1
|
Jiang H, Fu X, Zhao G, Du X, Georgesen C, Thiele GM, Goldring SR, Wang D. Intradermal Injection of a Thermoresponsive Polymeric Dexamethasone Prodrug (ProGel-Dex) Ameliorate Dermatitis in an Imiquimod (IMQ)-Induced Psoriasis-like Mouse Model. Mol Pharm 2024; 21:4995-5004. [PMID: 39224912 DOI: 10.1021/acs.molpharmaceut.4c00360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Psoriasis is a chronic immune-mediated inflammatory skin disease, affecting ∼ 3% of the US population. Although multiple new systemic therapies have been introduced for the treatment of psoriatic skin disease, topical and intralesional glucocorticoids (GCs) continue to be used as effective psoriasis therapies. Their clinical utility, however, has been hampered by significant adverse effects, including skin atrophy and pigmentation as well as elevated blood glucose levels and hypertension. To mitigate these limitations, we have developed a N-(2-hydroxypropyl) methacrylamide (HPMA) copolymer-based thermoresponsive dexamethasone (Dex) prodrug (ProGel-Dex) and assessed its therapeutic efficacy and safety in an imiquimod (IMQ)-induced psoriasis-like (PL) mouse model. ProGel-Dex was intradermally administered once at three dosing levels: 0.5, 1.0, and 2.0 mg/kg/day Dex equivalent at the beginning of the study. PL mice were also treated with daily topical saline or Dex, which were used as control groups. Treatment of PL mice with ProGel-Dex dosed at 0.5 mg/kg/day resulted in a significant reduction in scaling and erythema. Improvement in gross pathology scores, skin histological scores, and serum cytokine levels was also observed. Interestingly, for mice treated with ProGel-Dex at 1.0 and 2.0 mg/kg/day Dex equivalent, only improvement in skin erythema was observed. GC-associated side effects, such as elevation of serum alanine aminotransferase (ALT) and amylase levels and body weight loss, were not observed in mice treated with ProGel-Dex at 0.5 and 1.0 mg/kg/day Dex equivalent. Collectively, these results demonstrate the efficacy and improved safety of ProGel-Dex in treating psoriatic skin lesions when compared to topical Dex treatment, supporting its translational potential for clinical management of lesional skin psoriasis.
Collapse
Affiliation(s)
- Haochen Jiang
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Nebraska Medical Center, Omaha, Nebraska 68198, United States
| | - Xin Fu
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Nebraska Medical Center, Omaha, Nebraska 68198, United States
| | - Gang Zhao
- Ensign Pharmaceutical, Inc., Omaha, Nebraska 68106, United States
| | - Xiaoqing Du
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Nebraska Medical Center, Omaha, Nebraska 68198, United States
| | - Corey Georgesen
- Department of Dermatology, College of Medicine, University of Nebraska Medical Center, Omaha, Nebraska 68198, United States
| | - Geoffrey M Thiele
- Division of Rheumatology and Immunology, Department of Internal Medicine, College of Medicine, University of Nebraska Medical Center, Omaha, Nebraska 68198, United States
- Veterans Affairs (VA) Nebraska-Western Iowa Health Care System, Omaha, Nebraska 68105, United States
| | - Steven R Goldring
- Ensign Pharmaceutical, Inc., Omaha, Nebraska 68106, United States
- Hospital for Special Surgery, New York, New York 10021, United States
| | - Dong Wang
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Nebraska Medical Center, Omaha, Nebraska 68198, United States
| |
Collapse
|
2
|
Rasool M, Srikanth M, Rithvik A. 3,3'-Diindolylmethane inhibits Th17 cell differentiation via impairing IRF-7-mediated plasmacytoid dendritic cell activation in imiquimod-induced psoriasis mice. In Vitro Cell Dev Biol Anim 2024; 60:678-688. [PMID: 38602626 DOI: 10.1007/s11626-024-00901-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Accepted: 03/07/2024] [Indexed: 04/12/2024]
Abstract
Psoriasis is a paradigmatic condition characterised by a heightened autoimmune response and chronic inflammation. However, the exact nature and the pathological causes behind it are still unknown. Growing evidence suggest dysregulated cytokine network as a result of over-activated T cells and plasmacytoid dendritic cells (pDCs) as the critical drivers in the development of psoriasis. In the present study, we aimed to investigate the therapeutic efficacy of 3,3'-diindolylmethane (DIM) on pDC activation and Th17 cell development in imiquimod (IMQ)-induced psoriasis mice. Our in vitro research investigated the IRF-7 signalling in pDCs that explained the reduced expression of the transcription factor IRF-7 responsible for pDC activation as a result of DIM treatment. Concurrently, DIM treatment decreased the release of Th17 cell polarising cytokines (IFN-α, IL-23, and IL-6) by pDCs which validated a reduction in differentiated pathogenic Th17 cell population and associated cytokine IL-17A in IMQ-induced psoriatic mice. Thus, our recent findings provide therapeutic evidence in targeting the early potential contributors for psoriasis treatment by preventing IRF-7-mediated pDC activation and Th17 cell development in IMQ-induced psoriasis mice.
Collapse
Affiliation(s)
- Mahaboobkhan Rasool
- SMV 240, Immunopathology Lab, School of Biosciences and Technology, Vellore Institute of Technology (VIT), Vellore, 632 014, Tamil Nadu, India.
| | - Manupati Srikanth
- SMV 240, Immunopathology Lab, School of Biosciences and Technology, Vellore Institute of Technology (VIT), Vellore, 632 014, Tamil Nadu, India
| | - Arulkumaran Rithvik
- SMV 240, Immunopathology Lab, School of Biosciences and Technology, Vellore Institute of Technology (VIT), Vellore, 632 014, Tamil Nadu, India
| |
Collapse
|
3
|
Petcharat K, Munkong N, Thongboontho R, Chartarrayawadee W, Thim-Uam A. Synergistic Effects of Azithromycin and STING Agonist Promote IFN-I Production by Enhancing the Activation of STING-TBK1 Signaling. J Exp Pharmacol 2023; 15:407-421. [PMID: 37933302 PMCID: PMC10625772 DOI: 10.2147/jep.s433181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Accepted: 10/28/2023] [Indexed: 11/08/2023] Open
Abstract
Background Azithromycin (AZM) is a macrolide antibiotic that exhibits anti-inflammatory and anti-viral infection properties by enhancing type-I interferon (IFN-I) responses. The stimulator of interferon genes (STING) can directly induce IFN-I production. However, elevated IFN-I induces auto-immune phenotypes such as systemic lupus erythematosus (SLE). The effects of AZM and STING on the production of IFN-I are unclear. Objective Therefore, this study aims to evaluate the role of AZM and STING on IFN-I responses in macrophages. Methods RAW 264.7 macrophages were treated with AZM with and without a STING-agonist (DMXAA), and the maturation of macrophages was determined using flow cytometry. Gene expression and pro-inflammatory cytokines were analyzed using qPCR and ELISA, respectively. Moreover, protein expression was investigated using Western blot assays and immunofluorescence. Results Our results show that AZM significantly induced M1 phenotypes, promoting surface molecule expansion of CD80 and MHC-II and production of IL-6 and TNF-α cytokines on DMXAA-stimulated macrophages. Furthermore, we found that AZM-increased mRNA levels of interferon-stimulated genes (ISGs) could be due to the high expression of STNG-TBK1 signaling in the presence of DMXAA. Conclusion Our data suggest that AZM enhancement of IFN-I responses was STING dependent in DMXAA-stimulated macrophages. These data underline a novel approach to AZM action-mediated STING-TBK1 signaling for regulating IFN-I responses and may further augment the scientific basis and potential use of AZM in clinical applications.
Collapse
Affiliation(s)
- Kanoktip Petcharat
- Division of Biochemistry, School of Medical Sciences, University of Phayao, Phayao, 56000, Thailand
| | - Narongsuk Munkong
- Department of Pathology, School of Medicine, University of Phayao, Phayao, 56000, Thailand
| | - Rungthip Thongboontho
- Division of Biochemistry, School of Medical Sciences, University of Phayao, Phayao, 56000, Thailand
| | | | - Arthid Thim-Uam
- Division of Biochemistry, School of Medical Sciences, University of Phayao, Phayao, 56000, Thailand
| |
Collapse
|
4
|
Sawa T, Endo K, Nakashima A, Tanaka Y, Makabe H, Tanaka S. Procyanidin B2 3,3''-di-O-gallate ameliorates imiquimod-induced skin inflammation by suppressing TLR7 signaling through the inhibition of endosomal acidification in dendritic cells. Int Immunopharmacol 2023; 121:110444. [PMID: 37295030 DOI: 10.1016/j.intimp.2023.110444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 05/29/2023] [Accepted: 06/01/2023] [Indexed: 06/11/2023]
Abstract
The excessive activation of abnormal T helper 17 (Th17) cells and dendritic cells (DCs) in the dermis and epidermis causes severe inflammation of the skin. Toll-like receptor 7 (TLR7)-located in the endosomes of DCs-recognizes nucleic acids from pathogens as well as imiquimod (IMQ), which plays a crucial role in the pathogenesis of skin inflammation. Procyanidin B2 3,3''-di-O-gallate (PCB2DG), a polyphenol, has been reported to suppress the excessive production of proinflammatory cytokines from T cells. The aim of this study was to demonstrate the inhibitory effect of PCB2DG on skin inflammation and TLR7 signaling in DCs. In vivo studies showed that the clinical symptoms of dermatitis were markedly improved by the oral administration of PCB2DG in mouse dermatitis model caused by IMQ application, accompanied by the suppression of excessive cytokine secretion in the inflamed skin and spleen. In vitro, PCB2DG significantly decreased cytokine production in TLR7- or TLR9 ligand-stimulated bone marrow-derived dendritic cells (BMDCs), suggesting that PCB2DG suppresses endosomal toll-like receptors (TLR) signaling in DCs. The activity of endosomal TLRs depends on endosomal acidification, which was significantly inhibited by PCB2DG in BMDCs. The addition of cAMP, an accelerator of endosomal acidification, abrogated the inhibitory effect of cytokine production by PCB2DG. These results provide a new insight into developing functional foods, including PCB2DG, to improve the symptoms of skin inflammation through the suppression of TLR7 signaling in DCs.
Collapse
Affiliation(s)
- Toko Sawa
- Division of Food Science and Biotechnology, Department of Agriculture, Graduate School of Science and Technology, Shinshu University, Minami-minowa, Kami-ina, Nagano 399-4598, Japan
| | - Katsunori Endo
- Division of Food Science and Biotechnology, Department of Science and Technology Agriculture, Graduate School of Medicine, Science and Technology, Shinshu University, Minami-minowa, Kami-ina, Nagano 399-4598, Japan
| | - Akane Nakashima
- Department of Agricultural and Life Science, Faculty of Agriculture, Shinshu University, Minami-minowa, Kami-ina, Nagano 399-4598, Japan
| | - Yuna Tanaka
- Division of Food Science and Biotechnology, Department of Agriculture, Graduate School of Science and Technology, Shinshu University, Minami-minowa, Kami-ina, Nagano 399-4598, Japan
| | - Hidefumi Makabe
- Division of Food Science and Biotechnology, Department of Agriculture, Graduate School of Science and Technology, Shinshu University, Minami-minowa, Kami-ina, Nagano 399-4598, Japan; Division of Food Science and Biotechnology, Department of Science and Technology Agriculture, Graduate School of Medicine, Science and Technology, Shinshu University, Minami-minowa, Kami-ina, Nagano 399-4598, Japan; Department of Agricultural and Life Science, Faculty of Agriculture, Shinshu University, Minami-minowa, Kami-ina, Nagano 399-4598, Japan; Division of Innovative Biomolecular Science, Interdisciplinary Cluster for Cutting Edge, Institute for Biomedical Sciences, Shinshu University, 8304 Minami-minowa Kami-ina, Nagano 399-4598, Japan
| | - Sachi Tanaka
- Division of Food Science and Biotechnology, Department of Agriculture, Graduate School of Science and Technology, Shinshu University, Minami-minowa, Kami-ina, Nagano 399-4598, Japan; Division of Food Science and Biotechnology, Department of Science and Technology Agriculture, Graduate School of Medicine, Science and Technology, Shinshu University, Minami-minowa, Kami-ina, Nagano 399-4598, Japan; Department of Agricultural and Life Science, Faculty of Agriculture, Shinshu University, Minami-minowa, Kami-ina, Nagano 399-4598, Japan.
| |
Collapse
|
5
|
Parnham MJ, Norris V, Kricker JA, Gudjonsson T, Page CP. Prospects for macrolide therapy of asthma and COPD. ADVANCES IN PHARMACOLOGY (SAN DIEGO, CALIF.) 2023; 98:83-110. [PMID: 37524493 DOI: 10.1016/bs.apha.2023.03.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/03/2023]
Abstract
Macrolide compounds, many of which are derived from natural sources, all share a lactone ring structure, but of varying sizes. Their biological activities differ with structure and size but tend to overlap. Marketed macrolide drugs include immunosuppressives and antibiotics. Some of the latter have been shown to exert anti-inflammatory activities, due to direct effects on inflammatory cells and processes when used for respiratory infections. Consequently, azithromycin is included in clinical guidelines for COPD and asthma treatment, though it has the disadvantage, as an antibiotic, of increasing bacterial resistance. COPD and asthma, however, like several chronic inflammatory diseases involving other organs, are driven to a large extent by epithelial barrier dysfunction. Recently, azithromycin was shown to directly enhance epithelial barrier function and a new class of derivatives, barriolides, is under development with the lead indication COPD. It is thus likely that by circumventing antibiosis and acting on a crucial etiological disease process, this type of agent will open up a new, safer approach to COPD and asthma therapy with macrolides.
Collapse
Affiliation(s)
- Michael J Parnham
- EpiEndo Pharmaceuticals ehf, Reykjavik, Iceland; Faculty of Biochemistry, Chemistry and Pharmacy, JW Goethe University Frankfurt am Main, Germany.
| | | | - Jennifer A Kricker
- EpiEndo Pharmaceuticals ehf, Reykjavik, Iceland; Stem Cell Research Unit, Biomedical Center, University of Iceland, Reykjavik, Iceland
| | - Thorarinn Gudjonsson
- EpiEndo Pharmaceuticals ehf, Reykjavik, Iceland; Stem Cell Research Unit, Biomedical Center, University of Iceland, Reykjavik, Iceland; Department of Laboratory Hematology, Landspitali-University Hospital, Reykjavik, Iceland
| | - Clive P Page
- EpiEndo Pharmaceuticals ehf, Reykjavik, Iceland; Sackler Institute of Pulmonary Pharmacology, Institute of Pharmaceutical Science, King's College London, London, United Kingdom
| |
Collapse
|
6
|
Fan XL, Song Y, Qin DX, Lin PY. Regulatory Effects of Clock and Bmal1 on Circadian Rhythmic TLR Expression. Int Rev Immunol 2023; 42:101-112. [PMID: 34544330 DOI: 10.1080/08830185.2021.1931170] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Circadian locomotor output cycles kaput (Clock) and brain and muscle ARNT-like 1 (Bmal1) are two core circadian clock genes. They form a heterodimer that can bind to the E-box element in the promoters of Period circadian protein (Per) and Cryptochrome (Cry) genes, thereby inducing the rhythmic expression of circadian clock control genes. Toll-like receptors (TLRs) are type I transmembrane proteins belonging to the pattern recognition receptor (PRR) family. They can recognize a variety of pathogens and play an important role in innate immunity and adaptive immune responses. Recent studies have found that the circadian clock is closely associated with the immune system. TLRs have a certain correlation with the circadian rhythms; Bmal1 seems to be the central mediator connecting the circadian clock and the immune system. Research on Bmal1 and TLRs has made some progress, but the specific relationship between TLRs and Bmal1 remains unclear. Understanding the relationship between TLRs and Clock/Bmal1 genes is increasingly important for basic research and clinical treatment.
Collapse
Affiliation(s)
- Xu-Li Fan
- Department of Pharmacology, Zhejiang University of Technology, Hangzhou, Zhejiang, P.R. China
| | - Ying Song
- Department of Pharmacology, Zhejiang University of Technology, Hangzhou, Zhejiang, P.R. China
| | - Dong-Xu Qin
- Department of Pharmacology, Zhejiang University of Technology, Hangzhou, Zhejiang, P.R. China
| | - Pei-Yao Lin
- Department of Pharmacology, Zhejiang University of Technology, Hangzhou, Zhejiang, P.R. China
| |
Collapse
|
7
|
Host resistance to Mycoplasma gallisepticum infection is enhanced by inhibiting PI3K/Akt pathway in Andrographolide-treating chickens. Int Immunopharmacol 2022; 113:109419. [DOI: 10.1016/j.intimp.2022.109419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 10/12/2022] [Accepted: 10/31/2022] [Indexed: 11/11/2022]
|
8
|
LeBlanc G, Kreissl F, Melamed J, Sobel AL, Constantinides MG. The role of unconventional T cells in maintaining tissue homeostasis. Semin Immunol 2022; 61-64:101656. [PMID: 36306662 PMCID: PMC9828956 DOI: 10.1016/j.smim.2022.101656] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/03/2022] [Revised: 09/01/2022] [Accepted: 09/21/2022] [Indexed: 01/12/2023]
Affiliation(s)
- Gabrielle LeBlanc
- Department of Immunology & Microbiology, Scripps Research, La Jolla, CA 92037, USA,These authors contributed equally
| | - Felix Kreissl
- Department of Immunology & Microbiology, Scripps Research, La Jolla, CA 92037, USA,These authors contributed equally
| | - Jonathan Melamed
- Department of Immunology & Microbiology, Scripps Research, La Jolla, CA 92037, USA,These authors contributed equally
| | - Adam L. Sobel
- Department of Immunology & Microbiology, Scripps Research, La Jolla, CA 92037, USA,These authors contributed equally
| | | |
Collapse
|
9
|
Effects of splenectomy on skin inflammation and psoriasis-like phenotype of imiquimod-treated mice. Sci Rep 2022; 12:14738. [PMID: 36042262 PMCID: PMC9427736 DOI: 10.1038/s41598-022-18900-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Accepted: 08/22/2022] [Indexed: 02/08/2023] Open
Abstract
Imiquimod (IMQ) is widely used as animal model of psoriasis, a chronic inflammatory skin disorder. Although topical application of IMQ to back skin causes splenomegaly in mice, how the spleen affects the psoriasis-like phenotype of IMQ-treated mice remains unclear. In this study, we analyzed the cellular composition of spleen and measured metabolites in blood of IMQ-treated mice. We also investigated whether splenectomy influences the degree of skin inflammation and pathology in IMQ-treated mice. Flow cytometry showed that the numbers of CD11b+Ly6c+ neutrophils, Ter119+ proerythroblasts, B220+ B cells, F4/80+ macrophages, and CD11c+ dendritic cells in the spleen were significantly higher in IMQ-treated mice compared to control mice. An untargeted metabolomics analysis of blood identified 14 metabolites, including taurine and 2,6-dihydroxybenzoic acid, whose levels distinguished the two groups. The composition of cells in the spleen and blood metabolites positively correlated with the weight of the spleen. However, splenectomy did not affect IMQ-induced psoriasis-like phenotypes compared with sham-operated mice, although splenectomy increased the expression of interleukin-17A mRNA in the skin of IMQ-treated mice. These data suggest that the spleen does not play a direct role in the development of psoriasis-like phenotype on skin of IMQ-treated mice, though IMQ causes splenomegaly.
Collapse
|
10
|
Azithromycin through the Lens of the COVID-19 Treatment. Antibiotics (Basel) 2022; 11:antibiotics11081063. [PMID: 36009932 PMCID: PMC9404997 DOI: 10.3390/antibiotics11081063] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 07/29/2022] [Accepted: 08/01/2022] [Indexed: 12/02/2022] Open
Abstract
Azithromycin has become famous in the last two years, not for its main antimicrobial effect, but for its potential use as a therapeutic agent for COVID-19 infection. Initially, there were some promising results that supported its use, but it has become clear that scientific results are insufficient to support such a positive assessment. In this review we will present all the literature data concerning the activity of azithromycin as an antimicrobial, an anti-inflammatory, or an antivirus agent. Our aim is to conclude whether its selection should remain as a valuable antivirus agent or if its use simply has an indirect therapeutic contribution due to its antimicrobial and/or immunomodulatory activity, and therefore, if its further use for COVID-19 treatment should be interrupted. This halt will prevent further antibiotic resistance expansion and will keep azithromycin as a valuable anti-infective therapeutic agent.
Collapse
|
11
|
Venditto VJ, Feola DJ. Delivering macrolide antibiotics to heal a broken heart - And other inflammatory conditions. Adv Drug Deliv Rev 2022; 184:114252. [PMID: 35367307 PMCID: PMC9063468 DOI: 10.1016/j.addr.2022.114252] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 03/07/2022] [Accepted: 03/28/2022] [Indexed: 12/17/2022]
Abstract
Drug carriers to deliver macrolide antibiotics, such as azithromycin, show promise as antibacterial agents. Macrolide drug carriers have largely focused on improving the drug stability and pharmacokinetics, while reducing adverse reactions and improving antibacterial activity. Recently, macrolides have shown promise in treating inflammatory conditions by promoting a reparative effect and limiting detrimental pro-inflammatory responses, which shifts the immunologic setpoint from suppression to balance. While macrolide drug carriers have only recently been investigated for their ability to modulate immune responses, the previous strategies that deliver macrolides for antibacterial therapy provide a roadmap for repurposing the macrolide drug carriers for therapeutic interventions targeting inflammatory conditions. This review describes the antibacterial and immunomodulatory activity of macrolides, while assessing the past in vivo evaluation of drug carriers used to deliver macrolides with the intention of presenting a case for increased effort to translate macrolide drug carriers into the clinic.
Collapse
|
12
|
Yang D, Guo Y, Wu J, Qin J, Wu J, Lu Y, Xiao Y, Zhang X, Ye J. Chinese herbal medicine Jia Wei Jing Xie Yin (JWJXY) ameliorates psoriasis via suppressing the Th17 cell response. ANNALS OF TRANSLATIONAL MEDICINE 2022; 10:332. [PMID: 35434023 PMCID: PMC9011239 DOI: 10.21037/atm-22-967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Accepted: 03/16/2022] [Indexed: 11/06/2022]
Abstract
Background Psoriasis is a chronic autoimmune disease. At present, it is very difficult to treat; however, clinical trials have shown that the traditional Chinese medicine (TCM) treatment of psoriasis has certain advantages. The Chinese herbal medicine Jia Wei Jing Xie Yin (JWJXY) has its origins in Jing Xie Yin, a medicine created by the TCM doctor Wu Jun. Previous studies have shown that JWJXY has good clinical efficacy for patients with blood-heat type psoriasis, but its mechanism is unknown. Methods This paper aimed to further study the therapeutic effect and mechanism of JWJXY on an imiquimod (IMQ)-induced, psoriasis-like mouse model (0.4 mL, i.g., 6 days). The histopathological skin changes were observed by hematoxylin and eosin (HE) staining, the infiltration of cluster of differentiation 11B (CD11b) and cluster of differentiation 4 (CD4) cells was observed by immunohistochemistry, lymphocyte subsets were detected by flow cytometry, T helper (Th)17 cell expression was perceived by flow cytometry, and Th17 cell-related gene expression was detected by real-time quantitative polymerase chain reaction (qPCR). Results JWJXY significantly reduced the skin thickness of the IMQ-induced model mouse. Compared with that in the vehicle group, the skin tissue of the mice in the JWJXY group showed significantly reduced infiltration of CD11b+ and CD4+ T cells. Flow cytometry results showed that JWJXY decreased the proportion of B220 and Th17 cells in the spleen tissue of the mice. There was no significant effect on the proportion of Th1 or regulatory T cells (Treg) cells. Compared with that in the vehicle group, the skin tissue of the mice in the JWJXY group showed significantly decreased expression of interleukin-17A (IL-17A), IL-17F, retinoic acid receptor-related orphan receptor gamma t (RORγt), IL-1β, interferon gamma (IFN-γ), and tumor necrosis factor alpha (TNF-α) messenger RNA (mRNA). Conclusions The study confirmed the therapeutic effect of JWJXY on psoriasis. Its mechanism of action might be to inhibit the Th17 cell response but not the Th1 and Treg response.
Collapse
Affiliation(s)
- Dengke Yang
- The First Clinical Medical College, Nanjing University of Traditional Chinese Medicine, Nanjing, China.,Department of Dermatology, Kunming Hospital of Traditional Chinese Medicine, Kunming, China
| | - Yiyu Guo
- The First Clinical Medical College, Nanjing University of Traditional Chinese Medicine, Nanjing, China.,Department of Dermatology, Kunming Hospital of Traditional Chinese Medicine, Kunming, China
| | - Jun Wu
- Clinical Medical College, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Jianping Qin
- Department of Dermatology, Kunming Hospital of Traditional Chinese Medicine, Kunming, China
| | - Jie Wu
- Department of Dermatology, Kunming Hospital of Traditional Chinese Medicine, Kunming, China
| | - Yu Lu
- Department of Dermatology, Kunming Hospital of Traditional Chinese Medicine, Kunming, China
| | - Yan Xiao
- Department of Dermatology, Kunming Hospital of Traditional Chinese Medicine, Kunming, China
| | - Xiaolin Zhang
- Department of Dermatology, Kunming Hospital of Traditional Chinese Medicine, Kunming, China
| | - Jianzhou Ye
- The First Clinical Medical College, Nanjing University of Traditional Chinese Medicine, Nanjing, China.,Department of Dermatology, Yunnan Provincial Hospital of Traditional Chinese Medicine, Kunming, China
| |
Collapse
|
13
|
Li X, Sun X, Guo X, Li X, Peng S, Mu X. Chemical reagents modulate nucleic acid-activated toll-like receptors. Biomed Pharmacother 2022; 147:112622. [PMID: 35008000 DOI: 10.1016/j.biopha.2022.112622] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 01/04/2022] [Accepted: 01/05/2022] [Indexed: 02/08/2023] Open
Abstract
Nucleic acid-mediated interferon signaling plays a pivotal role in defense against microorganisms, especially during viral infection. Receptors sensing exogenous nucleic acid molecules are localized in the cytosol and endosomes. Cytosolic sensors, including cGAS, RIG-I, and MDA5, and endosome-anchored receptors are toll-like receptors (TLR3, TLR7, TLR8, and TLR9). These TLRs share the same domain architecture and have similar structures, facing the interior of endosomes so their binding to nucleic acids of invading pathogens via endocytosis is possible. The correct function of these receptors is crucial for cell homeostasis and effective response against pathogen invasion. A variety of endogenous mechanisms modulates their activities. Nevertheless, naturally occurring mutations lead to aberrant TLR-mediated interferon (IFN) signaling. Furthermore, certain pathogens require a more robust defense against control. Thus, manipulating these TLR activities has a profound impact. High-throughput virtual screening followed by experimental validation led to the discovery of numerous chemicals that can change these TLR-mediated IFN signaling activities. Many of them are unique in selectivity, while others regulate more than one TLR due to commonalities in these receptors. We summarized these nucleic acid-sensing TLR-mediated IFN signaling pathways and the corresponding chemicals activating or deactivating their signaling.
Collapse
Affiliation(s)
- Xiao Li
- School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, China; Tianjin University and Health-Biotech United Group Joint Laboratory of Innovative Drug Development and Translational Medicine, Tianjin University, Tianjin 300072, China
| | - Xinyuan Sun
- School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, China; Tianjin University and Health-Biotech United Group Joint Laboratory of Innovative Drug Development and Translational Medicine, Tianjin University, Tianjin 300072, China
| | - Xuemin Guo
- Meizhou People's Hospital, Meizhou 514031, China; Guangdong Provincial Key Laboratory of Precision Medicine and Clinical Translation Research of Hakka Population, Meizhou 514031, China
| | - Xueren Li
- Department of Respiratory Medicine, Haihe Clinical College of Tianjin Medical University, Tianjin 300350, China
| | - Shouchun Peng
- Department of Respiratory Medicine, Haihe Clinical College of Tianjin Medical University, Tianjin 300350, China.
| | - Xin Mu
- School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, China; Tianjin University and Health-Biotech United Group Joint Laboratory of Innovative Drug Development and Translational Medicine, Tianjin University, Tianjin 300072, China.
| |
Collapse
|
14
|
Kricker JA, Page CP, Gardarsson FR, Baldursson O, Gudjonsson T, Parnham MJ. Nonantimicrobial Actions of Macrolides: Overview and Perspectives for Future Development. Pharmacol Rev 2021; 73:233-262. [PMID: 34716226 DOI: 10.1124/pharmrev.121.000300] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Macrolides are among the most widely prescribed broad spectrum antibacterials, particularly for respiratory infections. It is now recognized that these drugs, in particular azithromycin, also exert time-dependent immunomodulatory actions that contribute to their therapeutic benefit in both infectious and other chronic inflammatory diseases. Their increased chronic use in airway inflammation and, more recently, of azithromycin in COVID-19, however, has led to a rise in bacterial resistance. An additional crucial aspect of chronic airway inflammation, such as chronic obstructive pulmonary disease, as well as other inflammatory disorders, is the loss of epithelial barrier protection against pathogens and pollutants. In recent years, azithromycin has been shown with time to enhance the barrier properties of airway epithelial cells, an action that makes an important contribution to its therapeutic efficacy. In this article, we review the background and evidence for various immunomodulatory and time-dependent actions of macrolides on inflammatory processes and on the epithelium and highlight novel nonantibacterial macrolides that are being studied for immunomodulatory and barrier-strengthening properties to circumvent the risk of bacterial resistance that occurs with macrolide antibacterials. We also briefly review the clinical effects of macrolides in respiratory and other inflammatory diseases associated with epithelial injury and propose that the beneficial epithelial effects of nonantibacterial azithromycin derivatives in chronic inflammation, even given prophylactically, are likely to gain increasing attention in the future. SIGNIFICANCE STATEMENT: Based on its immunomodulatory properties and ability to enhance the protective role of the lung epithelium against pathogens, azithromycin has proven superior to other macrolides in treating chronic respiratory inflammation. A nonantibiotic azithromycin derivative is likely to offer prophylactic benefits against inflammation and epithelial damage of differing causes while preserving the use of macrolides as antibiotics.
Collapse
Affiliation(s)
- Jennifer A Kricker
- EpiEndo Pharmaceuticals, Reykjavik, Iceland (J.A.K., C.P.P., F.R.G., O.B., T.G., M.J.P.); Stem Cell Research Unit, Biomedical Center, University of Iceland, Reykjavik, Iceland (J.A.K., T.G.); Sackler Institute of Pulmonary Pharmacology, Institute of Pharmaceutical Science, King's College London, London, United Kingdom (C.P.P.); Department of Respiratory Medicine (O.B.), Department of Laboratory Hematology (T.G.), Landspitali-University Hospital, Reykjavik, Iceland; Faculty of Biochemistry, Chemistry and Pharmacy, JW Goethe University Frankfurt am Main, Germany (M.J.P.)
| | - Clive P Page
- EpiEndo Pharmaceuticals, Reykjavik, Iceland (J.A.K., C.P.P., F.R.G., O.B., T.G., M.J.P.); Stem Cell Research Unit, Biomedical Center, University of Iceland, Reykjavik, Iceland (J.A.K., T.G.); Sackler Institute of Pulmonary Pharmacology, Institute of Pharmaceutical Science, King's College London, London, United Kingdom (C.P.P.); Department of Respiratory Medicine (O.B.), Department of Laboratory Hematology (T.G.), Landspitali-University Hospital, Reykjavik, Iceland; Faculty of Biochemistry, Chemistry and Pharmacy, JW Goethe University Frankfurt am Main, Germany (M.J.P.)
| | - Fridrik Runar Gardarsson
- EpiEndo Pharmaceuticals, Reykjavik, Iceland (J.A.K., C.P.P., F.R.G., O.B., T.G., M.J.P.); Stem Cell Research Unit, Biomedical Center, University of Iceland, Reykjavik, Iceland (J.A.K., T.G.); Sackler Institute of Pulmonary Pharmacology, Institute of Pharmaceutical Science, King's College London, London, United Kingdom (C.P.P.); Department of Respiratory Medicine (O.B.), Department of Laboratory Hematology (T.G.), Landspitali-University Hospital, Reykjavik, Iceland; Faculty of Biochemistry, Chemistry and Pharmacy, JW Goethe University Frankfurt am Main, Germany (M.J.P.)
| | - Olafur Baldursson
- EpiEndo Pharmaceuticals, Reykjavik, Iceland (J.A.K., C.P.P., F.R.G., O.B., T.G., M.J.P.); Stem Cell Research Unit, Biomedical Center, University of Iceland, Reykjavik, Iceland (J.A.K., T.G.); Sackler Institute of Pulmonary Pharmacology, Institute of Pharmaceutical Science, King's College London, London, United Kingdom (C.P.P.); Department of Respiratory Medicine (O.B.), Department of Laboratory Hematology (T.G.), Landspitali-University Hospital, Reykjavik, Iceland; Faculty of Biochemistry, Chemistry and Pharmacy, JW Goethe University Frankfurt am Main, Germany (M.J.P.)
| | - Thorarinn Gudjonsson
- EpiEndo Pharmaceuticals, Reykjavik, Iceland (J.A.K., C.P.P., F.R.G., O.B., T.G., M.J.P.); Stem Cell Research Unit, Biomedical Center, University of Iceland, Reykjavik, Iceland (J.A.K., T.G.); Sackler Institute of Pulmonary Pharmacology, Institute of Pharmaceutical Science, King's College London, London, United Kingdom (C.P.P.); Department of Respiratory Medicine (O.B.), Department of Laboratory Hematology (T.G.), Landspitali-University Hospital, Reykjavik, Iceland; Faculty of Biochemistry, Chemistry and Pharmacy, JW Goethe University Frankfurt am Main, Germany (M.J.P.)
| | - Michael J Parnham
- EpiEndo Pharmaceuticals, Reykjavik, Iceland (J.A.K., C.P.P., F.R.G., O.B., T.G., M.J.P.); Stem Cell Research Unit, Biomedical Center, University of Iceland, Reykjavik, Iceland (J.A.K., T.G.); Sackler Institute of Pulmonary Pharmacology, Institute of Pharmaceutical Science, King's College London, London, United Kingdom (C.P.P.); Department of Respiratory Medicine (O.B.), Department of Laboratory Hematology (T.G.), Landspitali-University Hospital, Reykjavik, Iceland; Faculty of Biochemistry, Chemistry and Pharmacy, JW Goethe University Frankfurt am Main, Germany (M.J.P.)
| |
Collapse
|
15
|
Brandum EP, Jørgensen AS, Rosenkilde MM, Hjortø GM. Dendritic Cells and CCR7 Expression: An Important Factor for Autoimmune Diseases, Chronic Inflammation, and Cancer. Int J Mol Sci 2021; 22:ijms22158340. [PMID: 34361107 PMCID: PMC8348795 DOI: 10.3390/ijms22158340] [Citation(s) in RCA: 61] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2021] [Revised: 07/28/2021] [Accepted: 07/30/2021] [Indexed: 12/21/2022] Open
Abstract
Chemotactic cytokines-chemokines-control immune cell migration in the process of initiation and resolution of inflammatory conditions as part of the body's defense system. Many chemokines also participate in pathological processes leading up to and exacerbating the inflammatory state characterizing chronic inflammatory diseases. In this review, we discuss the role of dendritic cells (DCs) and the central chemokine receptor CCR7 in the initiation and sustainment of selected chronic inflammatory diseases: multiple sclerosis (MS), rheumatoid arthritis (RA), and psoriasis. We revisit the binary role that CCR7 plays in combatting and progressing cancer, and we discuss how CCR7 and DCs can be harnessed for the treatment of cancer. To provide the necessary background, we review the differential roles of the natural ligands of CCR7, CCL19, and CCL21 and how they direct the mobilization of activated DCs to lymphoid organs and control the formation of associated lymphoid tissues (ALTs). We provide an overview of DC subsets and, briefly, elaborate on the different T-cell effector types generated upon DC-T cell priming. In the conclusion, we promote CCR7 as a possible target of future drugs with an antagonistic effect to reduce inflammation in chronic inflammatory diseases and an agonistic effect for boosting the reactivation of the immune system against cancer in cell-based and/or immune checkpoint inhibitor (ICI)-based anti-cancer therapy.
Collapse
|
16
|
Kumar V. Going, Toll-like receptors in skin inflammation and inflammatory diseases. EXCLI JOURNAL 2021; 20:52-79. [PMID: 33510592 PMCID: PMC7838829 DOI: 10.17179/excli2020-3114] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/01/2020] [Accepted: 01/04/2021] [Indexed: 02/06/2023]
Abstract
The Indian Ayurvedic physicians knew the concept of inflammation dating back to 1500 BC. The continuous progress in the immunology of inflammation has explained its undiscovered mechanisms. For example, the discovery of Toll-like receptor 4 (TLR4) in humans (1997) has revolutionized the field of infection biology and innate immunity. The laboratory mice have shown twelve TLRs and express TLR10 (CD290) as a disrupted pseudogene, and humans have ten functional TLRs. Now, it is well established that TLRs play a significant role in different infectious and inflammatory diseases. Skin inflammation and other associated inflammatory diseases, including atopic dermatitis (AD), acne vulgaris, and psoriasis, along with many skin cancers are major health problems all over the world. The continuous development in the immunopathogenesis of inflammatory skin diseases has opened the window of opportunity for TLRs in studying their role. Hence, the manuscript explores the role of different TLRs in the pathogenesis of skin inflammation and associated inflammatory diseases. The article starts with the concept of inflammation, its origin, and the impact of TLRs discovery on infection and inflammation biology. The subsequent section describes the burden of skin-associated inflammatory diseases worldwide and the effect of the geographical habitat of people affecting it. The third section explains skin as an immune organ and explains the expression of different TLRs on different skin cells, including keratinocytes, Langerhans cells (LCs), skin fibroblasts, and melanocytes. The fourth section describes the impact of TLRs on these cells in different skin-inflammatory conditions, including acne vulgaris, AD, psoriasis, and skin cancers. The article also discusses the use of different TLR-based therapeutic approaches as specific to these inflammatory skin diseases.
Collapse
Affiliation(s)
- Vijay Kumar
- Children Health Clinical Unit, Faculty of Medicine and Biomedical Sciences, Mater Research, University of Queensland, ST Lucia, Brisbane, Queensland 4078, Australia
- School of Biomedical Sciences, Faculty of Medicine, University of Queensland, ST Lucia, Brisbane, Queensland 4078, Australia
| |
Collapse
|
17
|
Lin CY, Hsieh YT, Chan LY, Yang TY, Maeda T, Chang TM, Huang HC. Dictamnine delivered by PLGA nanocarriers ameliorated inflammation in an oxazolone-induced dermatitis mouse model. J Control Release 2021; 329:731-742. [DOI: 10.1016/j.jconrel.2020.10.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Revised: 09/10/2020] [Accepted: 10/03/2020] [Indexed: 01/13/2023]
|
18
|
Zhou W, Hu M, Zang X, Liu Q, Du J, Hu J, Zhang L, Du Z, Xiang Z. Luteolin attenuates imiquimod–induced psoriasis-like skin lesions in BALB/c mice via suppression of inflammation response. Biomed Pharmacother 2020; 131:110696. [DOI: 10.1016/j.biopha.2020.110696] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 08/25/2020] [Accepted: 08/26/2020] [Indexed: 12/14/2022] Open
|
19
|
Reijnders TDY, Saris A, Schultz MJ, van der Poll T. Immunomodulation by macrolides: therapeutic potential for critical care. THE LANCET RESPIRATORY MEDICINE 2020; 8:619-630. [PMID: 32526189 DOI: 10.1016/s2213-2600(20)30080-1] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Revised: 02/05/2020] [Accepted: 02/13/2020] [Indexed: 12/17/2022]
Abstract
Critical illness is associated with immune dysregulation, characterised by concurrent hyperinflammation and immune suppression. Hyperinflammation can result in collateral tissue damage and organ failure, whereas immune suppression has been implicated in susceptibility to secondary infections and reactivation of latent viruses. Macrolides are a class of bacteriostatic antibiotics that are used in the intensive care unit to control infections or to alleviate gastrointestinal dysmotility. Yet macrolides also have potent and wide-ranging immunomodulatory properties, which might have the potential to correct immune dysregulation in patients who are critically ill without affecting crucial antimicrobial defences. In this Review, we provide an overview of preclinical and clinical studies that point to the beneficial effects of macrolides in acute diseases relevant to critical care, and we discuss the possible underlying mechanisms of their immunomodulatory effects. Further studies are needed to explore the therapeutic potential of macrolides in critical illness, to identify subgroups of patients who might benefit from treatment, and to develop novel non-antibiotic macrolide derivatives with improved immunomodulatory properties.
Collapse
Affiliation(s)
- Tom D Y Reijnders
- Center for Experimental and Molecular Medicine, Amsterdam University Medical Centers, Location Academic Medical Center, Amsterdam, Netherlands
| | - Anno Saris
- Center for Experimental and Molecular Medicine, Amsterdam University Medical Centers, Location Academic Medical Center, Amsterdam, Netherlands
| | - Marcus J Schultz
- Department of Intensive Care, Amsterdam University Medical Centers, Location Academic Medical Center, Amsterdam, Netherlands; Mahidol Oxford Tropical Medicine Research Unit, Mahidol University, Bangkok, Thailand; Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Tom van der Poll
- Center for Experimental and Molecular Medicine, Amsterdam University Medical Centers, Location Academic Medical Center, Amsterdam, Netherlands; Division of Infectious Diseases, Amsterdam University Medical Centers, Location Academic Medical Center, Amsterdam, Netherlands.
| |
Collapse
|
20
|
Elmas ÖF, Demirbaş A, Kutlu Ö, Bağcıer F, Metin MS, Özyurt K, Akdeniz N, Atasoy M, Türsen Ü, Lotti T. Psoriasis and COVID-19: A narrative review with treatment considerations. Dermatol Ther 2020; 33:e13858. [PMID: 32686245 PMCID: PMC7323009 DOI: 10.1111/dth.13858] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Revised: 06/13/2020] [Accepted: 06/15/2020] [Indexed: 12/17/2022]
Abstract
Coronavirus disease (COVID‐19) is a highly contagious respiratory infection caused by severe acute respiratory syndrome coronavirus 2 (SARS‐CoV‐2). COVID‐19 outbreak has been declared a pandemic by the World Health Organization on March 2020. The pandemic has affected the management of psoriasis not only for those who are under treatment but also for those who are about to begin a new therapy to control their disease. An increasing number of studies in the current literature have focused on the relationship between psoriasis and COVID‐19 from different perspectives. This narrative review includes searching the PubMed and Web of Science databases using the keywords “psoriasis,” “psoriatic arthritis,” “coronavirus,” “COVID‐19,” and “SARS‐CoV‐2.” The search was supplemented by manual searching of reference lists of included articles. A total of 11 relevant original investigations and 6 case studies was identified. The search was updated in May 2019. Due to the absence of randomized controlled trials, it is not likely to have a robust evidence‐based approach to psoriasis management in the era of COVID‐19. However, the current literature may provide some clues for safety considerations. Conventional immunosuppressive therapies such as methotrexate and cyclosporine, and anti‐tumor necrosis factor agents should not be preferred due to increased risk of infection, especially in high‐risk areas. The use of cyclosporine may pose additional risk due to the side effect of hypertension, which has been reported to be associated with susceptibility to severe COVID‐19. Considering that the current literature has provided no conclusive evidence that biologics increase the risk of COVID‐19, withdrawal of these agents should be reserved for patients with COVID‐19 symptoms. The treatment approach should be personalized, considering the advantages and disadvantages for each case separately.
Collapse
Affiliation(s)
- Ömer Faruk Elmas
- Department of Dermatology, Kırşehir Ahi Evran University, Kırşehir, Turkey
| | - Abdullah Demirbaş
- Department of Dermatology, Konya Numune State Hospital, Konya, Turkey
| | - Ömer Kutlu
- Department of Dermatology, Uşak University, Uşak, Turkey
| | - Fatih Bağcıer
- Department of Physical Medicine and Rehabilitation, Biruni University, Istanbul, Turkey
| | - Mahmut Sami Metin
- Department of Dermatology, Adana Kozan State Hospital, Adana, Turkey
| | - Kemal Özyurt
- Department of Dermatology, Kırşehir Ahi Evran University, Kırşehir, Turkey
| | - Necmettin Akdeniz
- Department of Dermatology, Istanbul Medeniyet University, Istanbul, Turkey
| | - Mustafa Atasoy
- Department of Dermatology, Mersin University, Mersin, Turkey
| | - Ümit Türsen
- Department of Dermatology, Health Science University, Kayseri City Hospital, Kayseri, Turkey
| | - Torello Lotti
- Department of Dermatology, Guglielmo Marconi University, Rome, Italy
| |
Collapse
|
21
|
Kaneda K, Yu A, Tanizaki H, Kurokawa T, Yamamoto Y, Furukawa F, Moriwaki S. Ghrelin attenuates imiquimod‐induced psoriasiform skin inflammation in mice. JOURNAL OF CUTANEOUS IMMUNOLOGY AND ALLERGY 2019. [DOI: 10.1002/cia2.12086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Affiliation(s)
- Kazuma Kaneda
- Department of Dermatology Osaka Medical College Takatsuki Japan
| | - Akitoshi Yu
- Department of Dermatology Osaka Medical College Takatsuki Japan
| | | | - Teruo Kurokawa
- Department of Dermatology Osaka Medical College Takatsuki Japan
| | - Yuki Yamamoto
- Department of Dermatology Wakayama Medical University Wakayama Japan
| | - Fukumi Furukawa
- Department of Dermatology Japanese Red Cross Society Takatsuki Hospital Takatsuki Japan
| | | |
Collapse
|
22
|
Tsai YC, Tsai TF. A review of antibiotics and psoriasis: induction, exacerbation, and amelioration. Expert Rev Clin Pharmacol 2019; 12:981-989. [PMID: 31498683 DOI: 10.1080/17512433.2019.1665027] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Introduction: Psoriasis is affected by many environmental factors, including infections and antibiotics. However, the relationship between antibiotics and psoriasis is inadequately studied. Some antibiotics were listed as triggering factors; others showed benefit for psoriasis control. The aim of this article is to review current evidence that may help identify appropriate antibiotics for patients with psoriasis. Areas covered: The PubMed, Embase, Clinicalkey databases, and google scholar were searched for relevant articles published up to May 2019. Literature regarding antibiotics and psoriasis were included. Six randomized controlled trials and four controlled or cohort studies were identified in 13 kinds of antibiotics. Expert opinion: Macrolides and rifampin showed decrease of psoriasis area and severity index score in plaque-type psoriasis, while penicillin revealed no statistically significant improvement in guttate psoriasis. Previously tetracyclines were considered as triggering factors, but data were found only in cases or retrospective studies. Mechanisms were thought to be related to immunomodulation rather than bacteria inhibition. Research gap in the influence of genetic susceptibility, the impact on microbiota, and the mode of actions remain to be investigated.
Collapse
Affiliation(s)
- Ya-Chu Tsai
- Department of Dermatology, Far Eastern Memorial Hospital , New Taipei , Taiwan
| | - Tsen-Fang Tsai
- Department of Dermatology, National Taiwan University Hospital and National Taiwan University College of Medicine , Taipei , Taiwan
| |
Collapse
|
23
|
Kardeh S, Saki N, Jowkar F, Kardeh B, Moein SA, Khorraminejad-Shirazi MH. Efficacy of Azithromycin in Treatment of Acne Vulgaris: A Mini Review. World J Plast Surg 2019; 8:127-134. [PMID: 31309049 PMCID: PMC6620802 DOI: 10.29252/wjps.8.2.127] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
BACKGROUND Antibiotics are commonly used in the treatment of acne vulgaris. Considering the rise of antibiotic resistance, alternative medications may be used in the main anti-acne armamentarium. The aim of this study was to investigate the efficacy of oral azithromycin in the treatment of acne vulgaris. METHODS Database searches were performed in PubMed and Scopus using the keywords “azithromycin” and “acne”. RESULTS Azithromycin 500 mg once daily for 3 days per week or in cycles of 10 days for 12 weeks are the most commonly used regimens. CONCLUSION Available experimental data suggest that oral azithromycin is an effective and well-tolerated option for treatment of acne vulgaris.
Collapse
Affiliation(s)
- Sina Kardeh
- Cellular and Molecular Medicine Student Research Group, School of Medicine, Shiraz University of Medical Science, Shiraz, Iran.,Molecular Dermatology Research Center, Department of Dermatology, Shiraz University of Medical Sciences, Shiraz, Iran.,Student Research Committee, Shiraz University of Medical Sciences, Shiraz, Iran.,Burn and Wound Healing Research Center, Division of Plastic and Reconstructive Surgery, Department of Surgery, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Nasrin Saki
- Molecular Dermatology Research Center, Department of Dermatology, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Farideh Jowkar
- Molecular Dermatology Research Center, Department of Dermatology, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Bahareh Kardeh
- Bone and Joint Diseases Research Center, Clinical Neurology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Seyed Arman Moein
- Cellular and Molecular Medicine Student Research Group, School of Medicine, Shiraz University of Medical Science, Shiraz, Iran.,Student Research Committee, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mohammad Hossein Khorraminejad-Shirazi
- Cellular and Molecular Medicine Student Research Group, School of Medicine, Shiraz University of Medical Science, Shiraz, Iran.,Student Research Committee, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
24
|
Involvement of M1 Macrophage Polarization in Endosomal Toll-Like Receptors Activated Psoriatic Inflammation. Mediators Inflamm 2018; 2018:3523642. [PMID: 30647534 PMCID: PMC6311781 DOI: 10.1155/2018/3523642] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2018] [Accepted: 10/21/2018] [Indexed: 12/13/2022] Open
Abstract
Psoriasis is a chronic inflammatory skin disorder that affects ~2%–3% of the worldwide population. Inappropriate and excessive activation of endosomal Toll-like receptors 7, 8, and 9 (TLRs 7–9) at the psoriatic site has been shown to play a pathogenic role in the onset of psoriasis. Macrophage is a major inflammatory cell type that can be differentiated into phenotypes M1 and M2. M1 macrophages produce proinflammatory cytokines, and M2 macrophages produce anti-inflammatory cytokines. The balance between these two types of macrophages determines the progression of various inflammatory diseases; however, whether macrophage polarization plays a role in psoriatic inflammation activated by endosomal TLRs has not been investigated. In this study, we investigated the function and mechanism of macrophages related to the pathogenic role of TLRs 7–9 in the progression of psoriasis. Analysis of clinical data in database revealed significantly increased expression of macrophage markers and inflammatory cytokines in psoriatic tissues over those in normal tissues. In animal studies, depletion of macrophages in mice ameliorated imiquimod, a TLR 7 agonist-induced psoriatic response. Imiquimod induced expression of genes and cytokines that are signature of M1 macrophage in the psoriatic lesions. In addition, treatment with this TLR 7 agonist shifted macrophages in the psoriatic lesions to a higher M1/M2 ratio. Both of the exogenous and endogenous TLR 7–9 ligands activated M1 macrophage polarization. M1 macrophages expressed higher levels of proinflammatory cytokines and TLRs 7–9 than M2 macrophages. These results suggest that by rendering macrophages into a more inflammatory status and capable of response to their ligands in the psoriatic sites, TLR 7–9 activation drives them to participate in endosomal TLR-activated psoriatic inflammation, resulting in an amplified inflammatory response. Our results also suggest that blocking M1 macrophage polarization could be a strategy which enables inhibition of psoriatic inflammation activated by these TLRs.
Collapse
|
25
|
Min M, Yan BX, Wang P, Landeck L, Chen JQ, Li W, Cai SQ, Zheng M, Man XY. Rottlerin as a therapeutic approach in psoriasis: Evidence from in vitro and in vivo studies. PLoS One 2017; 12:e0190051. [PMID: 29272319 PMCID: PMC5741235 DOI: 10.1371/journal.pone.0190051] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2017] [Accepted: 12/07/2017] [Indexed: 01/09/2023] Open
Abstract
Rottlerin is a natural polyphenolic compound that was initially indicated as a PKCδ inhibitor. However, it was recently revealed that it may target a number of molecules and have biological effects on various cell types and is considered as a possible agent for tumor and cell proliferative diseases. Psoriasis is a chronic inflammatory cutaneous disorder with undefined etiology and is characterized by abnormal cellular proliferation, angiogenesis, and inflammation. Therefore, this paper investigates the regulatory effects of rottlerin on normal human epidermal keratinocytes (NHEKs) and imiquimod (IMQ)-induced psoriasiform (IPI) lesions. In vitro results showed that rottlerin inhibited cell proliferation in NHEKs through growth arrest and NFκB inhibition. It may also induce apoptosis in an autophagy-dependent pathway. We found that rottlerin inhibited human microvascular endothelial cells tube formation on matrigel. Rottlerin also decreased the cell senescence of keratinocytes and intracellular ROS generation, which indicated its antioxidant effect. We also showed that rottlerin affects the expression of keratinocyte proliferation biomarkers. In 12-O-tetradecanoylphorbol13-acetate (TPA)-induced keratinocytes, rottlerin significantly inhibited the expression of the induced pro-inflammatory cytokines in keratinocytes. An animal experiment provided the corresponding evidence based on this evidence in vitro, by using IPI model, we found that rottlerin could relieve the psoriasiform of BALB/c mice by inhibiting keratinocyte proliferation, inflammatory cell infiltration, and vascular proliferation. In conclusion, our results suggest that rottlerin may prove useful in the development of therapeutic agents against psoriasis. However, the deep mechanism still requires further study.
Collapse
Affiliation(s)
- Min Min
- Department of Dermatology, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Bing-Xi Yan
- Department of Dermatology, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Ping Wang
- Department of Dermatology, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Lilla Landeck
- Ernst von Bergmann General Hospital, Teaching Hospital of Charité– Humboldt University, Potsdam, Germany
| | - Jia-Qi Chen
- Department of Dermatology, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Wei Li
- Department of Dermatology, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Sui-Qing Cai
- Department of Dermatology, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Min Zheng
- Department of Dermatology, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- * E-mail: (MZ); (XYM)
| | - Xiao-Yong Man
- Department of Dermatology, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- * E-mail: (MZ); (XYM)
| |
Collapse
|
26
|
Xu J, Duan X, Hu F, Poorun D, Liu X, Wang X, Zhang S, Gan L, He M, Zhu K, Ming Z, Chen H. Resolvin D1 attenuates imiquimod-induced mice psoriasiform dermatitis through MAPKs and NF-κB pathways. J Dermatol Sci 2017; 89:127-135. [PMID: 29137840 DOI: 10.1016/j.jdermsci.2017.10.016] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2017] [Revised: 09/05/2017] [Accepted: 10/31/2017] [Indexed: 01/13/2023]
Abstract
BACKGROUND Resolvin D1 (RvD1), a pro-resolution lipid mediator derived from docosahexaenoic acid (DHA), has been described to promote several kinds of inflammatory resolution. However, the effects and anti-inflammatory mechanisms of RvD1 on psoriasis have not been previously reported. OBJECTIVE The present study aimed to determine the protective effects and the underlying mechanisms of RvD1 on imiquimod (IMQ)-induced psoriasiform dermatitis. METHODS Mice were topically treated with IMQ to develop psoriasiform dermatitis on their shaved back, pretreated intraperitoneally (i.p.) with or without RvD1 or tert-butoxycarbonyl Met-Leu-Phe peptide (Boc), a lipoxin A4 (ALX) receptor antagonist. The severity was monitored and graded using a modified human scoring system, the Psoriasis Area and Severity Index (PASI), histopathology, and the signature cytokines of psoriasis (IL-23, IL-17, IL-22 and TNF-α). The mRNA and protein levels of inflammatory cytokines were quantified by quantitative real-time PCR (QRT-PCR) and ELISA. The expressions of signaling proteins MAPKs and NF-κB p65 were analyzed using western blotting. Electrophoretic mobility shift assay (EMSA) was used to check NF-κB p65 DNA binding activity. RESULTS Our study showed that RvD1 alleviated IMQ-induced psoriasiform dermatitis and improved skin pathological changes. RvD1 markedly inhibited IMQ-induced activation of ERK1/2, p38, JNK (c-Jun N-terminal protein kinase, a subfamily of MAPKs), and NF-κB. Furthermore, pretreatment with Boc, would not exacerbate skin inflammation of IMQ-induced mice, but significantly reversed the beneficial effects of RvD1 on IMQ-induced psoriasiform inflammation. CONCLUSION RvD1 can obviously improve skin inflammation in IMQ-induced mice psoriasiform dermatitis. The protective mechanisms might be related to its selective reaction with lipoxin A4 receptor/Formyl-peptide receptor 2 (ALX/FPR2), by downregulating relevant cytokines of the IL-23/IL-17 axis expression, the inhibition of MAPKs and NF-κB signaling transduction pathways. Thus, these results show that RvD1 could be a possible candidate for psoriasis therapy.
Collapse
Affiliation(s)
- Juntao Xu
- Department of Dermatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; Department of Dermatology, Shenzhen People's Hospital, The Second Clinical Medical College of Jinan University, Shenzhen 518020, China
| | - Xiaoru Duan
- Department of Dermatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Feng Hu
- Department of Dermatology, Wuhan No.1 Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Devesh Poorun
- Department of Dermatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Xinxin Liu
- Department of Dermatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Xin Wang
- Department of Dermatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Song Zhang
- Department of Dermatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Lu Gan
- Department of Dermatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Mengwen He
- Department of Dermatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Ke Zhu
- Department of Dermatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Zhangyin Ming
- Department of Pharmacology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Hongxiang Chen
- Department of Dermatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; Cutaneous Biology Research Center, Department of Dermatology, Massachusetts General Hospital, Harvard Medical School, Building 149, 13th Street Charlestown, Boston, MA 02129, USA.
| |
Collapse
|
27
|
Natural Modulators of Endosomal Toll-Like Receptor-Mediated Psoriatic Skin Inflammation. J Immunol Res 2017; 2017:7807313. [PMID: 28894754 PMCID: PMC5574364 DOI: 10.1155/2017/7807313] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2017] [Accepted: 07/25/2017] [Indexed: 02/08/2023] Open
Abstract
Psoriasis is a chronic inflammatory autoimmune disease that can be initiated by excessive activation of endosomal toll-like receptors (TLRs), particularly TLR7, TLR8, and TLR9. Therefore, inhibitors of endosomal TLR activation are being investigated for their ability to treat this disease. The currently approved biological drugs adalimumab, etanercept, infliximab, ustekinumab, ixekizumab, and secukizumab are antibodies against effector cytokines that participate in the initiation and development of psoriasis. Several immune modulatory oligonucleotides and small molecular weight compounds, including IMO-3100, IMO-8400, and CPG-52364, that block the interaction between endosomal TLRs and their ligands are under clinical investigation for their effectiveness in the treatment of psoriasis. In addition, several chemical compounds, including AS-2444697, PF-05387252, PF-05388169, PF-06650833, ML120B, and PHA-408, can inhibit TLR signaling. Although these compounds have demonstrated anti-inflammatory activity in animal models, their therapeutic potential for the treatment of psoriasis has not yet been tested. Recent studies demonstrated that natural compounds derived from plants, fungi, and bacteria, including mustard seed, Antrodia cinnamomea extract, curcumin, resveratrol, thiostrepton, azithromycin, and andrographolide, inhibited psoriasis-like inflammation induced by the TLR7 agonist imiquimod in animal models. These natural modulators employ different mechanisms to inhibit endosomal TLR activation and are administered via different routes. Therefore, they represent candidate psoriasis drugs and might lead to the development of new treatment options.
Collapse
|