1
|
Sanabria-de la Torre R, Montero-Vílchez T, García-Gavín J, Arias-Santiago S. Current Insights on Lipidomics in Dermatology: A Systematic Review. J Invest Dermatol 2024:S0022-202X(24)02099-2. [PMID: 39303909 DOI: 10.1016/j.jid.2024.09.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 08/30/2024] [Accepted: 09/08/2024] [Indexed: 09/22/2024]
Abstract
Inflammatory dermatoses and lipid disturbances are interrelated, especially due to chronic inflammatory conditions. The study aimed to investigate recent findings about lipidomic and dermatologic diseases, as well as on the sampling techniques developed to study lipidomics in vivo and analytical and statistical approaches employed. A systematic review was designed using the search algorithm "(lipidomics) AND (skin OR dermatology OR stratum corneum OR sebum OR epidermis) following PRISMA guidelines. The literature search identified 1013 references and, finally, only 48 were selected, including a total of 2651 participants with a mean age of 34.13±16.28. The dermatological diseases evaluated were atopic dermatitis (AD), acne, psoriasis, hidradenitis suppurativa (HS) and other skin diseases. Sebutape® was the primary sampling technique for lipidomics research. Most of the studies performed untargeted profiling through liquid chromatography with tandem mass spectrometry (LC-MS/MS) statistically analyzed with Principal Component Analysis (PCA), Orthogonal Partial Least-Squares Discriminate Analysis (OPLS-DA), heatmap and volcano plot models. The most consulted databases were LIPIDMAPS® Structure Database (LMSD), MetaboAnalyst and Human Metabolome Database (HMDB). A large heterogeneity of lipidomic and lipid metabolism profiles was observed in patients with skin diseases. Skin lipidomic analysis is valuable in exploring skin disease and has ample translational potential.
Collapse
Affiliation(s)
- Raquel Sanabria-de la Torre
- Biosanitary Research Institute of Granada (ibs.GRANADA), 18014 Granada, Spain; Department of Biochemistry and Molecular Biology III and Immunology, University of Granada, 18071 Granada, Spain; Dermatology Department, Virgen de las Nieves University Hospital, 18014 Granada, Spain
| | - Trinidad Montero-Vílchez
- Biosanitary Research Institute of Granada (ibs.GRANADA), 18014 Granada, Spain; Dermatology Department, Virgen de las Nieves University Hospital, 18014 Granada, Spain.
| | | | - Salvador Arias-Santiago
- Biosanitary Research Institute of Granada (ibs.GRANADA), 18014 Granada, Spain; Dermatology Department, Virgen de las Nieves University Hospital, 18014 Granada, Spain; Dermatology Department, School of Medicine, University of Granada, 18016 Granada, Spain
| |
Collapse
|
2
|
Zainal Adlishah ZA, Jamil A. Short-term effect of a moderate-potency topical corticosteroid on epidermal biophysical parameters in patients with mild-to-moderate atopic dermatitis: A randomised controlled study. MALAYSIAN FAMILY PHYSICIAN : THE OFFICIAL JOURNAL OF THE ACADEMY OF FAMILY PHYSICIANS OF MALAYSIA 2024; 19:48. [PMID: 39220237 PMCID: PMC11366279 DOI: 10.51866/oa.611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Introduction Skin barrier dysfunction is an important component of atopic dermatitis (AD) pathophysiology. Topical corticosteroids (TCSs) are the mainstay therapy, but steroid phobia is emerging due to potential side effects. We aimed to determine the short-term effect of clobetasone butyrate on patients with AD. Methods This investigator-blinded, randomised, moisturiser-controlled study evaluated patients with stable mild-to-moderate AD. Clobetasone butyrate ointment plus aqueous cream (Aq) or Aq alone was applied on randomised sites twice daily for 6 weeks. The itch score, modified Eczema Area and Severity Index (M-EASI) and epidermal biophysical parameters were assessed at baseline and 1 h, 3 h, 2 weeks and 6 weeks after application. Results Sixteen patients, among whom 14 (87.5%) were women and two (12.5%) were men, participated in the study. There were no significant differences in pH, transepidermal water loss (TEWL) and hydration between TCS + Aq and Aq from 1 h to 6 weeks. A non-significant trend of pH increment was observed with TCS + Aq from baseline to 6 weeks. TEWL and hydration improved at 6 weeks for both treatment arms. The difference in TEWL from baseline was significant with Aq (P=0.01). The M-EASI at 6 weeks was comparable between the two arms. TCS + Aq improved itch and erythema better than Aq (P=0.02). No cutaneous adverse effects were observed at both sites. Conclusion Short-term application of clobetasone butyrate with Aq is safe with no significant changes in epidermal biophysical parameters while controlling the symptoms and signs of eczema faster than Aq alone.
Collapse
Affiliation(s)
- Zainal Abdullah Zainal Adlishah
- MBBCh, Doc.Int.Med., Department of Medicine, Faculty of Medicine, University Kebangsaan Malaysia, Cheras, Kuala Lumpur, Malaysia
| | - Adawiyah Jamil
- MBBChBAO, MMed (Int. Med.), AdvMDerm, Department of Medicine, Faculty of Medicine, University Kebangsaan Malaysia, Cheras, Kuala Lumpur, Malaysia.
| |
Collapse
|
3
|
Martinez GJ, Kipp ZA, Lee WH, Bates EA, Morris AJ, Marino JS, Hinds TD. Glucocorticoid resistance remodels liver lipids and prompts lipogenesis, eicosanoid, and inflammatory pathways. Prostaglandins Other Lipid Mediat 2024; 173:106840. [PMID: 38830399 PMCID: PMC11199073 DOI: 10.1016/j.prostaglandins.2024.106840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 04/11/2024] [Accepted: 04/26/2024] [Indexed: 06/05/2024]
Abstract
We have previously demonstrated that the glucocorticoid receptor β (GRβ) isoform induces hepatic steatosis in mice fed a normal chow diet. The GRβ isoform inhibits the glucocorticoid-binding isoform GRα, reducing responsiveness and inducing glucocorticoid resistance. We hypothesized that GRβ regulates lipids that cause metabolic dysfunction. To determine the effect of GRβ on hepatic lipid classes and molecular species, we overexpressed GRβ (GRβ-Ad) and vector (Vec-Ad) using adenovirus delivery, as we previously described. We fed the mice a normal chow diet for 5 days and harvested the livers. We utilized liquid chromatography-mass spectrometry (LC-MS) analyses of the livers to determine the lipid species driven by GRβ. The most significant changes in the lipidome were monoacylglycerides and cholesterol esters. There was also increased gene expression in the GRβ-Ad mice for lipogenesis, eicosanoid synthesis, and inflammatory pathways. These indicate that GRβ-induced glucocorticoid resistance may drive hepatic fat accumulation, providing new therapeutic advantages.
Collapse
Affiliation(s)
- Genesee J Martinez
- Department of Pharmacology and Nutritional Sciences, University of Kentucky College of Medicine, Lexington, KY, USA; Drug & Disease Discovery D3 Research Center, University of Kentucky College of Medicine, Lexington, KY, USA
| | - Zachary A Kipp
- Department of Pharmacology and Nutritional Sciences, University of Kentucky College of Medicine, Lexington, KY, USA; Drug & Disease Discovery D3 Research Center, University of Kentucky College of Medicine, Lexington, KY, USA
| | - Wang-Hsin Lee
- Department of Pharmacology and Nutritional Sciences, University of Kentucky College of Medicine, Lexington, KY, USA; Drug & Disease Discovery D3 Research Center, University of Kentucky College of Medicine, Lexington, KY, USA
| | - Evelyn A Bates
- Department of Pharmacology and Nutritional Sciences, University of Kentucky College of Medicine, Lexington, KY, USA; Drug & Disease Discovery D3 Research Center, University of Kentucky College of Medicine, Lexington, KY, USA
| | - Andrew J Morris
- Department of Pharmacology and Toxicology, University of Arkansas for Medical Sciences, and Central Arkansas Veterans Affairs Healthcare System, Little Rock, AR 72205, USA
| | - Joseph S Marino
- Department of Applied Physiology, Health, and Clinical Sciences, University of North Carolina at Charlotte, Charlotte, NC 28223, USA
| | - Terry D Hinds
- Department of Pharmacology and Nutritional Sciences, University of Kentucky College of Medicine, Lexington, KY, USA; Drug & Disease Discovery D3 Research Center, University of Kentucky College of Medicine, Lexington, KY, USA; Markey Cancer Center, University of Kentucky, Lexington, KY, USA; Barnstable Brown Diabetes Center, University of Kentucky, Lexington, KY, USA.
| |
Collapse
|
4
|
Zhang Y, Li S, Huang Y, Song C, Chen W, Yang Y. Therapeutic Effect of Liquiritin Carbomer Gel on Topical Glucocorticoid-Induced Skin Inflammation in Mice. Pharmaceutics 2024; 16:1001. [PMID: 39204346 PMCID: PMC11359290 DOI: 10.3390/pharmaceutics16081001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 07/25/2024] [Accepted: 07/27/2024] [Indexed: 09/04/2024] Open
Abstract
Glucocorticoids are often used and highly effective anti-inflammatory medications, but prolonged topical application may alter the epidermis' normal structure and function, potentially resulting in a number of adverse effects. Topical glucocorticoid-induced skin inflammation is a dangerous condition that develops after topical glucocorticoid use. The patients become dependent on the medication and, even after the medication is stopped, the dermatitis symptoms recur, severely impairing their quality of life. Thus, the need to aggressively confront Topical glucocorticoid-induced skin inflammation is critical. Prior research has demonstrated that topical administration of licorice's flavonoid component liquiritin stimulates epidermal proliferation, which in turn enhances the creation of collagen and the healing of wounds. Therefore, the purpose of this work was to determine if topical use of liquiritin carbomer gel can treat glucocorticoid-induced changes in mice skin epidermal function, and the mechanisms involved. The findings demonstrated that, in the mice model of topical glucocorticoid-induced skin inflammation, liquiritin carbomer gel aided in the restoration of skin barrier function. These outcomes may have been caused by enhanced expression of the proteins Aquaporin 3, Keratin 10, and Claudin-1, as well as the restoration of epidermal hyaluronan content. In the meantime, liquiritin carbomer gel dramatically decreased the expression of TNF-α, IL-1β, IL-6, IFN-γ, and IgE in mice, according to ELISA tests. Furthermore, topical treatment of liquiritin carbomer gel boosted the expression of superoxide dismutase, catalase, and decreased malondialdehyde expression, potentially counteracting the detrimental effects of glucocorticoids on the epidermis. In summary, these findings imply that topical liquiritin carbomer gel can treat glucocorticoid-induced skin damage through various mechanisms of action.
Collapse
Affiliation(s)
- Yun Zhang
- School of Nursing, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Sijia Li
- School of Nursing, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Yanfang Huang
- School of Nursing, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Congjing Song
- School of Nursing, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Weiqiang Chen
- School of Basic Medical Sciences, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Yiling Yang
- School of Nursing, Guangdong Pharmaceutical University, Guangzhou 510006, China
| |
Collapse
|
5
|
Flori E, Mosca S, Kovacs D, Briganti S, Ottaviani M, Mastrofrancesco A, Truglio M, Picardo M. Skin Anti-Inflammatory Potential with Reduced Side Effects of Novel Glucocorticoid Receptor Agonists. Int J Mol Sci 2023; 25:267. [PMID: 38203435 PMCID: PMC10778823 DOI: 10.3390/ijms25010267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 12/19/2023] [Accepted: 12/21/2023] [Indexed: 01/12/2024] Open
Abstract
Glucocorticoids (GCs) are commonly used in the treatment of inflammatory skin diseases, although the balance between therapeutic benefits and side effects is still crucial in clinical practice. One of the major and well-known adverse effects of topical GCs is cutaneous atrophy, which seems to be related to the activation of the glucorticoid receptor (GR) genomic pathway. Dissociating anti-inflammatory activity from atrophogenicity represents an important goal to achieve, in order to avoid side effects on keratinocytes and fibroblasts, known target cells of GC action. To this end, we evaluated the biological activity and safety profile of two novel chemical compounds, DE.303 and KL.202, developed as non-transcriptionally acting GR ligands. In primary keratinocytes, both compounds demonstrated anti-inflammatory properties inhibiting NF-κB activity, downregulating inflammatory cytokine release and interfering with pivotal signaling pathways involved in the inflammatory process. Of note, these beneficial actions were not associated with GC-related atrophic effects: treatments of primary keratinocytes and fibroblasts with DE.303 and KL.202 did not induce, contrarily to dexamethasone-a known potent GC-alterations in extracellular matrix components and lipid synthesis, thus confirming their safety profile. These data provide the basis for evaluating these compounds as effective alternatives to the currently used GCs in managing inflammatory skin diseases.
Collapse
Affiliation(s)
- Enrica Flori
- Laboratory of Cutaneous Physiopathology and Integrated Center of Metabolomics Research, San Gallicano Dermatological Institute, IRCCS, 00144 Rome, Italy; (S.M.); (D.K.); (S.B.); (M.O.)
| | - Sarah Mosca
- Laboratory of Cutaneous Physiopathology and Integrated Center of Metabolomics Research, San Gallicano Dermatological Institute, IRCCS, 00144 Rome, Italy; (S.M.); (D.K.); (S.B.); (M.O.)
| | - Daniela Kovacs
- Laboratory of Cutaneous Physiopathology and Integrated Center of Metabolomics Research, San Gallicano Dermatological Institute, IRCCS, 00144 Rome, Italy; (S.M.); (D.K.); (S.B.); (M.O.)
| | - Stefania Briganti
- Laboratory of Cutaneous Physiopathology and Integrated Center of Metabolomics Research, San Gallicano Dermatological Institute, IRCCS, 00144 Rome, Italy; (S.M.); (D.K.); (S.B.); (M.O.)
| | - Monica Ottaviani
- Laboratory of Cutaneous Physiopathology and Integrated Center of Metabolomics Research, San Gallicano Dermatological Institute, IRCCS, 00144 Rome, Italy; (S.M.); (D.K.); (S.B.); (M.O.)
| | - Arianna Mastrofrancesco
- Microbiology and Virology, San Gallicano Dermatological Institute, IRCCS, 00144 Rome, Italy; (A.M.); (M.T.)
| | - Mauro Truglio
- Microbiology and Virology, San Gallicano Dermatological Institute, IRCCS, 00144 Rome, Italy; (A.M.); (M.T.)
| | - Mauro Picardo
- Istituto Dermopatico dell’Immacolata, IDI-IRCCS, 00167 Rome, Italy;
| |
Collapse
|
6
|
Koda A, Ishii Y, Kashiwagi A, Fujikawa M, Kikuchi K, Hashimoto R, Ueda Y, Doi T. The Effects of Mucopolysaccharide Polysulfate on Steroid-Induced Tight Junction Barrier Dysfunction in Human Epidermal Keratinocytes and a 3D Skin Model. Skin Pharmacol Physiol 2023; 36:186-194. [PMID: 36966539 PMCID: PMC10652656 DOI: 10.1159/000529962] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Accepted: 02/24/2023] [Indexed: 11/15/2023]
Abstract
INTRODUCTION The long-term use of topical corticosteroids (TCS) is associated with side effects such as skin atrophy and barrier deterioration. Moisturizers, such as mucopolysaccharide polysulfate (MPS), have been reported to prevent relapses in atopic dermatitis (AD) when used in combination with TCS. However, the mechanisms underlying the positive effects of MPS in combination with TCS in AD are poorly understood. In the present study, we investigated the effects of MPS in combination with clobetasol 17-propionate (CP) on tight junction (TJ) barrier function in human epidermal keratinocytes (HEKa) and 3D skin models. METHODS The expression of claudin-1, which is crucial for TJ barrier function in keratinocytes, and transepithelial electrical resistance (TEER) was measured in CP-treated human keratinocytes incubated with and without MPS. A TJ permeability assay, using Sulfo-NHS-Biotin as a tracer, was also conducted in a 3D skin model. RESULTS CP reduced claudin-1 expression and TEER in human keratinocytes, whereas MPS inhibited these CP-induced effects. Moreover, MPS inhibited the increase in CP-induced TJ permeability in a 3D skin model. CONCLUSION The present study demonstrated that MPS improved TJ barrier impairment induced by CP. The improvement of TJ barrier function may partially be responsible for the delayed relapse of AD induced by the combination of MPS and TCS.
Collapse
Affiliation(s)
- Akira Koda
- Drug Development Laboratories, Kyoto R&D Center, Drug Development Research Laboratories, Maruho Co., Ltd., Kyoto, Japan
| | - Yuko Ishii
- Drug Development Laboratories, Kyoto R&D Center, Drug Development Research Laboratories, Maruho Co., Ltd., Kyoto, Japan
| | - Ayu Kashiwagi
- Drug Development Laboratories, Kyoto R&D Center, Drug Development Research Laboratories, Maruho Co., Ltd., Kyoto, Japan
| | - Mika Fujikawa
- Drug Development Laboratories, Kyoto R&D Center, Drug Development Research Laboratories, Maruho Co., Ltd., Kyoto, Japan
| | - Keisuke Kikuchi
- Drug Development Laboratories, Kyoto R&D Center, Drug Development Research Laboratories, Maruho Co., Ltd., Kyoto, Japan
| | - Ryota Hashimoto
- Drug Development Laboratories, Kyoto R&D Center, Drug Development Research Laboratories, Maruho Co., Ltd., Kyoto, Japan
| | - Yuhki Ueda
- Drug Development Laboratories, Kyoto R&D Center, Drug Development Research Laboratories, Maruho Co., Ltd., Kyoto, Japan
| | - Takaaki Doi
- Drug Development Laboratories, Kyoto R&D Center, Drug Development Research Laboratories, Maruho Co., Ltd., Kyoto, Japan
| |
Collapse
|
7
|
A novel mineralocorticoid receptor antagonist, 7,3',4'-trihydroxyisoflavone improves skin barrier function impaired by endogenous or exogenous glucocorticoids. Sci Rep 2021; 11:11920. [PMID: 34099793 PMCID: PMC8184959 DOI: 10.1038/s41598-021-91450-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Accepted: 05/10/2021] [Indexed: 11/08/2022] Open
Abstract
Excess glucocorticoids (GCs) with either endogenous or exogenous origins deteriorate skin barrier function. GCs bind to mineralocorticoid and GC receptors (MRs and GRs) in normal human epidermal keratinocytes (NHEKs). Inappropriate MR activation by GCs mediates various GC-induced cutaneous adverse events. We examined whether MR antagonists can ameliorate GC-mediated skin barrier dysfunction in NHEKs, reconstructed human epidermis (RHE), and subjects under psychological stress (PS). In a preliminary clinical investigation, topical MR antagonists improved skin barrier function in topical GC-treated subjects. In NHEKs, cortisol induced nuclear translocation of GR and MR, and GR and MR antagonists inhibited cortisol-induced reductions of keratinocyte differentiation. We identified 7,3',4'-trihydroxyisoflavone (7,3',4'-THIF) as a novel compound that inhibits MR transcriptional activity by screening 30 cosmetic compounds. 7,3',4'-THIF ameliorated the cortisol effect which decreases keratinocyte differentiation in NHEKs and RHE. In a clinical study on PS subjects, 7,3',4'-THIF (0.1%)-containing cream improved skin barrier function, including skin surface pH, barrier recovery rate, and stratum corneum lipids. In conclusion, skin barrier dysfunction owing to excess GC is mediated by MR and GR; thus, it could be prevented by treatment with MR antagonists. Therefore, topical MR antagonists are a promising therapeutic option for skin barrier dysfunction after topical GC treatment or PS.
Collapse
|
8
|
Luger T, Amagai M, Dreno B, Dagnelie MA, Liao W, Kabashima K, Schikowski T, Proksch E, Elias PM, Simon M, Simpson E, Grinich E, Schmuth M. Atopic dermatitis: Role of the skin barrier, environment, microbiome, and therapeutic agents. J Dermatol Sci 2021; 102:142-157. [PMID: 34116898 DOI: 10.1016/j.jdermsci.2021.04.007] [Citation(s) in RCA: 75] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 04/28/2021] [Accepted: 04/29/2021] [Indexed: 02/06/2023]
Abstract
Atopic dermatitis (AD) is a chronic, inflammatory skin disorder characterized by eczematous and pruritic skin lesions. In recent decades, the prevalence of AD has increased worldwide, most notably in developing countries. The enormous progress in our understanding of the complex composition and functions of the epidermal barrier allows for a deeper appreciation of the active role that the skin barrier plays in the initiation and maintenance of skin inflammation. The epidermis forms a physical, chemical, immunological, neuro-sensory, and microbial barrier between the internal and external environment. Not only lesional, but also non-lesional areas of AD skin display many morphological, biochemical and functional differences compared with healthy skin. Supporting this notion, genetic defects affecting structural proteins of the skin barrier, including filaggrin, contribute to an increased risk of AD. There is evidence to suggest that natural environmental allergens and man-made pollutants are associated with an increased likelihood of developing AD. A compromised epidermal barrier predisposes the skin to increased permeability of these compounds. Numerous topical and systemic therapies for AD are currently available or in development; while anti-inflammatory therapy is central to the treatment of AD, some existing and novel therapies also appear to exert beneficial effects on skin barrier function. Further research on the skin barrier, particularly addressing epidermal differentiation and inflammation, lipid metabolism, and the role of bacterial communities for skin barrier function, will likely expand our understanding of the complex etiology of AD and lead to identification of novel targets and the development of new therapies.
Collapse
Affiliation(s)
- Thomas Luger
- Department of Dermatology, University of Münster, Münster, Germany.
| | - Masayuki Amagai
- Department of Dermatology, Keio University School of Medicine, Tokyo, Japan; Laboratory for Skin Homeostasis, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
| | - Brigitte Dreno
- Dermatology Department, Nantes University, CHU Nantes, CIC 1413, CRCINA, Nantes, France
| | - Marie-Ange Dagnelie
- Dermatology Department, Nantes University, CHU Nantes, CIC 1413, CRCINA, Nantes, France
| | - Wilson Liao
- Department of Dermatology, University of California, San Francisco, CA, United States
| | - Kenji Kabashima
- Department of Dermatology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Tamara Schikowski
- IUF - Leibniz Research Institute for Environmental Medicine, Düsseldorf, Germany
| | | | - Peter M Elias
- San Francisco VA Medical Center, University of California, San Francisco, CA, United States
| | - Michel Simon
- UDEAR, Inserm, University of Toulouse, U1056, Toulouse, France
| | - Eric Simpson
- Department of Dermatology, Oregon Health & Science University, Portland, OR, United States
| | - Erin Grinich
- Department of Dermatology, Oregon Health & Science University, Portland, OR, United States
| | - Matthias Schmuth
- Department of Dermatology, Medical University Innsbruck, Innsbruck, Austria
| |
Collapse
|
9
|
Røpke MA, Mekulova A, Pipper C, Eisen M, Pender K, Spee P, Kezic S. Non-invasive assessment of soluble skin surface biomarkers in atopic dermatitis patients-Effect of treatment. Skin Res Technol 2021; 27:715-722. [PMID: 33511682 DOI: 10.1111/srt.13006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 12/12/2020] [Accepted: 12/24/2020] [Indexed: 11/28/2022]
Abstract
BACKGROUND Skin biomarkers are important tools for characterizing specific disease processes in atopic dermatitis (AD) patients and can be used for monitoring and potentially predicting treatment response. Recent developments of minimally invasive skin sampling methods have made sampling easier and less inconvenient for patients. The objective of this study was to evaluate the non-invasive patch technique developed by FibroTx for skin biomarker analysis. MATERIALS AND METHODS Ten adult patients with AD were included in the study and treated with topical corticosteroid (diprosone 0.05%) for 2 weeks. Skin surface biomarkers were assessed in three lesional and non-lesional sites before and during treatment using the FibroTx Patch method. Skin tape strips were also collected from the subjects for comparison. RESULTS The results showed expression of IL-1 cytokine family members, chemokines, and defensins on lesional and non-lesional skin. Several of these markers were strongly reduced by topical treatment. The biomarker expression in skin surface eluates correlated strongly with those seen in skin tape strips from the same subjects. CONCLUSION These data further support the usefulness of non-invasive sampling methods for assessing inflammatory processes in AD skin and demonstrate that the patch sampling method is a good alternative to skin tape strips.
Collapse
Affiliation(s)
| | | | | | - Maigi Eisen
- North Estonia Medical Centre, Tallinn, Estonia
| | | | - Pieter Spee
- FibroTx, Tallinn, Estonia.,PS! Pharmaconsult, Allerød, Denmark
| | - Sanja Kezic
- Amsterdam UMC, Coronel Institute of Occupational Health, Amsterdam, The Netherlands
| |
Collapse
|
10
|
Niculet E, Bobeica C, Tatu AL. Glucocorticoid-Induced Skin Atrophy: The Old and the New. Clin Cosmet Investig Dermatol 2020; 13:1041-1050. [PMID: 33408495 PMCID: PMC7779293 DOI: 10.2147/ccid.s224211] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Accepted: 12/22/2020] [Indexed: 12/13/2022]
Abstract
Glucocorticoids are major therapeutic agents highly used in the medical field. Topical glucocorticoids have biologic activities which make them useful in dermatology – anti-inflammatory, vasoconstrictive, immune suppressive and antiproliferative, in treating inflammatory skin disorders (allergic contact eczema, atopic hand eczema, nummular eczema, psoriasis vulgaris or toxic-irritative eczema). Unfortunately, the beneficial effects of topical glucocorticoids are shadowed by their potential for adverse effects – muscle or skin atrophy, striae distensae, rubeosis or acne. Skin atrophy is one of the most prevalent side-effects, with changes found in all skin compartments – marked hypoplasia, elasticity loss with tearing, increased fragility, telangiectasia, bruising, cutaneous transparency, or a dysfunctional skin barrier. The structure and function of the epidermis is altered even in the short-term topical glucocorticoid treatment; it affects stratum corneum components, subsequently affecting skin barrier integrity. The dermis is altered by directly inhibiting fibroblast proliferation, reducing mast cell numbers, and loss of support; there is depletion of mucopolysaccharides, elastin fibers, matrix metalloproteases and inhibition of collagen synthesis. Atrophogenic changes can be found also in hair follicles, sebaceous glands or dermal adipose tissue. Attention should be paid to topical glucocorticoid treatment prescription, to the beneficial/adverse effects ratio of the chosen agent, and studies should be oriented on the development of newer, innovative targeted (gene or receptor) therapies.
Collapse
Affiliation(s)
- Elena Niculet
- Department of Morphological and Functional Sciences, Faculty of Medicine and Pharmacy, "Dunarea de Jos" University, Galati, Romania
| | - Carmen Bobeica
- Department of Dermato-Venereology, Doctoral School, University of Medicine and Pharmacy "Gr. T. Popa", Iași, Romania
| | - Alin L Tatu
- Clinical Department, Faculty of Medicine and Pharmacy, "Dunarea de Jos" University, Galati, Romania.,Research Center in the Field of Medical and Pharmaceutical Sciences, ReFORM-UDJ, Galati, Romania.,Dermatology Department, "Sf. Cuvioasa Parascheva" Clinical Hospital of Infectious Diseases, Galati, Romania
| |
Collapse
|
11
|
Incidence of and Risk Factors for Medical Adhesive-Related Skin Injuries Among Patients: A Cross-sectional Study. J Wound Ostomy Continence Nurs 2020; 47:576-581. [PMID: 33201143 DOI: 10.1097/won.0000000000000714] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
PURPOSE We explored the incidence of medical adhesive-related skin injuries (MARSIs) that developed in an intensive care unit (ICU) and identified the relevant risk factors associated with these skin injuries. DESIGN Cross-sectional. SUBJECTS AND SETTING A 29-bed adult general ICU of a tertiary teaching hospital affiliated with Zhejiang University in southeast China. METHODS Data regarding MARSIs, skin assessments, and related nursing procedures were collected between January 2018 and May 2018. The incidence of MARSIs was calculated, and the associated risk factors were analyzed using a logistic regression model. RESULTS During the study period, 430 patients were evaluated, of which 55 experienced MARSIs (4 prior to hospitalization in our ICU). The overall MARSI incidence rate was 11.86% (51/430); mechanical damage including epidermal stripping (72.7%; 40/55) and skin tears (14.5%; 8/55) was the most common MARSI. Moderate-to-severe edema, hyperthermia, and the use of certain medicines such as immunosuppressants and anticoagulants were independent risk factors for MARSIs. CONCLUSIONS Critically ill patients are at a high risk of MARSIs in China. Preventive measures and good clinical nursing practice are needed to ensure patient safety.
Collapse
|
12
|
Li X, Yang Q, Zheng J, Gu H, Chen K, Jin H, He C, Xu AE, Xu J, Zhang J, Yu W, Guo Z, Xiong L, Song Y, Zhang L. Efficacy and safety of a topical moisturizer containing linoleic acid and ceramide for mild-to-moderate psoriasis vulgaris: A multicenter randomized controlled trial. Dermatol Ther 2020; 33:e14263. [PMID: 32869931 PMCID: PMC7816244 DOI: 10.1111/dth.14263] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 08/15/2020] [Accepted: 08/25/2020] [Indexed: 02/05/2023]
Abstract
Psoriasis is a chronic, recurrent skin disease requiring long-term management. Agents that repair the skin's barrier function are invaluable additives in topical treatments of psoriasis. This multicenter, randomized, controlled trial evaluated the efficacy and safety of a linoleic acid-ceramide-containing moisturizer (LA-Cer) for mild-to-moderate psoriasis vulgaris. We randomized 178 patients from both northern and southern regions of China into two groups: 81 patients in the control group received mometasone furoate (MF, 0.1%) cream, while MF in combination with LA-Cer was administered to 86 patients in the treatment group for 4 weeks. The LA-Cer-MF group maintained the use of moisturizer after topical glucocorticoid administration. The primary endpoint, Psoriasis Area and Severity Index 50 (PASI 50) response, revealed the superiority of LA-Cer-MF with lower relapse rates at week 8. The use of the LA-Cer-containing moisturizer as maintenance therapy resulted in a continuous improvement in the clinical state in terms of body surface area, PASI, investigators' assessment of skin dryness and desquamation, and Physician Global Assessment of Psoriasis score, and in the patients' quality of life. Thus, the LA-Cer-containing moisturizer is a promising agent to prevent and treat psoriasis as it enhances the therapeutic effect induced by topical glucocorticoids and delays relapse.
Collapse
Affiliation(s)
- Xia Li
- Department of Dermatology, Rui Jin Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Qi Yang
- Laboratory of Dermatoimmunology, Rui Jin Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Jie Zheng
- Department of Dermatology, Rui Jin Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Heng Gu
- Institute of Dermatology, Chinese Academy of Medical Sciences & Peking Union Medical College, Nanjing, China
| | - Kun Chen
- Institute of Dermatology, Chinese Academy of Medical Sciences & Peking Union Medical College, Nanjing, China
| | - Hongzhong Jin
- Department of Dermatology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Chunxia He
- Department of Dermatology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Ai-E Xu
- Department of Dermatology, Third People's Hospital of Hangzhou, Hangzhou, China
| | - Jin Xu
- Department of Dermatology, Third People's Hospital of Hangzhou, Hangzhou, China
| | - Junling Zhang
- Department of Dermatology, Tianjin Academy of Traditional Chinese Medicine Affiliated Hospital, Tianjing, China
| | - Wang Yu
- Department of Dermatology, Tianjin Academy of Traditional Chinese Medicine Affiliated Hospital, Tianjing, China
| | - Zaipei Guo
- Department of Dermatology, West China Hospital, Sichuan University, Chengdu, China
| | - Lin Xiong
- Department of Dermatology, West China Hospital, Sichuan University, Chengdu, China
| | - Yanyan Song
- Department of Biostatistics, Institute of Medical Sciences, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Lina Zhang
- Department of Biostatistics, Institute of Medical Sciences, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
13
|
Skin Barrier Dysfunction in Contact Dermatitis and Atopic Dermatitis-Treatment Implications. CURRENT TREATMENT OPTIONS IN ALLERGY 2020. [DOI: 10.1007/s40521-020-00264-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
14
|
Abstract
Vitamin A is a general term for retinoids. Vitamin A deficiency leads to a variety of cutaneous manifestations. It also functions as a hormone through retinoic acid receptors altering the activity of multiple cell lines. Pancreatic vitamin A levels are critical for retinoid signaling and normal pancreatic control of glucose. Vitamin A deficiency is more common during infection, and supplementation reduces severe morbidity and mortality from infectious diseases. Vitamin A modulates activities at the cellular level and, via its interrelationship with hormones such as thyroid, insulin, and corticosteroids, has diffuse metabolic effects on the body. It plays an important role in all stages of wound healing. Vitamin A is known for its ability to stimulate epithelial growth, fibroblasts, granulation tissue, angiogenesis, collagen synthesis, epithelialization, and fibroplasia. Local (topical) and systemic supplementation with vitamin A has been proven to increase dermal collagen deposition. There are numerous animal studies and limited human studies regarding physiologic effect of vitamin A on acute or chronic wounds via systemic or topical administration. The most common use of vitamin A supplementation is to offset steroids' effect. When considering supplementation, the potential benefits must be weighed against the risk of harm. Vitamin A toxicity can be critical and even result in death. The evidence for supplementation with vitamin A is currently limited to expert opinion and is not backed up by rigorous trials. There is an acute need for therapeutic trials with vitamin A supplementations.
Collapse
Affiliation(s)
- Roman Zinder
- Wound Care and Hyperbaric Medical Center of the Department of Plastic Surgery of Wake Forest Baptist Health, Winston-Salem, North Carolina, USA
| | - Rachel Cooley
- Wound Care and Hyperbaric Medical Center of the Department of Plastic Surgery of Wake Forest Baptist Health, Winston-Salem, North Carolina, USA
| | - Lucian G Vlad
- Wound Care and Hyperbaric Medical Center of the Department of Plastic Surgery of Wake Forest Baptist Health, Winston-Salem, North Carolina, USA
| | - Joseph A Molnar
- Wound Care and Hyperbaric Medical Center of the Department of Plastic Surgery of Wake Forest Baptist Health, Winston-Salem, North Carolina, USA
| |
Collapse
|
15
|
Marsella R, Segarra S, Ahrens K, Alonso C, Ferrer L. Topical treatment with SPHINGOLIPIDS and GLYCOSAMINOGLYCANS for canine atopic dermatitis. BMC Vet Res 2020; 16:92. [PMID: 32197613 PMCID: PMC7082980 DOI: 10.1186/s12917-020-02306-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Accepted: 03/06/2020] [Indexed: 12/13/2022] Open
Abstract
Background Skin barrier dysfunction plays a key role in atopic dermatitis (AD). This impairment is related to altered composition and metabolism of epidermal sphingolipids and a deficiency of ceramides. Glycosaminoglycans (GAGs), and especially hyaluronic acid, could be useful in the management of AD. This study aimed to evaluate the effects of a novel topical treatment consisting of sphingolipids and GAGs extracts in dogs with AD. This formulation is different from previously tested products because the sphingolipid extract contained high amounts of sphingomyelin, a precursor of ceramides, and this has been shown to enhance endogenous synthesis of ceramides and to increase lamellar-related structures in vitro. Thus, it was hypothesized that this formulation could improve clinical disease and skin barrier function in patients with AD. Results Twelve house dust mite (HDM) allergic atopic beagle dogs were randomized into two groups: control (n = 6; no treatment) or treatment (n = 6; topical sphingolipids and GAGs twice weekly for 8 weeks). Dogs were challenged with allergen twice weekly and the severity of dermatitis was scored using the canine atopic dermatitis and extent severity index (CADESI-03) once weekly. Skin barrier function (measurement of transepidermal water loss) and severity of pruritus (both pruritus visual analog scale [PVAS] and pruritus timed episodes) were assessed at 0, 4 and 8 weeks of treatment. Assessments were done by personnel unaware of group allocation. Complete blood count, serum biochemistry and stratum corneum (SC) lipidomics analyses were done at baseline and at week 8. Compared to baseline, significant increases in CADESI (P = 0.0003) and PVAS (P = 0.041) were observed only in the control group, and SC polyunsaturated fatty acids increased significantly only with treatment (P = 0.039). Compared to control, treatment group had a significantly lower CADESI after 1 week (P = 0.0078) and a significantly lower PVAS after 8 weeks (P = 0.0448). Treatment was well tolerated. Conclusions In this study in dogs with AD, a new topical formulation containing sphingomyelin-rich sphingolipids plus GAGs extracts attenuated the clinical worsening induced by HDM, supporting its use in atopic patients, either as an adjunctive treatment or used as monotherapy in certain cases.
Collapse
Affiliation(s)
- Rosanna Marsella
- Department of Small Animal Clinical Sciences, University of Florida, 2015 SW 16th Ave, Gainesville, FL, 32608, USA.
| | - Sergi Segarra
- R&D Bioiberica S.A.U, pl. Francesc Macià 7, 08029, Barcelona, Spain
| | - Kim Ahrens
- Department of Small Animal Clinical Sciences, University of Florida, 2015 SW 16th Ave, Gainesville, FL, 32608, USA
| | - Cristina Alonso
- OWL Metabolomics, Edificio 502, Parque Tecnológico de Bizkaia, 48160, Derio, Spain
| | - Lluís Ferrer
- Department of Medicine and Surgery, Veterinary School, Universitat Autònoma de Barcelona, Edifici V Campus UAB, 08290, Cerdanyola del Vallès, Spain
| |
Collapse
|
16
|
Molecular Mechanism of Epidermal Barrier Dysfunction as Primary Abnormalities. Int J Mol Sci 2020; 21:ijms21041194. [PMID: 32054030 PMCID: PMC7072774 DOI: 10.3390/ijms21041194] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Revised: 02/08/2020] [Accepted: 02/09/2020] [Indexed: 02/07/2023] Open
Abstract
Epidermal barrier integrity could be influenced by various factors involved in epidermal cell differentiation and proliferation, cell–cell adhesion, and skin lipids. Dysfunction of this barrier can cause skin disorders, including eczema. Inversely, eczema can also damage the epidermal barrier. These interactions through vicious cycles make the mechanism complicated in connection with other mechanisms, particularly immunologic responses. In this article, the molecular mechanisms concerning epidermal barrier abnormalities are reviewed in terms of the following categories: epidermal calcium gradients, filaggrin, cornified envelopes, desquamation, and skin lipids. Mechanisms linked to ichthyoses, atopic dermatitis without exacerbation or lesion, and early time of experimental irritation were included. On the other hand, the mechanism associated with epidermal barrier abnormalities resulting from preceding skin disorders was excluded. The molecular mechanism involved in epidermal barrier dysfunction has been mostly episodic. Some mechanisms have been identified in cultured cells or animal models. Nonetheless, research into the relationship between the causative molecules has been gradually increasing. Further evidence-based systematic data of target molecules and their interactions would probably be helpful for a better understanding of the molecular mechanism underlying the dysfunction of the epidermal barrier.
Collapse
|
17
|
Effect of physical stimuli on hair follicle deposition of clobetasol-loaded Lipid Nanocarriers. Sci Rep 2020; 10:176. [PMID: 31932640 PMCID: PMC6957495 DOI: 10.1038/s41598-019-56760-w] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2019] [Accepted: 12/10/2019] [Indexed: 12/20/2022] Open
Abstract
Clobetasol propionate (CLO) is a potent glucocorticoid used to treat inflammation-based skin, scalp, and hair disorders. In such conditions, hair follicles (HF) are not only the target site but can also act as drug reservoirs when certain formulations are topically applied. Recently, we have demonstrated nanostructured lipid carriers (NLC) containing CLO presenting epidermal-targeting potential. Here, the focus was evaluating the HF uptake provided by such nanoparticles in comparison to a commercial cream and investigating the influence of different physical stimuli [i.e., infrared (IR) irradiation (with and without metallic nanoparticles-MNP), ultrasound (US) (with and without vibration) and mechanical massage] on their follicular targeting potential. Nanosystems presented sizes around 180 nm (PdI < 0.2) and negative zeta potential. The formulation did not alter skin water loss measurements and was stable for at least 30 days at 5 °C. Nanoparticles released the drug in a sustained fashion for more than 3 days and increased passively about 40 times CLO follicular uptake compared to the commercial cream. Confocal images confirmed the enhanced follicular delivery. On the one hand, NLC application followed by IR for heat generation showed no benefit in terms of HF targeting even at higher temperatures generated by metallic nanoparticle heating. On the other hand, upon US treatment, CLO retention was significantly increased in deeper skin layers. The addition of mechanical vibration to the US treatment led to higher follicular accumulation compared to passive exposure to NLC without stimuli. However, from all evaluated stimuli, manual massage presented the highest follicular targeting potential, driving more than double the amount of CLO into the HF than NLC passive application. In conclusion, NLC showed great potential for delivering CLO to HF, and a simple massage was capable of doubling follicular retention.
Collapse
|
18
|
Gruber F, Marchetti-Deschmann M, Kremslehner C, Schosserer M. The Skin Epilipidome in Stress, Aging, and Inflammation. Front Endocrinol (Lausanne) 2020; 11:607076. [PMID: 33551998 PMCID: PMC7859619 DOI: 10.3389/fendo.2020.607076] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Accepted: 12/02/2020] [Indexed: 12/11/2022] Open
Abstract
Lipids are highly diverse biomolecules crucial for the formation and function of cellular membranes, for metabolism, and for cellular signaling. In the mammalian skin, lipids additionally serve for the formation of the epidermal barrier and as surface lipids, together regulating permeability, physical properties, acidification and the antimicrobial defense. Recent advances in accuracy and specificity of mass spectrometry have allowed studying enzymatic and non-enzymatic modifications of lipids-the epilipidome-multiplying the known diversity of molecules in this class. As the skin is an organ that is frequently exposed to oxidative-, chemical- and thermal stress, and to injury and inflammation, it is an ideal organ to study epilipidome dynamics, their causes, and their biological consequences. Recent studies uncover loss or gain in biological function resulting from either specific modifications or the sum of the modifications of lipids. These studies suggest an important role for the epilipidome in stress responses and immune regulation in the skin. In this minireview we provide a short survey of the recent developments on causes and consequences of epilipidomic changes in the skin or in cell types that reside in the skin.
Collapse
Affiliation(s)
- Florian Gruber
- Christian Doppler Laboratory for Skin Multimodal Imaging of Aging and Senescence - SKINMAGINE -, Vienna, Austria
- Christian Doppler Laboratory on Biotechnology of Skin Aging, Vienna, Austria
- Department of Dermatology, Medical University of Vienna, Vienna, Austria
- *Correspondence: Florian Gruber,
| | - Martina Marchetti-Deschmann
- Christian Doppler Laboratory for Skin Multimodal Imaging of Aging and Senescence - SKINMAGINE -, Vienna, Austria
- Institute of Chemical Technologies and Analytics, TU Wien, Vienna, Austria
| | - Christopher Kremslehner
- Christian Doppler Laboratory for Skin Multimodal Imaging of Aging and Senescence - SKINMAGINE -, Vienna, Austria
- Christian Doppler Laboratory on Biotechnology of Skin Aging, Vienna, Austria
- Department of Dermatology, Medical University of Vienna, Vienna, Austria
| | - Markus Schosserer
- Christian Doppler Laboratory for Skin Multimodal Imaging of Aging and Senescence - SKINMAGINE -, Vienna, Austria
- Christian Doppler Laboratory on Biotechnology of Skin Aging, Vienna, Austria
- Institute of Molecular Biotechnology, Department of Biotechnology, University of Natural Resources and Life Sciences, Vienna, Austria
| |
Collapse
|
19
|
Fourzali KM, Yosipovitch G. Management of Itch in the Elderly: A Review. Dermatol Ther (Heidelb) 2019; 9:639-653. [PMID: 31549284 PMCID: PMC6828892 DOI: 10.1007/s13555-019-00326-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2019] [Indexed: 02/07/2023] Open
Abstract
Chronic itch is common in the elderly patient and may be caused by a variety of known dermatologic and non-dermatologic conditions and can have a significant effect on quality of life. Age-related changes in barrier function, immunosenescence, and neuronal changes and neuropathies are common predisposing factors to chronic itch in this age group. Certain primary dermatologic conditions are more common in the elderly and can cause chronic itch. Also, co-morbid diseases particularly of the renal, hepatobiliary, or hematologic systems, psychologic conditions, or medications may contribute to chronic itch in this population. Thus, medical workup for an elderly patient with chronic itch requires special attention to the patient's medical history, current health status, and medications. Topical treatments and emollients may be recommended for elderly patients, with consideration of specific adverse effects and alternatives. Systemic medications pose a higher risk of adverse effects and many are contraindicated in the elderly for this reason. In addition, management in the elderly may be complicated by differential pharmacokinetics of medications, the presence of co-morbid health conditions, cognitive disorders, physical limitations, and polypharmacy. New and emerging treatment modalities hold promise for use in the elderly due to these special considerations.
Collapse
Affiliation(s)
- Kayla M Fourzali
- Dr. Phillip Frost Department of Dermatology and Cutaneous Surgery and Miami Itch Center, University of Miami, Miami, 33136, USA
| | - Gil Yosipovitch
- Dr. Phillip Frost Department of Dermatology and Cutaneous Surgery and Miami Itch Center, University of Miami, Miami, 33136, USA.
| |
Collapse
|
20
|
Gruber F, Kremslehner C, Narzt MS. The impact of recent advances in lipidomics and redox lipidomics on dermatological research. Free Radic Biol Med 2019; 144:256-265. [PMID: 31004751 DOI: 10.1016/j.freeradbiomed.2019.04.019] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Revised: 04/01/2019] [Accepted: 04/15/2019] [Indexed: 01/10/2023]
Abstract
Dermatological research is a major beneficiary of the rapidly developing advances in lipid analytic technology and of bioinformatic tools which help to decipher and interpret the accumulating big lipid data. At its interface with the environment, the epidermis develops a blend of lipids that constitutes the epidermal lipid barrier, essential for the protection from water loss and entry of dangerous noxae. Apart from their structural role in the barrier, novel intra- and inter-cellular signaling functions of lipids and their oxidation products have been uncovered in most cutaneous cell types over the last decades, and the discovery rate has been boosted by the advent of high resolution and -throughput mass spectrometric techniques. Our understanding of epidermal development has benefited from studies on fetal surface lipids, which appear to signal for adaptation to desiccation post partum, and from studies on the dynamics of epidermal lipids during adjustment to the atmosphere in the first months of life. At birth, external insults begin to challenge the skin and its lipids, and recent years have yielded ample insights into the dynamics of lipid synthesis and -oxdiation after UV exposure, and upon contact with sensitizers and irritants. Psoriasis and atopic dermatitis are the most common chronic inflammatory skin diseases, affecting at least 3% and 7% of the global population, respectively. Consequently, novel (redox-) lipidomic techniques have been applied to study systemic and topical lipid abnormalities in patient cohorts. These studies have refined the knowledge on eicosanoid signaling in both diseases, and have identified novel biomarkers and potential disease mediators, such as lipid antigens recognized by psoriatic T cells, as well as ceramide species, which specifically correlate with atopic dermatitis severity. Both biomarkers have yielded novel mechanistic insights. Finally, the technological progress has enabled studies to be performed that have monitored the consequences of diet, lifestyle, therapy and cosmetic intervention on the skin lipidome, highlighting the translational potential of (redox-) lipidomics in dermatology.
Collapse
Affiliation(s)
- Florian Gruber
- Department of Dermatology, Medical University of Vienna, Austria; Christian Doppler Laboratory for the Biotechnology of Skin Aging, Vienna, Austria.
| | - Christopher Kremslehner
- Department of Dermatology, Medical University of Vienna, Austria; Christian Doppler Laboratory for the Biotechnology of Skin Aging, Vienna, Austria
| | - Marie-Sophie Narzt
- Department of Dermatology, Medical University of Vienna, Austria; Christian Doppler Laboratory for the Biotechnology of Skin Aging, Vienna, Austria
| |
Collapse
|
21
|
Litman T. Personalized medicine-concepts, technologies, and applications in inflammatory skin diseases. APMIS 2019; 127:386-424. [PMID: 31124204 PMCID: PMC6851586 DOI: 10.1111/apm.12934] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Accepted: 01/31/2019] [Indexed: 12/19/2022]
Abstract
The current state, tools, and applications of personalized medicine with special emphasis on inflammatory skin diseases like psoriasis and atopic dermatitis are discussed. Inflammatory pathways are outlined as well as potential targets for monoclonal antibodies and small-molecule inhibitors.
Collapse
Affiliation(s)
- Thomas Litman
- Department of Immunology and MicrobiologyUniversity of CopenhagenCopenhagenDenmark
- Explorative Biology, Skin ResearchLEO Pharma A/SBallerupDenmark
| |
Collapse
|
22
|
Abstract
Skin hydration is a complex process that influences the physical and mechanical properties of skin. Various technologies have emerged over the years to assess this parameter, with the current standard being electrical probe-based instruments. Nevertheless, their inability to provide detailed information has prompted the use of sophisticated spectroscopic and imaging methodologies, which are capable of in-depth skin analysis that includes structural and composition details. Modern imaging and spectroscopic techniques have transformed skin research in the dermatological and cosmetics disciplines, and are now commonly employed in conjunction with traditional methods for comprehensive assessment of both healthy and pathological skin. This article reviews current techniques employed in measuring skin hydration, and gives an account on their principle of operation and applications in skin-related research.
Collapse
|
23
|
Abstract
PURPOSE OF REVIEW To summarize the current knowledge on the morphology, functionality and biochemical composition of the skin in allergic reactions. We address novel noninvasive techniques that promise to disclose intimate mechanisms of skin allergy in vivo. Epidermal barrier is not just a static wrap of the organism but rather a dynamic field for immunological, biophysical and biochemical processes and serves as a bio-sensor for exogenous danger signals. RECENT FINDINGS Classical biophysical methods are amended by novel in-vivo techniques, such as Raman spectroscopy, analysing the skin microcomposition and develop epidermal profiles. Visualization techniques, such as reflectance spectroscopy and optical coherence tomography (OCT) are employed in studying the micro-morphological changes in the skin of allergic patients. SUMMARY The noninvasive assessment of skin functions, micro-morphology and biochemical as well as immunological pathways will help to better understand skin allergies. They will allow to detect subtypes, for example in atopic dermatitis and to develop specific treatment modalities.
Collapse
|