1
|
Hayann L, da Rocha VF, Cândido MF, Vicente RM, Andrilli LHS, Fukada SY, Brassesco MS, Ciancaglini P, Engel EE, Ramos AP. A nontoxic strontium nanoparticle that holds the potential to act upon osteocompetent cells: An in vitro and in vivo characterization. J Biomed Mater Res A 2024; 112:1518-1531. [PMID: 38488327 DOI: 10.1002/jbm.a.37708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 03/01/2024] [Accepted: 03/06/2024] [Indexed: 07/12/2024]
Abstract
Estrogen deficiency, long-term immobilization, and/or aging are commonly related to bone mass loss, thus increasing the risk of fractures. One option for bone replacement in injuries caused by either traumas or pathologies is the use of orthopedic cement based on polymethylmethacrylate (PMMA). Nevertheless, its reduced bioactivity may induce long-term detachment from the host tissue, resulting in the failure of the implant. In view of this problem, we developed an alternative PMMA-based porous cement (pPMMA) that favors cell invasion and improves osteointegration with better biocompatibility. The cement composition was changed by adding bioactive strontium-nanoparticles that mimic the structure of bone apatite. The nanoparticles were characterized regarding their physical-chemical properties, and their effects on osteoblasts and osteoclast cultures were assessed. Initial in vivo tests were also performed using 16 New Zealand rabbits as animal models, in which the pPMMA-cement containing the strontium nanoparticles were implanted. We showed that the apatite nanoparticles in which 90% of Ca2+ ions were substituted by Sr2+ (NanoSr 90%) upregulated TNAP activity and increased matrix mineralization. Moreover, at the molecular level, NanoSr 90% upregulated the mRNA expression levels of, Sp7, and OCN. Runx2 was increased at both mRNA and protein levels. In parallel, in vivo tests revealed that pPMMA-cement containing NanoSr 90%, upregulated two markers of bone maturation, OCN and BMP2, as well as the formation of apatite minerals after implantation in the femur of rabbits. The overall data support that strontium nanoparticles hold the potential to up-regulate mineralization in osteoblasts when associated with synthetic biomaterials.
Collapse
Affiliation(s)
- Larwsk Hayann
- Department of Chemistry, Faculty of Philosophy, Sciences and Letters at Ribeirão Preto, University of São Paulo, Ribeirão Preto, Brazil
| | - Vitor Freire da Rocha
- Department of Orthopedics and Anesthesiology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - Marina Ferreira Cândido
- Department of Genetics, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - Raphael Martini Vicente
- Department of Biology, Faculty of Philosophy, Sciences and Letters at Ribeirão Preto, University of São Paulo, Ribeirão Preto, Brazil
| | - Luiz H S Andrilli
- Department of Chemistry, Faculty of Philosophy, Sciences and Letters at Ribeirão Preto, University of São Paulo, Ribeirão Preto, Brazil
| | - Sandra Y Fukada
- School of Pharmaceutical Sciences of Ribeirao Preto, University of São Paulo, Ribeirão Preto, Brazil
| | - María Sol Brassesco
- Department of Biology, Faculty of Philosophy, Sciences and Letters at Ribeirão Preto, University of São Paulo, Ribeirão Preto, Brazil
| | - Pietro Ciancaglini
- Department of Chemistry, Faculty of Philosophy, Sciences and Letters at Ribeirão Preto, University of São Paulo, Ribeirão Preto, Brazil
| | - Edgard Eduard Engel
- Department of Orthopedics and Anesthesiology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - Ana Paula Ramos
- Department of Chemistry, Faculty of Philosophy, Sciences and Letters at Ribeirão Preto, University of São Paulo, Ribeirão Preto, Brazil
| |
Collapse
|
2
|
Meng X, Mao H, Wan M, Lu L, Chen Z, Zhang L. Mitochondrial homeostasis in odontoblast: Physiology, pathogenesis and targeting strategies. Life Sci 2024; 352:122797. [PMID: 38917871 DOI: 10.1016/j.lfs.2024.122797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Revised: 04/15/2024] [Accepted: 06/04/2024] [Indexed: 06/27/2024]
Abstract
Caries and pulpitis remain a major global disease burden and affect the quality of life of patients. Odontoblasts are key players in the progression of caries and pulpitis, not only secreting and mineralizing to form dentin, but also acting as a wall of defense to initiate immune defenses. Mitochondrion is an information processor for numerous cellular activities, and dysregulation of mitochondrion homeostasis not only affects cellular metabolism but also triggers a wide range of diseases. Elucidating mitochondrial homeostasis in odontoblasts can help deepen scholars' understanding of odontoblast-associated diseases. Articles on mitochondrial homeostasis in odontoblasts were evaluated for information pertinent to include in this narrative review. This narrative review focused on understanding the complex interplay between mitochondrial homeostasis in odontoblasts under physiological and pathological conditions. Furthermore, mitochondria-centered therapeutic strategies (including mitochondrial base editing, targeting platforms, and mitochondrial transplantation) were emphasized by resolving key genes that regulate mitochondrial function. Mitochondria are involved in odontoblast differentiation and function, and act as mitochondrial danger-associated molecular patterns (mtDAMPs) to mediate odontoblast pathological progression. Novel mitochondria-centered therapeutic strategies are particularly attractive as emerging therapeutic approaches for the maintenance of mitochondrial homeostasis. It is expected to probe key events of odontoblast differentiation and advance the clinical resolution of dentin formation and mineralization disorders and odontoblast-related diseases.
Collapse
Affiliation(s)
- Xiang Meng
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, China.
| | - Hanqing Mao
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, China.
| | - Minting Wan
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, China.
| | - Linxin Lu
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, China.
| | - Zhi Chen
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, China; Department of Endodontics, School and Hospital of Stomatology, Wuhan University, HongShan District, LuoYu Road No. 237, Wuhan 430079, China.
| | - Lu Zhang
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, China; Department of Endodontics, School and Hospital of Stomatology, Wuhan University, HongShan District, LuoYu Road No. 237, Wuhan 430079, China.
| |
Collapse
|
3
|
Yan J, Gao B, Wang C, Lu W, Qin W, Han X, Liu Y, Li T, Guo Z, Ye T, Wan Q, Xu H, Kang J, Lu N, Gao C, Qin Z, Yang C, Zheng J, Shen P, Niu L, Zou W, Jiao K. Calcified apoptotic vesicles from PROCR + fibroblasts initiate heterotopic ossification. J Extracell Vesicles 2024; 13:e12425. [PMID: 38594791 PMCID: PMC11004040 DOI: 10.1002/jev2.12425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 02/08/2024] [Accepted: 03/13/2024] [Indexed: 04/11/2024] Open
Abstract
Heterotopic ossification (HO) comprises the abnormal formation of ectopic bone in extraskeletal soft tissue. The factors that initiate HO remain elusive. Herein, we found that calcified apoptotic vesicles (apoVs) led to increased calcification and stiffness of tendon extracellular matrix (ECM), which initiated M2 macrophage polarization and HO progression. Specifically, single-cell transcriptome analyses of different stages of HO revealed that calcified apoVs were primarily secreted by a PROCR+ fibroblast population. In addition, calcified apoVs enriched calcium by annexin channels, absorbed to collagen I via electrostatic interaction, and aggregated to produce calcifying nodules in the ECM, leading to tendon calcification and stiffening. More importantly, apoV-releasing inhibition or macrophage deletion both successfully reversed HO development. Thus, we are the first to identify calcified apoVs from PROCR+ fibroblasts as the initiating factor of HO, and might serve as the therapeutic target for inhibiting pathological calcification.
Collapse
Affiliation(s)
- Jianfei Yan
- Department of StomatologyTangdu hospital & State Key Laboratory of Oral and Maxillofacial Reconstruction and Regeneration & School of Stomatology, The Fourth Military Medical UniversityXi'anShaanxiChina
| | - Bo Gao
- Institute of Orthopaedic SurgeryXijing Hospital, Fourth Military Medical UniversityXi'anShaanxiChina
| | - Chenyu Wang
- State Key Laboratory of Oral and Maxillofacial Reconstruction and Regeneration & National Clinical Research Center for Oral Diseases & Shaanxi Key Laboratory of Stomatology, School of StomatologyThe Fourth Military Medical UniversityXi'anShaanxiChina
| | - Weicheng Lu
- Department of StomatologyTangdu hospital & State Key Laboratory of Oral and Maxillofacial Reconstruction and Regeneration & School of Stomatology, The Fourth Military Medical UniversityXi'anShaanxiChina
| | - Wenpin Qin
- Department of StomatologyTangdu hospital & State Key Laboratory of Oral and Maxillofacial Reconstruction and Regeneration & School of Stomatology, The Fourth Military Medical UniversityXi'anShaanxiChina
| | - Xiaoxiao Han
- Department of StomatologyTangdu hospital & State Key Laboratory of Oral and Maxillofacial Reconstruction and Regeneration & School of Stomatology, The Fourth Military Medical UniversityXi'anShaanxiChina
| | - Yingying Liu
- Department of NeurobiologyThe Fourth Military Medical UniversityXi'anShaanxiChina
| | - Tao Li
- Center for Spintronics and Quantum Systems, State Key Laboratory for Mechanical Behavior of Materials, Department of Materials Science and EngineeringXi'an Jiaotong UniversityXi'anShaanxiChina
| | - Zhenxing Guo
- Department of StomatologyTangdu hospital & State Key Laboratory of Oral and Maxillofacial Reconstruction and Regeneration & School of Stomatology, The Fourth Military Medical UniversityXi'anShaanxiChina
| | - Tao Ye
- State Key Laboratory of Oral and Maxillofacial Reconstruction and Regeneration & National Clinical Research Center for Oral Diseases & Shaanxi Key Laboratory of Stomatology, School of StomatologyThe Fourth Military Medical UniversityXi'anShaanxiChina
| | - Qianqian Wan
- State Key Laboratory of Oral and Maxillofacial Reconstruction and Regeneration & National Clinical Research Center for Oral Diseases & Shaanxi Key Laboratory of Stomatology, School of StomatologyThe Fourth Military Medical UniversityXi'anShaanxiChina
| | - Haoqing Xu
- Department of StomatologyTangdu hospital & State Key Laboratory of Oral and Maxillofacial Reconstruction and Regeneration & School of Stomatology, The Fourth Military Medical UniversityXi'anShaanxiChina
- College of Life Science Northwest UniversityXi'anShaanxiChina
| | - Junjun Kang
- Department of NeurobiologyThe Fourth Military Medical UniversityXi'anShaanxiChina
| | - Naining Lu
- Department of NeurobiologyThe Fourth Military Medical UniversityXi'anShaanxiChina
| | - Changhe Gao
- Department of StomatologyTangdu hospital & State Key Laboratory of Oral and Maxillofacial Reconstruction and Regeneration & School of Stomatology, The Fourth Military Medical UniversityXi'anShaanxiChina
| | - Zixuan Qin
- State Key Laboratory of Oral and Maxillofacial Reconstruction and Regeneration & National Clinical Research Center for Oral Diseases & Shaanxi Key Laboratory of Stomatology, School of StomatologyThe Fourth Military Medical UniversityXi'anShaanxiChina
| | - Chi Yang
- Department of Oral SurgeryNinth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, and National Clinical Research Center of StomatologyShanghaiChina
| | - Jisi Zheng
- Department of Oral SurgeryNinth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, and National Clinical Research Center of StomatologyShanghaiChina
| | - Pei Shen
- Department of Oral SurgeryNinth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, and National Clinical Research Center of StomatologyShanghaiChina
| | - Lina Niu
- State Key Laboratory of Oral and Maxillofacial Reconstruction and Regeneration & National Clinical Research Center for Oral Diseases & Shaanxi Key Laboratory of Stomatology, School of StomatologyThe Fourth Military Medical UniversityXi'anShaanxiChina
| | - Weiguo Zou
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Sciences, Shanghai Institute of Biochemistry and Cell BiologyChinese Academy of Sciences, University of Chinese Academy of SciencesShanghaiChina
| | - Kai Jiao
- Department of StomatologyTangdu hospital & State Key Laboratory of Oral and Maxillofacial Reconstruction and Regeneration & School of Stomatology, The Fourth Military Medical UniversityXi'anShaanxiChina
| |
Collapse
|
4
|
Holkar K, Kale V, Pethe P, Ingavle G. The symbiotic effect of osteoinductive extracellular vesicles and mineralized microenvironment on osteogenesis. J Biomed Mater Res A 2024; 112:155-166. [PMID: 37671776 DOI: 10.1002/jbm.a.37600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 07/29/2023] [Accepted: 08/16/2023] [Indexed: 09/07/2023]
Abstract
The increasing prevalence of bone-related diseases has raised concern about the need for an osteoinductive and mechanically stronger scaffold-based bone tissue engineering (BTE) alternative. A mineralized microenvironment, similar to the native bone microenvironment, is required in the scaffold to recruit and differentiate local mesenchymal stem cells at the bone defect site. Further, extracellular vesicles (EVs), pre-osteoblasts' secretome, contain osteoinductive cargo and have recently been exploited in bone regeneration. This work developed a cell-free and mechanically strong interpenetrating network-based scaffold for BTE by combining the action of osteoinductive EVs with a mineralized microenvironment. The MC3T3 (a pre-osteoblast cell line) is used as a source of EVs and as the target population. The optimal concentration of MC3T3-EVs was first determined to induce osteogenesis in target cells. The osteoinductive potential of the scaffold was estimated in vitro by osteogenesis-related markers like the alkaline phosphatase (ALP) enzyme and calcium content. The MC3T3-EVs cargo was also studied for osteoinductive signals such as ALP, calcium, and mRNA. The findings of this work indicated that MC3T3-EVs at a 90 μg/mL dose had significantly higher ALP activity than 0 μg/mL (1.47-fold), 10 μg/mL (1.41-fold), and 30 μg/mL (1.39-fold) EV-concentration on day 14. Further combination of the optimum dose of EVs with a mineralized microenvironment significantly enhanced ALP activity (1.5-fold) and mineralization (3.36-fold) as compared to the control group on day 7. EV cargo analysis revealed the presence of calcium, the ALP enzyme, and the mRNAs necessary for osteogenesis and angiogenesis. ALP activity was significantly boosted in the EV-containing target cells as early as day 1, and mineralization began on day 7 because MC3T3-EVs carry ALP enzymes and calcium as cargo. When osteoinductive EVs were combined with an osteoconductive mineralized microenvironment, osteogenesis was significantly enhanced in target cells at early time points. The interaction between osteoinductive EVs and the mineralized milieu facilitates the process of osteogenesis in the target cells and suggests a potential cell-free strategy for in vivo bone repair.
Collapse
Affiliation(s)
- Ketki Holkar
- Symbiosis Centre for Stem Cell Research (SCSCR), Symbiosis International (Deemed University), Pune, India
- Symbiosis School of Biological Sciences (SSBS), Symbiosis International (Deemed University), Pune, India
| | - Vaijayanti Kale
- Symbiosis Centre for Stem Cell Research (SCSCR), Symbiosis International (Deemed University), Pune, India
- Symbiosis School of Biological Sciences (SSBS), Symbiosis International (Deemed University), Pune, India
| | - Prasad Pethe
- Symbiosis Centre for Stem Cell Research (SCSCR), Symbiosis International (Deemed University), Pune, India
- Symbiosis School of Biological Sciences (SSBS), Symbiosis International (Deemed University), Pune, India
| | - Ganesh Ingavle
- Symbiosis Centre for Stem Cell Research (SCSCR), Symbiosis International (Deemed University), Pune, India
- Symbiosis School of Biological Sciences (SSBS), Symbiosis International (Deemed University), Pune, India
| |
Collapse
|
5
|
Aljuraibah F, Alalwan I, Habeb A. Diagnostic and New Therapeutic Approaches to Two Challenging Pediatric Metabolic Bone Disorders: Hypophosphatasia and X-linked Hypophosphatemic Rickets. Curr Pediatr Rev 2024; 20:395-404. [PMID: 37927073 DOI: 10.2174/0115733963206838231031102750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 06/09/2023] [Accepted: 10/03/2023] [Indexed: 11/07/2023]
Abstract
The diagnosis and management of metabolic bone disease among children can be challenging. This difficulty could be due to many factors, including limited awareness of these rare conditions, the complex pathophysiology of calcium and phosphate homeostasis, the overlapping phenotype with more common disorders (such as rickets), and the lack of specific treatments for these rare disorders. As a result, affected individuals could experience delayed diagnosis or misdiagnosis, leading to improper management. In this review, we describe the challenges facing diagnostic and therapeutic approaches to two metabolic bone disorders (MBD) among children: hypophosphatasia (HPP) and X-linked hypophosphatemia (XLH). We focus on explaining the pathophysiological processes that conceptually underpin novel therapeutic approaches, as well as these conditions' clinical or radiological similarity to nutritional rickets. Particularly in areas with limited sun exposure and among patients not supplementing vitamin D, nutritional rickets are still more common than HPP and XLH, and pediatricians and primary physicians frequently encounter this disorder in their practices. More recently, our understanding of these disorders has significantly improved, leading to the development of novel therapies. Asfotas alfa, a recombinant, human- tissue, nonspecific alkaline phosphatase, improved the survival of patients with HPP. Burosumab, a human monoclonal anti-FGF23 antibody, was recently approved as a specific therapy for XLH. We also highlight the current evidence on these two specific therapies' safety and effectiveness, though long-term data are still needed. Both HPP and XLH are multisystemic disorders that should be managed by multidisciplinary teams. Finally, recognizing these conditions in early stages will enable affected children and young adults to benefit from newly introduced, specific therapies.
Collapse
Affiliation(s)
- Fahad Aljuraibah
- Department of Pediatrics, King Abdullah Specialist Children's Hospital, King Abdulaziz Medical City, Ministry of National Guard Health Affairs, Riyadh, Saudi Arabia
- College of Medicine, King Saud bin Abdul-Aziz University for Health Sciences, Ministry of National Guard Health Affairs, Riyadh, Saudi Arabia
- King Abdullah International Medical Research Center, Ministry of National Guard Health Affairs Riyadh, Saudi Arabia
| | - Ibrahim Alalwan
- Department of Pediatrics, King Abdullah Specialist Children's Hospital, King Abdulaziz Medical City, Ministry of National Guard Health Affairs, Riyadh, Saudi Arabia
- College of Medicine, King Saud bin Abdul-Aziz University for Health Sciences, Ministry of National Guard Health Affairs, Riyadh, Saudi Arabia
- King Abdullah International Medical Research Center, Ministry of National Guard Health Affairs Riyadh, Saudi Arabia
| | - Abdelhadi Habeb
- Department of Pediatrics, Prince Mohammed bin Abdulaziz Hospital for National Guard, Al-Madinah, Saudi Arabia
| |
Collapse
|
6
|
da Silva Sasso GR, Florencio-Silva R, de Pizzol-Júnior JP, Gil CD, Simões MDJ, Sasso-Cerri E, Cerri PS. Additional Insights Into the Role of Osteocalcin in Osteoblast Differentiation and in the Early Steps of Developing Alveolar Process of Rat Molars. J Histochem Cytochem 2023; 71:689-708. [PMID: 37953508 PMCID: PMC10691409 DOI: 10.1369/00221554231211630] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Accepted: 10/05/2023] [Indexed: 11/14/2023] Open
Abstract
This study investigated whether osteocalcin (OCN) is present in osteoblast precursors and its relationship with initial phases of alveolar process formation. Samples of maxillae of 16-, 18-, and 20-day-old rat embryos (E16, E18, and E20, respectively), and 05-, 10-, and 15-day-old postnatal rats (P05, P10, and P15, respectively) were fixed and embedded in paraffin or araldite. Immunohistochemistry for osterix (Osx), alkaline phosphatase (ALP), and OCN detection was performed and the number of immunolabelled cells was computed. Non-decalcified sections were subjected to the von Kossa method combined with immunohistochemistry for Osx or OCN detection. For OCN immunolocalization, samples were fixed in 0.5% glutaraldehyde/2% formaldehyde and embedded in LR White resin. The highest number of ALP- and OCN-immunolabelled cells was observed in dental follicle of E16 specimens, mainly in basal portions of dental alveolus. In corresponding regions, osteoblasts in differentiation adjacent to von Kossa-positive bone matrix exhibited Osx and OCN immunoreactivity. Ultrastructural analysis revealed OCN immunoreactive particles inside osteoblast in differentiation, and in bone matrix associated with collagen fibrils and within matrix vesicles, at early stages of alveolar process formation. Our results indicate that OCN plays a role in osteoblast differentiation and may regulate calcium/phosphate precipitation during early mineralization of the alveolar process.
Collapse
Affiliation(s)
- Gisela Rodrigues da Silva Sasso
- Disciplina de Histologia e Biologia Estrutural, Departamento de Morfologia e Genética, Escola Paulista de Medicina (EPM), Universidade Federal de São Paulo (UNIFESP), São Paulo, Brasil
| | - Rinaldo Florencio-Silva
- Disciplina de Histologia e Biologia Estrutural, Departamento de Morfologia e Genética, Escola Paulista de Medicina (EPM), Universidade Federal de São Paulo (UNIFESP), São Paulo, Brasil
- Departamento de Ginecologia, Escola Paulista de Medicina (EPM), Universidade Federal de São Paulo (UNIFESP), São Paulo, Brasil
| | - José Paulo de Pizzol-Júnior
- Laboratory of Histology and Embryology, Department of Morphology, Genetics, Orthodontics and Pediatric Dentistry, School of Dentistry, São Paulo State University (UNESP), Araraquara, Brazil
| | - Cristiane Damas Gil
- Disciplina de Histologia e Biologia Estrutural, Departamento de Morfologia e Genética, Escola Paulista de Medicina (EPM), Universidade Federal de São Paulo (UNIFESP), São Paulo, Brasil
| | - Manuel de Jesus Simões
- Disciplina de Histologia e Biologia Estrutural, Departamento de Morfologia e Genética, Escola Paulista de Medicina (EPM), Universidade Federal de São Paulo (UNIFESP), São Paulo, Brasil
| | - Estela Sasso-Cerri
- Laboratory of Histology and Embryology, Department of Morphology, Genetics, Orthodontics and Pediatric Dentistry, School of Dentistry, São Paulo State University (UNESP), Araraquara, Brazil
| | - Paulo Sérgio Cerri
- Laboratory of Histology and Embryology, Department of Morphology, Genetics, Orthodontics and Pediatric Dentistry, School of Dentistry, São Paulo State University (UNESP), Araraquara, Brazil
| |
Collapse
|
7
|
Mizutani T, Tsuchiya S, Honda M, Montenegro Raudales JL, Kuroda K, Miyamoto H, Nakamura T, Ishibashi K, Shibuya Y. Alkali-treated titanium dioxide promotes formation of proteoglycan layer and altered calcification and immunotolerance capacity in bone marrow stem cell. Biochem Biophys Rep 2023; 36:101569. [PMID: 38024862 PMCID: PMC10658208 DOI: 10.1016/j.bbrep.2023.101569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2023] [Revised: 10/23/2023] [Accepted: 10/25/2023] [Indexed: 12/01/2023] Open
Abstract
Introduction In this study, we report that a proteoglycans (PGs)-layer between the bone and titanium dioxide (TiO2) surface after osseointegration improved the calcification capacity and immunotolerance of human bone marrow mesenchymal stem cells (hBMSCs) on TiO2. Alkaline treatment of TiO2 is a method for promoting osteogenesis in hBMSCs. We hypothesized that promotion of osteogenesis due to alkaline treatment was caused by changing PGs-layer on TiO2. Objective This study aimed to analyze whether alkaline treatment of TiO2 affects PGs-layer formation and immunotolerance in hBMSCs. Methods The topology and wettability of the alkaline-treated titanium (Ti-Al) and unprocessed titanium (Ti-MS) surfaces were characterized. Initial cell attachment, cell proliferation, calcification capacity, alkaline phosphatase activity, PGs-layer formation, PGs function, and the expression of osteogenic and immunotolerance-related genes were analyzed. The conditioned medium (CM) from hBMSCs grown on Ti-Al and Ti-MS was added to macrophages (hMps) and Jurkat cells, and immunotolerance gene expression in these cells was analyzed. Results hBMSCs cultured on Ti-Al showed increased initial cell attachment, cell proliferation, PG-layer formation, and osteogenic capacity compared with hBMSCs on Ti-MS. Gene expression of indoleamine 2,3-dioxygenase (IDO) in the hBMSCs cultured on Ti-Al was higher than that in the hBMSCs on Ti-MS. CM from hBMSCs did not affect markers of M1 and M2 macrophages in hMps. CM from hBMSCs cultured on Ti-Al altered the gene expression of Foxp3 in Jurkat cells compared to that of CM from hBMSCs on Ti-MS. Significance These results suggest that alkaline treatment of TiO2 altered PGs-layer formation, and changed the osteogenesis and immunotolerance of hBMSCs.
Collapse
Affiliation(s)
- Tomomi Mizutani
- Department of Oral Maxillofacial Surgery, Nagoya City University Graduate School of Medical Sciences, 1 Kawasumi Mizuho-cho Mizuho-ku, Nagoya, Aichi, 467-8602, Japan
| | - Shuhei Tsuchiya
- Department of Oral Maxillofacial Surgery, Nagoya City University Graduate School of Medical Sciences, 1 Kawasumi Mizuho-cho Mizuho-ku, Nagoya, Aichi, 467-8602, Japan
| | - Masaki Honda
- Department of Oral Anatomy, School of Dentistry, Aichi Gakuin University, 1-100 Kusumoto-cho, Chikusa-ku, Nagoya, Aichi, 470-0131, Japan
| | - Jorge Luis Montenegro Raudales
- Department of Oral Anatomy, School of Dentistry, Aichi Gakuin University, 1-100 Kusumoto-cho, Chikusa-ku, Nagoya, Aichi, 470-0131, Japan
| | - Kensuke Kuroda
- EcoTopia Science Institute, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi, 464-8603, Japan
| | - Hironori Miyamoto
- Department of Oral Maxillofacial Surgery, Nagoya City University Graduate School of Medical Sciences, 1 Kawasumi Mizuho-cho Mizuho-ku, Nagoya, Aichi, 467-8602, Japan
| | - Tomohisa Nakamura
- Department of Oral Maxillofacial Surgery, Nagoya City University Graduate School of Medical Sciences, 1 Kawasumi Mizuho-cho Mizuho-ku, Nagoya, Aichi, 467-8602, Japan
| | - Kenichiro Ishibashi
- Department of Oral Maxillofacial Surgery, Nagoya City University Graduate School of Medical Sciences, 1 Kawasumi Mizuho-cho Mizuho-ku, Nagoya, Aichi, 467-8602, Japan
| | - Yasuyuki Shibuya
- Department of Oral Maxillofacial Surgery, Nagoya City University Graduate School of Medical Sciences, 1 Kawasumi Mizuho-cho Mizuho-ku, Nagoya, Aichi, 467-8602, Japan
| |
Collapse
|
8
|
Sekar Jeyakumar GF, Velswamy P, Gunasekaran D, Panneerselvam Manimegalai N, Manikantan Syamala K, Tiruchirappalli Sivagnanam U. Enhancing the effectiveness of Alkaline Phosphatase and bone matrix proteins by tunable metal-organic composite for accelerated mineralization. Int J Biol Macromol 2023; 252:126524. [PMID: 37633545 DOI: 10.1016/j.ijbiomac.2023.126524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 07/18/2023] [Accepted: 08/23/2023] [Indexed: 08/28/2023]
Abstract
The irregular expression of bone matrix proteins occurring during the mineralization of bone regeneration results in various deformities which poses a major concern of orthopedic reconstruction. The limitations of the existing reconstruction practice paved a way for the development of a metal-organic composite [TQ-Sr-Fe] with Metal ions strontium [Sr] and iron [Fe] and a biomolecule Thymoquinone [TQ] in an attempt to enhance the bone mineralization due to their positive significance in osteoblast differentiation, proliferation and maturation. TQ-Sr-Fe was synthesized by in-situ coprecipitation and subjected to various characterization to determine their nature, compatibility and osteogenic efficiency. The crystallographic and electron microscopy analysis reveals sheet like structure of the composite. The negative cytotoxicity of TQ-Sr-Fe in the MG 63 cell line signified their biocompatibility. Cell adhesion and proliferation rate affirmed osteoconductive and osteoinductive nature of the composites and it was further supported by the gene expression of osteoblastic differentiation. The sequential expression of bone matrix proteins such as OCN, SPARC, COL 1, and Alkaline Phosphatase elevate the calcium deposition of MG-63 osteoblast like cells and initiates mineralization compared to control. Thus, the metal-organic composite TQ-Sr-Fe would make a suitable composite for accelerating mineralization process which would leads to faster bone regeneration.
Collapse
Affiliation(s)
- Grace Felciya Sekar Jeyakumar
- Biological Materials Laboratory, CSIR-Central Leather Research Institute, Sardar Patel Road, Chennai, India; Department of Leather Technology (Housed at CSIR-Central Leather Research Institute), Alagappa College of Technology, Anna University, Chennai, India
| | - Poornima Velswamy
- Biological Materials Laboratory, CSIR-Central Leather Research Institute, Sardar Patel Road, Chennai, India
| | - Deebasuganya Gunasekaran
- Biological Materials Laboratory, CSIR-Central Leather Research Institute, Sardar Patel Road, Chennai, India; Department of Leather Technology (Housed at CSIR-Central Leather Research Institute), Alagappa College of Technology, Anna University, Chennai, India
| | - Nivethitha Panneerselvam Manimegalai
- Biological Materials Laboratory, CSIR-Central Leather Research Institute, Sardar Patel Road, Chennai, India; Department of Leather Technology (Housed at CSIR-Central Leather Research Institute), Alagappa College of Technology, Anna University, Chennai, India
| | - Kiran Manikantan Syamala
- Biological Materials Laboratory, CSIR-Central Leather Research Institute, Sardar Patel Road, Chennai, India
| | - Uma Tiruchirappalli Sivagnanam
- Biological Materials Laboratory, CSIR-Central Leather Research Institute, Sardar Patel Road, Chennai, India; Department of Leather Technology (Housed at CSIR-Central Leather Research Institute), Alagappa College of Technology, Anna University, Chennai, India.
| |
Collapse
|
9
|
Yamamoto T, Abe M, Hongo H, Maruoka H, Yoshino H, Haraguchi-Kitakamae M, Udagawa N, Li M, Amizuka N, Hasegawa T. Differential osteoblastic activity in primary metaphyseal trabecular and secondary trabeculae of c-fos deficient mice. J Oral Biosci 2023; 65:265-272. [PMID: 37595744 DOI: 10.1016/j.job.2023.08.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 08/02/2023] [Accepted: 08/10/2023] [Indexed: 08/20/2023]
Abstract
OBJECTIVES It has been highlighted that osteoblastic activities in remodeling-based bone formation are coupled with osteoclastic bone resorption while those in modeling-based bone formation are independent of osteoclasts. This study aimed to verify whether modeling-based bone formation can occur in the absence of osteoclasts. METHODS We performed histochemical analyses on the bone of eight-week-old male wild-type and c-fos-/- mice. Histochemical analyses were conducted on primary trabeculae near the chondro-osseous junction (COJ), sites of modeling-based bone formation, and secondary trabeculae, sites of remodeling-based bone formation, in the femora and tibiae of mice. RESULTS Alkaline phosphatase (ALP) immunoreactivity, a marker of osteoblastic lineages, was observed in the metaphyseal trabeculae of wild-type mice, while ALP was scattered throughout the femora of c-fos-/- mice. PHOSPHO1, an enzyme involved in matrix vesicle-mediated mineralization, was predominantly detected in primary trabeculae and also within short lines of osteoblasts in secondary trabeculae of wild-type mice. In contrast, femora of c-fos-/- mice showed several patches of PHOSPHO1 positivity in the primary trabeculae, but there were hardly any patches of PHOSPHO1 in secondary trabeculae. Calcein labeling was consistently observed in primary trabeculae close to the COJ in both wild-type and c-fos-/- mice; however, calcein labeling in the secondary trabeculae was only detected in wild-type mice. Transmission electron microscopic examination demonstrated abundant rough endoplasmic reticulum in the osteoblasts in secondary trabeculae of wild-type mice, but not in those of c-fos-/- mice. CONCLUSIONS Osteoblastic activities at the sites of modeling-based bone formation may be maintained in the absence of osteoclasts.
Collapse
Affiliation(s)
- Tomomaya Yamamoto
- Developmental Biology of Hard Tissue, Faculty of Dental Medicine, Hokkaido University, Sapporo, Japan; Northern Army Medical Unit, Camp Makomanai, Japan Ground Self-Defense Forces, Sapporo, Japan
| | - Miki Abe
- Developmental Biology of Hard Tissue, Faculty of Dental Medicine, Hokkaido University, Sapporo, Japan
| | - Hiromi Hongo
- Developmental Biology of Hard Tissue, Faculty of Dental Medicine, Hokkaido University, Sapporo, Japan
| | - Haruhi Maruoka
- Developmental Biology of Hard Tissue, Faculty of Dental Medicine, Hokkaido University, Sapporo, Japan
| | - Hirona Yoshino
- Developmental Biology of Hard Tissue, Faculty of Dental Medicine, Hokkaido University, Sapporo, Japan
| | - Mai Haraguchi-Kitakamae
- Developmental Biology of Hard Tissue, Faculty of Dental Medicine, Hokkaido University, Sapporo, Japan; Division of Craniofacial Development and Tissue Biology, Graduate School of Dentistry, Tohoku University, Sendai, Japan
| | - Nobuyuki Udagawa
- Department of Oral Biochemistry, Matsumoto Dental University, Shiojiri, Japan
| | - Minqi Li
- Center of Osteoporosis and Bone Mineral Research, Department of Bone Metabolism, School of Stomatology, Shandong University, Jinan, China
| | - Norio Amizuka
- Developmental Biology of Hard Tissue, Faculty of Dental Medicine, Hokkaido University, Sapporo, Japan
| | - Tomoka Hasegawa
- Developmental Biology of Hard Tissue, Faculty of Dental Medicine, Hokkaido University, Sapporo, Japan.
| |
Collapse
|
10
|
Patlataya NN, Bolshakov IN, Khorzhevskii VA, Levenets AA, Medvedeva NN, Cherkashina MA, Nikolaenko MM, Ryaboshapko EI, Dmitrienko AE. Morphological Reconstruction of a Critical-Sized Bone Defect in the Maxillofacial Region Using Modified Chitosan in Rats with Sub-Compensated Type I Diabetes Mellitus. Polymers (Basel) 2023; 15:4337. [PMID: 37960017 PMCID: PMC10647318 DOI: 10.3390/polym15214337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 10/20/2023] [Accepted: 10/26/2023] [Indexed: 11/15/2023] Open
Abstract
It is known that complexes based on natural polysaccharides are able to eliminate bone defects. Prolonged hyperglycemia leads to low bone regeneration and a chronic inflammatory response. The purpose of this study was to increase the efficiency of early bone formation in a cavity of critical size in diabetes mellitus in the experiment. The polyelectrolyte complex contains high-molecular ascorbate of chitosan, chondroitin sulfate, sodium hyaluronate, heparin, adgelon serum growth factor, sodium alginate and amorphous nanohydroxyapatite (CH-SA-HA). Studies were conducted on five groups of white female Wistar rats: group 1-regeneration of a bone defect in healthy animals under a blood clot; group 2-regeneration of a bone defect under a blood clot in animals with diabetes mellitus; group 3-bone regeneration in animals with diabetes mellitus after filling the bone cavity with a collagen sponge; group 4-filling of a bone defect with a CH-SA-HA construct in healthy animals; group 5-filling of a bone defect with a CH-SA-HA construct in animals with diabetes mellitus. Implantation of the CH-SA-HA construct into bone cavities in type I diabetic rats can accelerate the rate of bone tissue repair. The inclusion of modifying polysaccharides and apatite agents in the construction may be a prospect for further improvement of the properties of implants.
Collapse
Affiliation(s)
- Nadezhda N. Patlataya
- Department of Fundamental Medical Disciplines, Institute of Medicine and Biology, Faculty of Medicine, State Educational Institution of Higher Education, Moscow State Regional University, Moscow 105005, Russia;
| | - Igor N. Bolshakov
- Department Operative Surgery and Topographic Anatomy, Voino-Yasenetsky Krasnoyarsk State Medical University, Krasnoyarsk 660022, Russia
| | - Vladimir A. Khorzhevskii
- Department Pathological Anatomy, Voino-Yasenetsky Krasnoyarsk State Medical University, Pathological and Anatomical Department Krasnoyarsk Clinical Regional Hospital, Krasnoyarsk 660022, Russia;
| | - Anatoli A. Levenets
- Department Surgical Dentistry and Maxillofacial Surgery, Voino-Yasenetsky Krasnoyarsk State Medical University, Krasnoyarsk 660022, Russia;
| | - Nadezhda N. Medvedeva
- Department of Human Anatomy, Voino-Yasenetsky Krasnoyarsk State Medical University, Krasnoyarsk 660022, Russia;
| | - Mariya A. Cherkashina
- Pediatric Faculty, Voino-Yasenetsky Krasnoyarsk State Medical University, Krasnoyarsk 660022, Russia; (M.A.C.); (E.I.R.); (A.E.D.)
| | - Matvey M. Nikolaenko
- Department of Maxillofacial and Plastic Surgery, Moscow State University of Medicine and Dentistry, Moscow 127473, Russia;
| | - Ekaterina I. Ryaboshapko
- Pediatric Faculty, Voino-Yasenetsky Krasnoyarsk State Medical University, Krasnoyarsk 660022, Russia; (M.A.C.); (E.I.R.); (A.E.D.)
| | - Anna E. Dmitrienko
- Pediatric Faculty, Voino-Yasenetsky Krasnoyarsk State Medical University, Krasnoyarsk 660022, Russia; (M.A.C.); (E.I.R.); (A.E.D.)
| |
Collapse
|
11
|
Patlataya NN, Bolshakov IN, Levenets AA, Medvedeva NN, Khorzhevskii VA, Cherkashina MA. Experimental Early Stimulation of Bone Tissue Neo-Formation for Critical Size Elimination Defects in the Maxillofacial Region. Polymers (Basel) 2023; 15:4232. [PMID: 37959911 PMCID: PMC10650047 DOI: 10.3390/polym15214232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 10/16/2023] [Accepted: 10/17/2023] [Indexed: 11/15/2023] Open
Abstract
A biomaterial is proposed for closing extensive bone defects in the maxillofacial region. The composition of the biomaterial includes high-molecular chitosan, chondroitin sulfate, hyaluronate, heparin, alginate, and inorganic nanostructured hydroxyapatite. The purpose of this study is to demonstrate morphological and histological early signs of reconstruction of a bone cavity of critical size. The studies were carried out on 84 white female rats weighing 200-250 g. The study group consisted of 84 animals in total, 40 in the experimental group and 44 in the control group. In all animals, three-walled bone defects measuring 0.5 × 0.4 × 0.5 cm3 were applied subperiosteally in the region of the angle of the lower jaw and filled in the experimental group using lyophilized gel mass of chitosan-alginate-hydroxyapatite (CH-SA-HA). In control animals, the bone cavities were filled with their own blood clots after bone trepanation and bleeding. The periods for monitoring bone regeneration were 3, 5, and 7 days and 2, 3, 4, 6, 8, and 10 weeks. The control of bone regeneration was carried out using multiple morphological and histological analyses. Results showed that the following process is an obligatory process and is accompanied by the binding and release of angiogenic implantation: the chitosan construct actively replaced early-stage defects with the formation of full-fledged new bone tissue compared to the control group. By the 7th day, morphological analysis showed that the formation of spongy bone tissue could be seen. After 2 weeks, there was a pronounced increase in bone volume (p < 0.01), and at 6 weeks after surgical intervention, the closure of the defect was 70-80%; after 8 weeks, it was 100% without violation of bone morphology with a high degree of mineralization. Thus, the use of modified chitosan after filling eliminates bone defects of critical size in the maxillofacial region, revealing early signs of bone regeneration, and serves as a promising material in reconstructive dentistry.
Collapse
Affiliation(s)
| | - Igor Nicolaevich Bolshakov
- Department Operative Surgery and Topographic Anatomy, Voino-Yasenetsky Krasnoyarsk State Medical University, Krasnoyarsk 660022, Russia
| | - Anatoliy Alexandrovich Levenets
- Department Surgical Dentistry and Maxillofacial Surgery, Voino-Yasenetsky Krasnoyarsk State Medical University, Krasnoyarsk 660022, Russia;
| | | | - Vladimir Alexeevich Khorzhevskii
- Department Pathological Anatomy, Voino-Yasenetsky Krasnoyarsk State Medical University, Krasnoyarsk 660022, Russia;
- Krasnoyarsk Regional Pathological and Anatomical Bureau, Krasnoyarsk 660022, Russia
| | | |
Collapse
|
12
|
Bernabei I, Hansen U, Ehirchiou D, Brinckmann J, Chobaz V, Busso N, Nasi S. CD11b Deficiency Favors Cartilage Calcification via Increased Matrix Vesicles, Apoptosis, and Lysyl Oxidase Activity. Int J Mol Sci 2023; 24:ijms24119776. [PMID: 37298730 DOI: 10.3390/ijms24119776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 05/31/2023] [Accepted: 05/31/2023] [Indexed: 06/12/2023] Open
Abstract
Pathological cartilage calcification is a hallmark feature of osteoarthritis, a common degenerative joint disease, characterized by cartilage damage, progressively causing pain and loss of movement. The integrin subunit CD11b was shown to play a protective role against cartilage calcification in a mouse model of surgery-induced OA. Here, we investigated the possible mechanism by which CD11b deficiency could favor cartilage calcification by using naïve mice. First, we found by transmission electron microscopy (TEM) that CD11b KO cartilage from young mice presented early calcification spots compared with WT. CD11b KO cartilage from old mice showed progression of calcification areas. Mechanistically, we found more calcification-competent matrix vesicles and more apoptosis in both cartilage and chondrocytes isolated from CD11b-deficient mice. Additionally, the extracellular matrix from cartilage lacking the integrin was dysregulated with increased collagen fibrils with smaller diameters. Moreover, we revealed by TEM that CD11b KO cartilage had increased expression of lysyl oxidase (LOX), the enzyme that catalyzes matrix crosslinks. We confirmed this in murine primary CD11b KO chondrocytes, where Lox gene expression and crosslinking activity were increased. Overall, our results suggest that CD11b integrin regulates cartilage calcification through reduced MV release, apoptosis, LOX activity, and matrix crosslinking. As such, CD11b activation might be a key pathway for maintaining cartilage integrity.
Collapse
Affiliation(s)
- Ilaria Bernabei
- Service of Rheumatology, Department of Musculoskeletal Medicine, Lausanne University Hospital, 1011 Lausanne, Switzerland
| | - Uwe Hansen
- Institute for Musculoskeletal Medicine, University Hospital of Münster, 48149 Münster, Germany
| | - Driss Ehirchiou
- Service of Rheumatology, Department of Musculoskeletal Medicine, Lausanne University Hospital, 1011 Lausanne, Switzerland
| | - Jürgen Brinckmann
- Department of Dermatology, University of Lübeck, 23562 Lübeck, Germany
| | - Veronique Chobaz
- Service of Rheumatology, Department of Musculoskeletal Medicine, Lausanne University Hospital, 1011 Lausanne, Switzerland
| | - Nathalie Busso
- Service of Rheumatology, Department of Musculoskeletal Medicine, Lausanne University Hospital, 1011 Lausanne, Switzerland
| | - Sonia Nasi
- Service of Rheumatology, Department of Musculoskeletal Medicine, Lausanne University Hospital, 1011 Lausanne, Switzerland
| |
Collapse
|
13
|
Koushik TM, Miller CM, Antunes E. Bone Tissue Engineering Scaffolds: Function of Multi-Material Hierarchically Structured Scaffolds. Adv Healthc Mater 2023; 12:e2202766. [PMID: 36512599 PMCID: PMC11468595 DOI: 10.1002/adhm.202202766] [Citation(s) in RCA: 39] [Impact Index Per Article: 39.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 11/29/2022] [Indexed: 12/15/2022]
Abstract
Bone tissue engineering (BTE) is a topic of interest for the last decade, and advances in materials, processing techniques, and the understanding of bone healing pathways have opened new avenues of research. The dual responsibility of BTE scaffolds in providing load-bearing capability and interaction with the local extracellular matrix to promote bone healing is a challenge in synthetic scaffolds. This article describes the usage and processing of multi-materials and hierarchical structures to mimic the structure of natural bone tissues to function as bioactive and load-bearing synthetic scaffolds. The first part of this literature review describes the physiology of bone healing responses and the interactions at different stages of bone repair. The following section reviews the available literature on biomaterials used for BTE scaffolds followed by some multi-material approaches. The next section discusses the impact of the scaffold's structural features on bone healing and the necessity of a hierarchical distribution in the scaffold structure. Finally, the last section of this review highlights the emerging trends in BTE scaffold developments that can inspire new tissue engineering strategies and truly develop the next generation of synthetic scaffolds.
Collapse
Affiliation(s)
- Tejas M. Koushik
- College of Science and EngineeringJames Cook UniversityTownsvilleQueensland4811Australia
| | - Catherine M. Miller
- College of Medicine and DentistryJames Cook UniversitySmithfieldQueensland4878Australia
| | - Elsa Antunes
- College of Science and EngineeringJames Cook UniversityTownsvilleQueensland4811Australia
| |
Collapse
|
14
|
Savic I, Farver C, Milovanovic P. Pathogenesis of Pulmonary Calcification and Homologies with Biomineralization in Other Tissues. THE AMERICAN JOURNAL OF PATHOLOGY 2022; 192:1496-1505. [PMID: 36030837 DOI: 10.1016/j.ajpath.2022.07.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2022] [Revised: 07/18/2022] [Accepted: 07/29/2022] [Indexed: 06/15/2023]
Abstract
Lungs often present tissue calcifications and even ossifications, both in the context of high or normal serum calcium levels. Precise mechanisms governing lung calcifications have not been explored. Herein, we emphasize recent advances about calcification processes in other tissues (especially vascular and bone calcifications) and discuss potential sources of calcium precipitates in the lungs, involvement of mineralization promoters and crystallization inhibitors, as well as specific cytokine milieu and cellular phenotypes characteristic for lung diseases, which may be involved in pulmonary calcifications. Further studies are necessary to demonstrate the exact mechanisms underlying calcifications in the lungs, document homologies in biomineralization processes between various tissues in physiological and pathologic conditions, and unravel any locally specific characteristics of mineralization processes that may be targeted to reduce or prevent functionally relevant lung calcifications without negatively affecting the skeleton.
Collapse
Affiliation(s)
- Ivana Savic
- Institute of Pathology, University of Belgrade Faculty of Medicine, Belgrade, Serbia
| | - Carol Farver
- Department of Pathology, Cleveland Clinic, Cleveland, Ohio
| | - Petar Milovanovic
- Laboratory of Bone Biology and Bioanthropology, Institute of Anatomy, University of Belgrade Faculty of Medicine, Belgrade, Serbia; Center of Bone Biology, University of Belgrade Faculty of Medicine, Belgrade, Serbia.
| |
Collapse
|
15
|
Hongo H, Yokoyama A, Yamada-Sekiguchi T, Yamamoto T, Yoshino H, Abe M, Haraguchi-Kitakamae M, Luiz de Freitas PH, Hasegawa T, Li M. Histochemical assessment on osteocytic osteolysis in lactating mice fed with a calcium-insufficient diet. J Oral Biosci 2022; 64:422-430. [PMID: 36152933 DOI: 10.1016/j.job.2022.09.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Revised: 09/13/2022] [Accepted: 09/08/2022] [Indexed: 11/26/2022]
Abstract
OBJECTIVES This study aimed to examine if feeding lactating mice a calcium-insufficient diet while simultaneously administering alendronate (ALN) could potentially induce osteocytic osteolysis. METHODS Lactating mice were fed calcium (Ca)-insufficient diets with or without ALN administration, and then their femurs were examined for TRAP and ALP, and observed by Kossa staining and transmission electron microscopy (TEM). Mice that had been fed a Ca-insufficient diet were then fed a 44Ca-containinig diet, and their tibial sections were examined by isotope microscopy. RESULTS Mice fed a Ca-insufficient diet had a reduced number of TRAP-positive osteoclasts after ALN administration. ALN-treated, lactating mice fed a Ca-insufficient diet had enlarged lacunae in their cortical bones, and TEM imaging demonstrated expanded regions between osteocytes and lacunar walls. In ALN-treated lactating mice fed a Ca-insufficient diet, huge areas of demineralized bone matrix occurred, centered around blood vessels in the cortical bone. Isotope microscopy showed 44Ca in the vicinity of the osteocytic lacunae, and in the broad, previously demineralized region around the blood vessels in the cortical bone of lactating mice fed a 44Ca-sufficient diet. CONCLUSIONS Bone demineralization likely takes place in the periphery of the osteocytic lacunae and in the broad regions around the blood vessels of lactating mice when they are exposed to severely reduced serum Ca through a Ca-insufficient diet coupled with ALN administration.
Collapse
Affiliation(s)
- Hiromi Hongo
- Developmental Biology of Hard Tissue, Graduate School of Dental Medicine and Faculty of Dental Medicine, Hokkaido University, Sapporo, Japan
| | - Ayako Yokoyama
- Gerontology, Graduate School of Dental Medicine and Faculty of Dental Medicine, Hokkaido University, Sapporo, Japan
| | - Tamaki Yamada-Sekiguchi
- Oral and Maxillofacial Surgery, Graduate School of Dental Medicine and Faculty of Dental Medicine, Hokkaido University, Sapporo, Japan
| | - Tomomaya Yamamoto
- Developmental Biology of Hard Tissue, Graduate School of Dental Medicine and Faculty of Dental Medicine, Hokkaido University, Sapporo, Japan; Northern Army Medical Unit, Camp Makomanai, Japan Ground Self-Defense Forces, Sapporo, Japan
| | - Hirona Yoshino
- Developmental Biology of Hard Tissue, Graduate School of Dental Medicine and Faculty of Dental Medicine, Hokkaido University, Sapporo, Japan
| | - Miki Abe
- Developmental Biology of Hard Tissue, Graduate School of Dental Medicine and Faculty of Dental Medicine, Hokkaido University, Sapporo, Japan
| | - Mai Haraguchi-Kitakamae
- Developmental Biology of Hard Tissue, Graduate School of Dental Medicine and Faculty of Dental Medicine, Hokkaido University, Sapporo, Japan; Division of Craniofacial Development and Tissue Biology, Graduate School of Dentistry, Tohoku University, Sendai, Japan
| | | | - Tomoka Hasegawa
- Developmental Biology of Hard Tissue, Graduate School of Dental Medicine and Faculty of Dental Medicine, Hokkaido University, Sapporo, Japan.
| | - Minqi Li
- Shandong Provincial Key Laboratory of Oral Biomedicine, The School of Stomatology, Shandong University, Jinan, China
| |
Collapse
|
16
|
Garneau AP, Slimani S, Haydock L, Nsimba-Batomene TR, Préfontaine FCM, Lavoie MM, Tremblay LE, Fiola MJ, Mac-Way F, Isenring P. Molecular mechanisms, physiological roles, and therapeutic implications of ion fluxes in bone cells: Emphasis on the cation-Cl - cotransporters. J Cell Physiol 2022; 237:4356-4368. [PMID: 36125923 PMCID: PMC10087713 DOI: 10.1002/jcp.30879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 08/25/2022] [Accepted: 09/01/2022] [Indexed: 11/11/2022]
Abstract
Bone turnover diseases are exceptionally prevalent in human and come with a high burden on physical health. While these diseases are associated with a variety of risk factors and causes, they are all characterized by common denominators, that is, abnormalities in the function or number of osteoblasts, osteoclasts, and/or osteocytes. As such, much effort has been deployed in the recent years to understand the signaling mechanisms of bone cell proliferation and differentiation with the objectives of exploiting the intermediates involved as therapeutic preys. Ion transport systems at the external and in the intracellular membranes of osteoblasts and osteoclasts also play an important role in bone turnover by coordinating the movement of Ca2+ , PO4 2- , and H+ ions in and out of the osseous matrix. Even if they sustain the terminal steps of osteoformation and osteoresorption, they have been the object of very little attention in the last several years. Members of the cation-Cl- cotransporter (CCC) family are among the systems at work as they are expressed in bone cells, are known to affect the activity of Ca2+ -, PO4 2- -, and H+ -dependent transport systems and have been linked to bone mass density variation in human. In this review, the roles played by the CCCs in bone remodeling will be discussed in light of recent developments and their potential relevance in the treatment of skeletal disorders.
Collapse
Affiliation(s)
- Alexandre P Garneau
- Department of Medicine, Nephrology Research Group, Laval University, Québec, Québec, Canada.,Service de Néphrologie-Transplantation Rénale Adultes, Hôpital Necker-Enfants Malades, AP-HP, Inserm U1151, Université Paris Cité, rue de Sèvres, Paris, France
| | - Samira Slimani
- Department of Medicine, Nephrology Research Group, Laval University, Québec, Québec, Canada
| | - Ludwig Haydock
- Department of Medicine, Nephrology Research Group, Laval University, Québec, Québec, Canada
| | | | | | - Mathilde M Lavoie
- Department of Medicine, Nephrology Research Group, Laval University, Québec, Québec, Canada
| | - Laurence E Tremblay
- Department of Medicine, Nephrology Research Group, Laval University, Québec, Québec, Canada
| | - Marie-Jeanne Fiola
- Department of Medicine, Nephrology Research Group, Laval University, Québec, Québec, Canada
| | - Fabrice Mac-Way
- Department of Medicine, Nephrology Research Group, Laval University, Québec, Québec, Canada
| | - Paul Isenring
- Department of Medicine, Nephrology Research Group, Laval University, Québec, Québec, Canada
| |
Collapse
|
17
|
Hasegawa T, Hongo H, Yamamoto T, Abe M, Yoshino H, Haraguchi-Kitakamae M, Ishizu H, Shimizu T, Iwasaki N, Amizuka N. Matrix Vesicle-Mediated Mineralization and Osteocytic Regulation of Bone Mineralization. Int J Mol Sci 2022; 23:ijms23179941. [PMID: 36077336 PMCID: PMC9456179 DOI: 10.3390/ijms23179941] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 08/23/2022] [Accepted: 08/29/2022] [Indexed: 11/16/2022] Open
Abstract
Bone mineralization entails two mineralization phases: primary and secondary mineralization. Primary mineralization is achieved when matrix vesicles are secreted by osteoblasts, and thereafter, bone mineral density gradually increases during secondary mineralization. Nearby extracellular phosphate ions (PO43−) flow into the vesicles via membrane transporters and enzymes located on the vesicles’ membranes, while calcium ions (Ca2+), abundant in the tissue fluid, are also transported into the vesicles. The accumulation of Ca2+ and PO43− in the matrix vesicles induces crystal nucleation and growth. The calcium phosphate crystals grow radially within the vesicle, penetrate the vesicle’s membrane, and continue to grow outside the vesicle, ultimately forming mineralized nodules. The mineralized nodules then attach to collagen fibrils, mineralizing them from the contact sites (i.e., collagen mineralization). Afterward, the bone mineral density gradually increases during the secondary mineralization process. The mechanisms of this phenomenon remain unclear, but osteocytes may play a key role; it is assumed that osteocytes enable the transport of Ca2+ and PO43− through the canaliculi of the osteocyte network, as well as regulate the mineralization of the surrounding bone matrix via the Phex/SIBLINGs axis. Thus, bone mineralization is biologically regulated by osteoblasts and osteocytes.
Collapse
Affiliation(s)
- Tomoka Hasegawa
- Developmental Biology of Hard Tissue, Graduate School of Dental Medicine, Faculty of Dental Medicine, Hokkaido University, Sapporo 060-8586, Japan
- Correspondence: (T.H.); (N.A.); Tel.: +81-11-706-4226 (T.H.); +81-11-706-4223 (N.A.)
| | - Hiromi Hongo
- Developmental Biology of Hard Tissue, Graduate School of Dental Medicine, Faculty of Dental Medicine, Hokkaido University, Sapporo 060-8586, Japan
| | - Tomomaya Yamamoto
- Developmental Biology of Hard Tissue, Graduate School of Dental Medicine, Faculty of Dental Medicine, Hokkaido University, Sapporo 060-8586, Japan
- Northern Army Medical Unit, Camp Makomanai, Japan Ground Self-Defense Forces, Sapporo 005-8543, Japan
| | - Miki Abe
- Developmental Biology of Hard Tissue, Graduate School of Dental Medicine, Faculty of Dental Medicine, Hokkaido University, Sapporo 060-8586, Japan
| | - Hirona Yoshino
- Developmental Biology of Hard Tissue, Graduate School of Dental Medicine, Faculty of Dental Medicine, Hokkaido University, Sapporo 060-8586, Japan
| | - Mai Haraguchi-Kitakamae
- Developmental Biology of Hard Tissue, Graduate School of Dental Medicine, Faculty of Dental Medicine, Hokkaido University, Sapporo 060-8586, Japan
- Division of Craniofacial Development and Tissue Biology, Graduate School of Dentistry, Tohoku University, Sendai 980-8577, Japan
| | - Hotaka Ishizu
- Developmental Biology of Hard Tissue, Graduate School of Dental Medicine, Faculty of Dental Medicine, Hokkaido University, Sapporo 060-8586, Japan
- Orthopedic Surgery, Faculty of Medicine, Hokkaido University, Sapporo 060-8638, Japan
| | - Tomohiro Shimizu
- Orthopedic Surgery, Faculty of Medicine, Hokkaido University, Sapporo 060-8638, Japan
| | - Norimasa Iwasaki
- Orthopedic Surgery, Faculty of Medicine, Hokkaido University, Sapporo 060-8638, Japan
| | - Norio Amizuka
- Developmental Biology of Hard Tissue, Graduate School of Dental Medicine, Faculty of Dental Medicine, Hokkaido University, Sapporo 060-8586, Japan
- Correspondence: (T.H.); (N.A.); Tel.: +81-11-706-4226 (T.H.); +81-11-706-4223 (N.A.)
| |
Collapse
|
18
|
Iwayama T, Bhongsatiern P, Takedachi M, Murakami S. Matrix Vesicle-Mediated Mineralization and Potential Applications. J Dent Res 2022; 101:1554-1562. [PMID: 35722955 DOI: 10.1177/00220345221103145] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Hard tissues, including the bones and teeth, are a fundamental part of the body, and their formation and homeostasis are critically regulated by matrix vesicle-mediated mineralization. Matrix vesicles have been studied for 50 y since they were first observed using electron microscopy. However, research progress has been hampered by various technical barriers. Recently, there have been great advancements in our understanding of the intracellular biosynthesis of matrix vesicles. Mitochondria and lysosomes are now considered key players in matrix vesicle formation. The involvement of mitophagy, mitochondrial-derived vesicles, and mitochondria-lysosome interaction have been suggested as potential detailed mechanisms of the intracellular pathway of matrix vesicles. Their main secretion pathway may be exocytosis, in addition to the traditionally understood mechanism of budding from the outer plasma membrane. This basic knowledge of matrix vesicles should be strengthened by novel nano-level microscopic technologies, together with basic cell biologies, such as autophagy and interorganelle interactions. In the field of tissue regeneration, extracellular vesicles such as exosomes are gaining interest as promising tools in cell-free bone and periodontal regenerative therapy. Matrix vesicles, which are recognized as a special type of extracellular vesicles, could be another potential alternative. In this review, we outline the recent significant progress in the process of matrix vesicle-mediated mineralization and the potential clinical applications of matrix vesicles for tissue regeneration.
Collapse
Affiliation(s)
- T Iwayama
- Department of Periodontology, Osaka University Graduate School of Dentistry, Suita, Osaka, Japan
| | - P Bhongsatiern
- Department of Periodontology, Osaka University Graduate School of Dentistry, Suita, Osaka, Japan
| | - M Takedachi
- Department of Periodontology, Osaka University Graduate School of Dentistry, Suita, Osaka, Japan
| | - S Murakami
- Department of Periodontology, Osaka University Graduate School of Dentistry, Suita, Osaka, Japan
| |
Collapse
|
19
|
Bohner M, Maazouz Y, Ginebra MP, Habibovic P, Schoenecker JG, Seeherman H, van den Beucken JJ, Witte F. Sustained local ionic homeostatic imbalance caused by calcification modulates inflammation to trigger heterotopic ossification. Acta Biomater 2022; 145:1-24. [PMID: 35398267 DOI: 10.1016/j.actbio.2022.03.057] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 03/30/2022] [Accepted: 03/31/2022] [Indexed: 12/15/2022]
Abstract
Heterotopic ossification (HO) is a condition triggered by an injury leading to the formation of mature lamellar bone in extraskeletal soft tissues. Despite being a frequent complication of orthopedic and trauma surgery, brain and spinal injury, the etiology of HO is poorly understood. The aim of this study is to evaluate the hypothesis that a sustained local ionic homeostatic imbalance (SLIHI) created by mineral formation during tissue calcification modulates inflammation to trigger HO. This evaluation also considers the role SLIHI could play for the design of cell-free, drug-free osteoinductive bone graft substitutes. The evaluation contains five main sections. The first section defines relevant concepts in the context of HO and provides a summary of proposed causes of HO. The second section starts with a detailed analysis of the occurrence and involvement of calcification in HO. It is followed by an explanation of the causes of calcification and its consequences. This allows to speculate on the potential chemical modulators of inflammation and triggers of HO. The end of this second section is devoted to in vitro mineralization tests used to predict the ectopic potential of materials. The third section reviews the biological cascade of events occurring during pathological and material-induced HO, and attempts to propose a quantitative timeline of HO formation. The fourth section looks at potential ways to control HO formation, either acting on SLIHI or on inflammation. Chemical, physical, and drug-based approaches are considered. Finally, the evaluation finishes with a critical assessment of the definition of osteoinduction. STATEMENT OF SIGNIFICANCE: The ability to regenerate bone in a spatially controlled and reproducible manner is an essential prerequisite for the treatment of large bone defects. As such, understanding the mechanism leading to heterotopic ossification (HO), a condition triggered by an injury leading to the formation of mature lamellar bone in extraskeletal soft tissues, would be very useful. Unfortunately, the mechanism(s) behind HO is(are) poorly understood. The present study reviews the literature on HO and based on it, proposes that HO can be caused by a combination of inflammation and calcification. This mechanism helps to better understand current strategies to prevent and treat HO. It also shows new opportunities to improve the treatment of bone defects in orthopedic and dental procedures.
Collapse
|
20
|
Lui FHY, Xu L, Michaux P, Biazik J, Harm GFS, Oliver RA, Koshy P, Walsh WR, Mobbs RJ, Brennan‐Speranza TC, Wang Y, You L, Sorrell CC. Microfluidic device with a carbonate‐rich hydroxyapatite micro‐coating. NANO SELECT 2022. [DOI: 10.1002/nano.202200102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Affiliation(s)
- Florence H. Y. Lui
- School of Materials Science and Engineering UNSW Sydney Sydney New South Wales Australia
| | - Liangcheng Xu
- Institute of Biomedical Engineering University of Toronto Toronto Ontario Canada
| | - Pierrette Michaux
- Australian National Fabrication Facility (NSW Node) School of Physics UNSW Sydney Sydney New South Wales Australia
| | - Joanna Biazik
- Mark Wainwright Cell Culture Facility UNSW Sydney Sydney New South Wales Australia
| | - Gregory F. S. Harm
- Mark Wainwright Cell Culture Facility UNSW Sydney Sydney New South Wales Australia
| | - Rema A. Oliver
- Surgical & Orthopaedic Research Laboratories (SORL) Prince of Wales Clinical School UNSW Sydney Sydney New South Wales Australia
| | - Pramod Koshy
- School of Materials Science and Engineering UNSW Sydney Sydney New South Wales Australia
| | - William R. Walsh
- Surgical & Orthopaedic Research Laboratories (SORL) Prince of Wales Clinical School UNSW Sydney Sydney New South Wales Australia
| | - Ralph J. Mobbs
- Prince of Wales Hospital School of Medicine UNSW Sydney Sydney New South Wales Australia
| | | | - Yu Wang
- Mark Wainwright Analytical Centre UNSW Sydney Sydney New South Wales Australia
| | - Lidan You
- Institute of Biomedical Engineering University of Toronto Toronto Ontario Canada
- Department of Mechanical and Industrial Engineering University of Toronto Toronto Ontario Canada
| | - Charles C. Sorrell
- School of Materials Science and Engineering UNSW Sydney Sydney New South Wales Australia
| |
Collapse
|
21
|
Yan J, Shen M, Sui B, Lu W, Han X, Wan Q, Liu Y, Kang J, Qin W, Zhang Z, Chen D, Cao Y, Ying S, Tay FR, Niu LN, Jiao K. Autophagic LC3 + calcified extracellular vesicles initiate cartilage calcification in osteoarthritis. SCIENCE ADVANCES 2022; 8:eabn1556. [PMID: 35544558 PMCID: PMC9094669 DOI: 10.1126/sciadv.abn1556] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
Pathological cartilage calcification plays an important role in osteoarthritis progression but in which the origin of calcified extracellular vesicles (EVs) and their effects remain unknown. Here, we demonstrate that pathological cartilage calcification occurs in the early stage of the osteoarthritis in which the calcified EVs are closely involved. Autophagosomes carrying the minerals are released in EVs, and calcification is induced by those autophagy-regulated calcified EVs. Autophagy-derived microtubule-associated proteins 1A/1B light chain 3B (LC3)-positive EVs are the major population of calcified EVs that initiate pathological calcification. Release of LC3-positive calcified EVs is caused by blockage of the autophagy flux resulted from histone deacetylase 6 (HDAC6)-mediated microtubule destabilization. Inhibition of HDAC6 activity blocks the release of the LC3-positive calcified EVs by chondrocytes and effectively reverses the pathological calcification and degradation of cartilage. The present work discovers that calcified EVs derived from autophagosomes initiate pathological cartilage calcification in osteoarthritis, with potential therapeutic targeting implication.
Collapse
Affiliation(s)
- Jianfei Yan
- State Key Laboratory of Military Stomatology and National Clinical Research Center for Oral Diseases and Shaanxi Key Laboratory of Stomatology, School of Stomatology, The Fourth Military Medical University, Xi’an, Shaanxi, China
| | - Minjuan Shen
- State Key Laboratory of Military Stomatology and National Clinical Research Center for Oral Diseases and Shaanxi Key Laboratory of Stomatology, School of Stomatology, The Fourth Military Medical University, Xi’an, Shaanxi, China
| | - Bingdong Sui
- State Key Laboratory of Military Stomatology and National Clinical Research Center for Oral Diseases and Shaanxi International Joint Research Center for Oral Diseases, Center for Tissue Engineering, School of Stomatology, The Fourth Military Medical University, Xi’an, Shaanxi, China
| | - Weicheng Lu
- State Key Laboratory of Military Stomatology and National Clinical Research Center for Oral Diseases and Shaanxi Key Laboratory of Stomatology, School of Stomatology, The Fourth Military Medical University, Xi’an, Shaanxi, China
| | - Xiaoxiao Han
- State Key Laboratory of Military Stomatology and National Clinical Research Center for Oral Diseases and Shaanxi Key Laboratory of Stomatology, School of Stomatology, The Fourth Military Medical University, Xi’an, Shaanxi, China
| | - Qianqian Wan
- State Key Laboratory of Military Stomatology and National Clinical Research Center for Oral Diseases and Shaanxi Key Laboratory of Stomatology, School of Stomatology, The Fourth Military Medical University, Xi’an, Shaanxi, China
| | - Yingying Liu
- Department of Neurobiology, The Fourth Military Medical University, Xi’an, Shaanxi, China
| | - Junjun Kang
- Department of Neurobiology, The Fourth Military Medical University, Xi’an, Shaanxi, China
| | - Wenpin Qin
- State Key Laboratory of Military Stomatology and National Clinical Research Center for Oral Diseases and Shaanxi Key Laboratory of Stomatology, School of Stomatology, The Fourth Military Medical University, Xi’an, Shaanxi, China
| | - Zibing Zhang
- State Key Laboratory of Military Stomatology and National Clinical Research Center for Oral Diseases and Shaanxi Key Laboratory of Stomatology, School of Stomatology, The Fourth Military Medical University, Xi’an, Shaanxi, China
| | - Da Chen
- State Key Laboratory of Military Stomatology and National Clinical Research Center for Oral Diseases and Shaanxi International Joint Research Center for Oral Diseases, Center for Tissue Engineering, School of Stomatology, The Fourth Military Medical University, Xi’an, Shaanxi, China
| | - Yuan Cao
- State Key Laboratory of Military Stomatology and National Clinical Research Center for Oral Diseases and Shaanxi International Joint Research Center for Oral Diseases, Center for Tissue Engineering, School of Stomatology, The Fourth Military Medical University, Xi’an, Shaanxi, China
| | - Siqi Ying
- State Key Laboratory of Military Stomatology and National Clinical Research Center for Oral Diseases and Shaanxi International Joint Research Center for Oral Diseases, Center for Tissue Engineering, School of Stomatology, The Fourth Military Medical University, Xi’an, Shaanxi, China
| | - Franklin R. Tay
- The Graduate School, Augusta University, Augusta, GA, USA
- Corresponding author. (K.J.); (L.-n.N.); (F.R.T.)
| | - Li-na Niu
- State Key Laboratory of Military Stomatology and National Clinical Research Center for Oral Diseases and Shaanxi Key Laboratory of Stomatology, School of Stomatology, The Fourth Military Medical University, Xi’an, Shaanxi, China
- Corresponding author. (K.J.); (L.-n.N.); (F.R.T.)
| | - Kai Jiao
- State Key Laboratory of Military Stomatology and National Clinical Research Center for Oral Diseases and Shaanxi Key Laboratory of Stomatology, School of Stomatology, The Fourth Military Medical University, Xi’an, Shaanxi, China
- Corresponding author. (K.J.); (L.-n.N.); (F.R.T.)
| |
Collapse
|
22
|
Boyan BD, Asmussen NC, Lin Z, Schwartz Z. The Role of Matrix-Bound Extracellular Vesicles in the Regulation of Endochondral Bone Formation. Cells 2022; 11:1619. [PMID: 35626656 PMCID: PMC9139584 DOI: 10.3390/cells11101619] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 05/01/2022] [Accepted: 05/09/2022] [Indexed: 02/04/2023] Open
Abstract
Matrix vesicles are key players in the development of the growth plate during endochondral bone formation. They are involved in the turnover of the extracellular matrix and its mineralization, as well as being a vehicle for chondrocyte communication and regulation. These extracellular organelles are released by the cells and are anchored to the matrix via integrin binding to collagen. The exact function and makeup of the vesicles are dependent on the zone of the growth plate in which they are produced. Early studies defined their role as sites of initial calcium phosphate deposition based on the presence of crystals on the inner leaflet of the membrane and subsequent identification of enzymes, ion transporters, and phospholipid complexes involved in mineral formation. More recent studies have shown that they contain small RNAs, including microRNAs, that are distinct from the parent cell, raising the hypothesis that they are a distinct subset of exosomes. Matrix vesicles are produced under complex regulatory pathways, which include the action of steroid hormones. Once in the matrix, their maturation is mediated by the action of secreted hormones. How they convey information to cells, either through autocrine or paracrine actions, is now being elucidated.
Collapse
Affiliation(s)
- Barbara D. Boyan
- Department of Biomedical Engineering, College of Engineering, Virginia Commonwealth University, Richmond, VA 23284, USA;
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Niels C. Asmussen
- School of Integrated Life Sciences, Virginia Commonwealth University, Richmond, VA 23284, USA;
| | - Zhao Lin
- Department of Periodontics, School of Dentistry, Virginia Commonwealth University, Richmond, VA 23284, USA;
| | - Zvi Schwartz
- Department of Biomedical Engineering, College of Engineering, Virginia Commonwealth University, Richmond, VA 23284, USA;
- Department of Periodontics, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA
| |
Collapse
|
23
|
Bjørge IM, de Sousa BM, Patrício SG, Silva AS, Nogueira LP, Santos LF, Vieira SI, Haugen HJ, Correia CR, Mano JF. Bioengineered Hierarchical Bonelike Compartmentalized Microconstructs Using Nanogrooved Microdiscs. ACS APPLIED MATERIALS & INTERFACES 2022; 14:19116-19128. [PMID: 35446549 DOI: 10.1021/acsami.2c01161] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Fabrication of vascularized large-scale constructs for regenerative medicine remains elusive since most strategies rely solely on cell self-organization or overly control cell positioning, failing to address nutrient diffusion limitations. We propose a modular and hierarchical tissue-engineering strategy to produce bonelike tissues carrying signals to promote prevascularization. In these 3D systems, disc-shaped microcarriers featuring nanogrooved topographical cues guide cell behavior by harnessing mechanotransduction mechanisms. A sequential seeding strategy of adipose-derived stromal cells and endothelial cells is implemented within compartmentalized, liquefied-core macrocapsules in a self-organizing and dynamic system. Importantly, our system autonomously promotes osteogenesis and construct's mineralization while promoting a favorable environment for prevascular-like endothelial organization. Given its modular and self-organizing nature, our strategy may be applied for the fabrication of larger constructs with a highly controlled starting point to be used for local regeneration upon implantation or as drug-screening platforms.
Collapse
Affiliation(s)
- Isabel M Bjørge
- Department of Chemistry, CICECO─Aveiro Institute of Materials, University of Aveiro, Aveiro 3810-168, Portugal
| | - Bárbara M de Sousa
- Institute of Biomedicine (iBiMED), Department of Medical Sciences, University of Aveiro, Aveiro 3810-193, Portugal
| | - Sónia G Patrício
- Department of Chemistry, CICECO─Aveiro Institute of Materials, University of Aveiro, Aveiro 3810-168, Portugal
| | - Ana Sofia Silva
- Department of Chemistry, CICECO─Aveiro Institute of Materials, University of Aveiro, Aveiro 3810-168, Portugal
| | - Liebert P Nogueira
- Oral Research Laboratory, Institute of Clinical Dentistry, University of Oslo, Oslo 0455, Norway
| | - Lúcia F Santos
- Department of Chemistry, CICECO─Aveiro Institute of Materials, University of Aveiro, Aveiro 3810-168, Portugal
| | - Sandra I Vieira
- Institute of Biomedicine (iBiMED), Department of Medical Sciences, University of Aveiro, Aveiro 3810-193, Portugal
| | - Håvard J Haugen
- Department of Biomaterials, Institute of Clinical Dentistry, University of Oslo, Oslo 0455, Norway
| | - Clara R Correia
- Department of Chemistry, CICECO─Aveiro Institute of Materials, University of Aveiro, Aveiro 3810-168, Portugal
| | - João F Mano
- Department of Chemistry, CICECO─Aveiro Institute of Materials, University of Aveiro, Aveiro 3810-168, Portugal
| |
Collapse
|
24
|
Transcriptomics of Wet Skin Biopsies Predict Early Radiation-Induced Hematological Damage in a Mouse Model. Genes (Basel) 2022; 13:genes13030538. [PMID: 35328091 PMCID: PMC8952434 DOI: 10.3390/genes13030538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Revised: 02/28/2022] [Accepted: 03/16/2022] [Indexed: 12/04/2022] Open
Abstract
The lack of an easy and fast radiation-exposure testing method with a dosimetric ability complicates triage and treatment in response to a nuclear detonation, radioactive material release, or clandestine exposure. The potential of transcriptomics in radiation diagnosis and prognosis were assessed here using wet skin (blood/skin) biopsies obtained at hour 2 and days 4, 7, 21, and 28 from a mouse radiation model. Analysis of significantly differentially transcribed genes (SDTG; p ≤ 0.05 and FC ≥ 2) during the first post-exposure week identified the glycoprotein 6 (GP-VI) signaling, the dendritic cell maturation, and the intrinsic prothrombin activation pathways as the top modulated pathways with stable inactivation after lethal exposures (20 Gy) and intermittent activation after sublethal (1, 3, 6 Gy) exposure time points (TPs). Interestingly, these pathways were inactivated in the late TPs after sublethal exposure in concordance with a delayed deleterious effect. Modulated transcription of a variety of collagen types, laminin, and peptidase genes underlay the modulated functions of these hematologically important pathways. Several other SDTGs related to platelet and leukocyte development and functions were identified. These results outlined genetic determinants that were crucial to clinically documented radiation-induced hematological and skin damage with potential countermeasure applications.
Collapse
|
25
|
Yi G, Zhang S, Ma Y, Yang X, Huo F, Chen Y, Yang B, Tian W. Matrix vesicles from dental follicle cells improve alveolar bone regeneration via activation of the PLC/PKC/MAPK pathway. Stem Cell Res Ther 2022; 13:41. [PMID: 35093186 PMCID: PMC8800263 DOI: 10.1186/s13287-022-02721-6] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Accepted: 01/13/2022] [Indexed: 02/08/2023] Open
Abstract
Background The regeneration of bone loss that occurs after periodontal diseases is a significant challenge in clinical dentistry. Extracellular vesicles (EVs)-based cell-free regenerative therapies represent a promising alternative for traditional treatments. Developmental biology suggests matrix vesicles (MVs), a subtype of EVs, contain mineralizing-related biomolecules and play an important role in osteogenesis. Thus, we explore the therapeutic benefits and expect to find an optimized strategy for MV application. Methods Healthy human dental follicle cells (DFCs) were cultured with the osteogenic medium to generate MVs. Media MVs (MMVs) were isolated from culture supernatant, and collagenase-released MVs (CRMVs) were acquired from collagenase-digested cell suspension. We compared the biological features of the two MVs and investigated their induction of cell proliferation, migration, mineralization, and the modulation of osteogenic genes expression. Furthermore, we investigated the long-term regenerative capacity of MMVs and CRMVs in an alveolar bone defect rat model. Results We found that both DFC-derived MMVs and CRMVs effectively improved the proliferation, migration, and osteogenic differentiation of DFCs. Notably, CRMVs showed better bone regeneration capabilities. Compared to MMVs, CRMVs-induced DFCs exhibited increased synthesis of osteogenic marker proteins including ALP, OCN, OPN, and MMP-2. In the treatment of murine alveolar bone defects, CRMV-loaded collagen scaffold brought more significant therapeutic outcomes with less unhealing areas and more mature bone tissues in comparison with MMVs and acquired the effects resembling DFCs-based treatment. Furthermore, the western blotting results demonstrated the activation of the PLC/PKC/MAPK pathway in CRMVs-induced DFCs, while this cascade was inhibited by MMVs. Conclusions In summary, our findings revealed a novel cell-free regenerative therapy for repairing alveolar bone defects by specific MV subtypes and suggest that PLC/PKC/MAPK pathways contribute to MVs-mediated alveolar bone regeneration. Supplementary Information The online version contains supplementary material available at 10.1186/s13287-022-02721-6.
Collapse
Affiliation(s)
- Genzheng Yi
- Engineering Research Center of Oral Translational Medicine, Ministry of Education, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, Sichuan, People's Republic of China.,National Engineering Laboratory for Oral Regenerative Medicine, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, Sichuan, People's Republic of China.,State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, Sichuan, People's Republic of China.,National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, Sichuan, People's Republic of China.,Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, No. 14, 3rd Section, Renmin South Road, Chengdu, 610041, Sichuan, People's Republic of China
| | - Siyuan Zhang
- Engineering Research Center of Oral Translational Medicine, Ministry of Education, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, Sichuan, People's Republic of China.,National Engineering Laboratory for Oral Regenerative Medicine, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, Sichuan, People's Republic of China.,State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, Sichuan, People's Republic of China.,National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, Sichuan, People's Republic of China
| | - Yue Ma
- Engineering Research Center of Oral Translational Medicine, Ministry of Education, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, Sichuan, People's Republic of China.,National Engineering Laboratory for Oral Regenerative Medicine, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, Sichuan, People's Republic of China.,State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, Sichuan, People's Republic of China.,National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, Sichuan, People's Republic of China.,Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, No. 14, 3rd Section, Renmin South Road, Chengdu, 610041, Sichuan, People's Republic of China
| | - Xueting Yang
- Engineering Research Center of Oral Translational Medicine, Ministry of Education, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, Sichuan, People's Republic of China.,National Engineering Laboratory for Oral Regenerative Medicine, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, Sichuan, People's Republic of China.,State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, Sichuan, People's Republic of China.,National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, Sichuan, People's Republic of China.,Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, No. 14, 3rd Section, Renmin South Road, Chengdu, 610041, Sichuan, People's Republic of China
| | - Fangjun Huo
- Engineering Research Center of Oral Translational Medicine, Ministry of Education, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, Sichuan, People's Republic of China.,National Engineering Laboratory for Oral Regenerative Medicine, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, Sichuan, People's Republic of China.,State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, Sichuan, People's Republic of China.,National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, Sichuan, People's Republic of China
| | - Yan Chen
- Engineering Research Center of Oral Translational Medicine, Ministry of Education, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, Sichuan, People's Republic of China.,National Engineering Laboratory for Oral Regenerative Medicine, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, Sichuan, People's Republic of China.,State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, Sichuan, People's Republic of China.,National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, Sichuan, People's Republic of China.,Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, No. 14, 3rd Section, Renmin South Road, Chengdu, 610041, Sichuan, People's Republic of China
| | - Bo Yang
- Engineering Research Center of Oral Translational Medicine, Ministry of Education, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, Sichuan, People's Republic of China. .,National Engineering Laboratory for Oral Regenerative Medicine, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, Sichuan, People's Republic of China. .,State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, Sichuan, People's Republic of China. .,National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, Sichuan, People's Republic of China. .,Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, No. 14, 3rd Section, Renmin South Road, Chengdu, 610041, Sichuan, People's Republic of China.
| | - Weidong Tian
- Engineering Research Center of Oral Translational Medicine, Ministry of Education, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, Sichuan, People's Republic of China. .,National Engineering Laboratory for Oral Regenerative Medicine, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, Sichuan, People's Republic of China. .,State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, Sichuan, People's Republic of China. .,National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, Sichuan, People's Republic of China. .,Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, No. 14, 3rd Section, Renmin South Road, Chengdu, 610041, Sichuan, People's Republic of China.
| |
Collapse
|
26
|
Emerging Therapeutic Potential of Short Mitochondrial-produced Peptides for Anabolic Osteogenesis. Int J Pept Res Ther 2022. [DOI: 10.1007/s10989-021-10353-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
27
|
Assefa F, Kim JA, Lim J, Nam SH, Shin HI, Park EK. The Neuropeptide Spexin Promotes the Osteoblast Differentiation of MC3T3-E1 Cells via the MEK/ERK Pathway and Bone Regeneration in a Mouse Calvarial Defect Model. Tissue Eng Regen Med 2021; 19:189-202. [PMID: 34951679 PMCID: PMC8782952 DOI: 10.1007/s13770-021-00408-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 10/20/2021] [Accepted: 10/24/2021] [Indexed: 12/26/2022] Open
Abstract
BACKGROUND The neural regulation of bone regeneration has emerged recently. Spexin (SPX) is a novel neuropeptide and regulates multiple biological functions. However, the effects of SPX on osteogenic differentiation need to be further investigated. Therefore, the aim of this study is to investigate the effects of SPX on osteogenic differentiation, possible underlying mechanisms, and bone regeneration. METHODS In this study, MC3T3-E1 cells were treated with various concentrations of SPX. Cell proliferation, osteogenic differentiation marker expressions, alkaline phosphatase (ALP) activity, and mineralization were evaluated using the CCK-8 assay, reverse transcriptase-quantitative polymerase chain reaction (RT-qPCR), ALP staining, and alizarin red S staining, respectively. To determine the underlying molecular mechanism of SPX, the phosphorylation levels of signaling molecules were examined via western blot analysis. Moreover, in vivo bone regeneration by SPX (0.5 and 1 µg/µl) was evaluated in a calvarial defect model. New bone formation was analyzed using micro-computed tomography (micro-CT) and histology. RESULTS The results indicated that cell proliferation was not affected by SPX. However, SPX significantly increased ALP activity, mineralization, and the expression of genes for osteogenic differentiation markers, including runt-related transcription factor 2 (Runx2), Alp, collagen alpha-1(I) chain (Col1a1), osteocalcin (Oc), and bone sialoprotein (Bsp). In contrast, SPX downregulated the expression of ectonucleotide pyrophosphatase/phosphodiesterase 1 (Enpp1). Moreover, SPX upregulated phosphorylated mitogen-activated protein kinase kinase (MEK1/2) and extracellular signal-regulated kinase (ERK1/2). In vivo studies, micro-CT and histologic analysis revealed that SPX markedly increased a new bone formation. CONCLUSION Overall, these results demonstrated that SPX stimulated osteogenic differentiation in vitro and increased in vivo bone regeneration via the MEK/ERK pathway.
Collapse
Affiliation(s)
- Freshet Assefa
- Department of Oral Pathology and Regenerative Medicine, School of Dentistry, Kyungpook National University, 2177 Dalgubeol-daero, Jung-gu, Daegu, 41940, Korea
| | - Ju Ang Kim
- Department of Oral Pathology and Regenerative Medicine, School of Dentistry, Kyungpook National University, 2177 Dalgubeol-daero, Jung-gu, Daegu, 41940, Korea
| | - Jiwon Lim
- Department of Oral Pathology and Regenerative Medicine, School of Dentistry, Kyungpook National University, 2177 Dalgubeol-daero, Jung-gu, Daegu, 41940, Korea
| | - Sang-Hyeon Nam
- Department of Oral Pathology and Regenerative Medicine, School of Dentistry, Kyungpook National University, 2177 Dalgubeol-daero, Jung-gu, Daegu, 41940, Korea
| | - Hong-In Shin
- Department of Oral Pathology and Regenerative Medicine, School of Dentistry, Kyungpook National University, 2177 Dalgubeol-daero, Jung-gu, Daegu, 41940, Korea
| | - Eui Kyun Park
- Department of Oral Pathology and Regenerative Medicine, School of Dentistry, Kyungpook National University, 2177 Dalgubeol-daero, Jung-gu, Daegu, 41940, Korea.
| |
Collapse
|
28
|
The Pulp Stones: Morphological Analysis in Scanning Electron Microscopy and Spectroscopic Chemical Quantification. MEDICINA (KAUNAS, LITHUANIA) 2021; 58:medicina58010005. [PMID: 35056314 PMCID: PMC8778352 DOI: 10.3390/medicina58010005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 12/16/2021] [Accepted: 12/17/2021] [Indexed: 12/26/2022]
Abstract
Background and objectives: Pulp stones are hard tissue structures formed in the pulp of permanent and deciduous teeth. Few studies have evaluated their morphology and chemical composition. However, their formation, composition, configuration and role played in overall health status are still unclear. Clinically, they may be symptomatic; technically, they impede access during endodontic therapy, increasing the risk of treatment errors. Thus, this study aimed to morphologically analyze pulp stones and present their chemical quantification, identifying their main chemical elements. It also correlates the results with their possible induction mechanisms. Materials and Methods: Seven pulp nodules were collected from molar teeth needing endodontic treatment. The morphology of the stones was analyzed by scanning electron microscopy (SEM), and their chemical composition was determined by X-ray dispersive energy spectroscopy (EDX). Results: These structures varied considerably in shape, size and topography. The site of the stones in the pulp cavity was the factor that most affected the morphology. The majority of the stones found in the pulp chambers presented nodular morphology, while those in the root canals presented a diffuse shape, resembling root canal anatomy. The topography of the nodules showed heterogeneous relief, revealing smooth and compact areas contrasting with the rugged and porous ones. The chemical composition varied depending on the location of the nodule in the pulp cavity and the relief of the analyzed area. Radicular stones presented considerably lower calcium and phosphorus content than coronary nodules. Conclusions: The high cellularity rate of the coronal pulp predisposes this region to nodular mineralizations around injured cells. The presence of larger caliber vascular bundles and higher collagen fiber content in radicular pulp determines a diffuse morphological pattern in this region. Understanding the morphology and chemical composition of the pulp stones allows future translational pathways towards the prevention or treatment of such conditions.
Collapse
|
29
|
Zhu YS, Zhang JN, Mo TT, Jiang C, Ma RC, Chen L. Discoidin domain receptor 2 activation of p38 mitogen-activated protein kinase as an important pathway for osteonectin-regulating osteoblast mineralization. J Orthop Surg Res 2021; 16:711. [PMID: 34876214 PMCID: PMC8650413 DOI: 10.1186/s13018-021-02860-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Accepted: 11/24/2021] [Indexed: 11/24/2022] Open
Abstract
Objective The present study aimed to determine the role of the discoidin domain receptor 2 (DDR2) in the osteonectin (ON) regulation of osteoblast mineralization through the activation of p38 mitogen-activated protein kinase (MAPK). Methods Four groups were established: the ON group, the inhibitor group, the Ddr2-small interfering ribonucleic acid (siRNA) group, and the control group. Osteoblasts from the parietal bones of neonatal Sprague–Dawley rats were isolated and cultured. In the ON group, 1 µg/mL ON was added to the osteoblasts. The gene expressions of collagen 1 (Col 1) and Ddr2 were detected using reverse transcription-quantitative polymerase chain reaction (RT-qPCR). In the inhibitor group, the osteoblasts were added to WRG-28 (a specific DDR2 inhibitor), and in the Ddr2-siRNA group, the osteoblasts were transfected with Ddr2-siRNA. The gene and protein expressions of DDR2, bone sialoprotein, osteocalcin, osteopontin, and p38 MAPK were determined using RT-qPCR and western blot analysis. Alizarin red staining and transmission electron microscopy were used to detect mineralization. Results The results showed that ON enhanced the osteoblast Col 1 and Ddr2 gene expressions, while the use of a Ddr2-siRNA/DDR2-blocker decreased the OPN, BSP, OCN, and P38 gene and protein expressions and reduced osteoblast cellular activity and mineralized nodules. Conclusion The present study demonstrated that DDR2 activation of p38 MAPK is an important approach to ON-regulating osteoblast mineralization.
Collapse
Affiliation(s)
- Yun-Sen Zhu
- Department of Orthopaedic Surgery, The First People's Hospital of Wenling, Chuan'an Nan Road NO 333, Wenling, 317500, Zhejiang, China
| | - Jiang-Nan Zhang
- Department of Orthopaedic Surgery, The First People's Hospital of Wenling, Chuan'an Nan Road NO 333, Wenling, 317500, Zhejiang, China
| | - Ting-Ting Mo
- Department of Orthopaedic Surgery, The First People's Hospital of Wenling, Chuan'an Nan Road NO 333, Wenling, 317500, Zhejiang, China
| | - Chang Jiang
- Department of Orthopaedic Surgery, The First People's Hospital of Wenling, Chuan'an Nan Road NO 333, Wenling, 317500, Zhejiang, China.
| | - Ru-Chao Ma
- Department of Orthopaedic Surgery, The First People's Hospital of Wenling, Chuan'an Nan Road NO 333, Wenling, 317500, Zhejiang, China
| | - Liang Chen
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Soochow University, Suzhou, 215000, Jiangsu, China
| |
Collapse
|
30
|
Development and Characterization of Alkaline Phosphatase-Positive Human Umbilical Cord Perivascular Cells. Cells 2021; 10:cells10113011. [PMID: 34831233 PMCID: PMC8616437 DOI: 10.3390/cells10113011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 11/02/2021] [Accepted: 11/02/2021] [Indexed: 12/25/2022] Open
Abstract
Human umbilical cord perivascular cells (HUCPVCs), harvested from human umbilical cord perivascular tissue, show potential for future use as an alternative to mesenchymal stromal cells. Here, we present the results for the characterization of the properties alkaline phosphatase-positive HUCPVCs (ALP(+)-HUCPVCs). These ALP(+)-HUCPVCs were created from HUCPVCs in this study by culturing in the presence of activated vitamin D3, an inhibitor of bone morphogenetic protein signaling and transforming growth factor-beta1 (TGF-β1). The morphological characteristics, cell proliferation, gene expression, and mineralization-inducing ability of ALP(+)-HUCPVCs were investigated at the morphological, biological, and genetic levels. ALP(+)-HUCPVCs possess high ALP gene expression and activity in cells and a slow rate of cell growth. The morphology of ALP(+)-HUCPVCs is fibroblast-like, with an increase in actin filaments containing alpha-smooth muscle actin. In addition to ALP expression, the gene expression levels of type I collagen, osteopontin, elastin, fibrillin-1, and cluster of differentiation 90 are increased in ALP(+)-HUCPVCs. ALP(+)-HUCPVCs do not have the ability to induce mineralization nodules, which may be due to the restriction of phosphate uptake into matrix vesicles. Moreover, ALP(+)-HUCPVCs may produce anti-mineralization substances. We conclude that ALP(+)-HUCPVCs induced from HUCPVCs by a TGF-β1 stimulation possess myofibroblast-like properties that have little mineralization-inducing ability.
Collapse
|
31
|
Peng CH, Lin WY, Yeh KT, Chen IH, Wu WT, Lin MD. The molecular etiology and treatment of glucocorticoid-induced osteoporosis. Tzu Chi Med J 2021; 33:212-223. [PMID: 34386357 PMCID: PMC8323641 DOI: 10.4103/tcmj.tcmj_233_20] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Revised: 11/19/2020] [Accepted: 12/30/2020] [Indexed: 12/30/2022] Open
Abstract
Glucocorticoid-induced osteoporosis (GIOP) is the most common form of secondary osteoporosis, accounting for 20% of osteoporosis diagnoses. Using glucocorticoids for >6 months leads to osteoporosis in 50% of patients, resulting in an increased risk of fracture and death. Osteoblasts, osteocytes, and osteoclasts work together to maintain bone homeostasis. When bone formation and resorption are out of balance, abnormalities in bone structure or function may occur. Excess glucocorticoids disrupt the bone homeostasis by promoting osteoclast formation and prolonging osteoclasts' lifespan, leading to an increase in bone resorption. On the other hand, glucocorticoids inhibit osteoblasts' formation and facilitate apoptosis of osteoblasts and osteocytes, resulting in a reduction of bone formation. Several signaling pathways, signaling modulators, endocrines, and cytokines are involved in the molecular etiology of GIOP. Clinically, adults ≥40 years of age using glucocorticoids chronically with a high fracture risk are considered to have medical intervention. In addition to vitamin D and calcium tablet supplementations, the major therapeutic options approved for GIOP treatment include antiresorption drug bisphosphonates, parathyroid hormone N-terminal fragment teriparatide, and the monoclonal antibody denosumab. The selective estrogen receptor modulator can only be used under specific condition for postmenopausal women who have GIOP but fail to the regular GIOP treatment or have specific therapeutic contraindications. In this review, we focus on the molecular etiology of GIOP and the molecular pharmacology of the therapeutic drugs used for GIOP treatment.
Collapse
Affiliation(s)
- Cheng-Huan Peng
- Department of Orthopedics, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan.,Institute of Medical Sciences, Tzu Chi University, Hualien, Taiwan.,School of Medicine, Tzu Chi University, Hualien, Taiwan
| | - Wen-Ying Lin
- Department of Orthopedics, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan
| | - Kuang-Ting Yeh
- Department of Orthopedics, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan.,School of Medicine, Tzu Chi University, Hualien, Taiwan
| | - Ing-Ho Chen
- Department of Orthopedics, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan.,School of Medicine, Tzu Chi University, Hualien, Taiwan
| | - Wen-Tien Wu
- Department of Orthopedics, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan.,Institute of Medical Sciences, Tzu Chi University, Hualien, Taiwan.,School of Medicine, Tzu Chi University, Hualien, Taiwan
| | - Ming-Der Lin
- Institute of Medical Sciences, Tzu Chi University, Hualien, Taiwan.,Department of Molecular Biology and Human Genetics, Tzu Chi University, Hualien, Taiwan
| |
Collapse
|
32
|
Yamamoto T, Hasegawa T, Mae T, Hongo H, Yamamoto T, Abe M, Nasoori A, Morimoto Y, Maruoka H, Kubota K, Haraguchi M, Li M. Comparative immunolocalization of tissue nonspecific alkaline phosphatase and ectonucleotide pyrophosphatase/phosphodiesterase 1 in murine bone. J Oral Biosci 2021; 63:259-264. [PMID: 34391947 DOI: 10.1016/j.job.2021.08.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 08/05/2021] [Accepted: 08/06/2021] [Indexed: 10/20/2022]
Abstract
OBJECTIVE This study aimed to demonstrate the immunolocalization and gene expression of tissue nonspecific alkaline phosphatase (TNALP) and ectonucleotide pyrophosphatase/phosphodiesterase 1 (ENPP1) in osteoblasts, preosteoblasts, and osteocytes of murine bone to provide clues for a better understanding of the supply of phosphate ions (Pi) during bone mineralization. METHODS Six-week-old male C57BL/6J mice (n = 6) were fixed with a paraformaldehyde solution, and the right femora were extracted for immunodetection of TNALP and ENPP1, while the left tibiae were used for reverse transcription polymerase chain reaction to evaluate Tnalp and Enpp1 gene expression. RESULTS TNALP was intensely localized on the basolateral cell membranes of mature osteoblasts and preosteoblastic cells. There was little immunoreactivity of TNALP on the secretory surface of the osteoblasts and no TNALP reactivity in the osteocytes. In contrast, ENPP1 was observed throughout the cytoplasm of mature osteoblasts and osteocytes embedded in bone but was not observed in preosteoblasts. Together, despite the fact that the osteoid is a site of matrix vesicle-mediated mineralization, ENPP1, which inhibits mineralization by providing pyrophosphates, was localized in close proximity of the osteoid, whereas TNALP, which facilitates mineralization by providing Pi, was relatively distant from the osteoid. CONCLUSION It seems likely that the differential localization of TNALP and ENPP1 around the osteoid observed at the microscopic level may provide preferential micro-circumstance for a balanced concentration of Pi and pyrophosphate for bone mineralization.
Collapse
Affiliation(s)
- Tomomaya Yamamoto
- Developmental Biology of Hard Tissue, Graduate School of Dental Medicine, Faculty of Dental Medicine, Hokkaido University, Sapporo, Japan; Northern Army Medical Unit, Camp Makomanai, Japan Ground Self-Defense Forces, Sapporo, Japan
| | - Tomoka Hasegawa
- Developmental Biology of Hard Tissue, Graduate School of Dental Medicine, Faculty of Dental Medicine, Hokkaido University, Sapporo, Japan.
| | - Takahito Mae
- Developmental Biology of Hard Tissue, Graduate School of Dental Medicine, Faculty of Dental Medicine, Hokkaido University, Sapporo, Japan; Gerontology, Graduate School of Dental Medicine, Faculty of Dental Medicine, Hokkaido University, Sapporo, Japan
| | - Hiromi Hongo
- Developmental Biology of Hard Tissue, Graduate School of Dental Medicine, Faculty of Dental Medicine, Hokkaido University, Sapporo, Japan
| | - Tsuneyuki Yamamoto
- Oral Functional Anatomy, Graduate School of Dental Medicine, Faculty of Dental Medicine, Hokkaido University, Sapporo, Japan
| | - Miki Abe
- Developmental Biology of Hard Tissue, Graduate School of Dental Medicine, Faculty of Dental Medicine, Hokkaido University, Sapporo, Japan
| | - Alireza Nasoori
- Developmental Biology of Hard Tissue, Graduate School of Dental Medicine, Faculty of Dental Medicine, Hokkaido University, Sapporo, Japan
| | - Yasuhito Morimoto
- Developmental Biology of Hard Tissue, Graduate School of Dental Medicine, Faculty of Dental Medicine, Hokkaido University, Sapporo, Japan; Periodontology and Endodontology, Graduate School of Dental Medicine, Faculty of Dental Medicine, Hokkaido University, Sapporo, Japan
| | - Haruhi Maruoka
- Developmental Biology of Hard Tissue, Graduate School of Dental Medicine, Faculty of Dental Medicine, Hokkaido University, Sapporo, Japan; Orthodontics, Graduate School of Dental Medicine, Faculty of Dental Medicine, Hokkaido University, Sapporo, Japan
| | - Keisuke Kubota
- Developmental Biology of Hard Tissue, Graduate School of Dental Medicine, Faculty of Dental Medicine, Hokkaido University, Sapporo, Japan; Oral Functional Prosthodontics, Graduate School of Dental Medicine, Faculty of Dental Medicine, Hokkaido University, Sapporo, Japan
| | - Mai Haraguchi
- Developmental Biology of Hard Tissue, Graduate School of Dental Medicine, Faculty of Dental Medicine, Hokkaido University, Sapporo, Japan
| | - Minqi Li
- Shandong Provincial Key Laboratory of Oral Biomedicine, The School of Stomatology, Shandong University, Jinan, China
| |
Collapse
|
33
|
McKay TB, Yeung V, Hutcheon AEK, Guo X, Zieske JD, Ciolino JB. Extracellular Vesicles in the Cornea: Insights from Other Tissues. Anal Cell Pathol (Amst) 2021; 2021:9983900. [PMID: 34336556 PMCID: PMC8324376 DOI: 10.1155/2021/9983900] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Accepted: 07/10/2021] [Indexed: 02/07/2023] Open
Abstract
Extracellular vesicles (EVs) are phospholipid bilayer-bound particles secreted by cells that have been found to be important in mediating cell-cell communication, signal transduction, and extracellular matrix remodeling. Their role in both physiological and pathological processes has been established in different tissues throughout the human body. The human cornea functions as a transparent and refractive barrier that protects the intraocular elements from the external environment. Injury, infection, or disease may cause the loss of corneal clarity by altering extracellular matrix organization within the stroma that may lead to detrimental effects on visual acuity. Over the years, numerous studies have identified many of the growth factors (e.g., transforming growth factor-β1, thrombospondin-1, and platelet-derived growth factor) important in corneal wound healing and scarring. However, the functional role of bound factors encapsulated in EVs in the context of corneal biology is less defined. In this review, we describe the discovery and characterization of EVs in the cornea. We focus on EV-matrix interactions, potential functions during corneal wound healing, and the bioactivity of mesenchymal stem cell-derived EVs. We also discuss the development of EVs as stable, drug-loaded therapeutics for ocular applications.
Collapse
Affiliation(s)
- Tina B. McKay
- Department of Ophthalmology, Schepens Eye Research Institute of Mass Eye and Ear, Harvard Medical School, 20 Staniford Street, Boston, MA 02114, USA
| | - Vincent Yeung
- Department of Ophthalmology, Schepens Eye Research Institute of Mass Eye and Ear, Harvard Medical School, 20 Staniford Street, Boston, MA 02114, USA
| | - Audrey E. K. Hutcheon
- Department of Ophthalmology, Schepens Eye Research Institute of Mass Eye and Ear, Harvard Medical School, 20 Staniford Street, Boston, MA 02114, USA
| | - Xiaoqing Guo
- Department of Ophthalmology, Schepens Eye Research Institute of Mass Eye and Ear, Harvard Medical School, 20 Staniford Street, Boston, MA 02114, USA
| | - James D. Zieske
- Department of Ophthalmology, Schepens Eye Research Institute of Mass Eye and Ear, Harvard Medical School, 20 Staniford Street, Boston, MA 02114, USA
| | - Joseph B. Ciolino
- Department of Ophthalmology, Schepens Eye Research Institute of Mass Eye and Ear, Harvard Medical School, 20 Staniford Street, Boston, MA 02114, USA
| |
Collapse
|
34
|
Saito S, Hamai R, Shiwaku Y, Hasegawa T, Sakai S, Tsuchiya K, Sai Y, Iwama R, Amizuka N, Takahashi T, Suzuki O. Involvement of distant octacalcium phosphate scaffolds in enhancing early differentiation of osteocytes during bone regeneration. Acta Biomater 2021; 129:309-322. [PMID: 34033969 DOI: 10.1016/j.actbio.2021.05.017] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Revised: 04/27/2021] [Accepted: 05/13/2021] [Indexed: 12/19/2022]
Abstract
This study hypothesized that distant octacalcium phosphate (OCP) scaffolds may enhance osteocyte differentiation in newly formed bone matrices. The results obtained were compared with those of Ca-deficient hydroxyapatite (OCP hydrolyzate, referred to as HL hereafter). Granular OCP and HL, 300-500 µm in diameter, were implanted in critical-sized rat calvarial defects for eight weeks and subjected to histology, immunohistochemistry, histomorphometry, and transmission electron microscopy (TEM). Early osteocyte differentiation from an osteoblastic cell line (IDG-SW3) was examined using materials without contacting the surfaces for 10 days. The material properties and the medium composition were analyzed through selected area electron diffraction (SAED) using TEM observation and curve fitting of Fourier transform infrared (FT-IR) spectroscopy. The number of positive cells of an osteocyte earlier differentiation marker podoplanin (PDPN) in bone matrices, along the direction of bone formation, was significantly higher in OCP than that in HL. The ultrastructure around the OCP surfaces observed by TEM showed the infiltration of some cells, including osteocytes adjacent to the OCP surface layers. The OCP structure remained unchanged by SAED analysis. Nanoparticle deposition and hydrolysis on OCP surfaces were detected by TEM and FT-IR, respectively, during early osteocyte differentiation in vitro. The medium saturation degree varied in accord with ionic dissolution, resulting in possible hydroxyapatite formation on OCP but not on HL. These results suggested that OCP stimulates early osteocyte differentiation in the bone matrix from a distance through its metastable chemical properties. STATEMENT OF SIGNIFICANCE: This study demonstrated that octacalcium phosphate (OCP) implanted in critical-sized rat calvaria bone defects is capable of enhancing the early differentiation of osteocytes embedded in newly formed bone matrices, even when the surface OCP is separated from the osteocytes. This prominent bioactive property of OCP was demonstrated by comparing the in vivo and in vitro performances with a control material, Ca-deficient hydroxyapatite (OCP hydrolyzate). The findings were elucidated by histomorphometry, which analyzed the differentiation of osteocytes along the parallel direction of new bone growth by osteoblasts. Therefore, OCP should stimulate osteocyte differentiation through ionic dissolution even in vivo owing to its metastable chemical properties, as previously reported in an in vitro study (Acta Biomater 69:362, 2018).
Collapse
|
35
|
Ozaki H, Hamai R, Shiwaku Y, Sakai S, Tsuchiya K, Suzuki O. Mutual chemical effect of autograft and octacalcium phosphate implantation on enhancing intramembranous bone regeneration. SCIENCE AND TECHNOLOGY OF ADVANCED MATERIALS 2021; 22:345-362. [PMID: 34104115 PMCID: PMC8168741 DOI: 10.1080/14686996.2021.1916378] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 02/22/2021] [Accepted: 04/08/2021] [Indexed: 06/12/2023]
Abstract
This study examined the effect of a mixture of octacalcium phosphate (OCP) and autologous bone on bone regeneration in rat calvaria critical-sized defect (CSD). Mechanically mixed OCP and autologous bone granules (OCP+Auto), approximately 500 to 1000 μm in diameter, and each individual material were implanted in rat CSD for 8 weeks, and subjected to X-ray micro-computed tomography (micro-CT), histology, tartrate-resistant acid phosphatase (TRAP) staining, and histomorphometry for bone regeneration. Osteoblastic differentiation from mesenchymal stem cells (D1 cells) was examined in the presence of non-contacting materials by alkaline phosphatase (ALP) activity for 21 days. The material properties and medium composition before and after the incubation were determined by selected area electron diffraction (SAED) under transmission electron microscopy (TEM), Fourier transform infrared (FT-IR) spectroscopy, scanning electron microscopy (SEM), and chemical analysis. The results showed that while bone formation coupled with TRAP-positive osteoclastic resorption and cellular ALP activity were the highest in the Auto group, a positive effect per OCP weight or per autologous bone weight on ALP activity was found. Although the OCP structure was maintained even after the incubation (SAED), micro-deposits were grown on OCP surfaces (TEM). Fibrous tissue was also exposed on the autologous bone surfaces (SEM). Through FT-IR absorption, it was determined that bone mineral-like characteristics of the phosphate group increased in the OCP + Auto group. These findings were interpreted as a structural change from OCP to the apatitic phase, a conclusion supported by the medium degree of saturation changes. The results demonstrate the mutual chemical effect of mixing OCP with autologous bone as an active bone substitute material.
Collapse
Affiliation(s)
- Hisashi Ozaki
- Division of Craniofacial Function Engineering, Tohoku University Graduate School of Dentistry, Sendai, Japan
- Department of Dentistry, Oral and Maxillofacial Surgery, Yamagata Prefectural Central Hospital, Yamagata, Japan
| | - Ryo Hamai
- Division of Craniofacial Function Engineering, Tohoku University Graduate School of Dentistry, Sendai, Japan
| | - Yukari Shiwaku
- Division of Craniofacial Function Engineering, Tohoku University Graduate School of Dentistry, Sendai, Japan
- Liaison Center for Innovative Dentistry, Tohoku University Graduate School of Dentistry, Sendai, Japan
| | - Susumu Sakai
- Division of Craniofacial Function Engineering, Tohoku University Graduate School of Dentistry, Sendai, Japan
| | - Kaori Tsuchiya
- Division of Craniofacial Function Engineering, Tohoku University Graduate School of Dentistry, Sendai, Japan
| | - Osamu Suzuki
- Division of Craniofacial Function Engineering, Tohoku University Graduate School of Dentistry, Sendai, Japan
| |
Collapse
|
36
|
Matrix Vesicles: Role in Bone Mineralization and Potential Use as Therapeutics. Pharmaceuticals (Basel) 2021; 14:ph14040289. [PMID: 33805145 PMCID: PMC8064082 DOI: 10.3390/ph14040289] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Revised: 03/18/2021] [Accepted: 03/23/2021] [Indexed: 12/14/2022] Open
Abstract
Bone is a complex organ maintained by three main cell types: osteoblasts, osteoclasts, and osteocytes. During bone formation, osteoblasts deposit a mineralized organic matrix. Evidence shows that bone cells release extracellular vesicles (EVs): nano-sized bilayer vesicles, which are involved in intercellular communication by delivering their cargoes through protein–ligand interactions or fusion to the plasma membrane of the recipient cell. Osteoblasts shed a subset of EVs known as matrix vesicles (MtVs), which contain phosphatases, calcium, and inorganic phosphate. These vesicles are believed to have a major role in matrix mineralization, and they feature bone-targeting and osteo-inductive properties. Understanding their contribution in bone formation and mineralization could help to target bone pathologies or bone regeneration using novel approaches such as stimulating MtV secretion in vivo, or the administration of in vitro or biomimetically produced MtVs. This review attempts to discuss the role of MtVs in biomineralization and their potential application for bone pathologies and bone regeneration.
Collapse
|
37
|
Voelkner C, Wendt M, Lange R, Ulbrich M, Gruening M, Staehlke S, Nebe B, Barke I, Speller S. The nanomorphology of cell surfaces of adhered osteoblasts. BEILSTEIN JOURNAL OF NANOTECHNOLOGY 2021; 12:242-256. [PMID: 33777612 PMCID: PMC7961864 DOI: 10.3762/bjnano.12.20] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Accepted: 02/19/2021] [Indexed: 06/12/2023]
Abstract
The functionality of living cells is inherently linked to subunits with dimensions ranging from several micrometers down to the nanometer scale. The cell surface plays a particularly important role. Electric signaling, including information processing, takes place at the membrane, as well as adhesion and contact. For osteoblasts, adhesion and spreading are crucial processes with regard to bone implants. Here we present a comprehensive characterization of the 3D nanomorphology of living, as well as fixed, osteoblastic cells using scanning ion conductance microscopy (SICM), which is a nanoprobing method that largely avoids mechanical perturbations. Dynamic ruffles are observed, manifesting themselves in characteristic membrane protrusions. They contribute to the overall surface corrugation, which we systematically study by introducing the relative 3D excess area as a function of the projected adhesion area. A clear anticorrelation between the two parameters is found upon analysis of ca. 40 different cells on glass and on amine-covered surfaces. At the rim of lamellipodia, characteristic edge heights between 100 and 300 nm are observed. Power spectral densities of membrane fluctuations show frequency-dependent decay exponents with absolute values greater than 2 on living osteoblasts. We discuss the capability of apical membrane features and fluctuation dynamics in aiding the assessment of adhesion and migration properties on a single-cell basis.
Collapse
Affiliation(s)
- Christian Voelkner
- Department Science and Technology of Life, Light and Matter, University of Rostock, Albert-Einstein-Str. 25, 18059 Rostock, Germany
- Institute of Physics, University of Rostock, Albert-Einstein-Str. 23, 18059 Rostock, Germany
| | - Mirco Wendt
- Department Science and Technology of Life, Light and Matter, University of Rostock, Albert-Einstein-Str. 25, 18059 Rostock, Germany
- Institute of Physics, University of Rostock, Albert-Einstein-Str. 23, 18059 Rostock, Germany
| | - Regina Lange
- Department Science and Technology of Life, Light and Matter, University of Rostock, Albert-Einstein-Str. 25, 18059 Rostock, Germany
- Institute of Physics, University of Rostock, Albert-Einstein-Str. 23, 18059 Rostock, Germany
| | - Max Ulbrich
- Department Science and Technology of Life, Light and Matter, University of Rostock, Albert-Einstein-Str. 25, 18059 Rostock, Germany
- Institute of Physics, University of Rostock, Albert-Einstein-Str. 23, 18059 Rostock, Germany
| | - Martina Gruening
- Department of Cell Biology, Rostock University Medical Center, Schillingallee 69, 18057 Rostock, Germany
| | - Susanne Staehlke
- Department of Cell Biology, Rostock University Medical Center, Schillingallee 69, 18057 Rostock, Germany
| | - Barbara Nebe
- Department Science and Technology of Life, Light and Matter, University of Rostock, Albert-Einstein-Str. 25, 18059 Rostock, Germany
- Department of Cell Biology, Rostock University Medical Center, Schillingallee 69, 18057 Rostock, Germany
| | - Ingo Barke
- Department Science and Technology of Life, Light and Matter, University of Rostock, Albert-Einstein-Str. 25, 18059 Rostock, Germany
- Institute of Physics, University of Rostock, Albert-Einstein-Str. 23, 18059 Rostock, Germany
| | - Sylvia Speller
- Department Science and Technology of Life, Light and Matter, University of Rostock, Albert-Einstein-Str. 25, 18059 Rostock, Germany
- Institute of Physics, University of Rostock, Albert-Einstein-Str. 23, 18059 Rostock, Germany
| |
Collapse
|
38
|
Herzer R, Gebert A, Hempel U, Hebenstreit F, Oswald S, Damm C, Schmidt OG, Medina-Sánchez M. Rolled-Up Metal Oxide Microscaffolds to Study Early Bone Formation at Single Cell Resolution. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 17:e2005527. [PMID: 33599055 DOI: 10.1002/smll.202005527] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2020] [Revised: 01/11/2021] [Indexed: 06/12/2023]
Abstract
Titanium and its alloys are frequently used to replace structural components of the human body due to their high mechanical strength, low stiffness, and biocompatibility. In particular, the use of porous materials has improved implant stabilization and the promotion of bone. However, it remains unclear which material properties and geometrical cues are optimal for a proper osteoinduction and osseointegration. To that end, transparent tubular microscaffolds are fabricated, mimicking the typical pores of structural implants, with the aim of studying early bone formation and cell-material interactions at the single cell level. Here, a β-stabilized alloy Ti-45Nb (wt%) is used for the microscaffold's fabrication due to its elastic modulus close to that of natural bone. Human mesenchymal stem cell migration, adhesion, and osteogenic differentiation is thus investigated, paying particular attention to the CaP formation and cell-body crystallization, both analyzed via optical and electron microscopy. It is demonstrated that the developed platform is suited for the long-term study of living single cells in an appropriate microenvironment, obtaining in the process deeper insights on early bone formation and providing cues to improve the stability and biocompatibility of current structural implants.
Collapse
Affiliation(s)
- Raffael Herzer
- Institute for Integrative Nanosciences, Leibniz IFW Dresden e.V., Helmholtzstraße 20, Dresden, 01069, Germany
| | - Annett Gebert
- Institute for Complex Materials, Leibniz IFW Dresden e.V., Helmholtzstraße 20, Dresden, 01069, Germany
| | - Ute Hempel
- Institut für Physiologische Chemie, MTZ, Medizinische Fakultät der TU Dresden, Fiedlerstraße 42, Dresden, 01307, Germany
| | - Franziska Hebenstreit
- Institute for Integrative Nanosciences, Leibniz IFW Dresden e.V., Helmholtzstraße 20, Dresden, 01069, Germany
| | - Steffen Oswald
- Institute for Complex Materials, Leibniz IFW Dresden e.V., Helmholtzstraße 20, Dresden, 01069, Germany
| | - Christine Damm
- Institute for Metallic Materials, Leibniz IFW Dresden e.V., Helmholtzstraße 20, Dresden, 01069, Germany
| | - Oliver G Schmidt
- Institute for Integrative Nanosciences, Leibniz IFW Dresden e.V., Helmholtzstraße 20, Dresden, 01069, Germany
- School of Science, TU Dresden, Dresden, 01062, Germany
- Research Center for Materials, Architectures and Integration of Nanomembranes (MAIN), TU Chemnitz, Rosenbergstraße 6, Chemnitz, 09126, Germany
| | - Mariana Medina-Sánchez
- Institute for Integrative Nanosciences, Leibniz IFW Dresden e.V., Helmholtzstraße 20, Dresden, 01069, Germany
| |
Collapse
|
39
|
Yi G, Ma Y, Chen Y, Yang X, Yang B, Tian W. A Review of the Functions of Matrix Vesicles in Periodontal Tissues. Stem Cells Dev 2021; 30:165-176. [PMID: 33349125 DOI: 10.1089/scd.2020.0155] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Periodontal tissues consist of cementum, periodontal ligaments, and alveolar bone, which provide indispensable support for physiological activities involving mastication, swallowing, and pronunciation. The formation of periodontal tissues requires a complex process, during which a close relationship with biomineralization is noticeable. Alveolar bone and cementum are physically hard, both of which are generated from biomineralization and possess the exact mechanical properties resembling other hard tissues. However, when periodontitis, congenital abnormalities, periapical diseases, and other pathological conditions affect the organism, the most common symptom, alveolar bone defect, is always unavoidable, which results in difficulties for current clinical treatment. Thus, exploring effective therapies to improve the prognosis is important. Matrix vesicles (MVs), a special subtype of extracellular vesicles related to histogenesis, are widely produced by the stem cells of developing hard tissues. With the assistance of the enzymes and transporters contained within them, MVs can construct the extracellular matrix and an adequate microenvironment, thus promoting biomineralization and periodontal development. Presently, MVs can be effectively extracted and delivered by scaffolds and generate hard tissues in vitro and in vivo, which are expected to be translated into therapies for alveolar bone defects. In this review, we generalize recent research progress on MV morphology, molecular composition, biological mechanism, and, in particular, the biological functions in periodontal development. In addition to the above unique roles of MVs, we further describe the available MV-related biotechnologies and achievements that make them promising for coping with existing problems and improving the treatment of alveolar bone defects.
Collapse
Affiliation(s)
- Genzheng Yi
- Engineering Research Center of Oral Translational Medicine, Ministry of Education, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China.,National Engineering Laboratory for Oral Regenerative Medicine, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China.,State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China.,National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China.,Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Yue Ma
- Engineering Research Center of Oral Translational Medicine, Ministry of Education, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China.,National Engineering Laboratory for Oral Regenerative Medicine, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China.,State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China.,National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China.,Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Yan Chen
- Engineering Research Center of Oral Translational Medicine, Ministry of Education, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China.,National Engineering Laboratory for Oral Regenerative Medicine, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China.,State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China.,National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China.,Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Xueting Yang
- Engineering Research Center of Oral Translational Medicine, Ministry of Education, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China.,National Engineering Laboratory for Oral Regenerative Medicine, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China.,State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China.,National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China.,Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Bo Yang
- Engineering Research Center of Oral Translational Medicine, Ministry of Education, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China.,National Engineering Laboratory for Oral Regenerative Medicine, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China.,State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China.,National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China.,Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Weidong Tian
- Engineering Research Center of Oral Translational Medicine, Ministry of Education, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China.,National Engineering Laboratory for Oral Regenerative Medicine, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China.,State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China.,National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China.,Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| |
Collapse
|
40
|
Boraldi F, Lofaro FD, Quaglino D. Apoptosis in the Extraosseous Calcification Process. Cells 2021; 10:cells10010131. [PMID: 33445441 PMCID: PMC7827519 DOI: 10.3390/cells10010131] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Revised: 01/07/2021] [Accepted: 01/10/2021] [Indexed: 12/13/2022] Open
Abstract
Extraosseous calcification is a pathologic mineralization process occurring in soft connective tissues (e.g., skin, vessels, tendons, and cartilage). It can take place on a genetic basis or as a consequence of acquired chronic diseases. In this last case, the etiology is multifactorial, including both extra- and intracellular mechanisms, such as the formation of membrane vesicles (e.g., matrix vesicles and apoptotic bodies), mitochondrial alterations, and oxidative stress. This review is an overview of extraosseous calcification mechanisms focusing on the relationships between apoptosis and mineralization in cartilage and vascular tissues, as these are the two tissues mostly affected by a number of age-related diseases having a progressively increased impact in Western Countries.
Collapse
Affiliation(s)
- Federica Boraldi
- Department of Life Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy; (F.D.L.); (D.Q.)
- Correspondence:
| | - Francesco Demetrio Lofaro
- Department of Life Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy; (F.D.L.); (D.Q.)
| | - Daniela Quaglino
- Department of Life Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy; (F.D.L.); (D.Q.)
- Interuniversity Consortium for Biotechnologies (CIB), Italy
| |
Collapse
|
41
|
Simancas Escorcia V, Diarra A, Naveau A, Dessombz A, Felizardo R, Cannaya V, Chatziantoniou C, Quentric M, Vikkula M, Cases O, Berdal A, De La Dure-Molla M, Kozyraki R. Lack of FAM20A, Ectopic Gingival Mineralization and Chondro/Osteogenic Modifications in Enamel Renal Syndrome. Front Cell Dev Biol 2021; 8:605084. [PMID: 33425910 PMCID: PMC7793853 DOI: 10.3389/fcell.2020.605084] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Accepted: 11/16/2020] [Indexed: 11/13/2022] Open
Abstract
Enamel renal syndrome (ERS) is a rare recessive disorder caused by loss-of-function mutations in FAM20A (family with sequence similarity 20 member A, OMIM #611062). Enamel renal syndrome is characterized by amelogenesis imperfecta, delayed or failed tooth eruption, intrapulpal calcifications, gingival overgrowth and nephrocalcinosis. Although gingival overgrowth has consistently been associated with heterotopic calcifications the pathogenesis, structure and interactions of the mineral deposits with the surrounding connective tissue are largely unknown. We here report a novel FAM20A mutation in exon 1 (c.358C > T) introducing a premature stop codon (p.Gln120*) and resulting in a complete loss of FAM20A. In addition to the typical oral findings and nephrocalcinosis, ectopic calcified nodules were also seen in the cervical and thoracic vertebrae regions. Histopathologic analysis of the gingiva showed an enlarged papillary layer associated with aberrant angiogenesis and a lamina propria displaying significant changes in its extracellular matrix composition, including disruption of the collagen I fiber network. Ectopic calcifications were found throughout the connective gingival tissue. Immunomorphological and ultrastructural analyses indicated that the calcification process was associated with epithelial degeneration and transformation of the gingival fibroblasts to chondro/osteoblastic-like cells. Mutant gingival fibroblasts cultures were prone to calcify and abnormally expressed osteoblastic markers such as RUNX2 or PERIOSTIN. Our findings expand the previously reported phenotypes and highlight some aspects of ERS pathogenesis.
Collapse
Affiliation(s)
- Victor Simancas Escorcia
- Centre de Recherche des Cordeliers, Sorbonne Université, INSERM, Université de Paris, Laboratory of Oral Molecular Pathophysiology, Paris, France
| | - Abdoulaziz Diarra
- Centre de Recherche des Cordeliers, Sorbonne Université, INSERM, Université de Paris, Laboratory of Oral Molecular Pathophysiology, Paris, France
| | - Adrien Naveau
- Centre de Recherche des Cordeliers, Sorbonne Université, INSERM, Université de Paris, Laboratory of Oral Molecular Pathophysiology, Paris, France
| | - Arnaud Dessombz
- Centre de Recherche des Cordeliers, Sorbonne Université, INSERM, Université de Paris, Laboratory of Oral Molecular Pathophysiology, Paris, France
| | - Rufino Felizardo
- CRMR O-RARES, Hôpital Rothshild, UFR d'Odontologie-Garancière, Université de Paris, Paris, France
| | - Vidjeacoumary Cannaya
- Centre de Recherche des Cordeliers, Sorbonne Université, INSERM, Université de Paris, Laboratory of Oral Molecular Pathophysiology, Paris, France
| | | | - Mickaël Quentric
- Department of Human Genetics, De Duve Institute, Université catholique de Louvain, Brussels, Belgium
| | - Miikka Vikkula
- Department of Human Genetics, De Duve Institute, Université catholique de Louvain, Brussels, Belgium
| | - Olivier Cases
- Centre de Recherche des Cordeliers, Sorbonne Université, INSERM, Université de Paris, Laboratory of Oral Molecular Pathophysiology, Paris, France
| | - Ariane Berdal
- Centre de Recherche des Cordeliers, Sorbonne Université, INSERM, Université de Paris, Laboratory of Oral Molecular Pathophysiology, Paris, France.,CRMR O-RARES, Hôpital Rothshild, UFR d'Odontologie-Garancière, Université de Paris, Paris, France
| | - Muriel De La Dure-Molla
- CRMR O-RARES, Hôpital Rothshild, UFR d'Odontologie-Garancière, Université de Paris, Paris, France.,Institut des maladies génétiques, Imagine, Paris, France
| | - Renata Kozyraki
- Centre de Recherche des Cordeliers, Sorbonne Université, INSERM, Université de Paris, Laboratory of Oral Molecular Pathophysiology, Paris, France.,CRMR O-RARES, Hôpital Rothshild, UFR d'Odontologie-Garancière, Université de Paris, Paris, France
| |
Collapse
|
42
|
Kanai T, Sawa Y, Sato Y. Cancellation of the Calcification in Cultured Osteoblasts by CLEC-2. J HARD TISSUE BIOL 2021. [DOI: 10.2485/jhtb.30.53] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Affiliation(s)
- Takenori Kanai
- Department of Orthodontics, Faculty of Dental Medicine and Graduate School of Dental Medicine, Hokkaido University
| | - Yoshihiko Sawa
- Department of Oral Function & Anatomy, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
| | - Yoshiaki Sato
- Department of Orthodontics, Faculty of Dental Medicine and Graduate School of Dental Medicine, Hokkaido University
| |
Collapse
|
43
|
Jayachandran M, Yuzhakov SV, Kumar S, Larson NB, Enders FT, Milliner DS, Rule AD, Lieske JC. Specific populations of urinary extracellular vesicles and proteins differentiate type 1 primary hyperoxaluria patients without and with nephrocalcinosis or kidney stones. Orphanet J Rare Dis 2020; 15:319. [PMID: 33176829 PMCID: PMC7659070 DOI: 10.1186/s13023-020-01607-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Accepted: 11/03/2020] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND Primary hyperoxaluria type 1 (PH1) is associated with nephrocalcinosis (NC) and calcium oxalate (CaOx) kidney stones (KS). Populations of urinary extracellular vesicles (EVs) can reflect kidney pathology. The aim of this study was to determine whether urinary EVs carrying specific biomarkers and proteins differ among PH1 patients with NC, KS or with neither disease process. METHODS Mayo Clinic Rare Kidney Stone Consortium bio-banked cell-free urine from male and female PH1 patients without (n = 10) and with NC (n = 6) or KS (n = 9) and an eGFR > 40 mL/min/1.73 m2 were studied. Urinary EVs were quantified by digital flow cytometer and results expressed as EVs/ mg creatinine. Expressions of urinary proteins were measured by customized antibody array and results expressed as relative intensity. Data were analyzed by ANCOVA adjusting for sex, and biomarkers differences were considered statistically significant among groups at a false discovery rate threshold of Q < 0.20. RESULTS Total EVs and EVs from different types of glomerular and renal tubular cells (11/13 markers) were significantly (Q < 0.20) altered among PH1 patients without NC and KS, patients with NC or patients with KS alone. Three cellular adhesion/inflammatory (ICAM-1, MCP-1, and tissue factor) markers carrying EVs were statistically (Q < 0.20) different between PH1 patients groups. Three renal injury (β2-microglobulin, laminin α5, and NGAL) marker-positive urinary EVs out of 5 marker assayed were statistically (Q < 0.20) different among PH1 patients without and with NC or KS. The number of immune/inflammatory cell-derived (8 different cell markers positive) EVs were statistically (Q < 0.20) different between PH1 patients groups. EV generation markers (ANO4 and HIP1) and renal calcium/phosphate regulation or calcifying matrixvesicles markers (klotho, PiT1/2) were also statistically (Q < 0.20) different between PH1 patients groups. Only 13 (CD14, CD40, CFVII, CRP, E-cadherin, EGFR, endoglin, fetuin A, MCP-1, neprilysin, OPN, OPGN, and PDGFRβ) out of 40 proteins were significantly (Q < 0.20) different between PH1 patients without and with NC or KS. CONCLUSIONS These results imply activation of distinct renal tubular and interstitial cell populations and processes associated with KS and NC, and suggest specific populations of urinary EVs and proteins are potential biomarkers to assess the pathogenic mechanisms between KS versus NC among PH1 patients.
Collapse
Affiliation(s)
- Muthuvel Jayachandran
- Division of Nephrology and Hypertension, College of Medicine and Science, Mayo Clinic, 200 First Street SW, Rochester, MN 55905 USA
- Division of Hematology Research, College of Medicine and Science, Mayo Clinic, 200 First Street SW, Rochester, MN 55905 USA
- Department of Physiology and Biomedical Engineering, College of Medicine and Science, Mayo Clinic, 200 First Street SW, Rochester, MN 55905 USA
| | - Stanislav V. Yuzhakov
- Division of Hematology Research, College of Medicine and Science, Mayo Clinic, 200 First Street SW, Rochester, MN 55905 USA
- Department of Physiology and Biomedical Engineering, College of Medicine and Science, Mayo Clinic, 200 First Street SW, Rochester, MN 55905 USA
| | - Sanjay Kumar
- Division of Nephrology and Hypertension, College of Medicine and Science, Mayo Clinic, 200 First Street SW, Rochester, MN 55905 USA
| | - Nicholas B. Larson
- Biomedical Statistics and Bioinformatics, College of Medicine and Science, Mayo Clinic, 200 First Street SW, Rochester, MN 55905 USA
| | - Felicity T. Enders
- Biomedical Statistics and Bioinformatics, College of Medicine and Science, Mayo Clinic, 200 First Street SW, Rochester, MN 55905 USA
| | - Dawn S. Milliner
- Division of Nephrology and Hypertension, College of Medicine and Science, Mayo Clinic, 200 First Street SW, Rochester, MN 55905 USA
| | - Andrew D. Rule
- Division of Nephrology and Hypertension, College of Medicine and Science, Mayo Clinic, 200 First Street SW, Rochester, MN 55905 USA
| | - John C. Lieske
- Division of Nephrology and Hypertension, College of Medicine and Science, Mayo Clinic, 200 First Street SW, Rochester, MN 55905 USA
- Department of Laboratory Medicine and Pathology, College of Medicine and Science, Mayo Clinic, 200 First Street SW, Rochester, MN 55905 USA
| |
Collapse
|
44
|
Wang Q, Tang T, Cooper D, Eltit F, Fratzl P, Guy P, Wang R. Globular structure of the hypermineralized tissue in human femoral neck. J Struct Biol 2020; 212:107606. [PMID: 32905849 DOI: 10.1016/j.jsb.2020.107606] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 08/15/2020] [Accepted: 08/19/2020] [Indexed: 10/23/2022]
Abstract
Bone becomes more fragile with ageing. Among many structural changes, a thin layer of highly mineralized and brittle tissue covers part of the external surface of the thin femoral neck cortex in older people and has been proposed to increase hip fragility. However, there have been very limited reports on this hypermineralized tissue in the femoral neck, especially on its ultrastructure. Such information is critical to understanding both the mineralization process and its contributions to hip fracture. Here, we use multiple advanced techniques to characterize the ultrastructure of the hypermineralized tissue in the neck across various length scales. Synchrotron radiation micro-CT found larger but less densely distributed cellular lacunae in hypermineralized tissue than in lamellar bone. When examined under FIB-SEM, the hypermineralized tissue was mainly composed of mineral globules with sizes varying from submicron to a few microns. Nano-sized channels were present within the mineral globules and oriented with the surrounding organic matrix. Transmission electron microscopy showed the apatite inside globules were poorly crystalline, while those at the boundaries between the globules had well-defined lattice structure with crystallinity similar to the apatite mineral in lamellar bone. No preferred mineral orientation was observed both inside each globule and at the boundaries. Collectively, we conclude based on these new observations that the hypermineralized tissue is non-lamellar and has less organized mineral, which may contribute to the high brittleness of the tissue.
Collapse
Affiliation(s)
- Qiong Wang
- Department of Materials Engineering, University of British Columbia, Vancouver, BC, Canada; Centre for Hip Health and Mobility, Vancouver, BC, Canada
| | - Tengteng Tang
- Department of Biomaterials, Max Planck Institute of Colloids and Interfaces, Potsdam, Germany
| | - David Cooper
- Department of Anatomy, Physiology and Pharmacology, University of Saskatchewan, Saskatoon, Canada
| | - Felipe Eltit
- Vancouver Prostate Centre, Vancouver, Canada; Department of Urologic Sciences, University of British Columbia, Vancouver, BC, Canada
| | - Peter Fratzl
- Department of Biomaterials, Max Planck Institute of Colloids and Interfaces, Potsdam, Germany
| | - Pierre Guy
- Centre for Hip Health and Mobility, Vancouver, BC, Canada; Department of Orthopaedics, University of British Columbia, Vancouver, BC, Canada
| | - Rizhi Wang
- Department of Materials Engineering, University of British Columbia, Vancouver, BC, Canada; Centre for Hip Health and Mobility, Vancouver, BC, Canada; School of Biomedical Engineering, University of British Columbia, Vancouver, BC, Canada.
| |
Collapse
|
45
|
Bommanavar S, Hosmani J, Togoo RA, Baeshen HA, Raj AT, Patil S, Bhandi S, Birkhed D. Role of matrix vesicles and crystal ghosts in bio-mineralization. J Bone Miner Metab 2020; 38:759-764. [PMID: 32737603 DOI: 10.1007/s00774-020-01125-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Accepted: 07/02/2020] [Indexed: 01/21/2023]
Abstract
Matrix vesicles (MVs) are extracellular membrane-bound vesicles of about ~ 50-200 nm in diameter that play a role in the bio-mineralization process of hard tissue formation. The present review is based on the empirical phenomenon of primary mineralization process via matrix vesicle-mediated mechanism with special reference to crystal ghosts as well as the mechanism on the organic-inorganic relationship between matrix vesicles and crystal ghosts, and the transformation that these structures undergo during bio-mineralization.
Collapse
Affiliation(s)
- Sushma Bommanavar
- Department of Oral Pathology and Microbiology, School of Dental Sciences, Krishna Institute of Medical Sciences, Karad, India
| | - Jagadish Hosmani
- Oral Pathology Section, Department of Diagnostic Dental Sciences, College of Dentistry, King Khalid University, Abha, Saudi Arabia
| | - Rafi Ahmad Togoo
- Division of Pediatric Dentistry and Orthodontic Sciences, College of Dentistry, King Khalid University, Abha, Saudi Arabia
| | - Hosam Ali Baeshen
- Department of Orthodontics, College of Dentistry, King Abdulaziz University, Jeddah, Saudi Arabia
| | - A Thirumal Raj
- Department of Oral Pathology and Microbiology, Sri Venkateswara Dental College and Hospital, Chennai, India
| | - Shankargouda Patil
- Department of Maxillofacial Surgery and Diagnostic Sciences, Division of Oral Pathology, College of Dentistry, Jazan University, Jazan, Saudi Arabia.
| | - Shilpa Bhandi
- Department of Restorative Dental Sciences, Division of Operative Dentistry, College of Dentistry, Jazan University, Jazan, Saudi Arabia
| | - Dowen Birkhed
- Professor Emeritus, University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|
46
|
Reznikov N, Hoac B, Buss DJ, Addison WN, Barros NMT, McKee MD. Biological stenciling of mineralization in the skeleton: Local enzymatic removal of inhibitors in the extracellular matrix. Bone 2020; 138:115447. [PMID: 32454257 DOI: 10.1016/j.bone.2020.115447] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 05/14/2020] [Accepted: 05/20/2020] [Indexed: 12/12/2022]
Abstract
Biomineralization is remarkably diverse and provides myriad functions across many organismal systems. Biomineralization processes typically produce hardened, hierarchically organized structures usually having nanostructured mineral assemblies that are formed through inorganic-organic (usually protein) interactions. Calcium‑carbonate biomineral predominates in structures of small invertebrate organisms abundant in marine environments, particularly in shells (remarkably it is also found in the inner ear otoconia of vertebrates), whereas calcium-phosphate biomineral predominates in the skeletons and dentitions of both marine and terrestrial vertebrates, including humans. Reconciliation of the interplay between organic moieties and inorganic crystals in bones and teeth is a cornerstone of biomineralization research. Key molecular determinants of skeletal and dental mineralization have been identified in health and disease, and in pathologic ectopic calcification, ranging from small molecules such as pyrophosphate, to small membrane-bounded matrix vesicles shed from cells, and to noncollagenous extracellular matrix proteins such as osteopontin and their derived bioactive peptides. Beyond partly knowing the regulatory role of the direct actions of inhibitors on vertebrate mineralization, more recently the importance of their enzymatic removal from the extracellular matrix has become increasingly understood. Great progress has been made in deciphering the relationship between mineralization inhibitors and the enzymes that degrade them, and how adverse changes in this physiologic pathway (such as gene mutations causing disease) result in mineralization defects. Two examples of this are rare skeletal diseases having osteomalacia/odontomalacia (soft bones and teeth) - namely hypophosphatasia (HPP) and X-linked hypophosphatemia (XLH) - where inactivating mutations occur in the gene for the enzymes tissue-nonspecific alkaline phosphatase (TNAP, TNSALP, ALPL) and phosphate-regulating endopeptidase homolog X-linked (PHEX), respectively. Here, we review and provide a concept for how existing and new information now comes together to describe the dual nature of regulation of mineralization - through systemic mineral ion homeostasis involving circulating factors, coupled with molecular determinants operating at the local level in the extracellular matrix. For the local mineralization events in the extracellular matrix, we present a focused concept in skeletal mineralization biology called the Stenciling Principle - a principle (building upon seminal work by Neuman and Fleisch) describing how the action of enzymes to remove tissue-resident inhibitors defines with precision the location and progression of mineralization.
Collapse
Affiliation(s)
- N Reznikov
- Object Research Systems Inc., 760 St. Paul West, Montreal, Quebec H3C 1M4, Canada.
| | - B Hoac
- Faculty of Dentistry, McGill University, 3640 University St., Montreal, Quebec H3A 0C7, Canada
| | - D J Buss
- Department of Anatomy and Cell Biology, McGill University, 3640 University St., Montreal, Quebec H3A 0C7, Canada
| | - W N Addison
- Department of Molecular Signaling and Biochemistry, Kyushu Dental University, 2-6-1 Manazuru, Kokurakita-ku, Kitakyushu, Fukuoka, Japan
| | - N M T Barros
- Departamento de Biofísica, São Paulo, Departamento de Ciências Biológicas, Universidade Federal de São Paulo, Diadema, Brazil
| | - M D McKee
- Faculty of Dentistry, McGill University, 3640 University St., Montreal, Quebec H3A 0C7, Canada; Department of Anatomy and Cell Biology, McGill University, 3640 University St., Montreal, Quebec H3A 0C7, Canada.
| |
Collapse
|
47
|
Calcinosis in Systemic Sclerosis: Updates in Pathophysiology, Evaluation, and Treatment. Curr Rheumatol Rep 2020; 22:73. [DOI: 10.1007/s11926-020-00951-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
48
|
Stapane L, Le Roy N, Ezagal J, Rodriguez-Navarro AB, Labas V, Combes-Soia L, Hincke MT, Gautron J. Avian eggshell formation reveals a new paradigm for vertebrate mineralization via vesicular amorphous calcium carbonate. J Biol Chem 2020; 295:15853-15869. [PMID: 32816992 DOI: 10.1074/jbc.ra120.014542] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Indexed: 12/16/2022] Open
Abstract
Amorphous calcium carbonate (ACC) is an unstable mineral phase, which is progressively transformed into aragonite or calcite in biomineralization of marine invertebrate shells or avian eggshells, respectively. We have previously proposed a model of vesicular transport to provide stabilized ACC in chicken uterine fluid where eggshell mineralization takes place. Herein, we report further experimental support for this model. We confirmed the presence of extracellular vesicles (EVs) using transmission EM and showed high levels of mRNA of vesicular markers in the oviduct segments where eggshell mineralization occurs. We also demonstrate that EVs contain ACC in uterine fluid using spectroscopic analysis. Moreover, proteomics and immunofluorescence confirmed the presence of major vesicular, mineralization-specific and eggshell matrix proteins in the uterus and in purified EVs. We propose a comprehensive role for EVs in eggshell mineralization, in which annexins transfer calcium into vesicles and carbonic anhydrase 4 catalyzes the formation of bicarbonate ions (HCO[Formula: see text]), for accumulation of ACC in vesicles. We hypothesize that ACC is stabilized by ovalbumin and/or lysozyme or additional vesicle proteins identified in this study. Finally, EDIL3 and MFGE8 are proposed to serve as guidance molecules to target EVs to the mineralization site. We therefore report for the first-time experimental evidence for the components of vesicular transport to supply ACC in a vertebrate model of biomineralization.
Collapse
Affiliation(s)
| | | | - Jacky Ezagal
- BOA INRAe, Université de Tours, Nouzilly, France
| | | | - Valérie Labas
- Unité Mixte de Recherches Physiologie de la Reproduction et des Comportements, Université de Tours IFCE, Nouzilly, France
| | - Lucie Combes-Soia
- Unité Mixte de Recherches Physiologie de la Reproduction et des Comportements, Université de Tours IFCE, Nouzilly, France
| | - Maxwell T Hincke
- Department of Innovation in Medical Education, and Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, Canada
| | - Joël Gautron
- BOA INRAe, Université de Tours, Nouzilly, France.
| |
Collapse
|
49
|
Jahnen-Dechent W, Büscher A, Köppert S, Heiss A, Kuro-O M, Smith ER. Mud in the blood: the role of protein-mineral complexes and extracellular vesicles in biomineralisation and calcification. J Struct Biol 2020; 212:107577. [PMID: 32711043 DOI: 10.1016/j.jsb.2020.107577] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Revised: 07/10/2020] [Accepted: 07/13/2020] [Indexed: 12/19/2022]
Abstract
Protein-mineral interaction is known to regulate biomineral stability and morphology. We hypothesise that fluid phases produce highly dynamic protein-mineral complexes involved in physiology and pathology of biomineralisation. Here, we specifically focus on calciprotein particles, complexes of vertebrate mineral-binding proteins and calcium phosphate present in the systemic circulation and abundant in extracellular fluids - hence the designation of the ensuing protein-mineral complexes as "mud in the blood". These complexes exist amongst other extracellular particles that we collectively refer to as "the particle zoo".
Collapse
Affiliation(s)
- Willi Jahnen-Dechent
- Helmholtz-Institute for Biomedical Engineering, Biointerface Lab, RWTH Aachen University Hospital, Aachen, Germany.
| | - Andrea Büscher
- Helmholtz-Institute for Biomedical Engineering, Biointerface Lab, RWTH Aachen University Hospital, Aachen, Germany
| | - Sina Köppert
- Helmholtz-Institute for Biomedical Engineering, Biointerface Lab, RWTH Aachen University Hospital, Aachen, Germany
| | - Alexander Heiss
- The Research Institute for Precious Metals and Metals Chemistry (fem), Schwaebisch Gmuend, Germany
| | - Makoto Kuro-O
- Division of Anti-aging Medicine, Center for Molecular Medicine, Jichi Medical University, Tochigi, Japan
| | - Edward R Smith
- Department of Nephrology, The Royal Melbourne Hospital, Melbourne, Australia; Department of Medicine, University of Melbourne, Parkville, Australia
| |
Collapse
|
50
|
Abstract
Matrix mineralization can be divided into physiological mineralization and pathological mineralization. There is a consensus among existing studies that matrix vesicles (MVs) are the starting sites of bone mineralization, and each component of MVs serves a certain function in mineralization. In addition, ectopic MVs pathologically promote undesired calcification, the primary focus of which is the promotion of vascular calcification. However, the specific mechanisms of the actions of MVs in bone-vascular axis cross-talk have not been fully elucidated. This review summarizes the latest research in this field and explores the roles of MVs in the bone-vascular axis with the aim of generating new ideas for the prevention and treatment of vascular calcification and bone metabolic disease.
Collapse
|