1
|
Criado PR, Miot HA, Bueno-Filho R, Ianhez M, Criado RFJ, de Castro CCS. Update on the pathogenesis of atopic dermatitis. An Bras Dermatol 2024; 99:895-915. [PMID: 39138034 PMCID: PMC11551276 DOI: 10.1016/j.abd.2024.06.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Accepted: 06/18/2024] [Indexed: 08/15/2024] Open
Abstract
Atopic dermatitis is a chronic, recurrent, and multifactorial skin-mucosal manifestation resulting from the interaction between elements mainly associated with the skin barrier deficit, the homeostasis of the immune response, neurological aspects, and patterns of reactivity to environmental antigens, which are established in genetically predisposed individuals. In addition to the skin, atopic diathesis involves other organs such as the airways (upper and lower), eyes, digestive tract, and neuropsychiatric aspects, which inflict additional morbidity on the dermatological patient. The different phenotypes of the disease fundamentally depend on the participation of each of these factors, in different life circumstances, such as age groups, occupational exposure patterns, physical activity, pollution, genetic load, and climatic factors. A better understanding of the complexity of its pathogenesis allows not only the understanding of therapeutic targets but also how to identify preponderant elements that mediate disease activity in each circumstance, for selecting the best treatment strategies and mitigation of triggering factors. This narrative review presents an update on the pathogenesis of atopic dermatitis, especially aimed at understanding the clinical manifestations, the main disease phenotypes and the context of available therapeutic strategies.
Collapse
Affiliation(s)
- Paulo Ricardo Criado
- Centro Universitário Faculdade de Medicina do ABC, Santo André, SP, Brazil; Faculdade de Ciências Médicas de Santos (Centro Universitário Lusíada), Santos, SP, Brazil.
| | - Hélio Amante Miot
- Department of Dermatology, Faculdade de Medicina de Botucatu, Universidade do Estado de São Paulo, Botucatu, SP, Brazil
| | - Roberto Bueno-Filho
- Division of Dermatology, Department of Internal Medicine, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP, Brazil
| | - Mayra Ianhez
- Department of Dermatology, Hospital de Doenças Tropicais de Goiás, Goiânia, GO, Brazil
| | - Roberta Fachini Jardim Criado
- Centro Universitário Faculdade de Medicina do ABC, Santo André, SP, Brazil; Alergoskin Alergia e Dermatologia, UCARE Center and ADCARE, Santo André, SP, Brazil
| | - Caio César Silva de Castro
- Pontifícia Universidade Católica do Paraná, Curitiba, PR, Brazil; Hospital de Dermatologia Sanitária do Paraná, Curitiba, PR, Brazil
| |
Collapse
|
2
|
Usui K, Nakashima C, Takahashi S, Okada T, Ishida Y, Nakajima S, Kitoh A, Nomura T, Dainichi T, Honda T, Katsumoto R, Konishi N, Matsushita M, Otsuka A, Kabashima K. TRPV1-positive sensory nerves and neuropeptides are involved in epidermal barrier repair after tape stripping in mice. J Allergy Clin Immunol 2024; 153:868-873.e4. [PMID: 38040043 DOI: 10.1016/j.jaci.2023.11.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 10/27/2023] [Accepted: 11/09/2023] [Indexed: 12/03/2023]
Abstract
BACKGROUND The integumentary system of the skin serves as an exceptional protective barrier, with the stratum corneum situated at the forefront. This outermost layer is composed of keratinocytes that biosynthesize filaggrin (encoded by the gene Flg), a pivotal constituent in maintaining skin health. Nevertheless, the precise role of sensory nerves in restoration of the skin barrier after tape stripping-induced epidermal disruption, in contrast to the wound-healing process, remains a tantalizing enigma. OBJECTIVE This study aimed to elucidate the cryptic role of sensory nerves in repair of the epidermal barrier following tape stripping-induced disruption. METHODS Through the implementation of resiniferatoxin (RTX)-treated denervation mouse model, we investigated the kinetics of barrier repair after tape stripping and performed immunophenotyping and gene expression analysis in the skin or dorsal root ganglia (DRG) to identify potential neuropeptides. Furthermore, we assessed the functional impact of candidates on the recovery of murine keratinocytes and RTX-treated mice. RESULTS Ablation of TRPV1-positive sensory nerve attenuated skin barrier recovery and sustained subcutaneous inflammation, coupled with elevated IL-6 level in ear homogenates after tape stripping. Expression of the keratinocyte differentiation marker Flg in the ear skin of RTX-treated mice was decreased compared with that in control mice. Through neuropeptide screening, we found that the downregulation of Flg by IL-6 was counteracted by somatostatin or octreotide (a chemically stable somatostatin analog). Furthermore, RTX-treated mice given octreotide exhibited a partial improvement in barrier recovery after tape stripping. CONCLUSION Sensory neurons expressing TRPV1 play an indispensable role in restoring barrier function following epidermal injury. Our findings suggest the potential involvement of somatostatin in restoring epidermal repair after skin injury.
Collapse
Affiliation(s)
- Kenji Usui
- Department of Dermatology, Kyoto University Graduate School of Medicine, Kyoto, Japan; Central Pharmaceutical Research Institute, Japan Tobacco Inc, Osaka, Japan
| | - Chisa Nakashima
- Department of Dermatology, Kyoto University Graduate School of Medicine, Kyoto, Japan; Department of Dermatology, Faculty of Medicine, Kindai University Hospital, Osaka, Japan.
| | - Sonoko Takahashi
- Laboratory for Tissue Dynamics, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
| | - Takaharu Okada
- Laboratory for Tissue Dynamics, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan; Graduate School of Medical Life Science, Yokohama City University, Yokohama, Japan
| | - Yoshihiro Ishida
- Department of Dermatology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Saeko Nakajima
- Department of Dermatology, Kyoto University Graduate School of Medicine, Kyoto, Japan; Department of Drug Discovery for Inflammatory Skin Diseases, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Akihiko Kitoh
- Department of Dermatology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Takashi Nomura
- Department of Dermatology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Teruki Dainichi
- Department of Dermatology, Kagawa University Faculty of Medicine, Kagawa, Japan
| | - Tetsuya Honda
- Department of Dermatology, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Rumi Katsumoto
- Central Pharmaceutical Research Institute, Japan Tobacco Inc, Osaka, Japan
| | - Noriko Konishi
- Central Pharmaceutical Research Institute, Japan Tobacco Inc, Osaka, Japan
| | | | - Atsushi Otsuka
- Department of Dermatology, Kyoto University Graduate School of Medicine, Kyoto, Japan; Department of Dermatology, Faculty of Medicine, Kindai University Hospital, Osaka, Japan
| | - Kenji Kabashima
- Department of Dermatology, Kyoto University Graduate School of Medicine, Kyoto, Japan; A∗STAR Skin Research Labs, Agency for Science, Technology and Research (A∗STAR), Singapore, Republic of Singapore; Skin Research Institute of Singapore, Agency for Science, Technology and Research (A∗STAR), Singapore, Republic of Singapore.
| |
Collapse
|
3
|
Exploring the Role of Staphylococcus aureus in Inflammatory Diseases. Toxins (Basel) 2022; 14:toxins14070464. [PMID: 35878202 PMCID: PMC9318596 DOI: 10.3390/toxins14070464] [Citation(s) in RCA: 51] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2022] [Revised: 06/23/2022] [Accepted: 07/01/2022] [Indexed: 02/04/2023] Open
Abstract
Staphylococcus aureus is a very common Gram-positive bacterium, and S. aureus infections play an extremely important role in a variety of diseases. This paper describes the types of virulence factors involved, the inflammatory cells activated, the process of host cell death, and the associated diseases caused by S. aureus. S. aureus can secrete a variety of enterotoxins and other toxins to trigger inflammatory responses and activate inflammatory cells, such as keratinocytes, helper T cells, innate lymphoid cells, macrophages, dendritic cells, mast cells, neutrophils, eosinophils, and basophils. Activated inflammatory cells can express various cytokines and induce an inflammatory response. S. aureus can also induce host cell death through pyroptosis, apoptosis, necroptosis, autophagy, etc. This article discusses S. aureus and MRSA (methicillin-resistant S. aureus) in atopic dermatitis, psoriasis, pulmonary cystic fibrosis, allergic asthma, food poisoning, sarcoidosis, multiple sclerosis, and osteomyelitis. Summarizing the pathogenic mechanism of Staphylococcus aureus provides a basis for the targeted treatment of Staphylococcus aureus infection.
Collapse
|
4
|
Humeau M, Boniface K, Bodet C. Cytokine-Mediated Crosstalk Between Keratinocytes and T Cells in Atopic Dermatitis. Front Immunol 2022; 13:801579. [PMID: 35464457 PMCID: PMC9022745 DOI: 10.3389/fimmu.2022.801579] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Accepted: 03/07/2022] [Indexed: 01/22/2023] Open
Abstract
Atopic dermatitis (AD) is a chronic inflammatory skin disease characterized by barrier dysfunction, dysregulated immune response, and dysbiosis with increased Staphylococcus aureus colonization. Infiltration of various T helper cell subsets into lesional skin and subsequent cytokine release are a hallmark of AD. Release of cytokines by both T cells and keratinocytes plays a key role in skin inflammation and drives many AD features. This review aims to discuss cytokine-mediated crosstalk between T cells and keratinocytes in AD pathogenesis and the potential impact of virulence factors produced by Staphylococcus aureus on these interactions.
Collapse
Affiliation(s)
- Mélanie Humeau
- Laboratoire Inflammation Tissus Epithéliaux et Cytokines LITEC UR 15560, Université de Poitiers, Poitiers, France
| | - Katia Boniface
- ImmunoConcEpT, Centre National de la Recherche Scientifique, Unité Mixte de Recherche 5164, University of Bordeaux, Bordeaux, France
| | - Charles Bodet
- Laboratoire Inflammation Tissus Epithéliaux et Cytokines LITEC UR 15560, Université de Poitiers, Poitiers, France
| |
Collapse
|
5
|
Brown JL, Townsend E, Short RD, Williams C, Woodall C, Nile CJ, Ramage G. Assessing the inflammatory response to in vitro polymicrobial wound biofilms in a skin epidermis model. NPJ Biofilms Microbiomes 2022; 8:19. [PMID: 35393409 PMCID: PMC8991182 DOI: 10.1038/s41522-022-00286-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Accepted: 02/24/2022] [Indexed: 01/13/2023] Open
Abstract
Wounds can commonly become infected with polymicrobial biofilms containing bacterial and fungal microorganisms. Microbial colonization of the wound can interfere with sufficient healing and repair, leading to high rates of chronicity in certain individuals, which can have a huge socioeconomic burden worldwide. One route for alleviating biofilm formation in chronic wounds is sufficient treatment of the infected area with topical wound washes and ointments. Thus, the primary aim here was to create a complex in vitro biofilm model containing a range of microorganisms commonly isolated from the infected wound milieu. These polymicrobial biofilms were treated with three conventional anti-biofilm wound washes, chlorhexidine (CHX), povidone-iodine (PVP-I), and hydrogen peroxide (H2O2), and efficacy against the microorganisms assessed using live/dead qPCR. All treatments reduced the viability of the biofilms, although H2O2 was found to be the most effective treatment modality. These biofilms were then co-cultured with 3D skin epidermis to assess the inflammatory profile within the tissue. A detailed transcriptional and proteomic profile of the epidermis was gathered following biofilm stimulation. At the transcriptional level, all treatments reduced the expression of inflammatory markers back to baseline (untreated tissue controls). Olink technology revealed a unique proteomic response in the tissue following stimulation with untreated and CHX-treated biofilms. This highlights treatment choice for clinicians could be dictated by how the tissue responds to such biofilm treatment, and not merely how effective the treatment is in killing the biofilm.
Collapse
Affiliation(s)
- Jason L Brown
- Oral Sciences Research Group, Glasgow Dental School, School of Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, G12 8TA, UK. .,Glasgow Biofilm Research Network, 378 Sauchiehall Street, Glasgow, G2 3JZ, UK.
| | - Eleanor Townsend
- Oral Sciences Research Group, Glasgow Dental School, School of Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, G12 8TA, UK.,Glasgow Biofilm Research Network, 378 Sauchiehall Street, Glasgow, G2 3JZ, UK.,School of Life Sciences, Gibbet Hill Campus, The University of Warwick, Coventry, CV4 7AL, UK
| | - Robert D Short
- Department of Chemistry and Material Science Institute, University of Lancaster, Lancaster, LA1 4YB, UK
| | - Craig Williams
- Glasgow Biofilm Research Network, 378 Sauchiehall Street, Glasgow, G2 3JZ, UK.,Microbiology Department, Lancaster Royal Infirmary, University of Lancaster, Lancaster, LA1 4YW, UK
| | - Chris Woodall
- Glasgow Biofilm Research Network, 378 Sauchiehall Street, Glasgow, G2 3JZ, UK.,Blutest Laboratories, 5 Robroyston Oval, Nova Business Park, Glasgow, G33 1AP, UK
| | - Christopher J Nile
- Glasgow Biofilm Research Network, 378 Sauchiehall Street, Glasgow, G2 3JZ, UK.,School of Dental Sciences, Newcastle University, Newcastle, NE2 4BW, UK
| | - Gordon Ramage
- Oral Sciences Research Group, Glasgow Dental School, School of Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, G12 8TA, UK. .,Glasgow Biofilm Research Network, 378 Sauchiehall Street, Glasgow, G2 3JZ, UK.
| |
Collapse
|
6
|
Fink S, Burmester A, Hipler U, Neumeister C, Götz MR, Wiegand C. Efficacy of antifungal agents against fungal spores: An in vitro study using microplate laser nephelometry and an artificially infected 3D skin model. Microbiologyopen 2022; 11:e1257. [PMID: 35212482 PMCID: PMC8756736 DOI: 10.1002/mbo3.1257] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 09/09/1999] [Accepted: 12/01/2021] [Indexed: 12/13/2022] Open
Abstract
Dermal fungal infections seem to have increased over recent years. There is further a shift from anthropophilic dermatophytes to a growing prevalence of zoophilic species and the emergence of resistant strains. New antifungals are needed to combat these fungi and their resting spores. This study aimed to investigate the sporicidal effects of sertaconazole nitrate using microplate laser nephelometry against the microconidia of Trichophyton, chlamydospores of Epidermophyton, blastospores of Candida, and conidia of the mold Scopulariopsis brevicaulis. The results obtained were compared with those from ciclopirox olamine and terbinafine. The sporicidal activity was further determined using infected three-dimensional full skin models to determine the antifungal effects in the presence of human cells. Sertaconazole nitrate inhibited the growth of dermatophytes, molds, and yeasts. Ciclopirox olamine also had good antifungal activity, although higher concentrations were needed compared to sertaconazole nitrate. Terbinafine was highly effective against most dermatophytes, but higher concentrations were required to kill the resistant strain Trichophyton indotineae. Sertaconazole nitrate, ciclopirox olamine, and terbinafine had no negative effects on full skin models. Sertaconazole nitrate reduced the growth of fungal and yeast spores over 72 h. Ciclopirox olamine and terbinafine also inhibited the growth of dermatophytes and molds but had significantly lower effects on the yeast. Sertaconazole nitrate might have advantages over the commonly used antifungals ciclopirox olamine and terbinafine in combating resting spores, which persist in the tissues, and thus in the therapy of recurring dermatomycoses.
Collapse
Affiliation(s)
- Sarah Fink
- Department of DermatologyUniversity Hospital JenaJenaGermany
| | - Anke Burmester
- Department of DermatologyUniversity Hospital JenaJenaGermany
| | | | | | | | | |
Collapse
|
7
|
Kang YM, Lee M, An HJ. New Potential of Roxatidine Acetate Hydrochloride on Atopic Dermatitis Mouse Model, Human Keratinocytes, and Human Skin Equivalent Model. Front Pharmacol 2022; 12:797086. [PMID: 35002730 PMCID: PMC8740129 DOI: 10.3389/fphar.2021.797086] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Accepted: 11/25/2021] [Indexed: 12/04/2022] Open
Abstract
Atopic dermatitis (AD) is a complex inflammatory skin disorder, characterized by a complicated pathophysiology and a wide range of clinical phenotypes. Roxatidine acetate chloride (RXA) is a precursor of Roxatidine and a histamine H2 receptor antagonist, used for the treatment of gastric ulcers. In this study, we aimed to examine whether RXA had anti-AD effects and determine the underlying molecular mechanism of RXA. The anti-AD effects were examined in Dermatophagoides farinae body (Dfb)-induced AD mouse model, tumor necrosis factor (TNF)-α/interferon (IFN)-γ-stimulated HaCaT keratinocytes, and human skin equivalent model using ELISA, histological analysis, immunohistochemistry, Western blot, and immunofluorescence. Results showed that RXA treatment significantly alleviated Dfb-induced AD skin symptoms and clinical severity in mice by decreasing the levels of immunoglobulin E, histamine, and inflammatory cytokines. RXA effectively inhibited the expression of adhesive molecules and recovered the filaggrin expression in Dfb-induced AD skin lesions and TNF-α/IFN-γ-stimulated HaCaT keratinocytes. Additionally, RXA significantly upregulated the expression of aryl hydrocarbon receptor and sirtuin1. The anti-AD effects of RXA were associated with suppressed nuclear factor kappa cascade. Overall, our results suggest that RXA may be a potential anti-AD candidate owing to its inhibitory effect against skin inflammation and protection of the skin barrier function in AD.
Collapse
Affiliation(s)
- Yun-Mi Kang
- Department of Pharmacology, College of Korean Medicine, Sangji University, Wonju, South Korea
| | - Minho Lee
- Department of Life Science, Dongguk University, Seoul, South Korea
| | - Hyo-Jin An
- Department of Pharmacology, College of Korean Medicine, Sangji University, Wonju, South Korea
| |
Collapse
|
8
|
Blicharz L, Rudnicka L, Czuwara J, Waśkiel-Burnat A, Goldust M, Olszewska M, Samochocki Z. The Influence of Microbiome Dysbiosis and Bacterial Biofilms on Epidermal Barrier Function in Atopic Dermatitis-An Update. Int J Mol Sci 2021; 22:ijms22168403. [PMID: 34445108 PMCID: PMC8395079 DOI: 10.3390/ijms22168403] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 07/31/2021] [Accepted: 08/02/2021] [Indexed: 12/13/2022] Open
Abstract
Atopic dermatitis (AD) is a common inflammatory dermatosis affecting up to 30% of children and 10% of adults worldwide. AD is primarily driven by an epidermal barrier defect which triggers immune dysregulation within the skin. According to recent research such phenomena are closely related to the microbial dysbiosis of the skin. There is growing evidence that cutaneous microbiota and bacterial biofilms negatively affect skin barrier function, contributing to the onset and exacerbation of AD. This review summarizes the latest data on the mechanisms leading to microbiome dysbiosis and biofilm formation in AD, and the influence of these phenomena on skin barrier function.
Collapse
Affiliation(s)
- Leszek Blicharz
- Department of Dermatology, Medical University of Warsaw, 02-008 Warsaw, Poland; (L.R.); (J.C.); (A.W.-B.); (M.O.); (Z.S.)
- Correspondence:
| | - Lidia Rudnicka
- Department of Dermatology, Medical University of Warsaw, 02-008 Warsaw, Poland; (L.R.); (J.C.); (A.W.-B.); (M.O.); (Z.S.)
| | - Joanna Czuwara
- Department of Dermatology, Medical University of Warsaw, 02-008 Warsaw, Poland; (L.R.); (J.C.); (A.W.-B.); (M.O.); (Z.S.)
| | - Anna Waśkiel-Burnat
- Department of Dermatology, Medical University of Warsaw, 02-008 Warsaw, Poland; (L.R.); (J.C.); (A.W.-B.); (M.O.); (Z.S.)
| | - Mohamad Goldust
- Department of Dermatology, University Medical Center of the Johannes Gutenberg University, 55131 Mainz, Germany;
| | - Małgorzata Olszewska
- Department of Dermatology, Medical University of Warsaw, 02-008 Warsaw, Poland; (L.R.); (J.C.); (A.W.-B.); (M.O.); (Z.S.)
| | - Zbigniew Samochocki
- Department of Dermatology, Medical University of Warsaw, 02-008 Warsaw, Poland; (L.R.); (J.C.); (A.W.-B.); (M.O.); (Z.S.)
| |
Collapse
|
9
|
Frankova J, Juranova J, Biedermann D, Ulrichova J. Influence of silymarin components on keratinocytes and 3D reconstructed epidermis. Toxicol In Vitro 2021; 74:105162. [PMID: 33839235 DOI: 10.1016/j.tiv.2021.105162] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 03/29/2021] [Accepted: 04/06/2021] [Indexed: 10/21/2022]
Abstract
Silymarin is a flavonoid complex isolated from the plant Silybum marianum which is well known for its antioxidant, hepatoprotective and immunomodulatory effects. Since little is known about its anti-inflammatory properties and healing effects, our study focused on whether or not silymarin components reduce inflammation and support epidermis regeneration. Lipopolysaccharides (LPS) and sodium dodecyl sulfate (SDS) were used to induce inflammation in normal human epidermal keratinocytes (NHEKs) and reconstructed epidermis (RHE), respectively. The expression of pro-inflammatory cytokines (IL-1, IL-6 and IL-8) in NHEKs and RHE was measured by enzyme - linked immunosorbent assay (ELISA). The expression of cytokeratin 14 and loricrin in RHE was detected by immunofluorescent analysis. Hematoxylin and eosin staining was used for the morphological evaluation of RHE. It was determined that 2, 3 - dehydrosilybin (DHSB) downregulated the production of selected pro-inflammatory cytokines produced by NHEKs. Although all layers of RHE displayed full thickness, when SDS was applied, cell detachment was seen in the stratum corneum and loricrin expression was diminished.
Collapse
Affiliation(s)
- J Frankova
- Palacky University Olomouc, Faculty of Medicine and Dentistry, Department of Medical Chemistry and Biochemistry, Hněvotínská 3, 775 15 Olomouc, Czech Republic..
| | - J Juranova
- Palacky University Olomouc, Faculty of Medicine and Dentistry, Department of Medical Chemistry and Biochemistry, Hněvotínská 3, 775 15 Olomouc, Czech Republic
| | - D Biedermann
- Institute of Microbiology of the Czech Academy of Sciences, Laboratory of Biotransformation, Vídeňská 1083, 14220 Praha 4, Czech Republic
| | - J Ulrichova
- Palacky University Olomouc, Faculty of Medicine and Dentistry, Department of Medical Chemistry and Biochemistry, Hněvotínská 3, 775 15 Olomouc, Czech Republic
| |
Collapse
|
10
|
Panax ginseng-Derived Extracellular Vesicles Facilitate Anti-Senescence Effects in Human Skin Cells: An Eco-Friendly and Sustainable Way to Use Ginseng Substances. Cells 2021; 10:cells10030486. [PMID: 33668388 PMCID: PMC7996359 DOI: 10.3390/cells10030486] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 02/19/2021] [Accepted: 02/21/2021] [Indexed: 02/06/2023] Open
Abstract
Ginseng is a traditional herbal medicine in eastern Asian countries. Most active constituents in ginseng are prepared via fermentation or organic acid pretreatment. Extracellular vesicles (EVs) are released by most organisms from prokaryotes to eukaryotes and play central roles in intra- and inter-species communications. Plants produce EVs upon exposure to microbes; however, their direct functions and utility for human health are barely known, except for being proposed as delivery vehicles. In this study, we isolated EVs from ginseng roots (GrEVs) or the culture supernatants of ginseng cells (GcEVs) derived from Panax ginseng C.A. Meyer and investigated their biological effects on human skin cells. GrEV or GcEV treatments improved the replicative senescent or senescence-associated pigmented phenotypes of human dermal fibroblasts or ultraviolet B radiation-treated human melanocytes, respectively, by downregulating senescence-associated molecules and/or melanogenesis-related proteins. Based on comprehensive lipidomic analysis using liquid chromatography mass spectrometry, the lipidomic profile of GrEVs differed from that of the parental root extracts, showing significant increases in 70 of 188 identified lipid species and prominent increases in diacylglycerols, some phospholipids (phosphatidylcholine, phosphatidylethanolamine, lysophosphatidylcholine), and sphingomyelin, revealing their unique vesicular properties. Therefore, our results imply that GEVs represent a novel type of bioactive and sustainable nanomaterials that can be applied to human tissues for improving tissue conditions and targeted delivery of active constituents.
Collapse
|
11
|
Chieosilapatham P, Kiatsurayanon C, Umehara Y, Trujillo-Paez JV, Peng G, Yue H, Nguyen LTH, Niyonsaba F. Keratinocytes: innate immune cells in atopic dermatitis. Clin Exp Immunol 2021; 204:296-309. [PMID: 33460469 DOI: 10.1111/cei.13575] [Citation(s) in RCA: 93] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Revised: 12/29/2020] [Accepted: 01/04/2021] [Indexed: 02/06/2023] Open
Abstract
The skin is a unique immune organ that constitutes a complex network of physical, chemical and microbiological barriers against external insults. Keratinocytes are the most abundant cell type in the epidermis. These cells form the physical skin barrier and represent the first line of the host defense system by sensing pathogens via innate immune receptors, initiating anti-microbial responses and producing various cytokines, chemokines and anti-microbial peptides, which are important events in immunity. A damaged epidermal barrier in atopic dermatitis allows the penetration of potential allergens and pathogens to activate keratinocytes. Among the dysregulation of immune responses in atopic dermatitis, activated keratinocytes play a role in several biological processes that contribute to the pathogenesis of atopic dermatitis. In this review, we summarize the current understanding of the innate immune functions of keratinocytes in the pathogenesis of atopic dermatitis, with a special emphasis on skin-derived anti-microbial peptides and atopic dermatitis-related cytokines and chemokines in keratinocytes. An improved understanding of the innate immunity mediated by keratinocytes can provide helpful insight into the pathophysiological processes of atopic dermatitis and support new therapeutic efforts.
Collapse
Affiliation(s)
- P Chieosilapatham
- Division of Immunology, Department of Microbiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - C Kiatsurayanon
- Institute of Dermatology, Department of Medical Services, Ministry of Public Health, Bangkok, Thailand
| | - Y Umehara
- Atopy (Allergy) Research Center, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - J V Trujillo-Paez
- Atopy (Allergy) Research Center, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - G Peng
- Atopy (Allergy) Research Center, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - H Yue
- Atopy (Allergy) Research Center, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - L T H Nguyen
- Atopy (Allergy) Research Center, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - F Niyonsaba
- Atopy (Allergy) Research Center, Juntendo University Graduate School of Medicine, Tokyo, Japan.,Faculty of International Liberal Arts, Juntendo University, Tokyo, Japan
| |
Collapse
|
12
|
Reddersen K, Greber KE, Korona-Glowniak I, Wiegand C. The Short Lipopeptides (C 10) 2-KKKK-NH 2 and (C 12) 2-KKKK-NH 2 Protect HaCaT Keratinocytes from Bacterial Damage Caused by Staphylococcus aureus Infection in a Co-Culture Model. Antibiotics (Basel) 2020; 9:antibiotics9120879. [PMID: 33302597 PMCID: PMC7764661 DOI: 10.3390/antibiotics9120879] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Revised: 12/07/2020] [Accepted: 12/07/2020] [Indexed: 11/16/2022] Open
Abstract
The search for new antimicrobial strategies is of major importance since there is a growing resistance of both bacteria and fungi to existing antimicrobials. Lipopeptides are promising and potent antimicrobial compounds. For translation into clinically useful molecules, effectiveness of peptide treatment against human infections must be proved in complex in vitro wound models. The aim of this study was to examine if the synthesized short lipopeptides (C10)2-KKKK-NH2 and (C12)2-KKKK-NH2 can protect HaCaT keratinocytes from bacterial damage caused by Staphylococcus aureus infection in a coculture model. After 1 h, 24 h, and 48 h incubation, cellular ATP level and release of the cytotoxicity marker LDH as well as the proinflammatory cytokines interleukin-6 and interleukin-1α were measured. Infection of the keratinocytes resulted in strong bacterial damage of HaCaT cells along with low cellular ATP levels and high release of LDH, IL-6, and IL-1α after 24 h and 48 h. Incubation of the infected human keratinocytes with (C10)2-KKKK-NH2 and (C12)2-KKKK-NH2 resulted in protection of the keratinocytes from bacterial damage caused by Staphylococcus aureus infection with ATP, LDH, IL-6, and IL-1α levels comparable to the untreated control. Hence, both synthesized lipopeptides are promising candidates with high therapeutic potential in dermatology for the treatment of topical infections.
Collapse
Affiliation(s)
- Kirsten Reddersen
- Klinik für Hautkrankheiten, Universitätsklinikum Jena, 07743 Jena, Germany;
- Correspondence: ; Tel.: +49-3641-932-8879
| | - Katarzyna E. Greber
- Physical Chemistry Department, Faculty of Pharmacy, Medical University of Gdansk, 80-416 Gdansk, Poland;
| | - Izabela Korona-Glowniak
- Department of Pharmaceutical Microbiology, Medical University of Lublin, 20-093 Lublin, Poland;
| | - Cornelia Wiegand
- Klinik für Hautkrankheiten, Universitätsklinikum Jena, 07743 Jena, Germany;
| |
Collapse
|
13
|
Reddersen K, Wiegand C, Elsner P, Hipler UC. Three-dimensional human skin model infected with Staphylococcus aureus as a tool for evaluation of bioactivity and biocompatibility of antiseptics. Int J Antimicrob Agents 2019; 54:283-291. [PMID: 31279155 DOI: 10.1016/j.ijantimicag.2019.06.022] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Accepted: 06/28/2019] [Indexed: 01/13/2023]
Abstract
In the light of pandemic spreads of multi-drug-resistant micro-organisms, alternative antimicrobial strategies to the use of antibiotics are the focus of research attention. As a prerequisite for medical application, the aim of this study was to develop a three-dimensional full skin infection model to evaluate the bioactivity and biocompatibility of antiseptics in application-relevant concentrations. A three-dimensional (3D) full skin model consisting of collagen-embedded fibroblasts as dermis and a fully differentiated epidermis built from keratinocytes was infected with Staphylococcus aureus. Infected skin models were treated for 24 h with the antiseptics polihexanide, octenidine dihydrochloride, chlorhexidine digluconate and povidone-iodine. Infection resulted in detrimental effects, a strong immune response with increased secretion of lactate dehydrogenase and pro-inflammatory cytokines, and increased gene expression of pro-inflammatory cytokines and antimicrobial peptides after 24 h. Application of antiseptics protected the skin models from damage due to S. aureus infection while demonstrating good biocompatibility. The best ratio of bioactivity to biocompatibility was observed for polihexanide. Polihexanide also enhanced the innate immune response by increasing the gene expression levels of antimicrobial peptides such as human β-defensin 2, human β-defensin 3, psoriasin and ribonuclease 7. The developed model provides an excellent tool to investigate the response of human cells to microbial infections in a complex 3D structure. Furthermore, the infection model is appropriate for evaluation of bioactivity and biocompatibility of antiseptics. As such, the model presented in this study is a promising approach to evaluate the mechanisms and effectiveness of new antimicrobial strategies.
Collapse
Affiliation(s)
| | - Cornelia Wiegand
- Department of Dermatology, University Hospital Jena, Jena, Germany
| | - Peter Elsner
- Department of Dermatology, University Hospital Jena, Jena, Germany
| | | |
Collapse
|
14
|
Papaioannou E, Yánez DC, Ross S, Lau CI, Solanki A, Chawda MM, Virasami A, Ranz I, Ono M, O'Shaughnessy RFL, Crompton T. Sonic Hedgehog signaling limits atopic dermatitis via Gli2-driven immune regulation. J Clin Invest 2019; 129:3153-3170. [PMID: 31264977 PMCID: PMC6668675 DOI: 10.1172/jci125170] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2018] [Accepted: 05/14/2019] [Indexed: 12/19/2022] Open
Abstract
Hedgehog (Hh) proteins regulate development and tissue homeostasis, but their role in atopic dermatitis (AD) remains unknown. We found that on induction of mouse AD, Sonic Hedgehog (Shh) expression in skin and Hh pathway action in skin T cells were increased. Shh signaling reduced AD pathology and the levels of Shh expression determined disease severity. Hh-mediated transcription in skin T cells in AD-induced mice increased Treg populations and their suppressive function through increased active transforming growth factor–β (TGF-β) in Treg signaling to skin T effector populations to reduce disease progression and pathology. RNA sequencing of skin CD4+ T cells from AD-induced mice demonstrated that Hh signaling increased expression of immunoregulatory genes and reduced expression of inflammatory and chemokine genes. Addition of recombinant Shh to cultures of naive human CD4+ T cells in iTreg culture conditions increased FOXP3 expression. Our findings establish an important role for Shh upregulation in preventing AD, by increased Gli-driven, Treg cell–mediated immune suppression, paving the way for a potential new therapeutic strategy.
Collapse
Affiliation(s)
- Eleftheria Papaioannou
- Great Ormond Street Institute of Child Health, University College London, London, United Kingdom
| | - Diana C Yánez
- Great Ormond Street Institute of Child Health, University College London, London, United Kingdom.,School of Medicine, Universidad San Francisco de Quito, Quito, Ecuador
| | - Susan Ross
- Great Ormond Street Institute of Child Health, University College London, London, United Kingdom
| | - Ching-In Lau
- Great Ormond Street Institute of Child Health, University College London, London, United Kingdom
| | - Anisha Solanki
- Great Ormond Street Institute of Child Health, University College London, London, United Kingdom
| | - Mira Manilal Chawda
- Great Ormond Street Institute of Child Health, University College London, London, United Kingdom
| | - Alex Virasami
- Great Ormond Street Institute of Child Health, University College London, London, United Kingdom
| | - Ismael Ranz
- Department of Respiratory Medicine and Allergy, King's College London, London, United Kingdom
| | - Masahiro Ono
- Great Ormond Street Institute of Child Health, University College London, London, United Kingdom.,Department of Life Sciences, Imperial College London, London, United Kingdom
| | - Ryan F L O'Shaughnessy
- Great Ormond Street Institute of Child Health, University College London, London, United Kingdom.,Blizard Institute, Queen Mary University of London, London, United Kingdom
| | - Tessa Crompton
- Great Ormond Street Institute of Child Health, University College London, London, United Kingdom
| |
Collapse
|
15
|
Microbiome of the Skin and Gut in Atopic Dermatitis (AD): Understanding the Pathophysiology and Finding Novel Management Strategies. J Clin Med 2019; 8:jcm8040444. [PMID: 30987008 PMCID: PMC6518061 DOI: 10.3390/jcm8040444] [Citation(s) in RCA: 129] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Revised: 03/25/2019] [Accepted: 03/28/2019] [Indexed: 12/14/2022] Open
Abstract
Atopic dermatitis (AD) is a long-standing inflammatory skin disease that is highly prevalent worldwide. Multiple factors contribute to AD, with genetics as well as the environment affecting disease development. Although AD shows signs of skin barrier defect and immunological deviation, the mechanism underlying AD is not well understood, and AD treatment is often very difficult. There is substantial data that AD patients have a disturbed microbial composition and lack microbial diversity in their skin and gut compared to controls, which contributes to disease onset and atopic march. It is not clear whether microbial change in AD is an outcome of barrier defect or the cause of barrier dysfunction and inflammation. However, a cross-talk between commensals and the immune system is now noticed, and their alteration is believed to affect the maturation of innate and adaptive immunity during early life. The novel concept of modifying skin and gut microbiome by applying moisturizers that contain nonpathogenic biomass or probiotic supplementation during early years may be a preventive and therapeutic option in high risk groups, but currently lacks evidence. This review discusses the nature of the skin and gut flora in AD, possible mechanisms of skin-gut interaction, and the therapeutic implications of microbiome correction in AD.
Collapse
|
16
|
Mainzer C, Packard T, Bordes S, Closs B, Greene WC, Elias PM, Uchida Y. Tissue microenvironment initiates an immune response to structural components of Staphylococcus aureus. Exp Dermatol 2019; 28:161-168. [PMID: 30566255 PMCID: PMC6706075 DOI: 10.1111/exd.13864] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2018] [Revised: 11/13/2018] [Accepted: 12/13/2018] [Indexed: 01/10/2023]
Abstract
Cell-to-cell communication in skin participates to the maintenance of homeostatic responses to foreign substances. Certain strains of Staphylococcus (S) aureus are vicious pathogens that cause deleterious effects in host cells and tissues. Both secreted toxins and structural components of S. aureus trigger an immune response, though how S. aureus stimulates host immune responses is poorly understood. We explored here how keratinocytes and fibroblasts initiate the first steps of an immune response by activating dendritic cells (DCs) through recognition of structural components of S. aureus. We treated monocyte-derived Langerhans cells (moLCs) and monocyte-derived DCs (moDCs) with conditioned media from keratinocytes (K-CM) and fibroblasts (F-CM) treated with heat-killed S. aureus (HKSA) respectively, or directly with HKSA. Immune and inflammatory responses from keratinocytes, fibroblasts, moLCs and moDCs were assessed by analysis of cell surface markers and cytokine production using flow cytometry, real-time PCR and ELISA assays. K-CM and F-CM increased the expression of CD86 and HLA-DR on moLCs and moDCs, in association with a specific cytokine profile. K-CM upregulated TNFA, IL-1B and GM-CSF mRNA expression in moLCs, while F-CM upregulated IL-12 and downregulated TNFA and TGFB mRNA expression in moDCs. Additionally, F-CM attenuated the induction of an inflammatory profile in monocytes. The recognition of structural components from S. aureus by cutaneous microenvironment induces the activation and the expression of specific cytokines from LCs and DCs.
Collapse
Affiliation(s)
- Carine Mainzer
- Department of Dermatology, School of Medicine, University of California San Francisco, San Francisco, California
- SILAB Inc., Hazlet, New Jersey
| | - Thomas Packard
- Gladstone Institute of Virology and Immunology, University of California San Francisco, San Francisco, California
| | | | | | - Warner C. Greene
- Gladstone Institute of Virology and Immunology, University of California San Francisco, San Francisco, California
| | - Peter M. Elias
- Department of Dermatology, School of Medicine, University of California San Francisco, San Francisco, California
| | - Yoshikazu Uchida
- Department of Dermatology, School of Medicine, University of California San Francisco, San Francisco, California
| |
Collapse
|
17
|
Muhsen M, Protschka M, Schneider LE, Müller U, Köhler G, Magin TM, Büttner M, Alber G, Siegemund S. Orf virus (ORFV) infection in a three-dimensional human skin model: Characteristic cellular alterations and interference with keratinocyte differentiation. PLoS One 2019; 14:e0210504. [PMID: 30699132 PMCID: PMC6353139 DOI: 10.1371/journal.pone.0210504] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Accepted: 12/24/2018] [Indexed: 01/01/2023] Open
Abstract
ORF virus (ORFV) is the causative agent of contagious ecthyma, a pustular dermatitis of small ruminants and humans. Even though the development of lesions caused by ORFV was extensively studied in animals, only limited knowledge exists about the lesion development in human skin. The aim of the present study was to evaluate a three-dimensional (3D) organotypic culture (OTC) as a human skin model for ORFV infection considering lesion development, replication of the virus, viral gene transcription and modulation of differentiation of human keratinocytes by ORFV. ORFV infection of OTC was performed using the ORFV isolate B029 derived from a human patient. The OTC sections showed a similar structure of stratified epidermal keratinocytes as human foreskin and a similar expression profile of the differentiation markers keratin 1 (K1), K10, and loricrin. Upon ORFV infection, OTCs exhibited histological cytopathic changes including hyperkeratosis and ballooning degeneration of the keratinocytes. ORFV persisted for 10 days and was located in keratinocytes of the outer epidermal layers. ORFV-specific early, intermediate and late genes were transcribed, but limited viral spread and restricted cell infection were noticed. ORFV infection resulted in downregulation of K1, K10, and loricrin at the transcriptional level without affecting proliferation as shown by PCNA or Ki-67 expression. In conclusion, OTC provides a suitable model to study the interaction of virus with human keratinocytes in a similar structural setting as human skin and reveals that ORFV infection downregulates several differentiation markers in the epidermis of the human skin, a hitherto unknown feature of dermal ORFV infection in man.
Collapse
Affiliation(s)
- Mahmod Muhsen
- Institute of Immunology/Molecular Pathogenesis, Center for Biotechnology and Biomedicine, College of Veterinary Medicine, University of Leipzig, Leipzig, Germany
| | - Martina Protschka
- Institute of Immunology/Molecular Pathogenesis, Center for Biotechnology and Biomedicine, College of Veterinary Medicine, University of Leipzig, Leipzig, Germany
| | - Laura E. Schneider
- Institute of Immunology/Molecular Pathogenesis, Center for Biotechnology and Biomedicine, College of Veterinary Medicine, University of Leipzig, Leipzig, Germany
| | - Uwe Müller
- Institute of Immunology/Molecular Pathogenesis, Center for Biotechnology and Biomedicine, College of Veterinary Medicine, University of Leipzig, Leipzig, Germany
| | | | - Thomas M. Magin
- Institute of Biology, Division of Cell and Developmental Biology, University of Leipzig, Leipzig, Germany
| | - Mathias Büttner
- Institute of Immunology/Molecular Pathogenesis, Center for Biotechnology and Biomedicine, College of Veterinary Medicine, University of Leipzig, Leipzig, Germany
| | - Gottfried Alber
- Institute of Immunology/Molecular Pathogenesis, Center for Biotechnology and Biomedicine, College of Veterinary Medicine, University of Leipzig, Leipzig, Germany
| | - Sabine Siegemund
- Institute of Immunology/Molecular Pathogenesis, Center for Biotechnology and Biomedicine, College of Veterinary Medicine, University of Leipzig, Leipzig, Germany
| |
Collapse
|
18
|
Lee SH, Bae IH, Choi H, Choi HW, Oh S, Marinho PA, Min DJ, Kim DY, Lee TR, Lee CS, Lee J. Ameliorating effect of dipotassium glycyrrhizinate on an IL-4- and IL-13-induced atopic dermatitis-like skin-equivalent model. Arch Dermatol Res 2018; 311:131-140. [PMID: 30506356 DOI: 10.1007/s00403-018-1883-z] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2018] [Revised: 10/26/2018] [Accepted: 11/26/2018] [Indexed: 12/18/2022]
Abstract
Atopic dermatitis (AD) is a chronic inflammatory skin disease that is not fully understood. Defects in skin barrier function and dysregulation of the Th2 immune response are thought to be pivotal in AD pathogenesis. In this study, we used keratinocytes and AD-like skin equivalent models using Th2 cytokines IL-4 and IL-13. The keratinocytes and AD-like skin model were used to investigate the effect of dipotassium glycyrrhizinate (KG), which is widely used as an anti-inflammatory agent for AD treatment. KG decreased AD-related gene expression in keratinocytes stimulated with Th2 cytokines. KG alleviated AD-like phenotypes and gene expression patterns and inhibited release of AD-related cytokines in the AD-like skin equivalent models. These findings indicate KG has potential effectiveness in AD treatment and AD-like skin equivalent models may be useful for understanding AD pathogenesis.
Collapse
Affiliation(s)
- Sung Hoon Lee
- Amorepacific Corporation R&D Center, Yongin-si, Republic of Korea.,Department of Integrative Biotechnology, College of Biotechnology and Bioengineering, Sungkyunkwan University, Suwon, Gyunggi-do, 16419, Republic of Korea
| | - Il-Hong Bae
- Amorepacific Corporation R&D Center, Yongin-si, Republic of Korea.,Department of Veterinary Pathology, College of Veterinary Medicine, Seoul National University, Gwanak-ro, Gwanak-gu, Seoul, Republic of Korea
| | - Hyangtae Choi
- Amorepacific Corporation R&D Center, Yongin-si, Republic of Korea
| | - Hyeong Won Choi
- Amorepacific Corporation R&D Center, Yongin-si, Republic of Korea
| | - Soojung Oh
- Amorepacific Corporation R&D Center, Yongin-si, Republic of Korea
| | - Paulo A Marinho
- Amorepacific Corporation R&D Center, Yongin-si, Republic of Korea
| | - Dae Jin Min
- Amorepacific Corporation R&D Center, Yongin-si, Republic of Korea
| | - Dae-Yong Kim
- Department of Veterinary Pathology, College of Veterinary Medicine, Seoul National University, Gwanak-ro, Gwanak-gu, Seoul, Republic of Korea
| | - Tae Ryong Lee
- Amorepacific Corporation R&D Center, Yongin-si, Republic of Korea
| | - Chang Seok Lee
- Department of Beauty and Cosmetic Science, Eulji University, Sanseong-daero, Sugeong-gu, Seongnam-si, Gyeonggi-do, 13135, Republic of Korea.
| | - Jongsung Lee
- Department of Integrative Biotechnology, College of Biotechnology and Bioengineering, Sungkyunkwan University, Suwon, Gyunggi-do, 16419, Republic of Korea.
| |
Collapse
|
19
|
Inhibitory Effects of Helianthus tuberosus Ethanol Extract on Dermatophagoides farina body-induced Atopic Dermatitis Mouse Model and Human Keratinocytes. Nutrients 2018; 10:nu10111657. [PMID: 30400334 PMCID: PMC6265995 DOI: 10.3390/nu10111657] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Revised: 10/26/2018] [Accepted: 11/01/2018] [Indexed: 12/13/2022] Open
Abstract
Atopic dermatitis (AD) is a chronic inflammatory skin disease characterized by complex symptoms. To treat AD without adverse effects, alternative therapeutic agents are required. The tubers of Helianthus tuberosus L. (Jerusalem artichoke) have been used in folk remedies for diabetes and rheumatism. However, its effect on AD development remains unknown. Therefore, this study examined the inhibitory effect of H. tuberosus (HT) on AD skin symptoms using an NC/Nga mouse model and HaCaT keratinocytes. The effect of HT and associated molecular mechanisms were evaluated in Dermatophagoides farina body (Dfb)-induced AD mice and tumor necrosis factor (TNF)-α/interferon (IFN)-γ-stimulated HaCaT keratinocytes by ELISA, western blot, and histological analysis. Topical HT administration attenuated AD skin symptoms in Dfb-induced AD mice, with a significant reduction in the dermatitis score and production of inflammatory mediators. HT also decreased epidermal thickness and mast cell infiltration. Moreover, HT restored filaggrin expression and inhibited adhesion molecules in the mice. These effects were confirmed in vitro. Furthermore, HT suppressed the activation of NF-κB, Akt, and mitogen-activated protein kinase (MAPK) signaling pathways induced by TNF-α/IFN-γ. These results suggest that HT is a potential therapeutic agent or supplement for skin allergic inflammatory diseases such as AD.
Collapse
|
20
|
Kim J, Bin BH, Choi EJ, Lee HG, Lee TR, Cho EG. Staphylococcus aureus-derived extracellular vesicles induce monocyte recruitment by activating human dermal microvascular endothelial cells in vitro. Clin Exp Allergy 2018; 49:68-81. [PMID: 30288827 DOI: 10.1111/cea.13289] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2018] [Revised: 09/20/2018] [Accepted: 09/28/2018] [Indexed: 12/16/2022]
Abstract
BACKGROUND Atopic dermatitis (AD) represents the most common inflammatory skin disorder in children showing massive infiltration of immune cells. The colonization of AD-afflicted skin by Staphylococcus aureus and S. aureus-derived extracellular vesicles (SEVs) has been associated with AD pathogenesis; however, the molecular mechanism underlying SEV-mediated inflammatory responses remains unclear. OBJECTIVE We investigated how SEVs can mediate inflammatory responses in AD pathogenesis by examining the effect of SEVs on human dermal microvascular endothelia cells (HDMECs). METHODS HDMECs were treated with SEVs, and the expression of cell adhesion molecules or cytokines was assessed using RT-qPCR, Western blot or cytokine array analyses. The receptor for SEVs and related signalling molecules in HDMECs were addressed and verified via gene knockdown or inhibitor experiments. The recruitment assay of human THP-1 monocytic cells on HDMECs was performed after SEV treatment in the presence or absence of the verified receptor or signalling molecule. RESULTS SEVs, but not other gram-positive bacteria-derived extracellular vesicles, directly activated HDMECs by increasing the expression of cell adhesion molecules (E-selectin, VCAM1 and ICAM1) and that of IL-6, the inflammatory cytokine; consequently, they enhanced the recruitment of THP-1 monocytic cells to HDMECs. The SEV-induced HDMEC activation was dependent on Toll-like receptor 4 and the NF-κB signalling pathway, which was rapidly activated within 1 hour post-treatment and followed by an upregulation of cell adhesion molecules and IL-6 at later time-points. Moreover, SEV-mediated HDMEC responses were more rapid and intense than those induced by the same protein concentrations of S. aureus extracts. CONCLUSIONS & CLINICAL RELEVANCE SEVs as proinflammatory factors could mediate immune cell infiltration in AD by efficiently inducing endothelial cell activation and monocyte recruitment, which may provide insights into alleviating the S. aureus-mediated onset or progression of AD and its phenotypes.
Collapse
Affiliation(s)
- Jihye Kim
- Skincare Research Division, R&D Unit, AmorePacific Corporation, Yongin-si, Gyeonggi-do, Korea
| | - Bum-Ho Bin
- Basic Research & Innovation Division, R&D Unit, AmorePacific Corporation, Yongin-si, Gyeonggi-do, Korea
| | - Eun-Jeong Choi
- Basic Research & Innovation Division, R&D Unit, AmorePacific Corporation, Yongin-si, Gyeonggi-do, Korea
| | - Hyun Gee Lee
- Basic Research & Innovation Division, R&D Unit, AmorePacific Corporation, Yongin-si, Gyeonggi-do, Korea
| | - Tae Ryong Lee
- Basic Research & Innovation Division, R&D Unit, AmorePacific Corporation, Yongin-si, Gyeonggi-do, Korea
| | - Eun-Gyung Cho
- Basic Research & Innovation Division, R&D Unit, AmorePacific Corporation, Yongin-si, Gyeonggi-do, Korea
| |
Collapse
|
21
|
Kim BE, Leung DYM. Significance of Skin Barrier Dysfunction in Atopic Dermatitis. ALLERGY, ASTHMA & IMMUNOLOGY RESEARCH 2018; 10:207-215. [PMID: 29676067 PMCID: PMC5911439 DOI: 10.4168/aair.2018.10.3.207] [Citation(s) in RCA: 224] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/07/2017] [Revised: 10/31/2017] [Accepted: 11/08/2017] [Indexed: 12/13/2022]
Abstract
The epidermis contains epithelial cells, immune cells, and microbes which provides a physical and functional barrier to the protection of human skin. It plays critical roles in preventing environmental allergen penetration into the human body and responsing to microbial pathogens. Atopic dermatitis (AD) is the most common, complex chronic inflammatory skin disease. Skin barrier dysfunction is the initial step in the development of AD. Multiple factors, including immune dysregulation, filaggrin mutations, deficiency of antimicrobial peptides, and skin dysbiosis contribute to skin barrier defects. In the initial phase of AD, treatment with moisturizers improves skin barrier function and prevents the development of AD. With the progression of AD, effective topical and systemic therapies are needed to reduce immune pathway activation and general inflammation. Targeted microbiome therapy is also being developed to correct skin dysbiosis associated with AD. Improved identification and characterization of AD phenotypes and endotypes are required to optimize the precision medicine approach to AD.
Collapse
Affiliation(s)
- Byung Eui Kim
- Department of Pediatrics, National Jewish Health, Denver, CO, USA
| | - Donald Y M Leung
- Department of Pediatrics, National Jewish Health, Denver, CO, USA.
| |
Collapse
|
22
|
The structure and function of the epidermal barrier in patients with atopic dermatitis - treatment options. Part two. Postepy Dermatol Alergol 2018; 35:123-127. [PMID: 29760610 PMCID: PMC5949542 DOI: 10.5114/ada.2018.75234] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2017] [Accepted: 06/21/2017] [Indexed: 01/06/2023] Open
Abstract
Atopic dermatitis (AD) is a chronic and recurrent disease induced by underlying defects of the epidermal barrier and immunological disorders, typical of atopic diseases. The genetic and immunological mechanisms (outlined in the previous paper) affecting the dysfunction of the barrier are intensified by environmental factors, e.g. airborne and food allergens, infections and stress. For this reason, proper skin care, which prevents further damage and restores the epidermal barrier is of such importance in the field of AD therapy. Appropriate therapy is based on emollients which, coupled with anti-inflammatory and antipruritic treatment, should be used as the first-line therapy. The aim of the present paper is to outline the effects of the abovementioned factors on the dysfunction of the epidermal barrier as well as to emphasize the importance of proper atopic skin care in maintaining the integrity of the barrier and preventing exacerbation of the disease.
Collapse
|
23
|
Huet F, Severino-Freire M, Chéret J, Gouin O, Praneuf J, Pierre O, Misery L, Le Gall-Ianotto C. Reconstructed human epidermis for in vitro studies on atopic dermatitis: A review. J Dermatol Sci 2018; 89:213-218. [DOI: 10.1016/j.jdermsci.2017.11.015] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2017] [Revised: 11/15/2017] [Accepted: 11/27/2017] [Indexed: 11/24/2022]
|
24
|
DeTemple V, Satzger I, Walter A, Schaper K, Gutzmer R. Effects of mammalian target of rapamycin inhibitors on cytokine production and differentiation in keratinocytes. Exp Dermatol 2018; 25:775-82. [PMID: 27194247 DOI: 10.1111/exd.13079] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/05/2016] [Indexed: 12/15/2022]
Abstract
Risk factors for the development of cutaneous squamous cell carcinoma (cSCC) include ultraviolet radiation and immunosuppression. In particular, solid organ transplant recipients show a high incidence of cSCC, depending on the immunosuppressive regimen. While azathioprine or calcineurin inhibitors increase the risk of cSCC development, mammalian target of rapamycin (mTOR) inhibitors decreases this risk. At the moment, the mechanisms behind this protective effect of mTOR inhibitors are not fully understood. We evaluated effects of the mTOR inhibitors sirolimus and everolimus on keratinocytes, cSCC cell lines and an organotypic skin model in vitro in regard to proliferation, cytokine secretion and differentiation. We show that mTOR inhibitors block keratinocyte proliferation and alter cytokine and cytokeratin production: in particular, mTOR inhibition leads to upregulation of interleukin-6 and downregulation of cytokeratin 10. Therefore, mTOR inhibitors have effects on keratinocytes, which could play a role in the pathogenesis of cSCC.
Collapse
Affiliation(s)
- Viola DeTemple
- Department for Dermatology, Allergology and Venerology, Skin Cancer Center Hannover, Hannover Medical School, Hannover, Germany.
| | - Imke Satzger
- Department for Dermatology, Allergology and Venerology, Skin Cancer Center Hannover, Hannover Medical School, Hannover, Germany
| | - Antje Walter
- Department for Dermatology, Allergology and Venerology, Skin Cancer Center Hannover, Hannover Medical School, Hannover, Germany
| | - Katrin Schaper
- Department for Dermatology, Allergology and Venerology, Skin Cancer Center Hannover, Hannover Medical School, Hannover, Germany
| | - Ralf Gutzmer
- Department for Dermatology, Allergology and Venerology, Skin Cancer Center Hannover, Hannover Medical School, Hannover, Germany
| |
Collapse
|
25
|
Abstract
PURPOSE OF REVIEW Atopic dermatitis (AD) is a chronic, relapsing inflammatory skin disorder that is a major public health burden worldwide. AD lesions are often colonized by Staphylococcus aureus and Staphylococcus epidermidis. An important aspect of Staphylococcus spp. is their propensity to form biofilms, adhesive surface-attached colonies that become highly resistant to antibiotics and immune responses, and recent studies have found that clinical isolates colonizing AD skin are often biofilm-positive. Biofilm formation results in complex bacterial communities that have unique effects on keratinocytes and host immunity. This review will summarize recent studies exploring the role of staphyloccocal biofilms in atopic dermatitis and the implications for treatment. RECENT FINDINGS Recent studies suggest an important role for biofilms in the pathogenesis of numerous dermatologic diseases including AD. S. aureus biofilms have been found to colonize the eccrine ducts of AD skin, and these biofilms influence secretion of keratinocyte cytokines and trigger differentiation and apoptosis of keratinocytes. These activities may act to disrupt barrier function and promote disease pathogenesis as well as allergen sensitization. Formation of biofilm is a successful strategy that protects the bacteria from environmental danger, antibiotics, and phagocytosis, enabling chronic persistence in the host. An increasing number of S. aureus skin isolates are resistant to conventional antibiotics, and staphylococcal biofilm communities are prevalent on the skin of individuals with AD. Staphylococcal colonization of the skin impacts skin barrier function and plays multiple important roles in AD pathogenesis.
Collapse
|
26
|
Czarnowicki T, Krueger JG, Guttman-Yassky E. Novel concepts of prevention and treatment of atopic dermatitis through barrier and immune manipulations with implications for the atopic march. J Allergy Clin Immunol 2017; 139:1723-1734. [PMID: 28583445 DOI: 10.1016/j.jaci.2017.04.004] [Citation(s) in RCA: 160] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2017] [Revised: 04/07/2017] [Accepted: 04/13/2017] [Indexed: 12/16/2022]
Abstract
Skin barrier abnormalities have been suggested to play an essential role in initiation of early atopic dermatitis (AD). Antigen penetration through a compromised barrier likely leads to increased innate immune responses, antigen-presenting cell stimulation, and priming of overt cutaneous disease. In a TH2-promoting environment, T-cell/B-cell interactions occurring in regional lymph nodes lead to excessive IgE switch. Concurrent redistribution of memory T cells into the circulation not only leads to exacerbation of AD through T-cell skin infiltration but also spreads beyond the skin to initiate the atopic march, which includes food allergy, asthma, and allergic rhinitis. Possible primary interventions to prevent AD are focusing on improving skin barrier integrity, including supplementing barrier function with moisturizers. As for secondary prophylaxis in children with established AD, this can be stratified into prevention of disease exacerbations by using proactive approaches (with either topical corticosteroids or topical calcineurin inhibitors) in mild AD cases or the prevention of other atopic disorders that will probably mandate systemic immunosuppression in severe AD cases.
Collapse
Affiliation(s)
- Tali Czarnowicki
- Department of Dermatology and the Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY; Laboratory for Investigative Dermatology, Rockefeller University, New York, NY
| | - James G Krueger
- Department of Dermatology and the Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY; Laboratory for Investigative Dermatology, Rockefeller University, New York, NY
| | - Emma Guttman-Yassky
- Department of Dermatology and the Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY; Laboratory for Investigative Dermatology, Rockefeller University, New York, NY.
| |
Collapse
|
27
|
Platelet-Released Growth Factors Induce Differentiation of Primary Keratinocytes. Mediators Inflamm 2017; 2017:5671615. [PMID: 28808357 PMCID: PMC5541813 DOI: 10.1155/2017/5671615] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2017] [Revised: 06/07/2017] [Accepted: 06/22/2017] [Indexed: 11/17/2022] Open
Abstract
Autologous thrombocyte concentrate lysates, for example, platelet-released growth factors, (PRGFs) or their clinically related formulations (e.g., Vivostat PRF®) came recently into the physicians' focus as they revealed promising effects in regenerative and reparative medicine such as the support of healing of chronic wounds. To elucidate the underlying mechanisms, we analyzed the influence of PRGF and Vivostat PRF on human keratinocyte differentiation in vitro and on epidermal differentiation status of skin wounds in vivo. Therefore, we investigated the expression of early (keratin 1 and keratin 10) and late (transglutaminase-1 and involucrin) differentiation markers. PRGF treatment of primary human keratinocytes decreased keratin 1 and keratin 10 gene expression but induced involucrin and transglutaminase-1 gene expression in an epidermal growth factor receptor- (EGFR-) dependent manner. In concordance with these results, microscopic analyses revealed that PRGF-treated human keratinocytes displayed morphological features typical of keratinocytes undergoing terminal differentiation. In vivo treatment of artificial human wounds with Vivostat PRF revealed a significant induction of involucrin and transglutaminase-1 gene expression. Together, our results indicate that PRGF and Vivostat PRF induce terminal differentiation of primary human keratinocytes. This potential mechanism may contribute to the observed beneficial effects in the treatment of hard-to-heal wounds with autologous thrombocyte concentrate lysates in vivo.
Collapse
|
28
|
|
29
|
Zhao QF, Hasegawa T, Komiyama E, Ikeda S. Hailey–Hailey disease: A review of clinical features in 26 cases with special reference to the secondary infections and their control. DERMATOL SIN 2017. [DOI: 10.1016/j.dsi.2016.08.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
|
30
|
Mulcahy ME, Leech JM, Renauld JC, Mills KH, McLoughlin RM. Interleukin-22 regulates antimicrobial peptide expression and keratinocyte differentiation to control Staphylococcus aureus colonization of the nasal mucosa. Mucosal Immunol 2016; 9:1429-1441. [PMID: 27007677 DOI: 10.1038/mi.2016.24] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2015] [Accepted: 02/03/2016] [Indexed: 02/04/2023]
Abstract
The local immune response occurring during Staphylococcus aureus nasal colonization remains ill-defined. Studies have highlighted the importance of T-cell immunity in controlling S. aureus colonization of the nasal mucosa. We extend these observations, identifying a critical role for interleukin (IL)-22 in this process. IL-22 is basally expressed within the nasal mucosa and is induced upon S. aureus colonization. IL-22 is produced by CD4+ and CD8+ T lymphocytes at this site, with innate-like lymphocytes also contributing. IL-22-/- mice demonstrate significantly elevated levels of S. aureus nasal colonization as compared with wild-type (WT) mice. This was associated with reduced expression of antimicrobial peptides (AMPs) in the nose. Furthermore, expression of staphylococcal ligands loricrin and cytokeratin 10 was higher in the noses of IL-22-/- as compared with WT mice. IL-17 has been shown to regulate S. aureus nasal colonization by controlling local neutrophil responses; however, IL-17 expression and neutrophil responses were comparable in the noses of IL-22-/- and WT mice during S. aureus colonization. We conclude that IL-22 has an important role in controlling S. aureus nasal colonization through distinct mechanisms, with IL-22 mediating its effect exclusively by inducing AMP expression and controlling availability of staphylococcal ligands.
Collapse
Affiliation(s)
- M E Mulcahy
- Host-Pathogen Interactions Group, School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland
| | - J M Leech
- Host-Pathogen Interactions Group, School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland
| | - J-C Renauld
- Ludwig Institute for Cancer Research and Experimental Medicine Unit, Universite Catholique de Louvain, Brussels, Belgium
| | - K Hg Mills
- Immune Regulation Research Group, School of Biochemistry and Immunology, Trinity College Dublin, Dublin, Ireland
| | - R M McLoughlin
- Host-Pathogen Interactions Group, School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland
| |
Collapse
|
31
|
Epidermal Expression of Filaggrin/Profilaggrin Is Decreased in Atopic Dermatitis: Reverse Association With Mast Cell Tryptase and IL-6 but Not With Clinical Severity. Dermatitis 2016; 26:260-7. [PMID: 26551604 DOI: 10.1097/der.0000000000000143] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
BACKGROUND A decrease in filaggrin expression contributes to the pathogenesis of atopic dermatitis (AD) and can be modified by inflammatory factors. OBJECTIVES The aim of this study was to determine the correlation of (pro)filaggrin (filaggrin and profilaggrin) expression with clinical severity in AD and with mast cell (MC) tryptase, chymase, and IL-6. METHODS Punch biopsies were collected from 17 patients with moderate-to-severe AD and from 10 psoriatic patients. Atopic dermatitis severity was measured using different clinical parameters. (Pro)filaggrin, MC tryptase, chymase, and IL-6 were stained using immunohistochemical, enzymehistochemical, and sequential double-staining methods. RESULTS (Pro)filaggrin expression was lower in the lesional than in the nonlesional granular layer in AD and was correlated negatively with itch severity but not with other severity parameters. (Pro)filaggrin expression was also decreased in the psoriatic lesions. In AD, (pro)filaggrin expression correlated negatively with the number of tryptase MCs in the nonlesional granular layer and with IL-6 MCs in both the nonlesional and lesional granular layers. CONCLUSION (Pro)filaggrin expression is decreased in AD and is reversely associated with MC tryptase and IL-6. However, it does not associate with disease severity, and it was also decreased in psoriasis.
Collapse
|
32
|
Host-Bacterial Crosstalk Determines Staphylococcus aureus Nasal Colonization. Trends Microbiol 2016; 24:872-886. [PMID: 27474529 DOI: 10.1016/j.tim.2016.06.012] [Citation(s) in RCA: 72] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2016] [Revised: 06/13/2016] [Accepted: 06/29/2016] [Indexed: 02/07/2023]
Abstract
Staphylococcus aureus persistently colonizes the anterior nares of approximately one fifth of the population and nasal carriage is a significant risk factor for infection. Recent advances have significantly refined our understanding of S. aureus-host communication during nasal colonization. Novel bacterial adherence mechanisms in the nasal epithelium have been identified, and novel roles for both the innate and the adaptive immune response in controlling S. aureus nasal colonization have been defined, through the use of both human and rodent models. It is clear that S. aureus maintains a unique, complex relationship with the host immune system and that S. aureus nasal colonization is overall a multifactorial process which is as yet incompletely understood.
Collapse
|
33
|
Terao M, Katayama I. Local cortisol/corticosterone activation in skin physiology and pathology. J Dermatol Sci 2016; 84:11-16. [PMID: 27431412 DOI: 10.1016/j.jdermsci.2016.06.014] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2016] [Accepted: 06/29/2016] [Indexed: 01/12/2023]
Abstract
Cortisol and corticosterone are the endogenous glucocorticoids (GCs) in humans and rodents, respectively. Systemic GC is released through the hypothalamic-pituitary-adrenal (HPA) axis in response to various stressors. Over the last decade, extra-adrenal production/activation of cortisol/corticosterone has been reported in many tissues. The enzyme that catalyzes the conversion of hormonally inactive cortisone/11-dehydrocorticosterone (11-DHC) into active cortisol/corticosterone in cells is 11β-hydroxysteroid dehydrogenase (11β-HSD). The 11β-HSD1 isoform is predominantly a reductase, which catalyzes nicotinamide adenine dinucleotide phosphate hydrogen-dependent conversion of cortisone/11-DHC to cortisol/corticosterone, and is widely expressed and present at the highest levels in the liver, lungs, adipose tissues, ovaries, and central nervous system. The 11β-HSD2 isoform, which catalyzes nicotinamide adenine dinucleotide+-dependent inactivation of cortisol/corticosterone to cortisone/11-DHC, is highly expressed in distal nephrons, the colon, sweat glands, and the placenta. In healthy skin, 11β-HSD1 is expressed in the epidermis and in dermal fibroblasts. On the other hand, 11β-HSD2 is expressed in sweat glands but not in the epidermis. The role of 11β-HSD in skin physiology and pathology has been reported recently. In this review, we summarize the recently reported role of 11β-HSD in the skin, focusing on its function in cell proliferation, wound healing, inflammation, and aging.
Collapse
Affiliation(s)
- Mika Terao
- Department of Dermatology, Osaka University Graduate School of Medicine, Suita, Japan.
| | - Ichiro Katayama
- Department of Dermatology, Osaka University Graduate School of Medicine, Suita, Japan
| |
Collapse
|
34
|
Son ED, Kim HJ, Kim KH, Bin BH, Bae IH, Lim KM, Yu SJ, Cho EG, Lee TR. S100A7 (psoriasin) inhibits human epidermal differentiation by enhanced IL-6 secretion through IκB/NF-κB signalling. Exp Dermatol 2016; 25:636-41. [PMID: 27060579 DOI: 10.1111/exd.13023] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/04/2016] [Indexed: 12/11/2022]
Abstract
Psoriasin (S100A7), a member of the S100 protein family, is a well-known antimicrobial peptide and a signalling molecule which regulates cellular function and is highly expressed in hyperproliferative skin conditions such as atopic dermatitis (AD) and psoriasis with disrupted skin barrier function. However, its role in epidermal differentiation remains unknown. We examined the effect of S100A7 on epidermal differentiation in normal human keratinocytes (NHKs) and on a reconstituted human epidermis model. When NHKs were exposed to disruptive stimuli such as Staphylococcus aureus, ultraviolet irradiation and retinoic acid, the secretion of S100A7 into the culture medium increased and the expression of epidermal differentiation markers decreased. Treatment of NHKs with S100A7 significantly inhibited epidermal differentiation by reducing the expression of keratin 1, keratin 10, involucrin and loricrin and by increasing the expression of abnormal differentiation markers (keratin 6 and keratin 16). We verified that the MyD88-IκB/NF-κB signal cascade was activated via RAGE after S100A7 treatment, resulting in the upregulation of interleukin-6. Finally, we confirmed that S100A7 is a negative regulator of epidermal differentiation using a reconstituted human epidermis model. This study suggests that S100A7-related signalling molecules could be potent targets for recovering skin barrier function in AD and psoriasis where S100A7 is accumulated excessively.
Collapse
Affiliation(s)
- Eui Dong Son
- AmorePacific Corp/R&D Center, Yongin-si, Gyeonggi-do, Korea
| | | | - Kyu Han Kim
- AmorePacific Corp/R&D Center, Yongin-si, Gyeonggi-do, Korea
| | - Bum Ho Bin
- AmorePacific Corp/R&D Center, Yongin-si, Gyeonggi-do, Korea
| | - Il-Hong Bae
- AmorePacific Corp/R&D Center, Yongin-si, Gyeonggi-do, Korea
| | - Kyung-Min Lim
- College of Pharmacy, Ewha Womans University, Seoul, Korea
| | - Seok Jong Yu
- Korea Institute of Science and Technology Information, Dajeon, Korea
| | - Eun-Gyung Cho
- AmorePacific Corp/R&D Center, Yongin-si, Gyeonggi-do, Korea
| | - Tae Ryong Lee
- AmorePacific Corp/R&D Center, Yongin-si, Gyeonggi-do, Korea
| |
Collapse
|
35
|
Lee CW, Lin ZC, Hu SCS, Chiang YC, Hsu LF, Lin YC, Lee IT, Tsai MH, Fang JY. Urban particulate matter down-regulates filaggrin via COX2 expression/PGE2 production leading to skin barrier dysfunction. Sci Rep 2016; 6:27995. [PMID: 27313009 PMCID: PMC4911555 DOI: 10.1038/srep27995] [Citation(s) in RCA: 114] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2016] [Accepted: 05/23/2016] [Indexed: 01/22/2023] Open
Abstract
We explored the regulation of filaggrin, cyclooxygenase 2 (COX2) and prostaglandin E2 (PGE2) expression induced by urban particulate matter (PM) in human keratinocytes. In addition, we investigated the signaling pathways involved in PM-induced effects on COX2/PGE2 and filaggrin. PMs induced increases in COX2 expression and PGE2 production, and decreased filaggrin expression. These effects were attenuated by pretreatment with COX2 inhibitor and PGE2 receptor antagonist, or after transfection with siRNAs of the aryl hydrocarbon receptor (AhR), gp91phox and p47phox. Furthermore, PM-induced generation of reactive oxygen species (ROS) and NADPH oxidase activity was attenuated by pretreatment with an AhR antagonist (AhRI) or antioxidants. Moreover, Nox-dependent ROS generation led to phosphorylation of ERK1/2, p38, and JNK, which then activated the downstream molecules NF-κB and AP-1, respectively. In vivo studies in PMs-treated mice showed that AhRI and apocynin (a Nox2 inhibitor) had anti-inflammatory effects by decreasing COX2 and increasing filaggrin expression. Our results reveal for the first time that PMs-induced ROS generation is mediated through the AhR/p47 phox/NADPH oxidase pathway, which in turn activates ERK1/2, p38/NF-κB and JNK/AP-1, and which ultimately induces COX2 expression and filaggrin downregulation. Up-regulated expression of COX2 and production of PGE2 may lead to impairment of skin barrier function.
Collapse
Affiliation(s)
- Chiang-Wen Lee
- Department of Nursing, Division of Basic Medical Sciences, Chang Gung University of Science and Technology, Chia-Yi, Taiwan.,Research Center for Industry of Human Ecology, Chang Gung University of Science and Technology, Kweishan, Taoyuan, Taiwan
| | - Zih-Chan Lin
- Research Center for Industry of Human Ecology, Chang Gung University of Science and Technology, Kweishan, Taoyuan, Taiwan.,Pharmaceutics Laboratory, Graduate Institute of Natural Products, Chang Gung University, Kweishan, Taoyuan, Taiwan.,School of Traditional Chinese Medicine, Chang Gung University, Kweishan, Taoyuan, Taiwan
| | - Stephen Chu-Sung Hu
- Department of Dermatology, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan.,Department of Dermatology, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
| | - Yao-Chang Chiang
- Center for Drug Abuse and Addiction, China Medical University Hospital, Taichung, Taiwan.,School of Medicine, College of Medicine, China Medical University, Taichung, Taiwan
| | - Lee-Fen Hsu
- Department of Respiratory Care, Chang Gung University of Science and Technology, Chiayi Campus, Chiayi, Taiwan
| | - Yu-Ching Lin
- Department of Respiratory Care, Chang Gung University of Science and Technology, Chiayi Campus, Chiayi, Taiwan.,Department of Respiratory Care, Chang Gung University, Taoyuan, Taiwan.,Division of Pulmonary and Critical Care Medicine, Chang Gung Memorial Hospital, Chiayi, Taiwan
| | - I-Ta Lee
- School of Medicine, College of Medicine, China Medical University, Taichung, Taiwan
| | - Ming-Horng Tsai
- Department of Pediatrics, Division of Neonatology and Pediatric Hematology/Oncology, Chang Gung Memorial Hospital, Yunlin, Taiwan
| | - Jia-You Fang
- Research Center for Industry of Human Ecology, Chang Gung University of Science and Technology, Kweishan, Taoyuan, Taiwan.,Pharmaceutics Laboratory, Graduate Institute of Natural Products, Chang Gung University, Kweishan, Taoyuan, Taiwan.,Chinese Herbal Medicine Research Team, Healthy Aging Research Center, Chang Gung University, Kweishan, Taoyuan, Taiwan
| |
Collapse
|
36
|
Rezza A, Wang Z, Sennett R, Qiao W, Wang D, Heitman N, Mok KW, Clavel C, Yi R, Zandstra P, Ma'ayan A, Rendl M. Signaling Networks among Stem Cell Precursors, Transit-Amplifying Progenitors, and their Niche in Developing Hair Follicles. Cell Rep 2016; 14:3001-18. [PMID: 27009580 DOI: 10.1016/j.celrep.2016.02.078] [Citation(s) in RCA: 131] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2015] [Revised: 01/20/2016] [Accepted: 02/20/2016] [Indexed: 12/18/2022] Open
Abstract
The hair follicle (HF) is a complex miniorgan that serves as an ideal model system to study stem cell (SC) interactions with the niche during growth and regeneration. Dermal papilla (DP) cells are required for SC activation during the adult hair cycle, but signal exchange between niche and SC precursors/transit-amplifying cell (TAC) progenitors that regulates HF morphogenetic growth is largely unknown. Here we use six transgenic reporters to isolate 14 major skin and HF cell populations. With next-generation RNA sequencing, we characterize their transcriptomes and define unique molecular signatures. SC precursors, TACs, and the DP niche express a plethora of ligands and receptors. Signaling interaction network analysis reveals a bird's-eye view of pathways implicated in epithelial-mesenchymal interactions. Using a systematic tissue-wide approach, this work provides a comprehensive platform, linked to an interactive online database, to identify and further explore the SC/TAC/niche crosstalk regulating HF growth.
Collapse
Affiliation(s)
- Amélie Rezza
- Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Department of Developmental and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Zichen Wang
- Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Department of Pharmacology and Systems Therapeutics, BD2K-LINCS Data Coordination and Integration Center, Knowledge Management Center for Illuminating the Druggable Genome (KMC-IDG), Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Rachel Sennett
- Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Department of Developmental and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Wenlian Qiao
- Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, ON M5S 3G9, Canada
| | - Dongmei Wang
- Department of Molecular, Cellular, and Developmental Biology, University of Colorado, Boulder, CO 80309, USA
| | - Nicholas Heitman
- Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Department of Developmental and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Ka Wai Mok
- Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Department of Developmental and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Carlos Clavel
- Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Department of Developmental and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Rui Yi
- Department of Molecular, Cellular, and Developmental Biology, University of Colorado, Boulder, CO 80309, USA
| | - Peter Zandstra
- Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, ON M5S 3G9, Canada
| | - Avi Ma'ayan
- Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Department of Pharmacology and Systems Therapeutics, BD2K-LINCS Data Coordination and Integration Center, Knowledge Management Center for Illuminating the Druggable Genome (KMC-IDG), Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Michael Rendl
- Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Department of Developmental and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Department of Dermatology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA.
| |
Collapse
|
37
|
Phloretin ameliorates chemokines and ICAM-1 expression via blocking of the NF-κB pathway in the TNF-α-induced HaCaT human keratinocytes. Int Immunopharmacol 2015; 27:32-7. [PMID: 25929446 DOI: 10.1016/j.intimp.2015.04.024] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2015] [Revised: 04/11/2015] [Accepted: 04/13/2015] [Indexed: 11/20/2022]
Abstract
Previous studies found that phloretin had anti-oxidant, anti-inflammatory, and anti-tumor properties. In this study, we investigated whether phloretin could suppress the production of the intercellular adhesion molecule (ICAM)-1 and chemokines through downregulation of the nuclear transcription factor kappa-B (NF-κB) and mitogen-activated protein kinase (MAPK) signaling pathways in TNF-α-stimulated HaCaT human keratinocytes. HaCaT cells were treated with phloretin and then the cells were stimulated by TNF-α. Phloretin treatment decreased the production of IL-6, IL-8, CCL5, MDC, and TARC. Phloretin decreased ICAM-1 protein and mRNA expression, and also suppressed the adhesion of monocyte THP-1 cells to inflammatory HaCaT cells. Phloretin inhibited NF-κB translocation into the nucleus and also suppressed the phosphorylation of Akt and MAPK signal. In addition, phloretin increased heme oxygenase-1 production in a concentration-dependent manner. These results demonstrated that phloretin has anti-inflammatory effects to inhibit chemokines and ICAM-1 expressions through suppression of the NF-κB and MAPK pathways in human keratinocytes.
Collapse
|
38
|
Miyagaki T, Sugaya M. Recent advances in atopic dermatitis and psoriasis: genetic background, barrier function, and therapeutic targets. J Dermatol Sci 2015; 78:89-94. [PMID: 25771165 DOI: 10.1016/j.jdermsci.2015.02.010] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2015] [Revised: 02/16/2015] [Accepted: 02/18/2015] [Indexed: 12/22/2022]
Abstract
Atopic dermatitis (AD) and psoriasis are common inflammatory skin diseases. Although clinical pictures of these two diseases are quite different, they share some common pathological backgrounds such as barrier dysfunction and enhanced IL-22 expression. To explain the clinical differences of the diseases, it has been proposed that Th2/Th22-polarized immune status together with an attenuated Th17 axis may cause insufficient induction of antimicrobial peptides and more severe barrier dysfunction in AD. While skin barrier dysfunction is commonly seen in AD and psoriasis, a Th2-dominant cytokine milieu down-regulates immunity against infections, which are commonly seen in lesional skin of AD. In the era of biologics, increase in the understanding or new discoveries of molecules involved in the development of various diseases will instantly lead to a new therapeutic strategy. In this review, we give an overview of recent advances in AD and psoriasis, especially on genetic background, barrier function, and therapeutic targets.
Collapse
Affiliation(s)
- Tomomitsu Miyagaki
- Department of Dermatology, Faculty of Medicine, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8655, Japan
| | - Makoto Sugaya
- Department of Dermatology, Faculty of Medicine, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8655, Japan.
| |
Collapse
|
39
|
Skin Barrier and Immune Dysregulation in Atopic Dermatitis: An Evolving Story with Important Clinical Implications. THE JOURNAL OF ALLERGY AND CLINICAL IMMUNOLOGY-IN PRACTICE 2014; 2:371-9; quiz 380-1. [DOI: 10.1016/j.jaip.2014.03.006] [Citation(s) in RCA: 124] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2014] [Revised: 03/20/2014] [Accepted: 03/20/2014] [Indexed: 12/21/2022]
|