1
|
Qutob SS, Roesch SPM, Smiley S, Bellier P, Williams A, Cook KB, Meier MJ, Rowan-Carroll A, Yauk CL, McNamee JP. Transcriptome analysis in mouse skin after exposure to ultraviolet radiation from a canopy sunbed. Photochem Photobiol 2024; 100:1378-1398. [PMID: 38317517 DOI: 10.1111/php.13917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 01/17/2024] [Accepted: 01/24/2024] [Indexed: 02/07/2024]
Abstract
Exposure to ultraviolet radiation (UV-R), from both natural and artificial tanning, heightens the risk of skin cancer by inducing molecular changes in cells and tissues. Despite established transcriptional alterations at a molecular level due to UV-R exposure, uncertainties persist regarding UV radiation characterization and subsequent genomic changes. Our study aimed to mechanistically explore dose- and time-dependent gene expression changes, that may drive short-term (e.g., sunburn) and long-term actinic (e.g., skin cancer) consequences. Using C57BL/6N mouse skin, we analyzed transcriptomic expression following exposure to five erythemally weighted UV-R doses (0, 5, 10, 20, and 40 mJ/cm2) emitted by a UV-R tanning device. At 96 h post-exposure, 5 mJ/cm2 induced 116 statistically significant differentially expressed genes (DEGs) associated with structural changes from UV-R damage. The highest number of significant gene expression changes occurred at 6 and 48 h post-exposure in the 20 and 40 mJ/cm2 dose groups. Notably, at 40 mJ/cm2, 13 DEGs related to skin barrier homeostasis were consistently perturbed across all timepoints. UV-R exposure activated pathways involving oxidative stress, P53 signaling, inflammation, biotransformation, skin barrier maintenance, and innate immunity. This in vivo study's transcriptional data offers mechanistic insights into both short-term and potential non-threshold-dependent long-term health effects of UV-R tanning.
Collapse
Affiliation(s)
- Sami S Qutob
- Consumer and Clinical Radiation Protection Bureau, Health Canada, Ottawa, Ontario, Canada
| | - Samantha P M Roesch
- Consumer and Clinical Radiation Protection Bureau, Health Canada, Ottawa, Ontario, Canada
| | - Sandy Smiley
- Consumer and Clinical Radiation Protection Bureau, Health Canada, Ottawa, Ontario, Canada
| | - Pascale Bellier
- Consumer and Clinical Radiation Protection Bureau, Health Canada, Ottawa, Ontario, Canada
| | - Andrew Williams
- Environmental Health Science and Research Bureau, Health Canada, Ottawa, Ontario, Canada
| | - Kate B Cook
- Environmental Health Science and Research Bureau, Health Canada, Ottawa, Ontario, Canada
| | - Matthew J Meier
- Environmental Health Science and Research Bureau, Health Canada, Ottawa, Ontario, Canada
| | - Andrea Rowan-Carroll
- Environmental Health Science and Research Bureau, Health Canada, Ottawa, Ontario, Canada
| | - Carole L Yauk
- Department of Biology, University of Ottawa, Ottawa, Ontario, Canada
| | - James P McNamee
- Consumer and Clinical Radiation Protection Bureau, Health Canada, Ottawa, Ontario, Canada
| |
Collapse
|
2
|
Hu C, Wallace N. Beta HPV Deregulates Double-Strand Break Repair. Viruses 2022; 14:948. [PMID: 35632690 PMCID: PMC9146468 DOI: 10.3390/v14050948] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 04/27/2022] [Accepted: 04/28/2022] [Indexed: 02/04/2023] Open
Abstract
Beta human papillomavirus (beta HPV) infections are common in adults. Certain types of beta HPVs are associated with nonmelanoma skin cancer (NMSC) in immunocompromised individuals. However, whether beta HPV infections promote NMSC in the immunocompetent population is unclear. They have been hypothesized to increase genomic instability stemming from ultraviolet light exposure by disrupting DNA damage responses. Implicit in this hypothesis is that the virus encodes one or more proteins that impair DNA repair signaling. Fluorescence-based reporters, next-generation sequencing, and animal models have been used to test this primarily in cells expressing beta HPV E6/E7. Of the two, beta HPV E6 appears to have the greatest ability to increase UV mutagenesis, by attenuating two major double-strand break (DSB) repair pathways, homologous recombination, and non-homologous end-joining. Here, we review this dysregulation of DSB repair and emerging approaches that can be used to further these efforts.
Collapse
Affiliation(s)
| | - Nicholas Wallace
- Division of Biology, Kansas State University, Manhattan, KS 66506, USA;
| |
Collapse
|
3
|
HPV8 Reverses the Transcriptional Output in Lrig1 Positive Cells to Drive Skin Tumorigenesis. Cancers (Basel) 2022; 14:cancers14071662. [PMID: 35406439 PMCID: PMC8997052 DOI: 10.3390/cancers14071662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 03/18/2022] [Accepted: 03/23/2022] [Indexed: 11/17/2022] Open
Abstract
K14-HPV8-CER transgenic mice express the complete early genome region of human papillomavirus type 8 (HPV8) and develop skin tumours attributed to the expansion of the Lrig1+ stem cell population. The correlation between HPV8-induced changes in transcriptional output in the stem cell compartment remains poorly understood. To further understand the oncogenic pathways underlying skin tumour formation we examined the gene expression network in skin tumours of K14-HPV8-CER mice and compared the differentially expressed genes (DEG) with those of the Lrig1-EGFP-ires-CreERT2 mice. Here, we report 397 DEGs in skin tumours of K14-HPV8-CER mice, of which 181 genes were up- and 216 were down-regulated. Gene ontology and KEGG pathway enrichment analyses suggest that the 397 DEGs are acting in signalling pathways known to be involved in skin homeostasis. Interestingly, we found that HPV8 early gene expression subverts the expression pattern of 23 cellular genes known to be expressed in Lrig1+ keratinocytes. Furthermore, we identified putative upstream regulating transcription factors as well as miRNAs in the control of these genes. These data provide strong evidence that HPV8 mediated transcriptional changes may contribute to skin tumorigenesis, offering new insights into the mechanism of HPV8 driven oncogenesis.
Collapse
|
4
|
Akgül B, Kirschberg M, Storey A, Hufbauer M. Human papillomavirus type 8 oncoproteins E6 and E7 cooperate in downregulation of the cellular checkpoint kinase-1. Int J Cancer 2019; 145:797-806. [PMID: 30786016 DOI: 10.1002/ijc.32223] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2018] [Revised: 02/05/2019] [Accepted: 02/12/2019] [Indexed: 12/22/2022]
Abstract
Human papillomavirus 8 (HPV8) is associated with the development of squamous cell carcinoma (SCC) of the skin. HPV-infected keratinocytes are able to override normal checkpoint control mechanisms and sustain cell cycle activity, allowing for synthesis of cellular proteins necessary for viral genome amplification. To study how HPV8 may disrupt cell cycle control, we analyzed the impact of HPV8 early gene expression on one of the key regulators of cell cycle and DNA damage response, checkpoint kinase-1 (CHK1). We found that expression of E1, E1̂E4, E2, E6 or E7 individually did not affect CHK1; however, keratinocytes expressing the complete early genome region (CER) of HPV8 showed a profound loss of CHK1 protein levels, that proved to be mediated by E6E7 co-expression. Neither CHK1 promoter regulation nor the ubiquitin-proteasome pathway are involved in HPV8-mediated CHK1 repression. However, CHK1 protein repression in organotypic skin cultures was paralleled by downregulation of the autophagy marker LC3B. Treatment of HPV8-CER expressing cells with the autophagy inhibitor Bafilomycin A1 rescued CHK1 expression and led to LC3B accumulation. Taken together, our data implicate that CHK1 autophagic degradation is enhanced by HPV8, which may contribute to the oncogenic potential of the virus.
Collapse
Affiliation(s)
- Baki Akgül
- Institute of Virology, University of Cologne, Faculty of Medicine, University Hospital of Cologne, Cologne, Germany
| | - Matthias Kirschberg
- Institute of Virology, University of Cologne, Faculty of Medicine, University Hospital of Cologne, Cologne, Germany
| | - Alan Storey
- Department of Oncology, Weatherall Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, Oxford, United Kingdom
| | - Martin Hufbauer
- Institute of Virology, University of Cologne, Faculty of Medicine, University Hospital of Cologne, Cologne, Germany
| |
Collapse
|
5
|
Marx B, Hufbauer M, Zigrino P, Majewski S, Markiefka B, Sachsenheimer T, Brügger B, Akgül B. Phospholipidation of nuclear proteins by the human papillomavirus E6 oncoprotein: implication in carcinogenesis. Oncotarget 2018; 9:34142-34158. [PMID: 30344928 PMCID: PMC6183346 DOI: 10.18632/oncotarget.26140] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2018] [Accepted: 09/06/2018] [Indexed: 12/16/2022] Open
Abstract
Phospholipids regulate numerous cellular functions and their deregulation is known to be associated with cancer development. Here, we show for the first time that expression of the E6 oncoprotein of human papillomavirus type 8 (HPV8) leads to a profound increase in nuclear phosphatidylinositol-4,5-bisphosphate (PI(4,5)P2) lipid levels in monolayer cultures, that led to an aberrant phospholipidation of cellular proteins. Elevated PI(4,5)P2 levels in organotypic skin cultures, skin tumors of K14-HPV8-E6 transgenic mice as well as HPV8 positive skin carcinomas highly suggest a decisive role of PI(4,5)P2 in HPV associated squamous-cell-carcinoma development. Furthermore, mass-spectrometric analysis confirmed an increase of PI(4,5)P2, which was characterized by a shift in the distribution of lipid species. PI(4,5)P2 upregulation was independent of E6 interference with MAML1. However, E6 does interfere with the PI(4,5)P2 metabolic pathway by upregulation of phosphatidylinositol-4-phosphate-5-kinase type I and phosphatidylinositol-5-phosphate 4-kinase type II as well as the binding to 5'-phosphatase OCRL and phosphatidylinositol. All of these mechanisms combined may contribute to PI(4,5)P2 elevation in E6 positive cells. The identification of CAND1 and SND1 - two proteins known to be involved in carcinogenic processes - were significantly stronger phospholipidized in the presence of E6. In conclusion we provide evidence that the modulation of the PI(4,5)P2 metabolism is a novel oncogenic mechanism relevant for HPV-induced carcinogenesis.
Collapse
Affiliation(s)
- Benjamin Marx
- Institute of Virology, University of Cologne, Cologne, Germany
| | - Martin Hufbauer
- Institute of Virology, University of Cologne, Cologne, Germany
| | - Paola Zigrino
- Department of Dermatology and Venereology, University Hospital Cologne, Cologne, Germany
| | - Slawomir Majewski
- Department of Dermatology and Venereology, Medical University of Warsaw, Warsaw, Poland
| | - Birgid Markiefka
- Institute of Pathology, University Hospital Cologne, Cologne, Germany
| | | | - Britta Brügger
- Heidelberg University Biochemistry Center (BZH), Heidelberg, Germany
| | - Baki Akgül
- Institute of Virology, University of Cologne, Cologne, Germany
| |
Collapse
|
6
|
Marx B, Miller-Lazic D, Doorbar J, Majewski S, Hofmann K, Hufbauer M, Akgül B. HPV8-E6 Interferes with Syntenin-2 Expression through Deregulation of Differentiation, Methylation and Phosphatidylinositide-Kinase Dependent Mechanisms. Front Microbiol 2017; 8:1724. [PMID: 28970821 PMCID: PMC5609557 DOI: 10.3389/fmicb.2017.01724] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2017] [Accepted: 08/24/2017] [Indexed: 12/01/2022] Open
Abstract
The E6 oncoproteins of high-risk human papillomaviruses (HPV) of genus alpha contain a short peptide sequence at the carboxy-terminus, the PDZ binding domain, with which they interact with the corresponding PDZ domain of cellular proteins. Interestingly, E6 proteins from papillomaviruses of genus beta (betaPV) do not encode a comparable PDZ binding domain. Irrespective of this fact, we previously showed that the E6 protein of HPV8 (betaPV type) could circumvent this deficit by targeting the PDZ protein Syntenin-2 through transcriptional repression (Lazic et al., 2012). Despite its high binding affinity to phosphatidylinositol-4,5-bisphosphate (PI(4,5)P2), very little is known about Syntenin-2. This study aimed to extend the knowledge on Syntenin-2 and how its expression is controlled. We now identified that Syntenin-2 is expressed at high levels in differentiating and in lower amounts in keratinocytes cultured in serum-free media containing low calcium concentration. HPV8-E6 led to a further reduction of Syntenin-2 expression only in cells cultured in low calcium. In the skin of patients suffering from Epidermodysplasia verruciformis, who are predisposed to betaPV infection, Syntenin-2 was expressed in differentiating keratinocytes of non-lesional skin, but was absent in virus positive squamous tumors. Using 5-Aza-2′-deoxycytidine, which causes DNA demethylation, Syntenin-2 transcription was profoundly activated and fully restored in the absence and presence of HPV8-E6, implicating that E6 mediated repression of Syntenin-2 transcription is due to promoter hypermethylation. Since Syntenin-2 binds to PI(4,5)P2, we further tested whether the PI(4,5)P2 metabolic pathway might govern Syntenin-2 expression. PI(4,5)P2 is generated by the activity of phosphatidylinositol-4-phosphate-5-kinase type I (PIP5KI) or phosphatidylinositol-5-phosphate-4-kinase type II (PIP4KII) isoforms α, β and γ. Phosphatidylinositide kinases have recently been identified as regulators of gene transcription. Surprisingly, transfection of siRNAs directed against PIP5KI and PIP4KII resulted in higher Syntenin-2 expression with the highest effect mediated by siPIP5KIα. HPV8-E6 was able to counteract siPIP4KIIα, siPIP4KIIβ and siPIP5KIγ mediated Syntenin-2 re-expression but not siPIP5KIα. Finally, we identified Syntenin-2 as a key factor regulating PIP5KIα expression. Collectively, our data demonstrates that Syntenin-2 is regulated through multiple mechanisms and that downregulation of Syntenin-2 expression may contribute to E6 mediated dedifferentiation of infected skin cells.
Collapse
Affiliation(s)
- Benjamin Marx
- Institute of Virology, University of CologneCologne, Germany
| | | | - John Doorbar
- Department of Pathology, University of CambridgeCambridge, United Kingdom
| | - Slawomir Majewski
- Department of Dermatology and Venereology, Medical University of WarsawWarsaw, Poland
| | - Kay Hofmann
- Institute for Genetics, University of CologneCologne, Germany
| | - Martin Hufbauer
- Institute of Virology, University of CologneCologne, Germany
| | - Baki Akgül
- Institute of Virology, University of CologneCologne, Germany
| |
Collapse
|
7
|
Gonzalez-Pena D, Nixon SE, O’Connor JC, Southey BR, Lawson MA, McCusker RH, Borras T, Machuca D, Hernandez AG, Dantzer R, Kelley KW, Rodriguez-Zas SL. Microglia Transcriptome Changes in a Model of Depressive Behavior after Immune Challenge. PLoS One 2016; 11:e0150858. [PMID: 26959683 PMCID: PMC4784788 DOI: 10.1371/journal.pone.0150858] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2015] [Accepted: 02/20/2016] [Indexed: 12/20/2022] Open
Abstract
Depression symptoms following immune response to a challenge have been reported after the recovery from sickness. A RNA-Seq study of the dysregulation of the microglia transcriptome in a model of inflammation-associated depressive behavior was undertaken. The transcriptome of microglia from mice at day 7 after Bacille Calmette Guérin (BCG) challenge was compared to that from unchallenged Control mice and to the transcriptome from peripheral macrophages from the same mice. Among the 562 and 3,851 genes differentially expressed between BCG-challenged and Control mice in microglia and macrophages respectively, 353 genes overlapped between these cells types. Among the most differentially expressed genes in the microglia, serum amyloid A3 (Saa3) and cell adhesion molecule 3 (Cadm3) were over-expressed and coiled-coil domain containing 162 (Ccdc162) and titin-cap (Tcap) were under-expressed in BCG-challenged relative to Control. Many of the differentially expressed genes between BCG-challenged and Control mice were associated with neurological disorders encompassing depression symptoms. Across cell types, S100 calcium binding protein A9 (S100A9), interleukin 1 beta (Il1b) and kynurenine 3-monooxygenase (Kmo) were differentially expressed between challenged and control mice. Immune response, chemotaxis, and chemokine activity were among the functional categories enriched by the differentially expressed genes. Functional categories enriched among the 9,117 genes differentially expressed between cell types included leukocyte regulation and activation, chemokine and cytokine activities, MAP kinase activity, and apoptosis. More than 200 genes exhibited alternative splicing events between cell types including WNK lysine deficient protein kinase 1 (Wnk1) and microtubule-actin crosslinking factor 1(Macf1). Network visualization revealed the capability of microglia to exhibit transcriptome dysregulation in response to immune challenge still after resolution of sickness symptoms, albeit lower than that observed in macrophages. The persistent transcriptome dysregulation in the microglia shared patterns with neurological disorders indicating that the associated persistent depressive symptoms share a common transcriptome basis.
Collapse
Affiliation(s)
- Dianelys Gonzalez-Pena
- Department of Animal Sciences, University of Illinois Urbana-Champaign, Urbana, IL, United States of America
| | - Scott E. Nixon
- Illinois Informatics Institute, University of Illinois Urbana-Champaign, Urbana, IL, United States of America
| | - Jason C. O’Connor
- Department of Pharmacology, University of Texas Health Science Center at San Antonio, San Antonio, TX, United States of America
| | - Bruce R. Southey
- Department of Animal Sciences, University of Illinois Urbana-Champaign, Urbana, IL, United States of America
| | - Marcus A. Lawson
- Department of Animal Sciences, University of Illinois Urbana-Champaign, Urbana, IL, United States of America
| | - Robert H. McCusker
- Department of Animal Sciences, University of Illinois Urbana-Champaign, Urbana, IL, United States of America
| | - Tania Borras
- Department of Animal Sciences, University of Illinois Urbana-Champaign, Urbana, IL, United States of America
| | - Debbie Machuca
- Department of Animal Sciences, University of Illinois Urbana-Champaign, Urbana, IL, United States of America
| | - Alvaro G. Hernandez
- High-Throughput Sequencing and Genotyping Unit, Roy J. Carver Biotechnology Center, University of Illinois at Urbana-Champaign, Champaign, IL, United States of America
| | - Robert Dantzer
- Department of Symptom Research, University of Texas M. D. Anderson Cancer Center, Houston, TX, United States of America
| | - Keith W. Kelley
- Department of Animal Sciences, University of Illinois Urbana-Champaign, Urbana, IL, United States of America
- Integrative Immunology and Behavior Program and Department of Pathology, College of Medicine, University of Illinois at Urbana-Champaign, Champaign, IL, United States of America
| | - Sandra L. Rodriguez-Zas
- Department of Animal Sciences, University of Illinois Urbana-Champaign, Urbana, IL, United States of America
- Department of Statistics and Carle Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL, United States of America
- * E-mail:
| |
Collapse
|
8
|
Heuser S, Hufbauer M, Marx B, Tok A, Majewski S, Pfister H, Akgül B. The levels of epithelial anchor proteins β-catenin and zona occludens-1 are altered by E7 of human papillomaviruses 5 and 8. J Gen Virol 2016; 97:463-472. [DOI: 10.1099/jgv.0.000363] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Affiliation(s)
- Sandra Heuser
- Institute of Virology, University of Cologne, Cologne, Germany
| | - Martin Hufbauer
- Institute of Virology, University of Cologne, Cologne, Germany
| | - Benjamin Marx
- Institute of Virology, University of Cologne, Cologne, Germany
| | - Ali Tok
- Department of Urology, University Hospital Cologne, Cologne, Germany
| | - Slawomir Majewski
- Department of Dermatology and Venereology, Medical University in Warsaw, Warsaw, Poland
| | - Herbert Pfister
- Institute of Virology, University of Cologne, Cologne, Germany
| | - Baki Akgül
- Institute of Virology, University of Cologne, Cologne, Germany
| |
Collapse
|
9
|
Heuser S, Hufbauer M, Steiger J, Marshall J, Sterner-Kock A, Mauch C, Zigrino P, Akgül B. The fibronectin/α3β1 integrin axis serves as molecular basis for keratinocyte invasion induced by βHPV. Oncogene 2016; 35:4529-39. [PMID: 26804167 DOI: 10.1038/onc.2015.512] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2015] [Revised: 12/09/2015] [Accepted: 12/11/2015] [Indexed: 12/18/2022]
Abstract
Organ-transplant-recipients exhibit cancerization of the skin from which multiple human papillomavirus (HPV)-positive squamous cell carcinomas (SCCs) arise. However, the molecular basis for HPV-induced invasion of skin keratinocytes is not known. We generated a transgenic mouse model expressing the E7 oncoprotein of HPV8 in the murine epidermis under the control of the keratin-14 promoter and showed that E7 is carcinogenic in mice. We further showed that both, the E7-expressing keratinocyte and mesenchymal components of the extracellular matrix as critical in eliciting the invasive behavior. E7 expression in basal keratinocytes, grown on fibronectin, led to epithelial-mesenchymal transition mediated by a cadherin switch. E7-positive keratinocytes displayed enhanced EDA-fibronectin expression and secretion and stimulated dermal fibroblasts to express EDA-fibronectin. Deposition of fibronectin was also detected in the peritumoral stroma of HPV8-positive skin SCC. When grown on fibronectin, E7-positive keratinocytes, in particular stem cell-like cells, exhibited increased cell surface levels of the α3-integrin chain. Functional blocking confirmed α3 as a critical molecule sufficient to induce E7-mediated invasion. This mechanistic link is further supported by expression of an E7-mutant, impaired in targeting α3 to the cell surface. These findings highlight the importance of epithelial-extracellular matrix interaction required for keratinocyte invasion and provide further mechanistic evidence for a role of HPV in skin carcinogenesis.
Collapse
Affiliation(s)
- S Heuser
- Institute of Virology, University of Cologne, Cologne, Germany
| | - M Hufbauer
- Institute of Virology, University of Cologne, Cologne, Germany
| | - J Steiger
- Department of Dermatology and Venerology, University of Cologne, Cologne, Germany
| | - J Marshall
- Barts Cancer Institute, Centre for Tumour Biology, Queen Mary University of London, John Vane Science Centre, London, UK
| | - A Sterner-Kock
- Center for Experimental Medicine, University Hospital, University of Cologne, Cologne, Germany
| | - C Mauch
- Department of Dermatology and Venerology, University of Cologne, Cologne, Germany
| | - P Zigrino
- Department of Dermatology and Venerology, University of Cologne, Cologne, Germany
| | - B Akgül
- Institute of Virology, University of Cologne, Cologne, Germany
| |
Collapse
|
10
|
Hufbauer M, Cooke J, van der Horst GTJ, Pfister H, Storey A, Akgül B. Human papillomavirus mediated inhibition of DNA damage sensing and repair drives skin carcinogenesis. Mol Cancer 2015; 14:183. [PMID: 26511842 PMCID: PMC4625724 DOI: 10.1186/s12943-015-0453-7] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2015] [Accepted: 10/09/2015] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The failure to mount an effective DNA damage response to repair UV induced cyclobutane pyrimidine dimers (CPDs) results in an increased propensity to develop cutaneous squamous cell carcinoma (cSCC). High-risk patient groups, such as organ transplant recipients (OTRs) frequently exhibit field cancerization at UV exposed body sites from which multiple human papillomavirus (HPV)-associated cSCCs develop rapidly, leading to profound morbidity and increased mortality. In vitro molecular evidence indicates that HPV of genus beta-papillomavirus (β-PV) play an important role in accelerating the early stages of skin tumorigenesis. METHODS We investigated the effects of UV induced DNA damage in murine models of β-PV E6 oncoprotein driven skin tumorigenesis by crossing K14-HPV8-E6wt mice (developing skin tumors after UV treatment) with K14-CPD-photolyase animals and by generating the K14-HPV8-E6-K136N mutant mouse strain. Thymine dimers (marker for CPDs) and γH2AX (a marker for DNA double strand breaks) levels were determined in the murine skin and organotypic skin cultures of E6 expressing primary human keratinocytes after UV-irradiation by immunohistochemistry and in cell lines by In Cell Western blotting. Phosphorylation of ATR/Chk1 and ATM were assessed in cell lines and organotypic skin cultures by Western blots and immunohistochemistry. RESULTS Skin tumor development after UV-irradiation in K14-HPV8-E6wt mice could completely be blocked through expression of CPD-photolyase. Through quantification of thymine dimers after UV irradiation in cells expressing E6 proteins with point mutations at conserved residues we identified a critical lysine in the C-terminal part of the protein for prevention of DNA damage repair and p300 binding. Whereas all K14-HPV8-E6wt animals develop skin tumors after UV expression of the HPV8-E6-K136N mutant significantly blocked skin tumor development after UV treatment. The persistence of CPDs in hyperproliferative epidermis K14-HPV8-E6wt skin resulted in the accumulation of γH2AX foci. DNA damage sensing was impaired in E6 positive cells grown as monolayer culture and in organotypic cultures, due to lack of phosphorylation of ATM, ATR and Chk1. CONCLUSION We showed that cells expressing E6 fail to sense and mount an effective response to repair UV-induced DNA lesions and demonstrated a physiological relevance of E6-mediated inhibition of DNA damage repair for tumor initiation. These are the first mechanistical in vivo data on the tumorigenicity of HPV8 and demonstrate that the impairment of DNA damage repair pathways by the viral E6 protein is a critical factor in HPV-driven skin carcinogenesis.
Collapse
Affiliation(s)
- Martin Hufbauer
- Institute of Virology, University of Cologne, Fürst-Pückler-Str. 56, Cologne, 50935, Germany
| | - James Cooke
- Centre for Cutaneous Research, The Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, E1 2AT, UK
| | - Gijsbertus T J van der Horst
- MGC, Department of Genetics, Center for Biomedical Genetics, Erasmus University Medical Center, Rotterdam, 3000, CA, The Netherlands
| | - Herbert Pfister
- Institute of Virology, University of Cologne, Fürst-Pückler-Str. 56, Cologne, 50935, Germany
| | - Alan Storey
- Department of Oncology, Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, OX3 9DS, UK
| | - Baki Akgül
- Institute of Virology, University of Cologne, Fürst-Pückler-Str. 56, Cologne, 50935, Germany.
| |
Collapse
|
11
|
Gupta A, Nitoiu D, Brennan-Crispi D, Addya S, Riobo NA, Kelsell DP, Mahoney MG. Cell cycle- and cancer-associated gene networks activated by Dsg2: evidence of cystatin A deregulation and a potential role in cell-cell adhesion. PLoS One 2015; 10:e0120091. [PMID: 25785582 PMCID: PMC4364902 DOI: 10.1371/journal.pone.0120091] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2014] [Accepted: 02/02/2015] [Indexed: 01/06/2023] Open
Abstract
Cell-cell adhesion is paramount in providing and maintaining multicellular structure and signal transmission between cells. In the skin, disruption to desmosomal regulated intercellular connectivity may lead to disorders of keratinization and hyperproliferative disease including cancer. Recently we showed transgenic mice overexpressing desmoglein 2 (Dsg2) in the epidermis develop hyperplasia. Following microarray and gene network analysis, we demonstrate that Dsg2 caused a profound change in the transcriptome of keratinocytes in vivo and altered a number of genes important in epithelial dysplasia including: calcium-binding proteins (S100A8 and S100A9), members of the cyclin protein family, and the cysteine protease inhibitor cystatin A (CSTA). CSTA is deregulated in several skin cancers, including squamous cell carcinomas (SCC) and loss of function mutations lead to recessive skin fragility disorders. The microarray results were confirmed by qPCR, immunoblotting, and immunohistochemistry. CSTA was detected at high level throughout the newborn mouse epidermis but dramatically decreased with development and was detected predominantly in the differentiated layers. In human keratinocytes, knockdown of Dsg2 by siRNA or shRNA reduced CSTA expression. Furthermore, siRNA knockdown of CSTA resulted in cytoplasmic localization of Dsg2, perturbed cytokeratin 14 staining and reduced levels of desmoplakin in response to mechanical stretching. Both knockdown of either Dsg2 or CSTA induced loss of cell adhesion in a dispase-based assay and the effect was synergistic. Our findings here offer a novel pathway of CSTA regulation involving Dsg2 and a potential crosstalk between Dsg2 and CSTA that modulates cell adhesion. These results further support the recent human genetic findings that loss of function mutations in the CSTA gene result in skin fragility due to impaired cell-cell adhesion: autosomal-recessive exfoliative ichthyosis or acral peeling skin syndrome.
Collapse
Affiliation(s)
- Abhilasha Gupta
- Department of Dermatology and Cutaneous Biology, Thomas Jefferson University, Philadelphia, Pennsylvania, United States of America
| | - Daniela Nitoiu
- Center for Cutaneous Research, Blizard Institute, Barts and the London School or Medicine and Dentistry, Queen Mary University of London, London, United Kingdom
| | - Donna Brennan-Crispi
- Department of Dermatology and Cutaneous Biology, Thomas Jefferson University, Philadelphia, Pennsylvania, United States of America
- Department of Biochemistry and Molecular Biology, Thomas Jefferson University, Philadelphia, Pennsylvania, United States of America
| | - Sankar Addya
- Kimmel Cancer Center, Department of Cancer Biology, Thomas Jefferson University, Philadelphia, Pennsylvania, United States of America
| | - Natalia A. Riobo
- Department of Biochemistry and Molecular Biology, Thomas Jefferson University, Philadelphia, Pennsylvania, United States of America
| | - David P. Kelsell
- Center for Cutaneous Research, Blizard Institute, Barts and the London School or Medicine and Dentistry, Queen Mary University of London, London, United Kingdom
| | - Mỹ G. Mahoney
- Department of Dermatology and Cutaneous Biology, Thomas Jefferson University, Philadelphia, Pennsylvania, United States of America
- Department of Biochemistry and Molecular Biology, Thomas Jefferson University, Philadelphia, Pennsylvania, United States of America
- * E-mail:
| |
Collapse
|
12
|
Horton JS, Stokes AJ. The transmembrane channel-like protein family and human papillomaviruses: Insights into epidermodysplasia verruciformis and progression to squamous cell carcinoma. Oncoimmunology 2014; 3:e28288. [PMID: 24800179 PMCID: PMC4006860 DOI: 10.4161/onci.28288] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2013] [Revised: 02/13/2014] [Accepted: 02/19/2014] [Indexed: 12/25/2022] Open
Abstract
Epidermodysplasia verruciformis (EV) is a rare genodermatosis characterized by increased sensitivity to infection by the β-subtype of human papillomaviruses (β-HPVs), causing persistent, tinea versicolor-like dermal lesions. In a majority of affected individuals, these macular lesions progress to invasive cutaneous squamous cell carcinoma (CSCC) in sun-exposed areas. While mutations in transmembrane channel-like 6 (TMC6 / EVER1) and 8 (TMC8 / EVER2) have been causally linked to EV, their molecular functions are unclear. It is likely that their protective effects involve regulation of the β-HPV life cycle, host keratinocyte apoptosis vs. survival balance and/or T-cell interaction with infected host cells.
Collapse
Affiliation(s)
- Jaime S Horton
- Laboratory of Experimental Medicine; John A. Burns School of Medicine; Honolulu, HI USA ; Department of Cell and Molecular Biology; John A. Burns School of Medicine; Honolulu, HI USA
| | - Alexander J Stokes
- Laboratory of Experimental Medicine; John A. Burns School of Medicine; Honolulu, HI USA ; Department of Cell and Molecular Biology; John A. Burns School of Medicine; Honolulu, HI USA ; Chaminade University; Honolulu, HI USA
| |
Collapse
|
13
|
Expression of betapapillomavirus oncogenes increases the number of keratinocytes with stem cell-like properties. J Virol 2013; 87:12158-65. [PMID: 24006432 DOI: 10.1128/jvi.01510-13] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Human papillomaviruses (HPV) of genus Betapapillomavirus (betaPV) are associated with nonmelanoma skin cancer development in epidermodysplasia verruciformis (EV) and immunosuppressed patients. Epidemiological and molecular studies suggest a carcinogenic activity of betaPV during early stages of cancer development. Since viral oncoproteins delay and perturb keratinocyte differentiation, they may have the capacity to either retain or confer a "stem cell-like" state on oncogene-expressing cells. The aim of this study was to determine (i) whether betaPV alters the expression of cell surface markers, such as CD44 and epithelial cell adhesion molecule (EpCAM), that have been associated with epithelial stemness, and (ii) whether this confers functional stem cell-like properties to human cutaneous keratinocytes. Fluorescence-activated cell sorter (FACS) analysis revealed an increase in the number of cells with high CD44 and EpCAM expression in keratinocyte cultures expressing HPV type 8 (HPV8) oncogenes E2, E6, and E7. Particularly through E7 expression, a distinct increase in clonogenicity and in the formation and size of tumor spheres was observed, accompanied by reduction of the epithelial differentiation marker Calgranulin B. These stem cell-like properties could be attributed to the pool of CD44(high) EpCAM(high) cells, which was increased within the E7 cultures of HPV5, -8, and -20. Enhanced EpCAM levels were present in organotypic skin cultures of primary keratinocytes expressing E7 of the oncogenic HPV types HPV5, -8, and -16 and in clinical samples from EV patients. In conclusion, our data show that betaPV may increase the number of stem cell-like cells present during early carcinogenesis and thus enable the persistence and accumulation of DNA damage necessary to generate malignant stem cells.
Collapse
|
14
|
Tu M, Huang Y, Li HL, Gao ZH. The stress caused by nitrite with titanium dioxide nanoparticles under UVA irradiation in human keratinocyte cell. Toxicology 2012; 299:60-8. [DOI: 10.1016/j.tox.2012.05.011] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2012] [Revised: 05/10/2012] [Accepted: 05/14/2012] [Indexed: 11/27/2022]
|