in full-thickness skin wounds in spontaneously diabetic mice. The results showed that NT could be sustained released from NT-loaded PLGA/CNC composite nanofiber membranes for 2 weeks. NT-loaded PLGA/CNC composite nanofiber membranes induced more rapid healing than other control groups. After NT exposure, the histological scores of the epidermal and dermal regeneration and the ratios of the fibrotic area to the whole area were increased. NT-loaded PLGA/CNC composite nanofiber membranes also decreased the expressions of the inflammatory cytokines IL-1β and IL-6. These results suggest that NT-loaded PLGA/CNC composite nanofiber membranes for sustained delivery of NT should effectively promote tissue regeneration for the treatment of DFUs.
Collapse
Affiliation(s)
- Zhifang Zheng
- a Post-doctoral Management Office , Southern Medical University , Guangzhou , China.,b Department of Plastic Surgery , Guangzhou General Hospital of PLA , Guangzhou , China.,c Department of Anatomy, School of Basic Medicine Sciences , Southern Medical University , Guangzhou , China
| | - Yishu Liu
- b Department of Plastic Surgery , Guangzhou General Hospital of PLA , Guangzhou , China.,d The Graduate School of Third Military Medical University , Chongqing , China
| | - Wenhua Huang
- a Post-doctoral Management Office , Southern Medical University , Guangzhou , China.,c Department of Anatomy, School of Basic Medicine Sciences , Southern Medical University , Guangzhou , China
| | - Yunfei Mo
- e Key Laboratory of Biomaterials of Guangdong Higher Education Institutes, Department of Biomedical Engineering , Jinan University , Guangzhou , China
| | - Yong Lan
- e Key Laboratory of Biomaterials of Guangdong Higher Education Institutes, Department of Biomedical Engineering , Jinan University , Guangzhou , China
| | - Rui Guo
- e Key Laboratory of Biomaterials of Guangdong Higher Education Institutes, Department of Biomedical Engineering , Jinan University , Guangzhou , China
| | - Biao Cheng
- a Post-doctoral Management Office , Southern Medical University , Guangzhou , China.,b Department of Plastic Surgery , Guangzhou General Hospital of PLA , Guangzhou , China.,d The Graduate School of Third Military Medical University , Chongqing , China.,f Center of Wound Treatment , Guangzhou General Hospital of Guangzhou Military Command , Guangzhou , China.,g The Key Laboratory of Trauma Treatment and Tissue Repair of Tropical Area , PLA , Guangzhou , China
| |
Collapse
|
20
|
Krishnaswamy VR, Mintz D, Sagi I. Matrix metalloproteinases: The sculptors of chronic cutaneous wounds. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2017; 1864:2220-2227. [PMID: 28797647 DOI: 10.1016/j.bbamcr.2017.08.003] [Citation(s) in RCA: 94] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2017] [Revised: 08/01/2017] [Accepted: 08/04/2017] [Indexed: 02/07/2023]
Abstract
Cutaneous wound healing is a complex mechanism with multiple processes orchestrating harmoniously for structural and functional restoration of the damaged tissue. Chronic non-healing wounds plagued with infection create a major healthcare burden and is one of the most frustrating clinical problems. Chronic wounds are manifested by prolonged inflammation, defective re-epithelialization and haphazard remodeling. Matrix metalloproteinases (MMPs) are zinc dependent enzymes that play cardinal functions in wound healing. Understanding the pathological events mediated by MMPs during wound healing may pave way in identifying novel drug targets for chronic wounds. Here, we discuss the functions and skewed regulation of different MMPs during infection and chronic tissue repair. This review also points out the potential of MMPs and their inhibitors as therapeutic agents in treating chronic wounds during distinct phases of the wound healing. This article is part of a Special Issue entitled: Proteolysis as a Regulatory Event in Pathophysiology edited by Stefan Rose-John.
Collapse
Affiliation(s)
| | - Dvir Mintz
- Department of Biological Regulation, Weizmann Institute of Science, Rehovot, 7610001, Israel
| | - Irit Sagi
- Department of Biological Regulation, Weizmann Institute of Science, Rehovot, 7610001, Israel.
| |
Collapse
|
21
|
Zheng Z, Liu Y, Yang Y, Tang J, Cheng B. Topical 1% propranolol cream promotes cutaneous wound healing in spontaneously diabetic mice. Wound Repair Regen 2017; 25:389-397. [PMID: 28494521 DOI: 10.1111/wrr.12546] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2016] [Accepted: 05/04/2017] [Indexed: 12/11/2022]
Abstract
Diabetic foot ulcers (DFUs) are a constant threat to diabetic patients and can lead to amputations and even death. Intralesional administration of propranolol in diabetic wounds has not been reported previously. This study aimed to investigate the efficacy of propranolol cream in diabetic wounds. Fifty-six spontaneously diabetic mice were divided into the propranolol group and the control group. After preparing full-thickness wounds on the back of the mice, 1% propranolol cream was topically applied to wounds in the experimental group and 0% propranolol cream in controls. The wound sizes were measured and calculated against the original area. The wounds were analyzed up to 21 days after injury. At all evaluation time-points, the wound size (%) in the propranolol group was significantly smaller than in the controls. Epidermal growth factor (EGF) protein expression increased in the experimental vs. CONTROL GROUP Vascular endothelial growth factor (VEGF) expression was significantly lower in the experimental vs. control group whereas NG2 proteoglycan was increased throughout the study. However, matrix metallopeptidase (MMP)-9 expression was at first significantly higher in the experimental vs. control group then the MMP-9 protein level in the control group increased and surpassed that in the experimental group. In conclusion, intralesional administration of 1% propranolol cream promotes reepithelialization and regulates abnormal angiogenesis in diabetic wounds. Propranolol cream may become a new drug for the treatment of DFUs.
Collapse
Affiliation(s)
- Zhifang Zheng
- The Graduate School of Southern Medical University, Guangzhou, China.,Department of Plastic Surgery, Guangzhou General Hospital of Guangzhou Military Command, Guangzhou, China
| | - Yishu Liu
- Department of Plastic Surgery, Guangzhou General Hospital of Guangzhou Military Command, Guangzhou, China.,The Graduate School of Third Military Medical University, Chongqing, China
| | - Yu Yang
- The Graduate School of Southern Medical University, Guangzhou, China.,Department of Plastic Surgery, Guangzhou General Hospital of Guangzhou Military Command, Guangzhou, China
| | - Jianbing Tang
- Department of Plastic Surgery, Guangzhou General Hospital of Guangzhou Military Command, Guangzhou, China
| | - Biao Cheng
- The Graduate School of Southern Medical University, Guangzhou, China.,Department of Plastic Surgery, Guangzhou General Hospital of Guangzhou Military Command, Guangzhou, China.,The Graduate School of Third Military Medical University, Chongqing, China.,Center of Wound Treatment, Guangzhou General Hospital of Guangzhou Military Command, Guangzhou, China.,The Key Laboratory of Trauma Treatment & Tissue Repair of Tropical Area, PLA, Guangzhou, China
| |
Collapse
|
22
|
Vidmar J, Chingwaru C, Chingwaru W. Mammalian cell models to advance our understanding of wound healing: a review. J Surg Res 2017; 210:269-280. [DOI: 10.1016/j.jss.2016.10.016] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2015] [Revised: 07/12/2016] [Accepted: 10/14/2016] [Indexed: 12/30/2022]
|
23
|
Dik B, Baş AL, Yazıhan N. The effect of midkine on growth factors and oxidative status in an experimental wound model in diabetic and healthy rats. Can J Physiol Pharmacol 2017; 95:604-609. [PMID: 28177680 DOI: 10.1139/cjpp-2016-0439] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Wound healing is important for longevity. Midkine is a cytokine involved in controlling tissue repair and new tissue development, and in regulating inflammation. We investigated the effect of midkine on wound healing in rats. In total, 108 Wistar albino rats were used: 12 as healthy and diabetic controls; 96 were split into 4 groups: healthy, saline treated; healthy, midkine (10 ng/kg, 48 h intervals) treated; diabetic, saline treated; and diabetic, midkine treated. Following wound creation, 6 rats per group were euthanized on days 3, 7, 14, and 28; the wounded skin was removed. Levels of epidermal growth factor (EGF), matrix metalloproteinase-8 (MMP-8), transforming growth factor beta (TGF-β), platelet-derived growth factor (PDGF), vascular endothelial growth factor (VEGF), and thiobarbituric acid reactive substances (TBARS) were measured. MMP-8 and PDGF levels fluctuated in all groups; TGF-β fluctuated in the diabetic groups and was significantly higher in the HM group than other groups after 14 days. EGF and VEGF levels were increased in the HM group after 3 days. TBARS levels were highest in the diabetic groups. Macroscopically, the midkine-treated groups healed better. Midkine can accelerate wound healing by influencing growth factors and oxidative status in wound tissues.
Collapse
Affiliation(s)
- Burak Dik
- a Department of Pharmacology and Toxicology, Veterinary Faculty, University of Selcuk, Konya, Turkey
| | - Ahmet Levent Baş
- a Department of Pharmacology and Toxicology, Veterinary Faculty, University of Selcuk, Konya, Turkey
| | - Nuray Yazıhan
- b Department of Pathophysiology, Medicine Faculty, University of Ankara, Ankara, Turkey
| |
Collapse
|
24
|
Zhang J, Chen C, Hu B, Niu X, Liu X, Zhang G, Zhang C, Li Q, Wang Y. Exosomes Derived from Human Endothelial Progenitor Cells Accelerate Cutaneous Wound Healing by Promoting Angiogenesis Through Erk1/2 Signaling. Int J Biol Sci 2016; 12:1472-1487. [PMID: 27994512 PMCID: PMC5166489 DOI: 10.7150/ijbs.15514] [Citation(s) in RCA: 189] [Impact Index Per Article: 23.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2016] [Accepted: 10/09/2016] [Indexed: 12/20/2022] Open
Abstract
Chronic skin wounds represent one of the most common and disabling complications of diabetes. Endothelial progenitor cells (EPCs) are precursors of endothelial cells and can enhance diabetic wound repair by facilitating neovascularization. Recent studies indicate that the transplanted cells exert therapeutic effects primarily via a paracrine mechanism and exosomes are an important paracrine factor that can be directly used as therapeutic agents for regenerative medicine. However, application of exosomes in diabetic wound repair has been rarely reported. In this study, we demonstrated that the exosomes derived from human umbilical cord blood-derived EPCs (EPC-Exos) possessed robust pro-angiogenic and wound healing effects in streptozotocin-induced diabetic rats. By using a series of in vitro functional assays, we found that EPC-Exos could be incorporated into endothelial cells and significantly enhance endothelial cells' proliferation, migration, and angiogenic tubule formation. Moreover, microarray analyses indicated that exosomes treatment markedly altered the expression of a class of genes involved in Erk1/2 signaling pathway. It was further confirmed with functional study that this signaling process was the critical mediator during the exosomes-induced angiogenic responses of endothelial cells. Therefore, EPC-Exos are able to stimulate angiogenic activities of endothelial cells by activating Erk1/2 signaling, which finally facilitates cutaneous wound repair and regeneration.
Collapse
Affiliation(s)
- Jieyuan Zhang
- Institute of Microsurgery on Extremities, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, 600 Yishan Road, Shanghai 200233, China;; Department of Orthopedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, 600 Yishan Road, Shanghai 200233, China
| | - Chunyuan Chen
- Institute of Microsurgery on Extremities, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, 600 Yishan Road, Shanghai 200233, China;; Graduate School of Nanchang University, 461 Bayi Road, Nanchang 330006, China
| | - Bin Hu
- Institute of Microsurgery on Extremities, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, 600 Yishan Road, Shanghai 200233, China
| | - Xin Niu
- Institute of Microsurgery on Extremities, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, 600 Yishan Road, Shanghai 200233, China
| | - Xiaolin Liu
- Institute of Microsurgery on Extremities, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, 600 Yishan Road, Shanghai 200233, China;; Department of Orthopedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, 600 Yishan Road, Shanghai 200233, China
| | - Guowei Zhang
- Institute of Microsurgery on Extremities, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, 600 Yishan Road, Shanghai 200233, China
| | - Changqing Zhang
- Institute of Microsurgery on Extremities, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, 600 Yishan Road, Shanghai 200233, China;; Department of Orthopedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, 600 Yishan Road, Shanghai 200233, China
| | - Qing Li
- Institute of Microsurgery on Extremities, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, 600 Yishan Road, Shanghai 200233, China
| | - Yang Wang
- Institute of Microsurgery on Extremities, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, 600 Yishan Road, Shanghai 200233, China
| |
Collapse
|
25
|
DH A. The Role of Insulin in Wound Healing Process: Mechanism of Action and Pharmaceutical Applications. ACTA ACUST UNITED AC 2016. [DOI: 10.15406/japlr.2016.02.00007] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
26
|
Lee CH, Liu KS, Chang SH, Chen WJ, Hung KC, Liu SJ, Pang JHS, Juang JH, Chou CC, Chang PC, Chen YT, Wang FS. Promoting Diabetic Wound Therapy Using Biodegradable rhPDGF-Loaded Nanofibrous Membranes: CONSORT-Compliant Article. Medicine (Baltimore) 2015; 94:e1873. [PMID: 26632682 PMCID: PMC5058951 DOI: 10.1097/md.0000000000001873] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/01/2022] Open
Abstract
The nanofibrous biodegradable drug-loaded membranes that sustainably released recombinant human platelet-derived growth factor (rhPDGF-BB) to repair diabetic wounds were developed in this work.rhPDGF-BB and poly(lactic-co-glycolic acid) (PLGA) were mixed in hexafluoroisopropyl alcohol, followed by the electrospinning of the solutions into biodegradable membranes to equip the nanofibrous membranes. An elution technique and an enzyme-linked immunosorbent assay kit were used to determine the rhPDGF-BB release rates in vitro and in vivo from this membrane. Eighteen Sprague-Dawley streptozotocin-induced diabetic rats were randomized into 3 groups: rhPDGF-BB-loaded nanofibrous membrane group, PLGA only membrane group, and conventional gauze sponge group for the wound associated with diabetes of rat in each group.The nanofibrous biodegradable membranes released effective concentrations of rhPDGF-BB for over 21 days. The nanofibrous rhPDGF-BB-loaded PLGA membranes contained more water and were further hydrophilic than PLGA only fibers. The rhPDGF-BB-loaded PLGA membranes considerably helped the diabetic wounds repairing. Furthermore, the proliferative cells and angiogenesis of rats associated with diabetes by rhPDGF-BB-loaded nanofibrous membranes were greater than those of other groups, owing to the increased matrix metalloproteinase 9.These biodegradable rhPDGF-BB-loaded membranes were effective in treating diabetic wounds as very advanced accelerators during the initial phases of wound-healing process.
Collapse
Affiliation(s)
- Cheng-Hung Lee
- From the Division of Cardiology, Department of Internal Medicine (C-HL, S-HC, W-JC, K-CH, CC-C, P-CC), Department of Thoracic and Cardiovascular Surgery, Chang Gung Memorial Hospital-Linkou, Chang Gung University College of Medicine (K-SL), Department of Mechanical Engineering (S-JL), Graduate Institute of Clinical Medical Sciences, Chang Gung University (J-HSP), Division of Endocrinology and Metabolism, Department of Internal Medicine, Chang Gung University and Chang Gung Memorial Hospital, Tao-Yuan (J-HJ), Department of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan (Y-TC), and Shui-Mu Foundation of Chemistry, National Tsing Hua University, Hsinchu, Taiwan (F-SW)
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Abstract
INTRODUCTION About 2% of the Western world population suffer from chronic wounds, resulting from underlying disorders (e.g., diabetes, excessive pressure, vascular insufficiencies and vasculitis), with a significant adverse effect on Quality of Life. Despite high incidence and economic burden, management of chronic wounds is still far from effective and novel therapies are in urgent need. Wound healing is a dynamic process of transient expression, function and clearance of mediators, enzymes and cell types. Failure to initiate, terminate or regulate leads to pathologic wound healing. AREAS COVERED The present review discusses patents of the seven most promising classes of biological agents, mostly published in 2009 - 2014 (CYP11B1 inhibitors, peptide growth factors, prolyl-4-hydroxylase and matrix metalloproteinase inhibitors, bone marrow-derived mesenchymal stem cells, elastase and connexin43 inhibitors). Relevant information from peer-reviewed journals is also presented. EXPERT OPINION The aforementioned biological agents have different mechanisms of action, and considering the multifactorial pathogenesis of chronic wounds, they hold promise in treating chronic wounds. However, as administration of a certain biological agent may be beneficial in an early phase, it may slow down wound healing in a later phase. Basic and clinical research on chronic wound healing should therefore investigate the efficacy of these agents, alone and in concert, during the consecutive phases of wound healing.
Collapse
Affiliation(s)
- Chris J van Koppen
- ElexoPharm GmbH , Im Stadtwald, Building A1.2, 66123 Saarbrücken , Germany +49 681 30268320 ; +49 681 9102894 ;
| | | |
Collapse
|
28
|
Commercially available topical platelet-derived growth factor as a novel agent to accelerate burn-related wound healing. J Burn Care Res 2015; 35:e321-9. [PMID: 24476989 DOI: 10.1097/bcr.0000000000000013] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
The authors investigated whether the application of platelet-derived growth factor (PDGF) to donor site wounds would speed healing in a porcine model. In a red duroc pig model, three wounds that were 3 inches × 3 inches were created with a dermatome (0.06-inch depth) on one side of two different animals. These wounds were digitally and laser Doppler (LDI) imaged and biopsied immediately pre- and postwound creation and every 2 days for 2 weeks. A set of identical wounds were subsequently created on the opposite side of the same animals and treated with topical PDGF (becaplermin gel 0.01%, 4 g/wound) immediately on wounding. PDGF-treated wounds were imaged and biopsied as above. Digital images of wounds were assessed for epithelialization by clinicians using an ordinal scale. Perfusion units (PU) were evaluated by LDI. Wound healing was evaluated by hematoxylin and eosin histological visualization of an epithelium and intact basement membrane. First evidence of partial epithelialization was seen in control and PDGF-treated wounds within 7.7 ± 1.4 and 6.4 ± 1.1 days postwounding, respectively (P=.03). Completely epithelialized biopsies were seen in control and PDGF-treated wounds at 11.7 ± 2.6 and 9.6 ± 1.5 days, respectively (P=.02). Clinician evaluation of digital images showed that on day 9, control wounds were, on average, 48.3 ± 18.5% epithelialized vs 57.2 ± 20.2% epithelialized for PDGF-treated wounds. At day 16, control wounds showed an average of 72.9 ± 14.6% epithelialization and PDGF-treated wounds showed an average of 90 ± 11.8%epithelialization. Overall, PDGF-treated wounds had statistically significantly higher scores across all timepoints (P=.02). Average perfusion units as measured by LDI were similar for control and PDGF-treated wounds at time of excision (225 ± 81and 257 ± 100, respectively). On day 2 postwounding, average PU for control wounds were 803 and were 764 for PDGF-treated wounds. Control wounds maintained higher PU values compared with PDGF-treated wounds at all time points and returned to excision PU values by day 12.2 ± 1.1 postwounding. PDGF-treated wounds reached the same values by day 9.7 ± 2.3 (P=.03). The authors conclude that topical PDGF speeds time to epithelialization of partial-thickness wounds in a porcine model as evidenced by histology, clinical appearance, and time to return to prewounding vascularity.
Collapse
|
29
|
Park TH, Anand A. Management of diabetic foot: Brief synopsis for busy orthopedist. J Clin Orthop Trauma 2015; 6:24-9. [PMID: 26549948 PMCID: PMC4551462 DOI: 10.1016/j.jcot.2014.10.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2014] [Accepted: 10/21/2014] [Indexed: 12/28/2022] Open
Abstract
According to available medical reports, over 10% of diabetic patients will develop foot ulcers during their lifetimes. This condition still remains great challenges to many clinicians. Various mechanisms may explain treatment-resistant entity. Treatment varies widely, relying on the severity of the ulceration as well as the presence of infection or ischemia. However, the most important things to keep in mind should consist of the following: 1) appropriate debridement; 2) off-loading of pressure; 3) effective control of infection; 4) local wound care strategy; 5) timely reconstructive surgery. The ideal flap for diabetic foot reconstruction should provide a well-vascularized tissue to control infection, adequate contour for footwear, durability, and solid anchorage to resist shearing forces. A thorough assessment of patient's general condition and voluntary motivation of the patient should be warranted to prevent any sort of postoperative recurrence.
Collapse
Affiliation(s)
- Tae Hwan Park
- Buleun Health Care Center, Incheon, Republic of Korea
| | - Ashish Anand
- Staff Orthopaedic Surgeon, VAMC, Jackson, MS, USA,Corresponding author.
| |
Collapse
|
30
|
Kaltalioglu K, Coskun-Cevher S. A bioactive molecule in a complex wound healing process: platelet-derived growth factor. Int J Dermatol 2014; 54:972-7. [PMID: 25312059 DOI: 10.1111/ijd.12731] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/28/2013] [Revised: 03/20/2014] [Accepted: 04/04/2014] [Indexed: 11/28/2022]
Abstract
Wound healing is considered to be particularly important after surgical procedures, and the most important wounds related to surgical procedures are incisional, excisional, and punch wounds. Research is ongoing to identify methods to heal non-closed wounds or to accelerate wound healing; however, wound healing is a complex process that includes many biological and physiological events, and it is affected by various local and systemic factors, including diabetes mellitus, infection, ischemia, and aging. Different cell types (such as platelets, macrophages, and neutrophils) release growth factors during the healing process, and platelet-derived growth factor is a particularly important mediator in most stages of wound healing. This review explores the relationship between platelet-derived growth factor and wound healing.
Collapse
|
31
|
Chong HC, Chan JSK, Goh CQ, Gounko NV, Luo B, Wang X, Foo S, Wong MTC, Choong C, Kersten S, Tan NS. Angiopoietin-like 4 stimulates STAT3-mediated iNOS expression and enhances angiogenesis to accelerate wound healing in diabetic mice. Mol Ther 2014; 22:1593-604. [PMID: 24903577 DOI: 10.1038/mt.2014.102] [Citation(s) in RCA: 89] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2014] [Accepted: 05/11/2014] [Indexed: 12/24/2022] Open
Abstract
Impaired wound healing is a major source of morbidity in diabetic patients. Poor outcome has, in part, been related to increased inflammation, poor angiogenesis, and deficiencies in extracellular matrix components. Despite the enormous impact of these chronic wounds, effective therapies are lacking. Here, we showed that the topical application of recombinant matricellular protein angiopoietin-like 4 (ANGPTL4) accelerated wound reepithelialization in diabetic mice, in part, by improving angiogenesis. ANGPTL4 expression is markedly elevated upon normal wound injury. In contrast, ANGPTL4 expression remains low throughout the healing period in diabetic wounds. Exogenous ANGPTL4 modulated several regulatory networks involved in cell migration, angiogenesis, and inflammation, as evidenced by an altered gene expression signature. ANGPTL4 influenced the expression profile of endothelial-specific CD31 in diabetic wounds, returning its profile to that observed in wild-type wounds. We showed ANGPTL4-induced nitric oxide production through an integrin/JAK/STAT3-mediated upregulation of inducible nitric oxide synthase (iNOS) expression in wound epithelia, thus revealing a hitherto unknown mechanism by which ANGPTL4 regulated angiogenesis via keratinocyte-to-endothelial-cell communication. These data show that the replacement of ANGPTL4 may be an effective adjunctive or new therapeutic avenue for treating poor healing wounds. The present finding also confirms that therapeutic angiogenesis remains an attractive treatment modality for diabetic wound healing.
Collapse
Affiliation(s)
- Han Chung Chong
- School of Biological Sciences, Nanyang Technological University, Nanyang Drive, Singapore, Singapore
| | - Jeremy Soon Kiat Chan
- School of Biological Sciences, Nanyang Technological University, Nanyang Drive, Singapore, Singapore
| | - Chi Qin Goh
- School of Biological Sciences, Nanyang Technological University, Nanyang Drive, Singapore, Singapore
| | - Natalia V Gounko
- Institute of Molecular and Cell Biology, Proteos, A*STAR, Singapore, Singapore
| | - Baiwen Luo
- School of Materials Science and Engineering, Nanyang Technological University, Nanyang Avenue, Singapore, Singapore
| | - Xiaoling Wang
- School of Biological Sciences, Nanyang Technological University, Nanyang Drive, Singapore, Singapore
| | - Selin Foo
- School of Biological Sciences, Nanyang Technological University, Nanyang Drive, Singapore, Singapore
| | | | - Cleo Choong
- School of Materials Science and Engineering, Nanyang Technological University, Nanyang Avenue, Singapore, Singapore
| | - Sander Kersten
- Nutrition, Metabolism and Genomics group, Wageningen Univeristy, Wageningen, The Netherlands
| | - Nguan Soon Tan
- 1] School of Biological Sciences, Nanyang Technological University, Nanyang Drive, Singapore, Singapore [2] Institute of Molecular and Cell Biology, Proteos, A*STAR, Singapore, Singapore
| |
Collapse
|
32
|
Howard JD, Sarojini H, Wan R, Chien S. Rapid granulation tissue regeneration by intracellular ATP delivery--a comparison with Regranex. PLoS One 2014; 9:e91787. [PMID: 24637626 PMCID: PMC3956755 DOI: 10.1371/journal.pone.0091787] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2013] [Accepted: 02/02/2014] [Indexed: 12/30/2022] Open
Abstract
This study tests a new intracellular ATP delivery technique for tissue regeneration and compares its efficacy with that of Regranex. Twenty-seven adult New Zealand white rabbits each underwent minimally invasive surgery to render one ear ischemic. Eight wounds were then created: four on the ischemic and four on the normal ear. Two wounds on one side of each ear were treated with Mg-ATP encapsulated lipid vesicles (ATP-vesicles) while the two wounds on the other side were treated with Regranex. Wound healing time was shorter when ATP-vesicles were used. The most striking finding was that new tissue growth started to appear in less than 1 day when ATP-vesicles were used. The growth continued and covered the wound area within a few days, without the formation of a provisional matrix. Regranex-treated wounds did not have this growth pattern. In wounds treated by ATP-vesicles, histologic studies revealed extremely rich macrophage accumulation, along with active proliferating cell nuclear antigen (PCNA) and positive BrdU staining, indicating in situ macrophage proliferation. Human macrophage culture suggested direct collagen production. These results support an entirely new healing process, which seems to have combined the conventional hemostasis, inflammation, and proliferation phases into a single one, thereby eliminating the lag time usually seen during healing process.
Collapse
Affiliation(s)
- Jeffrey D. Howard
- Department of Surgery, University of Louisville, Louisville, Kentucky, United States of America
| | - Harshini Sarojini
- Department of Surgery, University of Louisville, Louisville, Kentucky, United States of America
| | - Rong Wan
- Department of Surgery, University of Louisville, Louisville, Kentucky, United States of America
| | - Sufan Chien
- Department of Surgery, University of Louisville, Louisville, Kentucky, United States of America
- * E-mail:
| |
Collapse
|
33
|
Xiao J, Chen X, Xu L, Zhang Y, Yin Q, Wang F. Regulation of chondrocyte proliferation through GIT1-Rac1-mediated ERK1/2 pathway by PDGF. Cell Biol Int 2014; 38:695-701. [PMID: 24420748 DOI: 10.1002/cbin.10241] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2013] [Accepted: 01/07/2014] [Indexed: 12/28/2022]
Abstract
There are many growth factors contributing to fracture healing after bone fractures. Platelet-derived growth factor (PDGF) released from platelets is a factor promoting cell division and proliferation, and first appears around the sites of fractures. Culture of chondrocytes in vitro are stimulated by PDGF to proliferation, its presence being upregulated in the extracellular matrix of cartilage; the main components include aggrecan and type II collagen. PDGF induces the expression of G the protein-coupled receptor kinase interacting protein 1 (GIT1), promoting Rac1 and ERK1/2 phosphorylation. Both knocking down GIT1 expression by siRNA and blocking phosphorylation of Rac1 inhibit this induced proliferation of chondrocyte. GIT1 and Rac1 control each other, having a synergistic effect on activation of the ERK1/2 pathway. The results suggest that PDGF regulates chondrocyte proliferation through activation of ERK1/2 pathway by upregulation of GIT1 expression and Rac1 phosphorylation.
Collapse
Affiliation(s)
- Jin Xiao
- Department of Orthopedics, Liuhuaqiao Hospital, Guangzhou, 510010, People's Republic of China
| | | | | | | | | | | |
Collapse
|
34
|
Gowda S, Weinstein DA, Blalock TD, Gandhi K, Mast BA, Chin G, Schultz GS. Topical application of recombinant platelet-derived growth factor increases the rate of healing and the level of proteins that regulate this response. Int Wound J 2013; 12:564-71. [PMID: 24118782 DOI: 10.1111/iwj.12165] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2013] [Revised: 08/22/2013] [Accepted: 08/29/2013] [Indexed: 01/13/2023] Open
Abstract
A bipedicle ischaemic rat skin flap model was used to study the effects of daily topical applications of platelet-derived growth factor (PDGF) on the healing of ischaemic wounds. Levels of tumour necrosis factor-alpha (TNFA), interleukin 1-beta (IL1B) and both the latent and active forms of matrix metalloproteinase 2 (MMP2) and 9 (MMP9) were measured. Full-thickness wounds were made on a total of 72 adult male Sprague-Dawley rats. Each group of 18 rats with normal and ischaemic wounds received either vehicle or 0·01% recombinant PDGF-BB. Additional applications were made on the wounds on a daily basis. Wound areas were measured at 0, 1, 3, 5, 7 9 and 13 days after wounding. Ischaemia caused a delay in wound healing as well as an increase in TNFA, IL1B and both the pro and active forms of MMP2 and MMP9. PDGF accelerated the rate of wound healing in both normal and ischaemic wounds and negated the effect of ischaemia. PDGF reduced the TNFA concentration in both normal and ischaemic wounds, and the rate of wound healing closely resembled the pattern of TNFA protein expression. PDGF also reduced both the magnitude and duration of the increases in IL1B and both the pro and active forms of MMP2 and MMP9 induced by ischaemia.
Collapse
Affiliation(s)
- Santosh Gowda
- Marquette General Hematology Oncology, Escanaba, MI, USA
| | - David A Weinstein
- Department of Dermatology, New York Medical College, New York, NY, USA
| | - Timothy D Blalock
- Department of Ophthalmology, University of Florida, Gainesville, FL, USA.,University of Florida's Institute for Wound Healing, Gainesville, FL, USA
| | - Kavita Gandhi
- University of Maryland School of Medicine, Baltimore, MD, USA
| | - Bruce A Mast
- University of Florida's Institute for Wound Healing, Gainesville, FL, USA.,Department of Surgery, Division of Plastic and Reconstructive Surgery, University of Florida, Gainesville, FL, USA
| | | | - Gregory S Schultz
- Department of Ophthalmology, University of Florida, Gainesville, FL, USA.,University of Florida's Institute for Wound Healing, Gainesville, FL, USA
| |
Collapse
|
35
|
Ge X, Shi Z, Yu N, Jiao Y, Jin L, Zhang J. The Role of EGFR/ERK/ELK-1 MAP Kinase Pathway in the Underlying Damage to Diabetic Rat Skin. Indian J Dermatol 2013; 58:101-6. [PMID: 23716797 PMCID: PMC3657207 DOI: 10.4103/0019-5154.108035] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Background: Diabetes mellitus (DM) is a highly prevalent disease. Atrophy and spontaneous ulcers are the most common cutaneous manifestation of diabetic dermopathy (DD). Before spontaneous ulcers, we believe there is an underlying damage stage although the mechanism is unknown. Aims: To explore the expression of extracellular signal-regulated kinase1/2 (ERK1/2), its correlated upstream protein epidermal growth factor receptor (EGFR) and its downstream transcription factor E twenty-six (ETS)-like 1(ELK-1)in the damage of the diabetic rat skin, and to explore the role of ERK1/2 on the recessive damage to diabetic rat skin. Materials and Methods: Eighty Sprague-Dawley (SD) rats weighing 260-300 g were randomly divided into control and streptozotocin (STZ)-induced diabetes groups. After 0.5, 2, 4, and 8 weeks, the shaved skin specimens from the back of rats in both groups were collected to observe the histological characteristics of the skin, to measure the thickness of the epidermis and the dermis, and to observe the ultrastructure. Immunohistochemistry (IHC) and Western blot techniques were used to detect the expression and activation of ERK1/2, EGFR, ELK-1 in the skin of the rats. Results: There are ultrastructural changes in the DM skin. With the continuance of the diabetes course, the thicknesses of the epidermis and dermis decreased, and the expression of phospho-ERK1/2 (P-ERK1/2), EGFR, and ELK-1 was decreased gradually in the back skin of the diabetes rats. It was significantly lower in 4 and 8 week DM than that of the normal control (P < 0.05). The expression of P-EGFR and P-ERK1/2 in the back skin of the diabetes rats was positively correlated (r = 0.572 P < 0.05), and the positive correlation was also obtained between P-ERK1/2 and P-ELK-1 (r = 0.715, P < 0.05). Conclusion: The phenomenon of recessive damage exists in the skin of diabetes rats, which probably may relate to the weakness of the signal transduction: P-EGFR → ERK1/2 → ELK-1.
Collapse
Affiliation(s)
- Xinhong Ge
- Department of Dermatological, General Hospital of Ningxia Medical University, Yinchuan, Ningxia Hui Autonomous Region, China
| | | | | | | | | | | |
Collapse
|
36
|
Abstract
Researchers have identified several of the cellular events associated with wound healing. Platelets, neutrophils, macrophages, and fibroblasts primarily contribute to the process. They release cytokines including interleukins (ILs) and TNF-α, and growth factors, of which platelet-derived growth factor (PDGF) is perhaps the most important. The cytokines and growth factors manipulate the inflammatory phase of healing. Cytokines are chemotactic for white cells and fibroblasts, while the growth factors initiate fibroblast and keratinocyte proliferation. Inflammation is followed by the proliferation of fibroblasts, which lay down the extracellular matrix. Simultaneously, various white cells and other connective tissue cells release both the matrix metalloproteinases (MMPs) and the tissue inhibitors of these metalloproteinases (TIMPs). MMPs remove damaged structural proteins such as collagen, while the fibroblasts lay down fresh extracellular matrix proteins. Fluid collected from acute, healing wounds contains growth factors, and stimulates fibroblast proliferation, but fluid collected from chronic, nonhealing wounds does not. Fibroblasts from chronic wounds do not respond to chronic wound fluid, probably because the fibroblasts of these wounds have lost the receptors that respond to cytokines and growth factors. Nonhealing wounds contain high levels of IL1, IL6, and MMPs, and an abnormally high MMP/TIMP ratio. Clinical examination of wounds inconsistently predicts which wounds will heal when procedures like secondary closure are planned. Surgeons therefore hope that these chemicals can be used as biomarkers of wounds which have impaired ability to heal. There is also evidence that the application of growth factors like PDGF will help the healing of chronic, nonhealing wounds.
Collapse
Affiliation(s)
- Jumaat Mohd Yussof Shah
- Discipline of Plastic Surgery, Universiti Teknologi MARA, Jalan Selayang Prima 1, Batu Caves, Selangor, Malaysia
| | | | | | | |
Collapse
|
37
|
Lima MHM, Caricilli AM, de Abreu LL, Araújo EP, Pelegrinelli FF, Thirone ACP, Tsukumo DM, Pessoa AFM, dos Santos MF, de Moraes MA, Carvalheira JBC, Velloso LA, Saad MJA. Topical insulin accelerates wound healing in diabetes by enhancing the AKT and ERK pathways: a double-blind placebo-controlled clinical trial. PLoS One 2012; 7:e36974. [PMID: 22662132 PMCID: PMC3360697 DOI: 10.1371/journal.pone.0036974] [Citation(s) in RCA: 139] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2011] [Accepted: 04/15/2012] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Wound healing is impaired in diabetes mellitus, but the mechanisms involved in this process are virtually unknown. Proteins belonging to the insulin signaling pathway respond to insulin in the skin of rats. OBJECTIVE The purpose of this study was to investigate the regulation of the insulin signaling pathway in wound healing and skin repair of normal and diabetic rats, and, in parallel, the effect of a topical insulin cream on wound healing and on the activation of this pathway. RESEARCH DESIGN AND METHODS We investigated insulin signaling by immunoblotting during wound healing of control and diabetic animals with or without topical insulin. Diabetic patients with ulcers were randomized to receive topical insulin or placebo in a prospective, double-blind and placebo-controlled, randomized clinical trial (NCT 01295177) of wound healing. RESULTS AND CONCLUSIONS Expression of IR, IRS-1, IRS-2, SHC, ERK, and AKT are increased in the tissue of healing wounds compared to intact skin, suggesting that the insulin signaling pathway may have an important role in this process. These pathways were attenuated in the wounded skin of diabetic rats, in parallel with an increase in the time of complete wound healing. Upon topical application of insulin cream, the wound healing time of diabetic animals was normalized, followed by a reversal of defective insulin signal transduction. In addition, the treatment also increased expression of other proteins, such as eNOS (also in bone marrow), VEGF, and SDF-1α in wounded skin. In diabetic patients, topical insulin cream markedly improved wound healing, representing an attractive and cost-free method for treating this devastating complication of diabetes. TRIAL REGISTRATION ClinicalTrials.gov NCT01295177.
Collapse
Affiliation(s)
- Maria H. M. Lima
- Department of Nursing, FCM, University of Campinas, Campinas, São Paulo, Brazil
| | - Andréa M. Caricilli
- Department of Internal Medicine, FCM, University of Campinas, Campinas, São Paulo, Brazil
| | - Lélia L. de Abreu
- Department of Nursing, FCM, University of Campinas, Campinas, São Paulo, Brazil
| | - Eliana P. Araújo
- Department of Nursing, FCM, University of Campinas, Campinas, São Paulo, Brazil
| | | | - Ana C. P. Thirone
- Department of Internal Medicine, FCM, University of Campinas, Campinas, São Paulo, Brazil
| | - Daniela M. Tsukumo
- Department of Internal Medicine, FCM, University of Campinas, Campinas, São Paulo, Brazil
| | - Ana Flávia M. Pessoa
- Department of Cell and Developmental Biology, University of São Paulo, São Paulo, Brazil
| | | | - Maria A. de Moraes
- Department of Internal Medicine, FCM, University of Campinas, Campinas, São Paulo, Brazil
| | - José B. C. Carvalheira
- Department of Internal Medicine, FCM, University of Campinas, Campinas, São Paulo, Brazil
| | - Lício A. Velloso
- Department of Internal Medicine, FCM, University of Campinas, Campinas, São Paulo, Brazil
| | - Mario J. A. Saad
- Department of Internal Medicine, FCM, University of Campinas, Campinas, São Paulo, Brazil
| |
Collapse
|
38
|
Huang Z, Lu M, Zhu G, Gao H, Xie L, Zhang X, Ye C, Wang Y, Sun C, Li X. Acceleration of diabetic-wound healing with PEGylated rhaFGF in healing-impaired streptozocin diabetic rats. Wound Repair Regen 2011; 19:633-44. [DOI: 10.1111/j.1524-475x.2011.00722.x] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Affiliation(s)
| | - Meifei Lu
- Key Laboratory of Biotechnology and Pharmaceutical Engineering of Zhejiang Province; Wenzhou Medical College; Wenzhou; China
| | - Guanghui Zhu
- Key Laboratory of Biotechnology and Pharmaceutical Engineering of Zhejiang Province; Wenzhou Medical College; Wenzhou; China
| | - Hongchang Gao
- Key Laboratory of Biotechnology and Pharmaceutical Engineering of Zhejiang Province; Wenzhou Medical College; Wenzhou; China
| | - Liyun Xie
- Key Laboratory of Biotechnology and Pharmaceutical Engineering of Zhejiang Province; Wenzhou Medical College; Wenzhou; China
| | - Xiaoqin Zhang
- Key Laboratory of Biotechnology and Pharmaceutical Engineering of Zhejiang Province; Wenzhou Medical College; Wenzhou; China
| | - Chaohui Ye
- Key Laboratory of Biotechnology and Pharmaceutical Engineering of Zhejiang Province; Wenzhou Medical College; Wenzhou; China
| | - Yan Wang
- Key Laboratory of Biotechnology and Pharmaceutical Engineering of Zhejiang Province; Wenzhou Medical College; Wenzhou; China
| | - Chuanchuan Sun
- Key Laboratory of Biotechnology and Pharmaceutical Engineering of Zhejiang Province; Wenzhou Medical College; Wenzhou; China
| | | |
Collapse
|
39
|
Di Rocco G, Gentile A, Antonini A, Ceradini F, Wu JC, Capogrossi MC, Toietta G. Enhanced healing of diabetic wounds by topical administration of adipose tissue-derived stromal cells overexpressing stromal-derived factor-1: biodistribution and engraftment analysis by bioluminescent imaging. Stem Cells Int 2010; 2011:304562. [PMID: 21234108 PMCID: PMC3014681 DOI: 10.4061/2011/304562] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2010] [Accepted: 11/15/2010] [Indexed: 12/27/2022] Open
Abstract
Chronic ulcers represent a major health problem in diabetic patients resulting in pain and discomfort. Conventional therapy does not guarantee adequate wound repair. In diabetes, impaired healing is partly due to poor endothelial progenitor cells mobilisation and homing, with altered levels of the chemokine stromal-derived factor-1 (SDF-1) at the wound site. Adipose tissue-associated stromal cells (AT-SCs) can provide an accessible source of progenitor cells secreting proangiogenic factors and differentiating into endothelial-like cells. We demonstrated that topical administration of AT-SCs genetically modified ex vivo to overexpress SDF-1, promotes wound healing into diabetic mice. In particular, by in vivo bioluminescent imaging analysis, we monitored biodistribution and survival after transplantation of luciferase-expressing cells. In conclusion, this study indicates the therapeutic potential of AT-SCs administration in wound healing, through cell differentiation, enhanced cellular recruitment at the wound site, and paracrine effects associated with local growth-factors production.
Collapse
Affiliation(s)
- Giuliana Di Rocco
- Laboratorio di Biologia Vascolare e Medicina Rigenerativa, Centro Cardiologico Fondazione Monzino - IRCCS, Via Parea 4, 20138 Milan, Italy
| | | | | | | | | | | | | |
Collapse
|
40
|
Wang SY, Wang K, Xin Y, Lv DC. Maggot excretions/secretions induces human microvascular endothelial cell migration through AKT1. Mol Biol Rep 2009; 37:2719-25. [PMID: 19757167 DOI: 10.1007/s11033-009-9806-x] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2009] [Accepted: 09/02/2009] [Indexed: 12/21/2022]
Abstract
Maggot therapy is a simple and highly successful method for healing of infected and necrotic wounds. The increasing evidences indicate that Maggot excretions/secretions (ES) plays important roles in the wounds healing process. But the precise molecular mechanisms remain undefined. Herein, we investigated if ES induced cell migration during wound healing process using microvascular endothelial cells (HMEC-1) as model, and this effect was associated with the activation of AKT1 and ERK1/2. Wound healing and transwell migration assays were performed to study the effects of ES on HMEC-1 cell migration. Our data showed that ES significantly induced HMEC-1 cell migration in both wound healing and transwell assays, and time-dependently (P < 0.05) activated AKT1, but not ERK1/2. Moreover LY294002 (a PI3K inhibitor) partially attenuated (P < 0.05) ES-induced cell migration in wound healing assay while completely inhibited (P < 0.05) ES-induced AKT1 activation. These findings demonstrate that ES directly induces HMEC-1 cell migration and this event is partially mediated by the activation of AKT1.
Collapse
Affiliation(s)
- Shou-yu Wang
- Department of Orthopaedics, The First Affiliated Hospital of Dalian Medical University, 222 Zhong Shan Road, 116011, Dalian, Liaoning, People's Republic of China
| | | | | | | |
Collapse
|
41
|
Gope ML, Gope R. Tyrosine phosphorylation of EGF-R and PDGF-R proteins during acute cutaneous wound healing process in mice. Wound Repair Regen 2009; 17:71-9. [PMID: 19152653 DOI: 10.1111/j.1524-475x.2008.00443.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The effect of topical application of epidermal growth factor (EGF) and platelet-derived growth factors (PDGFs) on the levels of EGF-R and PDGF-R proteins and their tyrosine phosphorylation were analyzed during an acute cutaneous wound healing process in mice. The growth factor-treated wounds had optimum levels of receptor proteins as early as day 1 compared with the control, which had only a basal level. Analysis of the tyrosine phosphorylation of the receptor proteins in control and growth factor-treated wounds indicated that they were phosphorylated until day 5 after wounding. Only the mature forms of alpha-PDGF-R and beta-PDGF-R proteins were phosphorylated and not their precursors. Our results show that rapid attainment of maximum levels of growth factor receptor proteins and their tyrosine phosphorylation as early as day 1 and the maintenance of the same until day 3 appear to aid faster and better wound healing. Topical application of PDGF-AA alone did not facilitate the wound healing process and it also antagonized the EGF-medicated wound healing when applied premixed with EGF or within 30 minutes after EGF application. Under these conditions, the receptor proteins were not phosphorylated. Thus, an increased and sustained level of EGF-R and PDGF-R proteins and their tyrosine phosphorylation appear to accelerate the wound healing process.
Collapse
Affiliation(s)
- Mohan L Gope
- Department of Biotechnology, City College, Bangalore, India
| | | |
Collapse
|
42
|
Wang X, Chen S, Jin H, Hu R. Differential analyses of angiogenesis and expression of growth factors in micro- and macrovascular endothelial cells of type 2 diabetic rats. Life Sci 2009; 84:240-9. [DOI: 10.1016/j.lfs.2008.12.010] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2008] [Revised: 10/25/2008] [Accepted: 12/06/2008] [Indexed: 01/01/2023]
|
43
|
Lin S, Xu H, Xiao J, Liu Y, Zhang Y, Cai L, Li X, Tan Y. Combined Use of Acid Fibroblast Growth Factor, Granulocyte Colony-stimulating Factor and Zinc Sulphate Accelerates Diabetic Ulcer Healing. ACTA ACUST UNITED AC 2009. [DOI: 10.1248/jhs.55.910] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Shaoqiang Lin
- The Chinese-American Research Institute for Diabetic Complications
- Key Laboratory of Biotechnology Pharmaceutical Engineering Wenzhou Medical College
| | - Hengwu Xu
- The Chinese-American Research Institute for Diabetic Complications
- Key Laboratory of Biotechnology Pharmaceutical Engineering Wenzhou Medical College
| | - Jian Xiao
- The Chinese-American Research Institute for Diabetic Complications
- Key Laboratory of Biotechnology Pharmaceutical Engineering Wenzhou Medical College
| | - Yanlong Liu
- The Chinese-American Research Institute for Diabetic Complications
- Key Laboratory of Biotechnology Pharmaceutical Engineering Wenzhou Medical College
| | - Yi Zhang
- The Chinese-American Research Institute for Diabetic Complications
| | - Lu Cai
- The Chinese-American Research Institute for Diabetic Complications
- Department of Pediatrics, the University of Louisville
| | - Xiaokun Li
- The Chinese-American Research Institute for Diabetic Complications
- Key Laboratory of Biotechnology Pharmaceutical Engineering Wenzhou Medical College
| | - Yi Tan
- The Chinese-American Research Institute for Diabetic Complications
- Key Laboratory of Biotechnology Pharmaceutical Engineering Wenzhou Medical College
- Department of Pediatrics, the University of Louisville
| |
Collapse
|
44
|
Skorjanec S, Dolovski Z, Kocman I, Brcic L, Blagaic Boban A, Batelja L, Coric M, Sever M, Klicek R, Berkopic L, Radic B, Drmic D, Kolenc D, Ilic S, Cesarec V, Tonkic A, Zoricic I, Mise S, Staresinic M, Ivica M, Lovric Bencic M, Anic T, Seiwerth S, Sikiric P. Therapy for unhealed gastrocutaneous fistulas in rats as a model for analogous healing of persistent skin wounds and persistent gastric ulcers: stable gastric pentadecapeptide BPC 157, atropine, ranitidine, and omeprazole. Dig Dis Sci 2009; 54:46-56. [PMID: 18649140 DOI: 10.1007/s10620-008-0332-9] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/07/2008] [Accepted: 05/06/2008] [Indexed: 12/18/2022]
Abstract
OBJECTIVE This study focused on unhealed gastrocutaneous fistulas to resolve whether standard drugs that promote healing of gastric ulcers may simultaneously have the same effect on cutaneous wounds, and corticosteroid aggravation, and to demonstrate why peptides such as BPC 157 exhibit a greater healing effect. Therefore, with the fistulas therapy, we challenge the wound/growth factors theory of the analogous nonhealing of wounds and persistent gastric ulcers. METHODS The healing rate of gastrocutaneous fistula in rat (2-mm-diameter stomach defect, 3-mm-diameter skin defect) validates macro/microscopically and biomechanically a direct skin wound/stomach ulcer relation, and identifies a potential therapy consisting of: (i) stable gastric pentadecapeptide BPC 157 [in drinking water (10 microg/kg) (12 ml/rat/day) or intraperitoneally (10 microg/kg, 10 ng/kg, 10 pg/kg)], (ii) atropine (10 mg/kg), ranitidine (50 mg/kg), and omeprazole (50 mg/kg), (iii) 6-alpha-methylprednisolone (1 mg/kg) [intraperitoneally, once daily, first application at 30 min following surgery; last 24 h before sacrifice (at postoperative days 1, 2, 3, 7, 14, and 21)]. RESULTS Greater anti-ulcer potential and efficiency in wound healing compared with standard agents favor BPC 157, efficient in inflammatory bowel disease (PL-14736, Pliva), given in drinking water or intraperitoneally. Even after 6-alpha-methylprednisolone aggravation, BPC 157 promptly improves both skin and stomach mucosa healing, and closure of fistulas, with no leakage after up to 20 ml water intragastrically. Standard anti-ulcer agents, after a delay, improve firstly skin healing and then stomach mucosal healing, but not fistula leaking and bursting strength (except for atropine). CONCLUSION We conclude that BPC 157 may resolve analogous nonhealing of wounds and persistent gastric ulcers better than standard agents.
Collapse
Affiliation(s)
- Sandra Skorjanec
- Department of Pharmacology, Medical School, University of Zagreb, Salata 11, 10000, Zagreb, Croatia
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
High-mobility group box 1 protein in human and murine skin: involvement in wound healing. J Invest Dermatol 2008; 128:1545-53. [PMID: 18239618 DOI: 10.1038/sj.jid.5701212] [Citation(s) in RCA: 128] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
High-mobility group box 1 (HMGB1) protein is a multifunctional cytokine involved in inflammatory responses and tissue repair. In this study, it was examined whether HMGB1 plays a role in skin wound repair both in normoglycemic and diabetic mice. HMGB1 was detected in the nucleus of skin cells, and accumulated in the cytoplasm of epidermal cells in the wounded skin. Diabetic human and mouse skin showed more reduced HMGB1 levels than their normoglycemic counterparts. Topical application of HMGB1 to the wounds of diabetic mice enhanced arteriole density, granulation tissue deposition, and accelerated wound healing. In contrast, HMGB1 had no effect in normoglycemic mouse skin wounds, where endogenous HMGB1 levels may be adequate for optimal wound closure. Accordingly, inhibition of endogenous HMGB1 impaired wound healing in normal mice but had no effect in diabetic mice. Finally, HMGB1 had a chemotactic effect on skin fibroblasts and keratinoyctes in vitro. In conclusion, lower HMGB1 levels in diabetic skin may play an important role in impaired wound healing and this defect may be overcome by the topical application of HMGB1.
Collapse
|
46
|
Tan Y, Xiao J, Huang Z, Xiao Y, Lin S, Jin L, Feng W, Cai L, Li X. Comparison of the Therapeutic Effects Recombinant Human Acidic and Basic Fibroblast Growth Factors in Wound Healing in Diabetic Patients. ACTA ACUST UNITED AC 2008. [DOI: 10.1248/jhs.54.432] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Yi Tan
- Chinese-American Research Institute for Diabetic Complications, Wenzhou Medical College
- Key Laboratory of Biotechnology Pharmaceutical Engineering, Wenzhou Medical College
- Departments of Medicine, Radiation Oncology, and Pharmacology and Toxicology, University of Louisville
| | - Jian Xiao
- Chinese-American Research Institute for Diabetic Complications, Wenzhou Medical College
- Key Laboratory of Biotechnology Pharmaceutical Engineering, Wenzhou Medical College
| | - Zhifeng Huang
- Chinese-American Research Institute for Diabetic Complications, Wenzhou Medical College
- Key Laboratory of Biotechnology Pharmaceutical Engineering, Wenzhou Medical College
| | - Yechen Xiao
- Biopharmaceutics and Bioreactor Research Center, Ministry of Education, Jilin Agriculture University
| | - Shaoqiang Lin
- Chinese-American Research Institute for Diabetic Complications, Wenzhou Medical College
- Key Laboratory of Biotechnology Pharmaceutical Engineering, Wenzhou Medical College
| | - Litai Jin
- Chinese-American Research Institute for Diabetic Complications, Wenzhou Medical College
- Key Laboratory of Biotechnology Pharmaceutical Engineering, Wenzhou Medical College
| | - Wenke Feng
- Chinese-American Research Institute for Diabetic Complications, Wenzhou Medical College
- Departments of Medicine, Radiation Oncology, and Pharmacology and Toxicology, University of Louisville
| | - Lu Cai
- Chinese-American Research Institute for Diabetic Complications, Wenzhou Medical College
- Departments of Medicine, Radiation Oncology, and Pharmacology and Toxicology, University of Louisville
| | - Xiaokun Li
- Chinese-American Research Institute for Diabetic Complications, Wenzhou Medical College
- Key Laboratory of Biotechnology Pharmaceutical Engineering, Wenzhou Medical College
- Departments of Medicine, Radiation Oncology, and Pharmacology and Toxicology, University of Louisville
- National Engineering Research Center for Gene Medicine, Jinan University
| |
Collapse
|
47
|
Wang W, Lin S, Xiao Y, Huang Y, Tan Y, Cai L, Li X. Acceleration of diabetic wound healing with chitosan-crosslinked collagen sponge containing recombinant human acidic fibroblast growth factor in healing-impaired STZ diabetic rats. Life Sci 2008; 82:190-204. [DOI: 10.1016/j.lfs.2007.11.009] [Citation(s) in RCA: 113] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2007] [Revised: 10/20/2007] [Accepted: 11/02/2007] [Indexed: 01/13/2023]
|
48
|
Kadoya K, Fukushi JI, Matsumoto Y, Yamaguchi Y, Stallcup WB. NG2 proteoglycan expression in mouse skin: altered postnatal skin development in the NG2 null mouse. J Histochem Cytochem 2007; 56:295-303. [PMID: 18040080 DOI: 10.1369/jhc.7a7349.2007] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
In early postnatal mouse skin, the NG2 proteoglycan is expressed in the subcutis, the dermis, the outer root sheath of hair follicles, and the basal keratinocyte layer of the epidermis. With further development, NG2 is most prominently expressed by stem cells in the hair follicle bulge region, as also observed in adult human skin. During telogen and anagen phases of the adult hair cycle, NG2 is also found in stem cell populations that reside in dermal papillae and the outer root sheaths of hair follicles. Ablation of NG2 produces alterations in both the epidermis and subcutis layers of neonatal skin. Compared with wild type, the NG2 null epidermis does not achieve its full thickness due to reduced proliferation of basal keratinocytes that serve as the stem cell population in this layer. Thickening of the subcutis is also delayed in NG2 null skin due to deficiencies in the adipocyte population.
Collapse
Affiliation(s)
- Kuniko Kadoya
- Burnham Institute for Medical Research, La Jolla, California, USA
| | | | | | | | | |
Collapse
|