1
|
Zhang QY, Liu HX. Insights into the role of FGF21 in coronary heart disease. Int J Biol Macromol 2024; 282:136911. [PMID: 39476920 DOI: 10.1016/j.ijbiomac.2024.136911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Revised: 10/22/2024] [Accepted: 10/23/2024] [Indexed: 11/11/2024]
Abstract
Coronary heart disease (CHD) remains a leading cause of global mortality, with an alarming increase in its incidence among the younger population in recent years. This has amplified the need for early diagnostic markers and advances in therapeutic strategies to improve patient outcomes. Fibroblast growth factor 21 (FGF21), an endocrine hormone crucial for the regulation of metabolic homeostasis, has garnered significant attention over the past decade, owing to its role in cardiovascular health. FGF21 exerts cardioprotective effects through various mechanisms, including regulation of myocardial energy metabolism, prevention of cardiac cell death, suppression of inflammation, and reduction of oxidative stress in the heart. Given these properties, FGF21 shows considerable promise as a pharmacological agent for the management of CHD. Moreover, it has emerged as a promising biomarker for the diagnosis and prognostic assessment of CHD. This review aims to clarify the molecular mechanisms underlying the favorable effects of FGF21 on CHD and its related risk factors, thereby providing valuable insights for future research on the role of FGF21 in CHD management.
Collapse
Affiliation(s)
- Qin-Yao Zhang
- Health Sciences Institute, China Medical University, Shenyang, China; Institute of Life Sciences, China Medical University, Shenyang, China; Liaoning Key Laboratory of Obesity and Glucose/Lipid Associated Metabolic Diseases, China Medical University, Shenyang, China; Department of Cardiology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Hui-Xin Liu
- Health Sciences Institute, China Medical University, Shenyang, China; Institute of Life Sciences, China Medical University, Shenyang, China; Liaoning Key Laboratory of Obesity and Glucose/Lipid Associated Metabolic Diseases, China Medical University, Shenyang, China.
| |
Collapse
|
2
|
Zhang T, Jiang D, Zhang X, Chen L, Jiang J, Zhang C, Li S, Li Q. The role of nonmyocardial cells in the development of diabetic cardiomyopathy and the protective effects of FGF21: a current understanding. Cell Commun Signal 2024; 22:446. [PMID: 39327594 PMCID: PMC11426003 DOI: 10.1186/s12964-024-01842-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Accepted: 09/20/2024] [Indexed: 09/28/2024] Open
Abstract
Diabetic cardiomyopathy (DCM) represents a unique myocardial disease originating from diabetic metabolic disturbances that is characterized by myocardial fibrosis and diastolic dysfunction. While recent research regarding the pathogenesis and treatment of DCM has focused primarily on myocardial cells, nonmyocardial cells-including fibroblasts, vascular smooth muscle cells (VSMCs), endothelial cells (ECs), and immune cells-also contribute significantly to the pathogenesis of DCM. Among various therapeutic targets, fibroblast growth factor 21 (FGF21) has been identified as a promising agent because of its cardioprotective effects that extend to nonmyocardial cells. In this review, we aim to elucidate the role of nonmyocardial cells in DCM and underscore the potential of FGF21 as a therapeutic strategy for these cells.
Collapse
Affiliation(s)
- Tianyi Zhang
- School of Basic Medical Sciences, Southwest Medical University, Luzhou, 646000, Sichuan, China
| | - Donghui Jiang
- School of Basic Medical Sciences, Southwest Medical University, Luzhou, 646000, Sichuan, China
| | - Xiao Zhang
- School of Basic Medical Sciences, Southwest Medical University, Luzhou, 646000, Sichuan, China
| | - Ligang Chen
- Department of Neurosurgery, the Affiliated Hospital of Southwest Medical University, Luzhou, 646000, Sichuan, China
| | - Jun Jiang
- Department of General Surgery (Thyroid Surgery), the Affiliated Hospital of Southwest Medical University, Luzhou, 646000, Sichuan, China
- Metabolic Vascular Diseases Key Laboratory of Sichuan Province, Luzhou, 646000, Sichuan, China
| | - Chunxiang Zhang
- School of Basic Medical Sciences, Southwest Medical University, Luzhou, 646000, Sichuan, China.
- Department of Cardiology, The Affiliated Hospital of Southwest Medical University, Key Laboratory of Medical Electrophysiology, Ministry of Education, Institute of Cardiovascular Research, Basic Medicine Research Innovation Center for Cardiometabolic Diseases, Ministry of Education, Nucleic Acid Medicine of Luzhou Key Laboratory, Southwest Medical University, Luzhou, 646000, Sichuan, China.
| | - Shengbiao Li
- School of Basic Medical Sciences, Southwest Medical University, Luzhou, 646000, Sichuan, China.
- Department of Cardiology, The Affiliated Hospital of Southwest Medical University, Key Laboratory of Medical Electrophysiology, Ministry of Education, Institute of Cardiovascular Research, Basic Medicine Research Innovation Center for Cardiometabolic Diseases, Ministry of Education, Nucleic Acid Medicine of Luzhou Key Laboratory, Southwest Medical University, Luzhou, 646000, Sichuan, China.
| | - Qiuhong Li
- School of Basic Medical Sciences, Southwest Medical University, Luzhou, 646000, Sichuan, China.
| |
Collapse
|
3
|
Xu Z, Huang J, Wen M, Zhang X, Lyu D, Li S, Xiao H, Li M, Shen C, Huang H. Gentiopicroside ameliorates glucose and lipid metabolism in T2DM via targeting FGFR1. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 132:155780. [PMID: 38885580 DOI: 10.1016/j.phymed.2024.155780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 05/07/2024] [Accepted: 05/26/2024] [Indexed: 06/20/2024]
Abstract
BACKGROUND The suppression of the fibroblast growth factor 21/fibroblast growth factor receptor 1 (FGF21/FGFR1) signaling pathway is considered as a vital factor in the type 2 diabetes mellitus (T2DM) progression. Our previous study showed that gentiopicroside (GPS), the main active compound present in Gentiana macrophylla Pall., has the capacity to control disorders related to glucose and lipid metabolism in individuals with T2DM. Nevertheless, the specific mechanism remains unclear. PURPOSE In light of the fact that the PharmMapper database suggests FGFR1 as the target of GPS, our investigation aims to determine if GPS can enhance glucose and lipid metabolism issues in T2DM by modulating the FGF21/FGFR1 signaling pathway. METHODS In this study, we used palmitic acid (PA)-induced HepG2 cells and db/db mice to investigate the function and mechanism of GPS in the FGF21/FGFR1 signaling pathway. To examine the interaction between GPS and FGFR1, researchers performed Cellular Thermal Shift Assay (CETSA) and Surface Plasmon Resonance (SPR) analysis. RESULTS The results suggest that GPS activates the traditional metabolic pathways, including PI3K/AKT and AMPK, which are the subsequent stages of the FGF21/FGFR1 pathway. This activation leads to the enhancement of glucose and lipid metabolism issues in PA-treated HepG2 cells and db/db mice. Furthermore, the depletion of FGFR1 has been noticed to oppose the stimulation of PI3K/AKT and AMPK pathways by GPS in HepG2 cells subjected to PA. Notability, our research affirms that GPS binds directly to FGFR1, hindering the ubiquitinated degradation of FGFR1 by neural precursor cells expressing developmentally decreased protein 4 (NEDD4) and ultimately promoting FGF21 signal transduction. CONCLUSION This study demonstrates that GPS targeting FGFR1 activates the PI3K/AKT and AMPK pathways, which is an important mechanism for its treatment of T2DM.
Collapse
Affiliation(s)
- Zhanchi Xu
- National-Local Joint Engineering Laboratory of Druggability and New Drugs Evaluation, Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, Guangdong Province Engineering Laboratoty for Druggability and New Drug Evaluation, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China; Guangzhou Hospital of Integrated Traditional and Western Medicine, Guangzhou 510801, China
| | - Jucun Huang
- Hubei NO.3 People's Hospital of Jianghan University, Wuhan 430033, China
| | - Min Wen
- National-Local Joint Engineering Laboratory of Druggability and New Drugs Evaluation, Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, Guangdong Province Engineering Laboratoty for Druggability and New Drug Evaluation, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Xuting Zhang
- National-Local Joint Engineering Laboratory of Druggability and New Drugs Evaluation, Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, Guangdong Province Engineering Laboratoty for Druggability and New Drug Evaluation, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Dongxin Lyu
- National-Local Joint Engineering Laboratory of Druggability and New Drugs Evaluation, Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, Guangdong Province Engineering Laboratoty for Druggability and New Drug Evaluation, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Shanshan Li
- National-Local Joint Engineering Laboratory of Druggability and New Drugs Evaluation, Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, Guangdong Province Engineering Laboratoty for Druggability and New Drug Evaluation, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Haiming Xiao
- National-Local Joint Engineering Laboratory of Druggability and New Drugs Evaluation, Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, Guangdong Province Engineering Laboratoty for Druggability and New Drug Evaluation, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Min Li
- National-Local Joint Engineering Laboratory of Druggability and New Drugs Evaluation, Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, Guangdong Province Engineering Laboratoty for Druggability and New Drug Evaluation, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China.
| | - Cuangpeng Shen
- Department of Endocrinology, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou 510405, China.
| | - Heqing Huang
- Guangzhou Hospital of Integrated Traditional and Western Medicine, Guangzhou 510801, China.
| |
Collapse
|
4
|
Rathor R, Suryakumar G. Myokines: A central point in managing redox homeostasis and quality of life. Biofactors 2024; 50:885-909. [PMID: 38572958 DOI: 10.1002/biof.2054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Accepted: 03/15/2024] [Indexed: 04/05/2024]
Abstract
Redox homeostasis is a crucial phenomenon that is obligatory for maintaining the healthy status of cells. However, the loss of redox homeostasis may lead to numerous diseases that ultimately result in a compromised quality of life. Skeletal muscle is an endocrine organ that secretes hundreds of myokines. Myokines are peptides and cytokines produced and released by muscle fibers. Skeletal muscle secreted myokines act as a robust modulator for regulating cellular metabolism and redox homeostasis which play a prime role in managing and improving metabolic function in multiple organs. Further, the secretory myokines maintain redox homeostasis not only in muscles but also in other organs of the body via stabilizing oxidants and antioxidant levels. Myokines are also engaged in maintaining mitochondrial dynamics as mitochondria is a central point for the generation of reactive oxygen species (ROS). Ergo, myokines also act as a central player in communicating signals to other organs, including the pancreas, gut, liver, bone, adipose tissue, brain, and skin via their autocrine, paracrine, or endocrine effects. The present review provides a comprehensive overview of skeletal muscle-secreted myokines in managing redox homeostasis and quality of life. Additionally, probable strategies will be discussed that provide a solution for a better quality of life.
Collapse
Affiliation(s)
- Richa Rathor
- Defence Institute of Physiology & Allied Sciences (DIPAS), Defence Research and Development Organization (DRDO), Ministry of Defence, Delhi, India
| | - Geetha Suryakumar
- Defence Institute of Physiology & Allied Sciences (DIPAS), Defence Research and Development Organization (DRDO), Ministry of Defence, Delhi, India
| |
Collapse
|
5
|
Berezin AE, Berezina TA, Hoppe UC, Lichtenauer M, Berezin AA. Methods to predict heart failure in diabetes patients. Expert Rev Endocrinol Metab 2024; 19:241-256. [PMID: 38622891 DOI: 10.1080/17446651.2024.2342812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Accepted: 04/10/2024] [Indexed: 04/17/2024]
Abstract
INTRODUCTION Type 2 diabetes mellitus (T2DM) is one of the leading causes of cardiovascular disease and powerful predictor for new-onset heart failure (HF). AREAS COVERED We focus on the relevant literature covering evidence of risk stratification based on imaging predictors and circulating biomarkers to optimize approaches to preventing HF in DM patients. EXPERT OPINION Multiple diagnostic algorithms based on echocardiographic parameters of cardiac remodeling including global longitudinal strain/strain rate are likely to be promising approach to justify individuals at higher risk of incident HF. Signature of cardiometabolic status may justify HF risk among T2DM individuals with low levels of natriuretic peptides, which preserve their significance in HF with clinical presentation. However, diagnostic and predictive values of conventional guideline-directed biomarker HF strategy may be non-optimal in patients with obesity and T2DM. Alternative biomarkers affecting cardiac fibrosis, inflammation, myopathy, and adipose tissue dysfunction are plausible tools for improving accuracy natriuretic peptides among T2DM patients at higher HF risk. In summary, risk identification and management of the patients with T2DM with established HF require conventional biomarkers monitoring, while the role of alternative biomarker approach among patients with multiple CV and metabolic risk factors appears to be plausible tool for improving clinical outcomes.
Collapse
Affiliation(s)
- Alexander E Berezin
- Department of Internal Medicine II, Division of Cardiology, Paracelsus Medical University of Salzburg, Salzburg, Austria
| | - Tetiana A Berezina
- VitaCenter, Department of Internal Medicine & Nephrology, Zaporozhye, Ukraine
| | - Uta C Hoppe
- Department of Internal Medicine II, Division of Cardiology, Paracelsus Medical University of Salzburg, Salzburg, Austria
| | - Michael Lichtenauer
- Department of Internal Medicine II, Division of Cardiology, Paracelsus Medical University of Salzburg, Salzburg, Austria
| | | |
Collapse
|
6
|
Zhang P, Li H, Zhang A, Wang X, Song Q, Li Z, Wang W, Xu J, Hou Y, Zhang Y. Mechanism of myocardial fibrosis regulation by IGF-1R in atrial fibrillation through the PI3K/Akt/FoxO3a pathway. Biochem Cell Biol 2023; 101:432-442. [PMID: 37018819 DOI: 10.1139/bcb-2022-0199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/07/2023] Open
Abstract
Atrial structural remodeling takes on a critical significance to the occurrence and maintenance of atrial fibrillation (AF). As revealed by recent data, insulin-like growth factor-1 receptor (IGF-1R) plays a certain role in tissue fibrosis. In this study, the mechanism of IGF-1R in atrial structural remodeling was examined based on in vivo and in vitro experiments. First, cluster analysis of AF hub genes was conducted, and then the molecular mechanism was proposed by which IGF-1R regulates myocardial fibrosis via the PI3K/Akt/FoxO3a pathway. Subsequently, the mentioned mechanism was verified in human cardiac fibroblasts (HCFs) and rats transduced with IGF-1 overexpression type 9 adeno-associated viruses. The results indicated that IGF-1R activation up-regulated collagen Ⅰ protein expression and Akt phosphorylation in HCFs and rat atrium. The administration of LY294002 reversed the above phenomenon, improved the shortening of atrial effective refractory period, and reduced the increased incidence of AF and atrial fibrosis in rats. The transfection of FoxO3a siRNA reduced the anti-fibrotic effect of LY294002 in HCFs. The above data revealed that activation of IGF-1R takes on a vital significance to atrial structural remodeling by facilitating myocardial fibrosis and expediting the occurrence and maintenance of AF through the regulation of the PI3K/Akt/FoxO3a signaling pathway.
Collapse
Affiliation(s)
- Pei Zhang
- Department of Cardiology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital. Ji'nan City, Shandong Province, China
| | - Huilin Li
- Shandong Provincial Qianfoshan Hospital, Cheeloo College of Medicine, Shandong University. Ji'nan City, Shandong Province, China
| | - An Zhang
- Shandong Provincial Qianfoshan Hospital, Cheeloo College of Medicine, Shandong University. Ji'nan City, Shandong Province, China
| | - Xiao Wang
- Department of Health Management Center, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital. Ji'nan City, Shandong Province, China
| | - Qiyuan Song
- Shandong First Medical University, The First Affiliated Hospital of Shandong First Medical University. Ji'nan City, Shandong Province, China
| | - Zhan Li
- Department of Cardiology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital. Ji'nan City, Shandong Province, China
| | - Weizong Wang
- Department of Cardiology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital. Ji'nan City, Shandong Province, China
| | - Jingwen Xu
- Department of Cardiology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital. Ji'nan City, Shandong Province, China
| | - Yinglong Hou
- Department of Cardiology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital. Ji'nan City, Shandong Province, China
| | - Yong Zhang
- Department of Cardiology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital. Ji'nan City, Shandong Province, China
| |
Collapse
|
7
|
HDAC Inhibitors Alleviate Uric Acid-Induced Vascular Endothelial Cell Injury by Way of the HDAC6/FGF21/PI3K/AKT Pathway. J Cardiovasc Pharmacol 2023; 81:150-164. [PMID: 36607630 PMCID: PMC9901848 DOI: 10.1097/fjc.0000000000001372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/17/2022] [Accepted: 09/09/2022] [Indexed: 01/07/2023]
Abstract
ABSTRACT Uric acid (UA) accumulation triggers endothelial dysfunction, oxidative stress, and inflammation. Histone deacetylase (HDAC) plays a vital role in regulating the pathological processes of various diseases. However, the influence of HDAC inhibitor on UA-induced vascular endothelial cell injury (VECI) remains undefined. Hence, this study aimed to investigate the effect of HDACs inhibition on UA-induced vascular endothelial cell dysfunction and its detailed mechanism. UA was used to induce human umbilical vein endothelial cell (HUVEC) injury. Meanwhile, potassium oxonate-induced and hypoxanthine-induced hyperuricemia mouse models were also constructed. A broad-spectrum HDAC inhibitor trichostatin A (TSA) or selective HDAC6 inhibitor TubastatinA (TubA) was given to HUVECs or mice to determine whether HDACs can affect UA-induced VECI. The results showed pretreatment of HUVECs with TSA or HDAC6 knockdown-attenuated UA-induced VECI and increased FGF21 expression and phosphorylation of AKT, eNOS, and FoxO3a. These effects could be reversed by FGF21 knockdown. In vivo, both TSA and TubA reduced inflammation and tissue injury while increased FGF21 expression and phosphorylation of AKT, eNOS, and FoxO3a in the aortic and renal tissues of hyperuricemia mice. Therefore, HDACs, especially HDAC6 inhibitor, alleviated UA-induced VECI through upregulating FGF21 expression and then activating the PI3K/AKT pathway. This suggests that HDAC6 may serve as a novel therapeutic target for treating UA-induced endothelial dysfunction.
Collapse
|
8
|
Yang N, Zhang Y, Huang Y, Yan J, Qian Z, Li H, Luo P, Yang Z, Luo M, Wei X, Nie H, Ruan L, Hao Y, Gao S, Zheng K, Zhang C, Zhang L. FGF21 at physiological concentrations regulates vascular endothelial cell function through multiple pathways. Biochim Biophys Acta Mol Basis Dis 2022; 1868:166558. [PMID: 36174877 DOI: 10.1016/j.bbadis.2022.166558] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 09/05/2022] [Accepted: 09/20/2022] [Indexed: 11/26/2022]
Abstract
Cardiovascular diseases are closely associated with dysfunction of vascular endothelial cells (VECs), which can be influenced by various intrinsic and extrinsic factors, including fibroblast growth factor 21 (FGF21), but the effects of serum FGF21 on VECs remain unclear. We performed a cross-sectional study nested within a prospective cohort to assess the range of physiological concentrations of fasting serum FGF21 in 212 healthy individuals. We also treated human umbilical VECs (HUVECs) with recombinant FGF21 at different concentrations. The effects of FGF21 treatment on glycolysis, nitric oxide release and reduction of intracellular reactive oxygen species were assessed. The cells were also collected for RNA transcriptomic sequencing to investigate the potential mechanisms induced by FGF21 treatment. In addition, the roles of SIRT1 in the regulation of FGF21 were evaluated by SIRT1 knockdown. The results showed that the serum FGF21 concentration in healthy individuals ranged from 15.70 to 499.96 pg/mL and was positively correlated with age and pulse wave velocity. FGF21 at 400 pg/mL was sufficient to enhance glycolysis, increase nitric oxide release and protect cells from H2O2-induced oxidative damage. The upregulated genes after FGF21 treatment were mostly enriched in metabolic pathways, whereas the downregulated genes were mostly enriched in inflammation and apoptosis signaling pathways. Moreover, SIRT1 may be involved in the regulation of some genes by FGF21. In conclusion, our data indicate that FGF21 at a level within the physiological concentration range has a beneficial effect on HUVECs and that this effect may partly depend on the regulation of SIRT1.
Collapse
Affiliation(s)
- Ni Yang
- Department of Geriatrics, Institute of Gerontology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yucong Zhang
- Department of Geriatrics, Institute of Gerontology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yi Huang
- Department of Geriatrics, Institute of Gerontology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jinhua Yan
- Department of Geriatrics, Institute of Gerontology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zonghao Qian
- Department of Geriatrics, Institute of Gerontology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Han Li
- Department of Geriatrics, Institute of Gerontology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Pengcheng Luo
- Department of Geriatrics, Institute of Gerontology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zhen Yang
- Department of Geriatrics, Institute of Gerontology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Mandi Luo
- Department of Geriatrics, Institute of Gerontology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiuxian Wei
- Department of Geriatrics, Institute of Gerontology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Hao Nie
- Department of Geriatrics, Institute of Gerontology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Lei Ruan
- Department of Geriatrics, Institute of Gerontology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yi Hao
- Department of Geriatrics, Institute of Gerontology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Department of Pathogen Biology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Shangbang Gao
- Department of Geriatrics, Institute of Gerontology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Kai Zheng
- Department of Geriatrics, Institute of Gerontology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Cuntai Zhang
- Department of Geriatrics, Institute of Gerontology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| | - Le Zhang
- Department of Geriatrics, Institute of Gerontology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| |
Collapse
|
9
|
Liu D, Chen J, Xie Y, Mei X, Xu C, Liu J, Cao X. Investigating the molecular mechanisms of glyoxal-induced cytotoxicity in human embryonic kidney cells: Insights from network toxicology and cell biology experiments. ENVIRONMENTAL TOXICOLOGY 2022; 37:2269-2280. [PMID: 35621379 DOI: 10.1002/tox.23593] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 04/28/2022] [Accepted: 05/14/2022] [Indexed: 06/15/2023]
Abstract
Glyoxal, a reactive carbonyl species, can be generated both endogenously (glucose metabolism) and exogenously (cigarette smoke and food system). Increasing evidence demonstrates that glyoxal exacerbates the development and progression of diabetic nephropathy, but the underlying mechanisms of glyoxal toxicity to human embryonic kidney (HEK293) cells remain unclear. In this work, the molecular mechanisms of glyoxal-induced cytotoxicity in HEK293 cells were explored with network toxicology and cell biology experiments. Network toxicology results showed that oxidative stress and advanced glycation end products (AGEs)/RAGE signaling pathways played a crucial role in glyoxal toxicity. Next, further validation was performed at the cellular level. Glyoxal activated the AGEs-RAGE signaling pathway, caused the increase of cellular ROS, and activated the p38MAPK and JNK signaling pathways, causing cellular oxidative stress. Furthermore, glyoxal caused the activation of the NF-κB signaling pathway and increased the expression of TGF-β1, indicating that glyoxal caused cellular inflammation. Moreover, glyoxal caused cellular DNA damage accompanied by the activation of DNA damage response pathways. Finally, the mitochondrial apoptosis pathway was activated. The results that obtained in cell biology were consistent with network toxicology, which corroborated each other and together indicated that glyoxal induced HEK293 cells damage via the process of oxidative stress, the AGEs-RAGE pathway, and their associated signaling pathways. This study provides the experimental basis for the cytotoxicity of glyoxal on HEK293 cells.
Collapse
Affiliation(s)
- Dan Liu
- School of life Science, Liaoning University, Shenyang, China
| | - Junliang Chen
- School of life Science, Liaoning University, Shenyang, China
| | - Yanzhen Xie
- School of life Science, Liaoning University, Shenyang, China
| | - Xueying Mei
- School of life Science, Liaoning University, Shenyang, China
| | - Chengbin Xu
- School of Environment Science, Liaoning University, Shenyang, China
| | - Jianli Liu
- School of life Science, Liaoning University, Shenyang, China
| | - Xiangyu Cao
- School of life Science, Liaoning University, Shenyang, China
| |
Collapse
|
10
|
Li S, Li X, Wang H, Jia X, Mao H, Dong F, Zhao T, Gao Y, Zhang C, Bai R, Liu R, Yan L, Ji Y, Zhang N, Wang W. The Hypoglycemic Effect of JinQi Jiangtang Tablets Is Partially Dependent on the Palmatine-Induced Activation of the Fibroblast Growth Factor Receptor 1 Signaling Pathway. Front Pharmacol 2022; 13:895724. [PMID: 35935824 PMCID: PMC9354937 DOI: 10.3389/fphar.2022.895724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Accepted: 06/16/2022] [Indexed: 11/13/2022] Open
Abstract
JinQi Jiangtang tablet (JQJTT) is a Chinese patent medicine that has been shown to be beneficial for patients with diabetes both preclinically and clinically; however, the molecular mechanism underlying the effects of JQJTT remains unclear. In this study, surface plasmon resonance fishing was employed to identify JQJTT constituent molecules that can specifically bind to fibroblast growth factor receptor 1 (FGFR1), leading to the retrieval of palmatine (PAL), a key active ingredient of JQJTT. In vivo and in vitro experiments demonstrated that PAL can significantly stimulate FGFR1 phosphorylation and upregulate glucose transporter type 1 (GLUT-1) expression, thereby facilitating glucose uptake in insulin resistance (IR) HepG2 cells as well as alleviating hyperglycemia in diabetic mice. Our results revealed that PAL functions as an FGFR1 activator and that the hypoglycemic effect of JQJTT is partially dependent on the PAL-induced activation of the FGFR1 pathway. In addition, this study contributed to the understanding the pharmacodynamic basis and mechanism of action of JQJTT and provided a novel concept for future research on PAL.
Collapse
Affiliation(s)
- Siming Li
- School of Pharmacy, Harbin University of Commerce, Harbin, China
| | - Xiaoling Li
- School of Pharmacy, Harbin University of Commerce, Harbin, China
| | - HeMeng Wang
- College of Life Sciences, Tarim University, Alar, China
- College of Life Sciences, Northeast Agricultural University, Harbin, China
| | - Xinhang Jia
- School of Pharmacy, Harbin University of Commerce, Harbin, China
| | - Haoyang Mao
- School of Pharmacy, Harbin University of Commerce, Harbin, China
| | - Fangxin Dong
- School of Pharmacy, Harbin University of Commerce, Harbin, China
| | - Tingting Zhao
- Aier School of Ophthalmology, Central South University, Changsha, China
| | - Yuan Gao
- School of Pharmacy, Harbin University of Commerce, Harbin, China
| | - Chen Zhang
- School of Pharmacy, Harbin University of Commerce, Harbin, China
| | - Ruisong Bai
- College of Life Sciences, Northeast Agricultural University, Harbin, China
| | - Ruihao Liu
- College of Life Sciences, Northeast Agricultural University, Harbin, China
| | - Lijun Yan
- School of Pharmacy, Harbin University of Commerce, Harbin, China
| | - Yubin Ji
- School of Pharmacy, Harbin University of Commerce, Harbin, China
- *Correspondence: Yubin Ji, ; Wenfei Wang,
| | - Na Zhang
- College of Food Engineering, Harbin University of Commerce, Harbin, China
| | - Wenfei Wang
- College of Life Sciences, Northeast Agricultural University, Harbin, China
- *Correspondence: Yubin Ji, ; Wenfei Wang,
| |
Collapse
|
11
|
Zhang Y, Liu D, Long XX, Fang QC, Jia WP, Li HT. The role of FGF21 in the pathogenesis of cardiovascular disease. Chin Med J (Engl) 2021; 134:2931-2943. [PMID: 34939977 PMCID: PMC8710326 DOI: 10.1097/cm9.0000000000001890] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Indexed: 12/16/2022] Open
Abstract
ABSTRACT The morbidity and mortality of cardiovascular diseases (CVDs) are increasing worldwide and seriously threaten human life and health. Fibroblast growth factor 21 (FGF21), a metabolic regulator, regulates glucose and lipid metabolism and may exert beneficial effects on the cardiovascular system. In recent years, FGF21 has been found to act directly on the cardiovascular system and may be used as an early biomarker of CVDs. The present review highlights the recent progress in understanding the relationship between FGF21 and CVDs including coronary heart disease, myocardial ischemia, cardiomyopathy, and heart failure and also explores the related mechanism of the cardioprotective effect of FGF21. FGF21 plays an important role in the prediction, treatment, and improvement of prognosis in CVDs. This cardioprotective effect of FGF21 may be achieved by preventing endothelial dysfunction and lipid accumulating, inhibiting cardiomyocyte apoptosis and regulating the associated oxidative stress, inflammation and autophagy. In conclusion, FGF21 is a promising target for the treatment of CVDs, however, its clinical application requires further clarification of the precise role of FGF21 in CVDs.
Collapse
Affiliation(s)
- Ying Zhang
- Department of Endocrinology and Metabolism, Shanghai Diabetes Institute, Shanghai Clinical Center for Diabetes, Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, 600 Yishan Road, Shanghai 200233, China
- Department of Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai 200233, China
| | - Dan Liu
- Department of Endocrinology and Metabolism, Shanghai Diabetes Institute, Shanghai Clinical Center for Diabetes, Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, 600 Yishan Road, Shanghai 200233, China
- Department of Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai 200233, China
| | - Xiao-Xue Long
- Department of Endocrinology and Metabolism, Shanghai Diabetes Institute, Shanghai Clinical Center for Diabetes, Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, 600 Yishan Road, Shanghai 200233, China
- Department of Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai 200233, China
| | - Qi-Chen Fang
- Department of Endocrinology and Metabolism, Shanghai Diabetes Institute, Shanghai Clinical Center for Diabetes, Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, 600 Yishan Road, Shanghai 200233, China
| | - Wei-Ping Jia
- Department of Endocrinology and Metabolism, Shanghai Diabetes Institute, Shanghai Clinical Center for Diabetes, Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, 600 Yishan Road, Shanghai 200233, China
| | - Hua-Ting Li
- Department of Endocrinology and Metabolism, Shanghai Diabetes Institute, Shanghai Clinical Center for Diabetes, Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, 600 Yishan Road, Shanghai 200233, China
| |
Collapse
|
12
|
Ouyang R, Zhao X, Zhang R, Yang J, Li S, Deng D. FGF21 attenuates high uric acid‑induced endoplasmic reticulum stress, inflammation and vascular endothelial cell dysfunction by activating Sirt1. Mol Med Rep 2021; 25:35. [PMID: 34850960 PMCID: PMC8669652 DOI: 10.3892/mmr.2021.12551] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Accepted: 10/22/2021] [Indexed: 12/19/2022] Open
Abstract
Uric acid (UA) is the final oxidation product of purine metabolism. Hyperuricemia has been previously reported to contribute to vascular endothelial dysfunction and the development of cardiovascular diseases, metabolic syndrome and chronic kidney diseases. In addition, it has been reported that fibroblast growth factor 21 (FGF21) can exert regulatory effects on UA‑induced lipid accumulation. Therefore, the present study aimed to investigate the possible role of FGF21 in HUVEC cell injury induced by UA. The study used UA to induce HUVEC cell injury, inhibited sirtuin 1 (Sirt1) expression using EX527 and overexpressed FGF21 by transfection. Subsequently, reverse transcription‑quantitative PCR was performed to measure the mRNA expression levels of FGF21, Sirt1 and inflammatory cytokines TNF‑α, IL‑1β and IL‑6, whereas western blotting was performed to measure their corresponding protein expression levels including FGF21, Sirt1, NLR family pyrin domain containing 3, pro‑caspase1, apoptosis‑associated speck‑like protein containing a CARD, activating transcription factor 4, C/EBP homologous protein and eukaryotic initiation factor 2. Furthermore, dichloro‑dihydro‑fluorescein diacetate staining was performed to measure intracellular reactive oxygen species (ROS) generation in HUVECs. The levels of ROS and nitric oxide were also quantified using commercial assay kits. The results demonstrated that overexpression of FGF21 significantly inhibited UA treatment‑induced endoplasmic reticulum (ER) stress, inflammation and oxidative stress in HUVECs. Furthermore, overexpression of FGF21 significantly activated Sirt1. The sirt1 inhibitor, EX527, significantly abrogated the suppressive effects of FGF21 overexpression on ER stress, inflammation and oxidative stress in UA‑stimulated HUVECs. To conclude, results of the present study suggested that FGF21 may attenuate UA‑induced ER stress, inflammation and vascular endothelial cell dysfunction by activating Sirt1. Therefore, FGF21 may be a potential effective target for the future treatment of vascular endothelial cell dysfunction.
Collapse
Affiliation(s)
- Rong Ouyang
- Department of Endocrinology, Affiliated Hospital of Nantong University, Nantong, Jiangsu 226001, P.R. China
| | - Xiaoqin Zhao
- Department of Endocrinology, Affiliated Hospital of Nantong University, Nantong, Jiangsu 226001, P.R. China
| | - Rongping Zhang
- Department of Endocrinology, Affiliated Hospital of Nantong University, Nantong, Jiangsu 226001, P.R. China
| | - Jing Yang
- Department of Rheumatology, Mianyang Central Hospital, Mianyang, Sichuan 621000, P.R. China
| | - Siyin Li
- Department of Rheumatology, Mianyang Central Hospital, Mianyang, Sichuan 621000, P.R. China
| | - Daihua Deng
- Department of Rheumatology, Mianyang Central Hospital, Mianyang, Sichuan 621000, P.R. China
| |
Collapse
|
13
|
Network Pharmacology-Based and Molecular Docking-Based Analysis of Suanzaoren Decoction for the Treatment of Parkinson's Disease with Sleep Disorder. BIOMED RESEARCH INTERNATIONAL 2021; 2021:1752570. [PMID: 34660782 PMCID: PMC8519686 DOI: 10.1155/2021/1752570] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/17/2021] [Revised: 08/18/2021] [Accepted: 09/03/2021] [Indexed: 11/23/2022]
Abstract
This study is aimed at exploring the possible mechanism of action of the Suanzaoren decoction (SZRD) in the treatment of Parkinson's disease with sleep disorder (PDSD) based on network pharmacology and molecular docking. Traditional Chinese Medicine Systems Pharmacology (TCMSP) was used to screen the bioactive components and targets of SZRD, and their targets were standardized using the UniProt platform. The disease targets of “Parkinson's disease (PD)” and “Sleep disorder (SD)” were collected by OMIM, GeneCards, and DisGeNET databases. Thereafter, the protein-protein interaction (PPI) network was constructed using the STRING platform and visualized by Cytoscape (3.7.2) software. Then, the DAVID platform was used to analyze the Gene Ontology (GO) enrichment analysis and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway. Cytoscape (3.7.2) software was also used to construct the network of the “herb-component-target-pathway.” The core active ingredients and core action targets of the drug were verified by molecular docking using AutoDock software. A total of 135 Chinese herbal components and 41 corresponding targets were predicted for the treatment of PDSD using SZRD. Fifteen important signaling pathways were screened, such as the cancer pathway, TNF signaling pathway, PI3K-AKT signaling pathway, HIF-1 signaling pathway, and Toll-like receptor signaling pathway. The results of molecular docking showed that the main active compounds could bind to the representative targets and exhibit good affinity. This study revealed that SZRD has the characteristics and advantages of “multicomponent, multitarget, and multipathway” in the treatment of PDSD; among these, the combination of the main active components of quercetin and kaempferol with the key targets of AKT1, IL6, MAPK1, TP53, and VEGFA may be one of the important mechanisms. This study provides a theoretical basis for further study of the material basis and molecular mechanism of SZRD in the treatment of PDSD.
Collapse
|
14
|
Cui J, Zhang B, Gao M, Liu B, Dai C, Dong Y, Meng F. The Protective Effect of Tetrahydroxystilbene Glucoside on High Glucose-Induced Injury in Human Umbilical Vein Endothelial Cells through the PI3K/Akt/eNOS Pathway and Regulation of Bcl-2/Bax. J Vasc Res 2021; 58:301-310. [PMID: 34218226 DOI: 10.1159/000511035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Accepted: 08/13/2020] [Indexed: 11/19/2022] Open
Abstract
Endothelial dysfunction plays a central role in the patho-genesis of diabetic vascular complications. 2,3,5,4'-tetra-hydroxystilbene-2-O-β-D-glucoside (TSG), an active component extracted from the roots of Polygonum multiflorum Thunb, has been shown to have strong antioxidant and antiapoptotic activities. In the present study, we investigated the protective effect of TSG on apoptosis induced by high glucose in human umbilical vein endothelial cells (HUVECs) and the possible mechanisms. Our data demonstrated that TSG significantly reversed the high glucose-induced decrease in cell viability, suppressed high glucose-induced generation of intracellular reactive oxygen species (ROS), the activity of caspase-3, and decreased the percentage of apoptotic cells in a dose-dependent manner. In addition, we found that TSG not only increased the expression of Bcl-2, while decreasing Bax expression, but also activated phosphorylation of Akt and endothelial nitric oxide synthase (eNOS) with subsequent nitric oxide production and ultimately reduced high glucose-induced apoptosis. However, the antiapoptotic effects of TSG were abrogated by pretreatment of the cells with PI3K inhibitor (LY294002) or eNOS inhibitor NG-L-nitro-arginine methyl ester, respectively. These results suggest that TSG inhibits high glucose-induced apoptosis in HUVECs through inhibition of ROS production, activation of the PI3K/Akt/eNOS pathway, and upregulation of the Bcl-2/Bax ratio, and thus may demonstrate significant potential for preventing diabetic cardiovascular complications.
Collapse
Affiliation(s)
- Jiankun Cui
- Department of Cardiology, First Affiliated Hospital, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Bo Zhang
- Department of Cardiology, The Fourth Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Min Gao
- Department of Neurology, The Fourth Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Baohai Liu
- Department of Gastroenterology, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, China
| | - Cong Dai
- Department of Gastroenterology, The First Affiliated Hospital of China Medical University, Shenyang, China
| | - Yumei Dong
- Department of Cardiology, The Fourth Affiliated Hospital of Harbin Medical University, Harbin, China
| | - FanJi Meng
- Department of Cardiology, The Fourth Affiliated Hospital of Harbin Medical University, Harbin, China
| |
Collapse
|
15
|
Xi J, Rong Y, Zhao Z, Huang Y, Wang P, Luan H, Xing Y, Li S, Liao J, Dai Y, Liang J, Wu F. Scutellarin ameliorates high glucose-induced vascular endothelial cells injury by activating PINK1/Parkin-mediated mitophagy. JOURNAL OF ETHNOPHARMACOLOGY 2021; 271:113855. [PMID: 33485979 DOI: 10.1016/j.jep.2021.113855] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Revised: 12/28/2020] [Accepted: 01/13/2021] [Indexed: 06/12/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Scutellarin (Scu) is one of the main active ingredients of Erigeron breviscapus (Vant.) Hand.-Mazz which has been used to treat cardiovascular disease including vascular dysfunction caused by diabetes. Scu also has a protective effect on vascular endothelial cells against hyperglycemia. However, molecular mechanisms underlying this effect are not clear. AIM OF THE STUDY This aim of this study was to investigate the effect of Scu on human umbilical vein endothelial cells (HUVECs) injury induced by high glucose (HG), especially the regulation of PTEN-induced kinase 1 (PINK1)/Parkin-mediated mitophagy. MATERIALS AND METHODS HUVECs were exposed to HG to induce vascular endothelial cells injury in vitro. Cell viability was assessed by MTT assay. The extent of cell apoptosis was measured by Hoechst staining and flow cytometry. Mitophagy was assayed by fluorescent immunostaining, transmission electron microscope and immunoblot. Besides, virtual docking was conducted to validate the interaction of PINK1 protein and Scu. RESULTS We found that Scu significantly increased cell viability in HG-treated HUVECs. Scu reduces the expression of Bcl-2, Bax and cytochrome C (Cyt.c) to inhibit apoptosis through a mitochondria-dependent pathway. Meanwhile, Scu improved the overload of reactive oxygen species (ROS), superoxide dismutase (SOD) activity and SOD2 protein expression, and reversed the collapse of mitochondrial membrane potential. Besides, Scu increased autophagic flux, improved the expression of microtubule-associated protein 1 light chain 3 Ⅱ (LC3 II), Beclin 1 and autophagy-related gene 5 (Atg 5) and decreased the expression of Sequestosome1/P62 in HG-treated HUVECs. Furthermore, Scu improved the expressions of PINK1, Parkin, and Mitofusin2, which revealed the enhancement of mitophagy. Moreover, the beneficial effects of Scu on HG-induced low expression of Parkin, overproduction of ROS, and over expressions of P62, Cyt.c and Cleaved caspase-3 were weakened by PINK1 gene knockdown. Molecular docking suggested good interaction of Scu and PINK1 protein. CONCLUSION These results suggest that Scu may protect vascular endothelial cells against hyperglycemia-induced injury by up-regulating mitophagy via PINK1/Parkin signal pathway.
Collapse
Affiliation(s)
- Junxiao Xi
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 211198, China
| | - Yuezhao Rong
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 211198, China
| | - Zifeng Zhao
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 211198, China
| | - Yihai Huang
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 211198, China
| | - Pu Wang
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 211198, China
| | - Huiling Luan
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 211198, China
| | - Yan Xing
- School of Science, China Pharmaceutical University, Nanjing, 211198, China
| | - Siyuan Li
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 211198, China
| | - Jun Liao
- School of Science, China Pharmaceutical University, Nanjing, 211198, China.
| | - Yue Dai
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 211198, China
| | - Jingyu Liang
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 211198, China
| | - Feihua Wu
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 211198, China.
| |
Collapse
|
16
|
Pang BPS, Chan WS, Chan CB. Mitochondria Homeostasis and Oxidant/Antioxidant Balance in Skeletal Muscle-Do Myokines Play a Role? Antioxidants (Basel) 2021; 10:antiox10020179. [PMID: 33513795 PMCID: PMC7911667 DOI: 10.3390/antiox10020179] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 01/19/2021] [Accepted: 01/21/2021] [Indexed: 12/19/2022] Open
Abstract
Mitochondria are the cellular powerhouses that generate adenosine triphosphate (ATP) to substantiate various biochemical activities. Instead of being a static intracellular structure, they are dynamic organelles that perform constant structural and functional remodeling in response to different metabolic stresses. In situations that require a high ATP supply, new mitochondria are assembled (mitochondrial biogenesis) or formed by fusing the existing mitochondria (mitochondrial fusion) to maximize the oxidative capacity. On the other hand, nutrient overload may produce detrimental metabolites such as reactive oxidative species (ROS) that wreck the organelle, leading to the split of damaged mitochondria (mitofission) for clearance (mitophagy). These vital processes are tightly regulated by a sophisticated quality control system involving energy sensing, intracellular membrane interaction, autophagy, and proteasomal degradation to optimize the number of healthy mitochondria. The effective mitochondrial surveillance is particularly important to skeletal muscle fitness because of its large tissue mass as well as its high metabolic activities for supporting the intensive myofiber contractility. Indeed, the failure of the mitochondrial quality control system in skeletal muscle is associated with diseases such as insulin resistance, aging, and muscle wasting. While the mitochondrial dynamics in cells are believed to be intrinsically controlled by the energy content and nutrient availability, other upstream regulators such as hormonal signals from distal organs or factors generated by the muscle itself may also play a critical role. It is now clear that skeletal muscle actively participates in systemic energy homeostasis via producing hundreds of myokines. Acting either as autocrine/paracrine or circulating hormones to crosstalk with other organs, these secretory myokines regulate a large number of physiological activities including insulin sensitivity, fuel utilization, cell differentiation, and appetite behavior. In this article, we will review the mechanism of myokines in mitochondrial quality control and ROS balance, and discuss their translational potential.
Collapse
|
17
|
Xiao M, Tang Y, Wang S, Wang J, Wang J, Guo Y, Zhang J, Gu J. The Role of Fibroblast Growth Factor 21 in Diabetic Cardiovascular Complications and Related Epigenetic Mechanisms. Front Endocrinol (Lausanne) 2021; 12:598008. [PMID: 34349728 PMCID: PMC8326758 DOI: 10.3389/fendo.2021.598008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/23/2020] [Accepted: 06/17/2021] [Indexed: 12/11/2022] Open
Abstract
Fibroblast growth factor 21 (FGF21), is an emerging metabolic regulator mediates multiple beneficial effects in the treatment of metabolic disorders and related complications. Recent studies showed that FGF21 acts as an important inhibitor in the onset and progression of cardiovascular complications of diabetes mellitus (DM). Furthermore, evidences discussed so far demonstrate that epigenetic modifications exert a crucial role in the initiation and development of DM-related cardiovascular complications. Thus, epigenetic modifications may involve in the function of FGF21 on DM-induced cardiovascular complications. Therefore, this review mainly interprets and delineates the recent advances of role of FGF21 in DM cardiovascular complications. Then, the possible changes of epigenetics related to the role of FGF21 on DM-induced cardiovascular complications are discussed. Thus, this article not only implies deeper understanding of the pathological mechanism of DM-related cardiovascular complications, but also provides the possible novel therapeutic strategy for DM-induced cardiovascular complications by targeting FGF21 and related epigenetic mechanism.
Collapse
Affiliation(s)
- Mengjie Xiao
- School of Nursing and Rehabilitation, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Yufeng Tang
- Department of Orthopedic Surgery, The First Affiliated Hospital of Shandong First Medical University, Jinan, China
| | - Shudong Wang
- Department of Cardiology at the First Hospital of Jilin University, Changchun, China
| | - Jie Wang
- School of Nursing and Rehabilitation, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Jie Wang
- School of Nursing and Rehabilitation, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Yuanfang Guo
- School of Nursing and Rehabilitation, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Jingjing Zhang
- Department of Cardiology at the First Hospital of China Medical University, and Department of Cardiology at the People’s Hospital of Liaoning Province, Shenyang, China
| | - Junlian Gu
- School of Nursing and Rehabilitation, Cheeloo College of Medicine, Shandong University, Jinan, China
- *Correspondence: Junlian Gu,
| |
Collapse
|
18
|
Combination of Astragalus membranaceous and Angelica sinensis Ameliorates Vascular Endothelial Cell Dysfunction by Inhibiting Oxidative Stress. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2020; 2020:6031782. [PMID: 33293989 PMCID: PMC7714576 DOI: 10.1155/2020/6031782] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 08/24/2020] [Accepted: 09/05/2020] [Indexed: 12/24/2022]
Abstract
Vascular endothelial dysfunction is an essential and early sign of diabetic macroangiopathy, a primary complication of diabetes mellitus. Astragalus membranaceous-Angelica sinensis is a classic medical combination applied in China to treat diabetes mellitus. The aim of this study was to investigate the effect of the granule form of the extract produced from the dried root of Astragalus membranaceous (AM) combination with the granule form of the extract produced from the dried Angelica sinensis (AS) on diabetic macroangiopathy and its underlying mechanism. Herein, rats were treated by AM-AS at a ratio of 3 : 2 via intragastric administration. High glucose-induced human umbilical vein vascular endothelial cells (HUVECs) were then treated with drug-containing serum collected from the rats. In high glucose-treated HUVECs, AM-AS combination increased cell viability (P < 0.05), decreased the percentage of apoptotic cells (P < 0.05) and the expression of the proapoptosis protein caspase 3 (P < 0.05), reduced the proportion of cells in the G0/G1 phase (P < 0.05), decreased reactive oxygen species level (P < 0.05), enhanced cell migration and invasion (P < 0.05), and reduced the level of 8-iso-prostaglandin F2alpha. These results indicate that AM-AS combination at the ratio of 3 : 2 ameliorated HUVEC dysfunction by regulating apoptosis, cell migration, and invasion, which might be mediated by their regulatory effect on reactive oxygen species production. The current study provides a theoretical basis for the treatment of diabetic macroangiopathy using AM-AS.
Collapse
|
19
|
Yu X, Li Y, Jiang G, Fang J, You Z, Shao G, Zhang Z, Jiao A, Peng X. FGF21 promotes non-small cell lung cancer progression by SIRT1/PI3K/AKT signaling. Life Sci 2020; 269:118875. [PMID: 33310036 DOI: 10.1016/j.lfs.2020.118875] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Revised: 12/03/2020] [Accepted: 12/04/2020] [Indexed: 02/06/2023]
Abstract
AIMS Lung cancer is a key contributor to the cancer-related death throughout the world. FGF21 (fibroblast growth factor 21) has been found to regulate various pulmonary diseases, whereas, the role and mechanism of FGF21 in lung cancer remain unclear. The aim of this research was to explore the expression and function of FGF21 in lung cancer. MAIN METHODS The mRNA and protein expression of FGF21 were analyzed through qRT-PCR and western blot, respectively. Cell proliferation, apoptosis and migration were analyzed by CCK-8 assay, flow cytometry and wound-healing assay, respectively. ROS, SOD, LDH and CK were examined with respective commercially kit. KEY FINDINGS FGF21 level was increased in lung cancer tissue samples and cell lines at both mRNA and protein levels. Overexpressing FGF21 promoted cell growth and migration significantly. It also increased SOD and reduced ROS, LDH and CK contents. By contrast, down-regulated FGF21 presented the opposite effect on lung cancer cells. Furthermore, FGF21 may function as a tumor promotor by activating the SIRT1/PI3K/AKT signaling pathway in lung cancer. SIGNIFICANCE This study demonstrated that FGF21 was a tumor promoter in lung cancer development, serving as a feasible therapeutic target in the treatment of lung cancer.
Collapse
Affiliation(s)
- Xiaofeng Yu
- Department of Thoracic Surgery, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai 264000, Shandong, People's Republic of China
| | - Ying Li
- Department of Emergency, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai 264000, Shandong, People's Republic of China
| | - Guodong Jiang
- Department of Thoracic Surgery, The People's Hospital of Zhao Yuan City, Zhaoyuan 265400, Shandong, People's Republic of China
| | - Jian Fang
- Department of Thoracic Surgery, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai 264000, Shandong, People's Republic of China
| | - Zhaolei You
- Department of Thoracic Surgery, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai 264000, Shandong, People's Republic of China
| | - Guangyuan Shao
- Department of Thoracic Surgery, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai 264000, Shandong, People's Republic of China
| | - Zheng Zhang
- Department of Thoracic Surgery, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai 264000, Shandong, People's Republic of China
| | - Aihong Jiao
- Department of Oncology, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai 264000, Shandong, People's Republic of China.
| | - Xiaonu Peng
- Department of Thoracic Surgery, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai 264000, Shandong, People's Republic of China.
| |
Collapse
|
20
|
Yang C, Lan W, Ye S, Zhu B, Fu Z. Transcriptomic Analyses Reveal the Protective Immune Regulation of Conjugated Linoleic Acids in Sheep Ruminal Epithelial Cells. Front Physiol 2020; 11:588082. [PMID: 33192603 PMCID: PMC7658390 DOI: 10.3389/fphys.2020.588082] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Accepted: 10/02/2020] [Indexed: 12/12/2022] Open
Abstract
The ruminal epithelium is continuously challenged by antigens released by the lysis of dead microbial cells within the rumen. However, the innate immune system of the ruminal epithelium can almost always actively respond to these challenges. The cross talk between the ruminal microbiota and innate immune cells in the ruminal epithelium has been suggested to play an important role in sustaining the balance of immune tolerance and inflammatory response in the rumen. We hypothesized that conjugated linoleic acid (CLA), a functional microbial metabolite in the rumen, may contribute to the immune regulation in rumen epithelial cells (RECs); therefore, we first established an immortal REC line and then investigated the regulatory effects of CLA on the immune responses in these RECs. The results showed that long-term REC cultures were successfully established via SV40T-induced immortalization. Transcriptome analysis showed that a 100 μM CLA mixture consisting of 50:50 cis-9, trans-11:trans-10, cis-12 CLA significantly downregulated the expression of the inflammatory response-related genes TNF-α, IL-6, CX3CL1, IRF1, ICAM1 and EDN1, and upregulated the expression of the cell proliferation-related genes FGF7, FGF21, EREG, AREG and HBEGF and the lipid metabolism-related genes PLIN2, CPT1A, ANGPTL4, ABHD5 and SREBF1 in the RECs upon LPS stimulation. Correspondingly, the GO terms regulation of cell adhesion, response to stimulus and cytokine production and KEGG pathways TNF and HIF-1 signaling, ECM-receptor interaction and cell adhesion molecules were identified for the significantly downregulated genes, while the GO terms epithelial cell proliferation and regulation of epithelial cell migration and the KEGG pathways PPAR, ErbB and adipocytokine signaling were identified for the RECs with significantly upregulated CLA-pretreated genes upon LPS stimulation. These findings revealed that CLA conferred protective immunity onto the RECs by inhibiting proinflammatory processes, promoting cell proliferation and regulating lipid metabolism related to the immune response.
Collapse
Affiliation(s)
- Chunlei Yang
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, China
| | - Wei Lan
- College of Animal Sciences, Zhejiang University, Hangzhou, China
| | - Shijie Ye
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, China
| | - Binna Zhu
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, China
| | - Zhengwei Fu
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, China
| |
Collapse
|
21
|
Inhibitory effects of Lentinus edodes mycelia polysaccharide on α-glucosidase, glycation activity and high glucose-induced cell damage. Carbohydr Polym 2020; 246:116659. [DOI: 10.1016/j.carbpol.2020.116659] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Revised: 06/10/2020] [Accepted: 06/15/2020] [Indexed: 12/26/2022]
|
22
|
Jing L, Sheng J, Jiang J, Wang Y, Shen X, Liu D, Zhang W, Mao S. Chemical characteristics and cytoprotective activities of polysaccharide fractions from Athyrium Multidentatum (Doll.) Ching. Int J Biol Macromol 2020; 158:S0141-8130(20)33199-8. [PMID: 32437802 DOI: 10.1016/j.ijbiomac.2020.05.053] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Revised: 05/07/2020] [Accepted: 05/07/2020] [Indexed: 12/12/2022]
Abstract
Five polysaccharide fractions (PS-1, PS-2, PS-3, PS-4 and PS-5) were successfully isolated from Athyrium Multidentatum (Doll.) Ching by anion-exchange column chromatography. Their in vitro cytoprotective activities and the underlying mechanisms were explored in this paper. Chemical analysis suggested that the five polysaccharide fractions were heteropolysaccharides with different molecular weights and monosaccharide compositions. Treatment with these polysaccharide fractions could increase cell viabilities, superoxide dismutase/catalase activities, nitric oxide contents, mitochondrial membrane potential levels and Bcl-2/Bax ratios, and reduce cell apoptosis, intracellular reactive oxygen species production and malondialdehyde contents in H2O2-damaged cells. Moreover, these polysaccharide fractions enhanced the mRNA expression levels of PI3K, Akt, FOXO3a, Nrf2 and HO-1 and PS-4 exhibited the most powerful effects on the mRNA expression of these genes. Current findings suggested that the polysaccharide fractions decreased H2O2-induced apoptosis of HUVECs. The activation of PI3K/Akt/FOXO3a and Nrf2/HO-1 signaling pathways might be involved in the protective mechanisms of the active fractions. The polysaccharides might be one of the key bioactive ingredients of Athyrium Multidentatum (Doll.) Ching for the treatment of oxidative damage.
Collapse
Affiliation(s)
- Liang Jing
- Department of Pharmacy, Weifang Medical University, Weifang 261053, PR China
| | - Jiwen Sheng
- Department of Pharmacy, Weifang Medical University, Weifang 261053, PR China
| | - Jingru Jiang
- Department of Pharmacy, Weifang Medical University, Weifang 261053, PR China
| | - Yang Wang
- Department of Pharmacy, Weifang Medical University, Weifang 261053, PR China
| | - Xiaoyan Shen
- Department of Pharmacy, Weifang Medical University, Weifang 261053, PR China
| | - Dongmei Liu
- Department of Pharmacy, Weifang Medical University, Weifang 261053, PR China.
| | - Weifen Zhang
- Department of Pharmacy, Weifang Medical University, Weifang 261053, PR China.
| | - Shumei Mao
- Department of Pharmacy, Weifang Medical University, Weifang 261053, PR China
| |
Collapse
|
23
|
Lin S, Yu L, Ni Y, He L, Weng X, Lu X, Zhang C. Fibroblast Growth Factor 21 Attenuates Diabetes-Induced Renal Fibrosis by Negatively Regulating TGF-β-p53-Smad2/3-Mediated Epithelial-to-Mesenchymal Transition via Activation of AKT. Diabetes Metab J 2020; 44:158-172. [PMID: 31701691 PMCID: PMC7043973 DOI: 10.4093/dmj.2018.0235] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/15/2018] [Accepted: 04/02/2019] [Indexed: 12/28/2022] Open
Abstract
BACKGROUND Epithelial-to-mesenchymal transition (EMT) is required for renal fibrosis, which is a characteristic of diabetic nephropathy (DN). Our previous study demonstrated that fibroblast growth factor 21 (FGF21) prevented DN associated with the suppressing renal connective tissue growth factor expression, a key marker of renal fibrosis. Therefore, the effects of FGF21 on renal fibrosis in a DN mouse model and the underlying mechanisms were investigated in this study. METHODS Type 1 diabetes mellitus was induced in C57BL/6J mice by intraperitoneal injections of multiple low doses of streptozotocin. Then, diabetic and non-diabetic mice were treated with or without FGF21 in the presence of pifithrin-α (p53 inhibitor) or 10-[4'-(N,N-Diethylamino)butyl]-2-chlorophenoxazine hydrochloride (10-DEBC) hydrochloride (Akt inhibitor) for 4 months. RESULTS DN was diagnosed by renal dysfunction, hypertrophy, tubulointerstitial lesions, and glomerulosclerosis associated with severe fibrosis, all of which were prevented by FGF21. FGF21 also suppressed the diabetes-induced renal EMT in DN mice by negatively regulating transforming growth factor beta (TGF-β)-induced nuclear translocation of Smad2/3, which is required for the transcription of multiple fibrotic genes. The mechanistic studies showed that FGF21 attenuated nuclear translocation of Smad2/3 by inhibiting renal activity of its conjugated protein p53, which carries Smad2/3 into the nucleus. Moreover pifithrin-α inhibited the FGF21-induced preventive effects on the renal EMT and subsequent renal fibrosis in DN mice. In addition, 10-DEBC also blocked FGF21-induced inhibition of renal p53 activity by phosphorylation of mouse double minute-2 homolog (MDM2). CONCLUSION FGF21 prevents renal fibrosis via negative regulation of the TGF-β/Smad2/3-mediated EMT process by activation of the Akt/MDM2/p53 signaling pathway.
Collapse
Affiliation(s)
- Sundong Lin
- Ruian Center of Chinese-American Research Institute for Diabetic Complications, The Third Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
- Chinese-American Research Institute for Diabetic Complications, Wenzhou Medical University, Wenzhou, China
- School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, China
| | - Lechu Yu
- Ruian Center of Chinese-American Research Institute for Diabetic Complications, The Third Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Yongqing Ni
- Ruian Center of Chinese-American Research Institute for Diabetic Complications, The Third Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Lulu He
- Ruian Center of Chinese-American Research Institute for Diabetic Complications, The Third Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
- Chinese-American Research Institute for Diabetic Complications, Wenzhou Medical University, Wenzhou, China
- School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, China
| | - Xiaolu Weng
- Ruian Center of Chinese-American Research Institute for Diabetic Complications, The Third Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
- Chinese-American Research Institute for Diabetic Complications, Wenzhou Medical University, Wenzhou, China
| | - Xuemian Lu
- Ruian Center of Chinese-American Research Institute for Diabetic Complications, The Third Affiliated Hospital of Wenzhou Medical University, Wenzhou, China.
| | - Chi Zhang
- Ruian Center of Chinese-American Research Institute for Diabetic Complications, The Third Affiliated Hospital of Wenzhou Medical University, Wenzhou, China.
- Chinese-American Research Institute for Diabetic Complications, Wenzhou Medical University, Wenzhou, China
- School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, China.
| |
Collapse
|
24
|
Hao Y, Liu HM, Wei X, Gong X, Lu ZY, Huang ZH. Diallyl trisulfide attenuates hyperglycemia-induced endothelial apoptosis by inhibition of Drp1-mediated mitochondrial fission. Acta Diabetol 2019; 56:1177-1189. [PMID: 31115753 PMCID: PMC6768919 DOI: 10.1007/s00592-019-01366-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Accepted: 05/07/2019] [Indexed: 02/07/2023]
Abstract
AIMS Hyperglycemia induces endothelial cell apoptosis and blood vessel damage, while diallyl trisulfide (DATS) has shown cardiovascular protection in animal models and humans. The aim of this study was to investigate the effects of DATS on inhibition of high glucose-induced endothelial cell apoptosis and the underlying molecular events. METHODS Human umbilical vein endothelial cells (HUVECs) were incubated with DATS (100 μM) for 30 min and then cultured in high-glucose medium (HG, 33 mM) for 24 h for assessment of apoptosis, glutathione (GSH), reactive oxygen species (ROS), superoxide dismutase (SOD), and gene expression using the terminal deoxyuridine triphosphate nick end labeling (TUNEL), flow cytometry, caspase-3 activity, ROS, SOD, and western blot assays as well as JC-1 and MitoTracker Red staining, respectively. RESULTS DATS treatment significantly inhibited high glucose-induced HUVEC apoptosis by blockage of intracellular and mitochondrial ROS generation, maintenance of the mitochondrial membrane potential, and suppression of high glucose-induced dynamin-related protein 1 (Drp1) expression. Furthermore, DATS blockage of high glucose-induced mitochondrial fission and apoptosis was through adenosine monophosphate-activated protein kinase (AMPK) activation-inhibited Drp1 expression in HUVECs. CONCLUSIONS DATS demonstrated the ability to inhibit high glucose-induced HUVEC apoptosis via suppression of Drp1-mediated mitochondrial fission in an AMPK-dependent fashion.
Collapse
Affiliation(s)
- Ying Hao
- Department of Cardiology, Shanghai East Hospital, Tongji University, 1800 Yuntai Road, Shanghai, 200126, China
| | - Hui-Min Liu
- Department of Hematology, The Second Hospital of Shanxi Medical University, 382 Wuyi Road, Taiyuan, 030001, China
| | - Xin Wei
- Department of Pharmacy, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, 1665 Kongjiang Road, Shanghai, 200092, China
| | - Xue Gong
- Department of Cardiology, Delta Health Hospital, 109 Xule Road, Shanghai, 201702, China
| | - Zhao-Yang Lu
- Department of Cardiology, The Second Hospital of Shanxi Medical University, 382 Wuyi Road, Taiyuan, 030001, China.
| | - Zhen-Hao Huang
- Department of Cardiology, Shanghai East Hospital, Tongji University, 1800 Yuntai Road, Shanghai, 200126, China.
| |
Collapse
|
25
|
Zhang X, Wang L, Peng L, Tian X, Qiu X, Cao H, Yang Q, Liao R, Yan F. Dihydromyricetin protects HUVECs of oxidative damage induced by sodium nitroprusside through activating PI3K/Akt/FoxO3a signalling pathway. J Cell Mol Med 2019; 23:4829-4838. [PMID: 31111658 PMCID: PMC6584490 DOI: 10.1111/jcmm.14406] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Revised: 03/21/2019] [Accepted: 04/26/2019] [Indexed: 12/27/2022] Open
Abstract
The damage of vascular endothelial cells induced by oxidative stress plays an important role in the pathogenesis of atherosclerosis. Dihydromyricetin (DMY) is considered as a natural antioxidant. However, the mechanism of DMY on endothelial cell injury induced by oxidative stress remains unclear. In this study, we found that DMY could reduce the oxidative damage of HUVECs induced by sodium nitroprusside (SNP), HUVECs pre-treated with DMY suppressed SNP-induced apoptosis by reduced ROS overproduction of intracellular, decreased MDA level and elevated the superoxide dismutase activity. Meanwhile, we found that DMY could promote the expression of phosphorylated FoxO3a and Akt, and affect the nuclear localization of FoxO3a, when treated with the PI3K inhibitor LY294002, the effect of DMY was blocked. These data suggest that DMY protects HUVECs from oxidative stress by activating PI3K/Akt/FoxO3a signalling pathway. Therefore, DMY may have great therapeutic potential as a new drug for atherosclerosis.
Collapse
Affiliation(s)
- Xiaoying Zhang
- Department of Pharmacology, School of MedicineXizang Minzu UniversityXianyangChina
| | - Lifang Wang
- School of Medical ScienceJinan UniversityGuangzhouChina
| | - Lizhi Peng
- Department of PharmacyThe Seventh Affiliated Hospital of Sun Yat‐Sen UniversityShenzhenChina
| | - Xiaoying Tian
- School of Medical ScienceJinan UniversityGuangzhouChina
| | - Xiaoyuan Qiu
- School of Medical ScienceJinan UniversityGuangzhouChina
| | - Huan Cao
- School of Medical ScienceJinan UniversityGuangzhouChina
| | - Qiaohong Yang
- School of Medical ScienceJinan UniversityGuangzhouChina
| | - Rifang Liao
- Department of PharmacySun Yat‐sen Memorial Hospital, Sun Yat‐sen UniversityGuangzhouChina
| | - Fengxia Yan
- School of Medical ScienceJinan UniversityGuangzhouChina
| |
Collapse
|
26
|
Jin G, Wang Q, Pei X, Li X, Hu X, Xu E, Li M. mRNAs expression profiles of high glucose-induced memory in human umbilical vein endothelial cells. Diabetes Metab Syndr Obes 2019; 12:1249-1261. [PMID: 31413614 PMCID: PMC6662530 DOI: 10.2147/dmso.s206270] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/24/2019] [Accepted: 06/22/2019] [Indexed: 12/23/2022] Open
Abstract
PURPOSE A long-term "memory" of hyperglycemic stress, even when glycemia is normalized, has been previously reported in endothelial cells. However, the molecular mechanism of "metabolic memory" (MM) remains unknown. In this report, we sought to screen at the whole transcriptome level the genes that participate in MM. METHODS In the present research, RNA sequencing was used to determine the protein-coding mRNA expression profiles of human umbilical vein endothelial cells (HUVECs) under normal-glucose concentration (LG), high-glucose concentration (HG), and MM. A series of bioinformatic analyses was performed. HG-induced MM-involved up-regulated genes (up-HGMMGs) and HG-induced MM-involved down-regulated genes (down-HGMMGs) were identified. Afterward, based on up-HGMMGs and down-HGMMGs, the biological functions and signaling pathways were analyzed using Gene Ontology (GO) and the Kyoto Encyclopedia of Genes and Genomes (KEGG). In addition, several of the identified genes were validated by RT-qPCR. RESULTS A total of 726 HGMMGs were identified, including 210 down- and 516 up-HGMMGs, which were enriched in the cell cycle (hsa04110), oocyte meiosis (hsa04114), p53 signaling pathway (hsa04115), and oxidative phosphorylation (hsa00190), among others. The protein-protein-interaction (PPI) network consisted of 462 nodes and 2656 connections, and four main modules were identified by MCODE. The cell cycle (hsa04110), oocyte meiosis (hsa04114), p53 signaling pathway (hsa04115), and oxidative phosphorylation (hsa00190), among others, could be potential therapeutic targets of HG-induced MM in endothelial cells. The real-time PCR results validated the RNA-seq data. CONCLUSION This study identified crucial mRNAs related to MM-persistent injury in endothelial cells even after switching the cells from high- glucose to normal glucose levels. Further research focusing on these mRNA may unravel new ways to modify MM in diabetes.
Collapse
Affiliation(s)
- Guoxi Jin
- Department of Endocrinology, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong250021, People’s Republic of China
- Department of Endocrinology, The First Affiliated Hospital of Bengbu Medical College, Bengbu, Anhui233004, People’s Republic of China
| | - Qiong Wang
- Department of Endocrinology, The First Affiliated Hospital of Bengbu Medical College, Bengbu, Anhui233004, People’s Republic of China
| | - Xiaoyan Pei
- Department of Endocrinology, The First Affiliated Hospital of Bengbu Medical College, Bengbu, Anhui233004, People’s Republic of China
| | - Xiaoli Li
- Department of Endocrinology, The First Affiliated Hospital of Bengbu Medical College, Bengbu, Anhui233004, People’s Republic of China
| | - Xiaolei Hu
- Department of Endocrinology, The First Affiliated Hospital of Bengbu Medical College, Bengbu, Anhui233004, People’s Republic of China
| | - Erqin Xu
- Room of Physical Diagnostics, Clinical College of Medicine, Bengbu Medical College, Bengbu, Anhui233030, People’s Republic of China
| | - Minglong Li
- Department of Endocrinology, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong250021, People’s Republic of China
- Correspondence: Minglong Li Department of Endocrinology, Shandong Provincial Hospital Affiliated to Shandong University, 324 Jingwu Road, Huaiyin Zone, Jinan, Shandong Province250012, People’s Republic of ChinaTel +86 5 316 877 6375Fax +86 5 316 877 6383 Email
| |
Collapse
|