1
|
Qualhato G, Cirqueira Dias F, Rocha TL. Hazardous effects of plastic microfibres from facial masks to aquatic animal health: Insights from zebrafish model. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 951:175555. [PMID: 39168327 DOI: 10.1016/j.scitotenv.2024.175555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 07/16/2024] [Accepted: 08/13/2024] [Indexed: 08/23/2024]
Abstract
Facial masks are a source of plastic microfibres (PMFs) in the aquatic environment, an emerging risk factor for aquatic organisms. However, little is known concerning its impact during the early developmental stages of fish. Thus, the current study aimed to evaluate the potential interaction and developmental toxicity of PMFs derived from leachate of surgical masks (SC-Msk) and N-95 facial masks (N95-Msk) using a multi-biomarker approach in developing zebrafish (Danio rerio). PMFs from both facial masks were obtained and characterized by multiple techniques. Zebrafish embryos were exposed to environmentally relevant concentrations of PMFs from both facial masks (1000, 10,000, and 100,000 particle L-1), and the toxicity was analysed in terms of mortality, hatching rate, neurotoxicity, cardiotoxicity, morphological changes, reactive oxygen species (ROS) levels, cell viability, and behavioural impairments. The results showed that both facial masks can release PMFs, but the N95-Msk produced a higher concentration of PMFs than SC-Msk. Both PMFs can interact with zebrafish chorion and don't cause effects on embryo mortality and hatching; however, zebrafish embryos showed cardiotoxic effects, and larvae showed increased agitation, average speed, and distance travelled, indicating the behavioural impairments induced by PMFs derived from facial masks. Overall, results showed the risk of PMFs to the health of freshwater fish, indicating the need for greater attention to the disposal and ecotoxicological effects of facial masks on aquatic organisms.
Collapse
Affiliation(s)
- Gabriel Qualhato
- Laboratory of Environmental Biotechnology and Ecotoxicology, Institute of Tropical Pathology and Public Health, Federal University of Goiás, Goiânia, Goiás, Brazil; Department of Morphology, Institute of Biological Sciences, Federal University of Goiás, Goiânia, Goiás, Brazil
| | - Felipe Cirqueira Dias
- Laboratory of Environmental Biotechnology and Ecotoxicology, Institute of Tropical Pathology and Public Health, Federal University of Goiás, Goiânia, Goiás, Brazil
| | - Thiago Lopes Rocha
- Laboratory of Environmental Biotechnology and Ecotoxicology, Institute of Tropical Pathology and Public Health, Federal University of Goiás, Goiânia, Goiás, Brazil.
| |
Collapse
|
2
|
Asteray DB, Elsaigh WA. Waste Plastic to Roads - HDPE-modified Bitumen and PET Plastic Fibres for Road Maintenance in South Africa: A Review. WASTE MANAGEMENT & RESEARCH : THE JOURNAL OF THE INTERNATIONAL SOLID WASTES AND PUBLIC CLEANSING ASSOCIATION, ISWA 2024; 42:932-946. [PMID: 39069720 PMCID: PMC11451075 DOI: 10.1177/0734242x241263008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Accepted: 06/03/2024] [Indexed: 07/30/2024]
Abstract
This review article provides a comprehensive analysis of the transformative potential of waste plastic in South Africa, with a specific focus on high-density polyethylene-modified bitumen and polyethylene terephthalate plastic fibres asphalt. The review encompasses a wide range of topics, including the environmental and socio-economic impacts of plastic waste, the current state of plastic waste management practices in South Africa, and the potential use of waste plastic in road construction. The aim is to critically evaluate the compatibility of recycled waste plastics as bitumen modifiers and fibre to enhance road performance. Additionally, it explores the challenges and opportunities associated with the incorporation of waste plastic in road construction, shedding light on the environmental, economic and technological aspects. The review also emphasizes the need for targeted interventions and collaborative efforts from the South African government and industry stakeholders to address plastic waste management challenges and promote sustainable infrastructure development. Overall, this review provides valuable insights into the transformative potential of waste plastic in South African road maintenance and offers a roadmap for future research and initiatives in this critical area of sustainable development.
Collapse
Affiliation(s)
- Demiss B. Asteray
- Department of Civil Engineering and Environmental Engineering and Building Science, College of Science, Engineering and Technology, University of South Africa, Johannesburg, South Africa
| | - Walied A. Elsaigh
- Department of Civil Engineering and Environmental Engineering and Building Science, College of Science, Engineering and Technology, University of South Africa, Johannesburg, South Africa
| |
Collapse
|
3
|
Gonçalves do Amaral C, Pinto André E, Maffud Cilli E, Gomes da Costa V, Ricardo S Sanches P. Viral diseases and the environment relationship. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 362:124845. [PMID: 39265774 DOI: 10.1016/j.envpol.2024.124845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 08/09/2024] [Accepted: 08/26/2024] [Indexed: 09/14/2024]
Abstract
Viral diseases have been present throughout human history, with early examples including influenza (1500 B.C.), smallpox (1000 B.C.), and measles (200 B.C.). The term "virus" was first used in the late 1800s to describe microorganisms smaller than bacteria, and significant milestones include the discovery of the polio virus and the development of its vaccine in the mid-1900s, and the identification of HIV/AIDS in the latter part of the 20th century. The 21st century has seen the emergence of new viral diseases such as West Nile Virus, Zika, SARS, MERS, and COVID-19. Human activities, including crowding, travel, poor sanitation, and environmental changes like deforestation and climate change, significantly influence the spread of these diseases. Conversely, viral diseases can impact the environment by polluting water resources, contributing to deforestation, and reducing biodiversity. These environmental impacts are exacerbated by disruptions in global supply chains and increased demands for resources. This review highlights the intricate relationship between viral diseases and environmental factors, emphasizing how human activities and viral disease progression influence each other. The findings underscore the need for integrated approaches to address the environmental determinants of viral diseases and mitigate their impacts on both health and ecosystems.
Collapse
Affiliation(s)
- Caio Gonçalves do Amaral
- School of Pharmaceutical Sciences, Laboratory of Molecular Virology, Department of Biological Science, São Paulo State University, UNESP, Brazil
| | - Eduardo Pinto André
- School of Pharmaceutical Sciences, Laboratory of Molecular Virology, Department of Biological Science, São Paulo State University, UNESP, Brazil
| | - Eduardo Maffud Cilli
- Institute of Chemistry, Laboratory of Synthesis and Studies of Biomolecules, Department of Biochemistry and Organic Chemistry, São Paulo State University, UNESP, Brazil
| | - Vivaldo Gomes da Costa
- Institute of Biosciences, Letters, and Exact Sciences, São Paulo State University, UNESP, Brazil
| | - Paulo Ricardo S Sanches
- School of Pharmaceutical Sciences, Laboratory of Molecular Virology, Department of Biological Science, São Paulo State University, UNESP, Brazil.
| |
Collapse
|
4
|
Kwon Y, Bui-Vinh D, Lee SH, Baek SH, Lee HW, Yun J, Cho I, Lee J, Lee MH, Lee H, Jeong DW. A New Paradigm on Waste-to-Energy Applying Hydrovoltaic Energy Harvesting Technology to Face Masks. Polymers (Basel) 2024; 16:2515. [PMID: 39274147 PMCID: PMC11398234 DOI: 10.3390/polym16172515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 08/30/2024] [Accepted: 09/02/2024] [Indexed: 09/16/2024] Open
Abstract
The widespread use of single-use face masks during the recent epidemic has led to significant environmental challenges due to waste pollution. This study explores an innovative approach to address this issue by repurposing discarded face masks for hydrovoltaic energy harvesting. By coating the face masks with carbon black (CB) to enhance their hydrophilic properties, we developed mask-based hydrovoltaic power generators (MHPGs). These MHPGs were evaluated for their hydrovoltaic performance, revealing that different mask configurations and sizes affect their efficiency. The study found that MHPGs with smaller, more structured areas exhibited better energy output, with maximum open-circuit voltages (VOC) reaching up to 0.39 V and short-circuit currents (ISC) up to 65.6 μA. The integration of CB improved water absorption and transport, enhancing the hydrovoltaic performance. More specifically, MHPG-1 to MHPG-4, which represented different sizes and features, presented mean VOC values of 0.32, 0.17, 0.19 and 0.05 V, as well as mean ISC values of 16.57, 15.59, 47.43 and 3.02 μA, respectively. The findings highlight the feasibility of utilizing discarded masks in energy harvesting systems, offering both environmental benefits and a novel method for renewable energy generation. Therefore, this work provides a new paradigm for waste-to-energy (WTE) technologies and inspires further research into the use of unconventional waste materials for energy production.
Collapse
Affiliation(s)
- Yongbum Kwon
- Korea National Institute of Rare Metals, Korea Institute of Industrial Technology, Incheon 21655, Republic of Korea
- Department of Environmental Engineering, Inha University, Incheon 22212, Republic of Korea
| | - Dai Bui-Vinh
- Department of Environmental Engineering, Inha University, Incheon 22212, Republic of Korea
| | - Seung-Hwan Lee
- Korea National Institute of Rare Metals, Korea Institute of Industrial Technology, Incheon 21655, Republic of Korea
| | - So Hyun Baek
- Korea National Institute of Rare Metals, Korea Institute of Industrial Technology, Incheon 21655, Republic of Korea
| | - Hyun-Woo Lee
- Korea National Institute of Rare Metals, Korea Institute of Industrial Technology, Incheon 21655, Republic of Korea
| | - Jeungjai Yun
- Korea National Institute of Rare Metals, Korea Institute of Industrial Technology, Incheon 21655, Republic of Korea
| | - Inhee Cho
- Korea National Institute of Rare Metals, Korea Institute of Industrial Technology, Incheon 21655, Republic of Korea
| | - Jeonghoon Lee
- Manufacturing AI Research Center, Korea Institute of Industrial Technology, Incheon 21999, Republic of Korea
| | - Mi Hye Lee
- Korea National Institute of Rare Metals, Korea Institute of Industrial Technology, Incheon 21655, Republic of Korea
| | - Handol Lee
- Department of Environmental Engineering, Inha University, Incheon 22212, Republic of Korea
- Program in Environmental and Polymer Engineering, Graduate School of Inha University, Incheon 22212, Republic of Korea
- Particle Pollution Research and Management Center, Incheon 21999, Republic of Korea
| | - Da-Woon Jeong
- Korea National Institute of Rare Metals, Korea Institute of Industrial Technology, Incheon 21655, Republic of Korea
| |
Collapse
|
5
|
Zhang Y, Jiang F, Li F, Lu S, Liu Z, Wang Y, Chi Y, Jiang C, Zhang L, Chen Q, He Z, Zhao X, Qiao J, Xu X, Leung KMY, Liu X, Wu F. Global daily mask use estimation in the pandemic and its post environmental health risks: Analysis based on a validated dynamic mathematical model. JOURNAL OF HAZARDOUS MATERIALS 2024; 473:134572. [PMID: 38772106 DOI: 10.1016/j.jhazmat.2024.134572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Revised: 04/30/2024] [Accepted: 05/08/2024] [Indexed: 05/23/2024]
Abstract
The outbreak of the COVID-19 pandemic led to a sharp increase in disposable surgical mask usage. Discarded masks can release microplastic and cause environmental pollution. Since masks have become a daily necessity for protection against virus infections, it is necessary to review the usage and disposal of masks during the pandemic for future management. In this study, we constructed a dynamic model by introducing related parameters to estimate daily mask usage in 214 countries from January 22, 2020 to July 31, 2022. And we validated the accuracy of our model by establishing a dataset based on published survey data. Our results show that the cumulative mask usage has reached 800 billion worldwide, and the microplastics released from discarded masks due to mismanagement account for 3.27% of global marine microplastic emissions in this period. Furthermore, we illustrated the response relationship between mask usage and the infection rates. We found a marginally significant negative correlation existing between the mean daily per capita mask usage and the rate of cumulative confirmed cases within the range of 25% to 50%. This indicates that if the rate reaches the specified threshold, the preventive effect of masks may become evident.
Collapse
Affiliation(s)
- Ying Zhang
- College of Geography and Environment, Shandong Normal University, Jinan 250358, China
| | - Fei Jiang
- College of Geography and Environment, Shandong Normal University, Jinan 250358, China
| | - Fengmin Li
- College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100, China
| | - Shaoyong Lu
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Zihao Liu
- School of information science and engineering, Shandong Normal University, Jinan 250358, China
| | - Yuwen Wang
- College of Geography and Environment, Shandong Normal University, Jinan 250358, China
| | - Yiming Chi
- College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100, China
| | - Chenchen Jiang
- First Institute of Oceanography, Ministry of Natural Resources, Qingdao 266061, China
| | - Ling Zhang
- College of Geography and Environment, Shandong Normal University, Jinan 250358, China
| | - Qingfeng Chen
- College of Geography and Environment, Shandong Normal University, Jinan 250358, China
| | - Zhipeng He
- Shandong Freshwater Fisheries Research Institude, Jinan 250013, China
| | - Xiaoli Zhao
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Jianmin Qiao
- College of Geography and Environment, Shandong Normal University, Jinan 250358, China
| | - Xiaoya Xu
- College of Geography and Environment, Shandong Normal University, Jinan 250358, China
| | - Kenneth Mei Yee Leung
- State Key Laboratory of Marine Pollution and Department of Chemistry, City University of Hong Kong, Hong Kong 999077, China
| | - Xiaohui Liu
- Key Laboratory of Marine Environment and Ecology, Ministry of Education and College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100, China.
| | - Fengchang Wu
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China.
| |
Collapse
|
6
|
Khan S, Mumtaj ZA, Khan AR, Alkahtani MQ, Aleya E, Louzon M, Aleya L. Reviewing the role of microplastics as carriers for microorganisms in absorbing toxic trace elements. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:46806-46819. [PMID: 38976194 DOI: 10.1007/s11356-024-34070-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Accepted: 06/18/2024] [Indexed: 07/09/2024]
Abstract
The pervasive presence of microplastics in various settings, such as freshwater and marine ecosystems, has sparked serious concerns. Microplastics can operate as possible transporters for hazardous trace elements or microbes, even though they are not naturally able to actively absorb these compounds. The binding sites on the plastic's surface or the complexes that are formed with the organic material on the plastic are how this adsorption process takes place. Microplastics' surfaces also seem to be attractive to microorganisms, such as bacteria and algae. Microorganisms can adhere to the rough surface of microplastics, which facilitates their colonization and formation of biofilms. Numerous bacteria, including ones that have the ability to absorb hazardous trace elements, can be found in these biofilms. Microplastics and microbes can interact in ways that are advantageous and detrimental. Microplastics have the ability to act as a substrate for microbial growth, which could lead to an increase in the quantity of microorganisms in the surrounding environment. On the other hand, microplastics may make it easier for microbes to spread to new areas, which could help dangerous or deadly species proliferate. Research is still ongoing to determine the degree to which microplastics serve as carriers of microbes and hazardous trace elements. Comprehending the implications of microplastics, pollutants, and microorganisms in a variety of environmental conditions is difficult due to their complex interplay. This review provides a detailed description of the complexity of the problem and used the examples related to microplastics, its environmental effects, and impacts on human health.
Collapse
Affiliation(s)
- Saimah Khan
- Department of Chemistry, Integral University, Lucknow, India
| | - Zeba Ali Mumtaj
- Department of Chemistry, Integral University, Lucknow, India
| | | | - Meshel Qablan Alkahtani
- Department of Civil Engineering, College of Engineering, King Khalid University, Abha, Saudi Arabia
| | - Enis Aleya
- Laboratoire de Chrono-Environnement, UMR CNRS 6249, Université de Bourgogne Franche-Comté, La Bouloie, 25030, Besançon Cedex, France
| | - Maxime Louzon
- Crisalid Living Laboratory, Envisol, 29 Avenue Victor Hugo, 38800, Le Pont De Claix, France
| | - Lotfi Aleya
- Laboratoire de Chrono-Environnement, UMR CNRS 6249, Université de Bourgogne Franche-Comté, La Bouloie, 25030, Besançon Cedex, France.
| |
Collapse
|
7
|
Najafighodousi A, Nemati F, Rayegani A, Saberian M, Zamani L, Li J. Recycling facemasks into civil construction material to manage waste generated during COVID-19. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:12577-12590. [PMID: 38168852 DOI: 10.1007/s11356-023-31726-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Accepted: 12/21/2023] [Indexed: 01/05/2024]
Abstract
Growing plastic pollution in the context of COVID-19 has caused significant challenges, exacerbating this already out-of-control issue. The pandemic has considerably boosted the demand for personal protective equipment (PPE), such as facemasks and gloves, all over the globe, and mismanaging this growing plastic pollution has harmed the environment and wildlife significantly. To mitigate negative environmental impacts, it is necessary to develop and implement effective waste management strategies. This present study estimated the daily facemask generation throughout the pandemic in Iran based on the distribution of urban and rural populations and, likewise, the daily generation of hand gloves in the COVID-19 era and the amount of medical waste generated by COVID-19 patients were calculated. In the next step, the quantities of discarded facemasks dumped into the Caspian Sea, the Persian Gulf, and the Gulf of Oman from the coastal cities were determined. Finally, the innovative alternatives for repurposing discarded facemasks in civil construction materials such as concrete, pavement, and partition wall panel were discussed.
Collapse
Affiliation(s)
- Atiyeh Najafighodousi
- Department of Civil & Environmental Engineering, Amirkabir University of Technology, Tehran, Iran
| | - Fariba Nemati
- Department of Civil Engineering, Sharif University of Technology, Tehran, Iran
| | - Arash Rayegani
- Centre for Infrastructure Engineering, Western Sydney University, Kingswood, NSW, 2747, Australia
| | - Mohammad Saberian
- Vice Chancellor's Postdoctoral Fellow, School of Engineering, RMIT University, Melbourne, VIC, Australia.
| | - Leila Zamani
- Center for Environmental Economics and Technology, Department of Environment of Iran, Tehran, Iran
| | - Jie Li
- School of Engineering, RMIT University, Melbourne, VIC, Australia
| |
Collapse
|
8
|
Soo XYD, Jia L, Lim QF, Chua MH, Wang S, Hui HK, See JMR, Chen Y, Li J, Wei F, Tomczak N, Kong J, Loh XJ, Fei X, Zhu Q. Hydrolytic degradation and biodegradation of polylactic acid electrospun fibers. CHEMOSPHERE 2024; 350:141186. [PMID: 38215833 DOI: 10.1016/j.chemosphere.2024.141186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 12/07/2023] [Accepted: 01/09/2024] [Indexed: 01/14/2024]
Abstract
Increased use of bioplastics, such as polylactic acid (PLA), helps in reducing greenhouse gas emissions, decreases energy consumption and lowers pollution, but its degradation efficiency has much room for improvement. The degradation rate of electrospun PLA fibers of varying diameters ranging from 0.15 to 1.33 μm is measured during hydrolytic degradation under different pH from 5.5 to 10, and during aerobic biodegradation in seawater supplemented with activated sewage sludge. In hydrolytic conditions, varying PLA fiber diameter had significant influence over percentage weight loss (W%L), where faster degradation was achieved for PLA fibers with smaller diameter. W%L was greatest for PLA-5 > PLA-12 > PLA-16 > PLA-20, with average W%L at 30.7%, 27.8%, 17.2% and 14.3% respectively. While different pH environment does not have a significant influence on PLA degradation, with W%L only slightly higher for basic environments. Similarly biodegradation displayed faster degradation for small diameter fibers with PLA-5 attaining the highest degree of biodegradation at 22.8% after 90 days. Hydrolytic degradation resulted in no significant structural change, while biodegradation resulted in significant hydroxyl end capping products on the PLA surface. Scanning electron microscopy (SEM) imaging of degraded PLA fibers showed a deteriorated morphology of PLA-5 and PLA-12 fibers with increased adhesion structures and irregularly shaped fibers, while a largely unmodified morphology for PLA-16 and PLA-20.
Collapse
Affiliation(s)
- Xiang Yun Debbie Soo
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis, #08-03, Singapore, 138634, Singapore
| | - Linran Jia
- School of Civil and Environmental Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore; Residues and Resource Reclamation Centre, Nanyang Environment and Water Research Institute, 1 Cleantech Loop, Singapore, 637141, Singapore
| | - Qi Feng Lim
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis, #08-03, Singapore, 138634, Singapore
| | - Ming Hui Chua
- Institute of Sustainability for Chemicals, Energy and Environment (ISCE2), Agency for Science, Technology and Research (A*STAR), 1 Pesek Road, Jurong Island, Singapore, 627833, Singapore
| | - Suxi Wang
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis, #08-03, Singapore, 138634, Singapore
| | - Hui Kim Hui
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis, #08-03, Singapore, 138634, Singapore
| | - Jia Min Regine See
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 21 Nanyang Link, Singapore, 637371, Singapore
| | - Yunjie Chen
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis, #08-03, Singapore, 138634, Singapore
| | - Jiuwei Li
- School of Civil and Environmental Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore; Residues and Resource Reclamation Centre, Nanyang Environment and Water Research Institute, 1 Cleantech Loop, Singapore, 637141, Singapore
| | - Fengxia Wei
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis, #08-03, Singapore, 138634, Singapore
| | - Nikodem Tomczak
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis, #08-03, Singapore, 138634, Singapore
| | - Junhua Kong
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis, #08-03, Singapore, 138634, Singapore
| | - Xian Jun Loh
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis, #08-03, Singapore, 138634, Singapore; Department of Material Science and Engineering, National University of Singapore, 9 Engineering Drive 1, #03-09 EA, Singapore, 117575, Singapore.
| | - Xunchang Fei
- School of Civil and Environmental Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore; Residues and Resource Reclamation Centre, Nanyang Environment and Water Research Institute, 1 Cleantech Loop, Singapore, 637141, Singapore.
| | - Qiang Zhu
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis, #08-03, Singapore, 138634, Singapore; School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 21 Nanyang Link, Singapore, 637371, Singapore; Institute of Sustainability for Chemicals, Energy and Environment (ISCE2), Agency for Science, Technology and Research (A*STAR), 1 Pesek Road, Jurong Island, Singapore, 627833, Singapore.
| |
Collapse
|
9
|
Aslan H, Yılmaz O, Benfield MC, Becan SA. Temporal trends in personal protective equipment (PPE) debris during the COVID-19 pandemic in Çanakkale (Turkey). THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 898:165377. [PMID: 37422228 DOI: 10.1016/j.scitotenv.2023.165377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 07/05/2023] [Accepted: 07/05/2023] [Indexed: 07/10/2023]
Abstract
This study examines trends in PPE (masks, gloves) and disinfecting wipes over three years of the pandemic. The densities of discarded masks, wet wipes, and gloves (personal protective equipment: PPE), were quantified on the streets of Canakkale, Turkey during similar time periods in 2020, 2021 and 2022. Geotagged images of PPE on the streets and sidewalks were documented with a smartphone, while the track of an observer was recorded using a fitness tracker app along a 7.777 km long survey route in the city center, parallel to the Dardanelles Strait. A total of 18 surveys were conducted over three years, and the survey route was subdivided into three zones based on utilization patterns: pedestrian zone, traffic zone and a recreational park zone. The combined densities of all types of PPE density were high in 2020, lower in 2021 and highest in 2022. The within year trend showed an increase over the three study years. The average density of gloves declined from an initially high level in 2020, when the SARS-CoV-2 virus was thought to be transmitted by contact, to near zero in 2021 and to zero in 2022. Densities of wipes were similar in 2020 and 2021 and higher in 2022. Masks were initially difficult to procure in 2020, and their densities progressively increased during that year reaching a plateau in 2021 with similar densities in 2022. PPE densities were significantly lower in the pedestrian route relative to the traffic and park routes, which were not different from each other. The partial curfews implemented by the Turkish government and the effects of prevention measures taken on the PPE concentration in the streets are discussed along with the importance of waste management practices.
Collapse
Affiliation(s)
- Herdem Aslan
- Department of Biology, Faculty of Science, Çanakkale Onsekiz Mart University, Çanakkale, Turkey.
| | - Okan Yılmaz
- Department of Landscape Architecture, Faculty of Architecture and Design, Çanakkale Onsekiz Mart University, Çanakkale, Turkey
| | - Mark C Benfield
- Department of Oceanography and Coastal Sciences, Louisiana State University, Baton Rouge, LA 70803, USA
| | - S Ahmet Becan
- Faculty of Agriculture, Çanakkale Onsekiz Mart University, Çanakkale, Turkey
| |
Collapse
|
10
|
Bekova R, Prodanov B. Assessment of beach macrolitter using unmanned aerial systems: A study along the Bulgarian Black Sea Coast. MARINE POLLUTION BULLETIN 2023; 196:115625. [PMID: 37813062 DOI: 10.1016/j.marpolbul.2023.115625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 10/02/2023] [Accepted: 10/03/2023] [Indexed: 10/11/2023]
Abstract
Over the years, the Black Sea has been impacted by the issue of marine litter, which poses ecological and health threats. A mid-term monitoring program initiated in 2018 assessed the abundance, density, and composition of beach litter (BL) on 40 frequently visited beaches. From 2018 to 2022, there was a significant increase in average abundance, rising by 261 %. Artificial polymer materials accounted for the majority (84 %) of the litter. Land-based sources dominated 77 % of the litter. The Clean Coast Index (CCI) categorized the beaches as "moderate" with an average value of 8.9 for the period between 2018 and 2022. However, the years 2021 and 2022, during the COVID-19 epidemic, were identified as the "dirtiest period" with 11 beaches classified as "extremely dirty" due to high domestic tourist pressure. The study demonstrates a successful combination of standard in situ visual assessment supported by unmanned aerial systems for beach litter surveys.
Collapse
Affiliation(s)
- Radoslava Bekova
- Institute of Oceanology - Bulgarian Academy of Sciences, Bulgaria.
| | - Bogdan Prodanov
- Institute of Oceanology - Bulgarian Academy of Sciences, Bulgaria
| |
Collapse
|
11
|
Ryu S, Kim D, Lee H, Kim Y, Lee Y, Kim M, Lee H, Lee H. Biodegradable Nanofiber/Metal-Organic Framework/Cotton Air Filtration Membranes Enabling Simultaneous Removal of Toxic Gases and Particulate Matter. Polymers (Basel) 2023; 15:3965. [PMID: 37836014 PMCID: PMC10575390 DOI: 10.3390/polym15193965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 09/21/2023] [Accepted: 09/26/2023] [Indexed: 10/15/2023] Open
Abstract
The typical filters that protect us from harmful components, such as toxic gases and particulate matter (PM), are made from petroleum-based materials, which need to be replaced with other environmentally friendly materials. Herein, we demonstrate a route to fabricate biodegradable and dual-functional filtration membranes that effectively remove PM and toxic gases. The membrane was integrated using two layers: (i) cellulose-based nanofibers for PM filtration and (ii) metal-organic framework (MOF)-coated cotton fabric for removal of toxic gases. Zeolitic imidazolate framework (ZIF-8) was grown from the surface of the cotton fabric by the treatment of cotton fabric with an organic precursor solution and subsequent immersion in an inorganic precursor solution. Cellulose acetate nanofibers (NFs) were deposited on the MOF-coated cotton fabric via electrospinning. At the optimal thickness of the NF layer, the quality factor of 18.8 × 10-2 Pa-1 was achieved with a filtration efficiency of 93.1%, air permeability of 19.0 cm3/cm2/s, and pressure drop of 14.2 Pa. The membrane exhibits outstanding gas adsorption efficiencies (>99%) for H2S, formaldehyde, and NH3. The resulting membrane was highly biodegradable, with a weight loss of 62.5% after 45 days under standard test conditions. The proposed strategy should provide highly sustainable material platforms for practical multifunctional membranes in personal protective equipment.
Collapse
Affiliation(s)
- Sujin Ryu
- Advanced Textile R&D Department, Research Institute of Convergence Technology, Korea Institute of Industrial Technology (KITECH), 143 Hanggaulro, Sangnok-gu, Ansan 15588, Republic of Korea; (S.R.); (D.K.)
| | - Doyeon Kim
- Advanced Textile R&D Department, Research Institute of Convergence Technology, Korea Institute of Industrial Technology (KITECH), 143 Hanggaulro, Sangnok-gu, Ansan 15588, Republic of Korea; (S.R.); (D.K.)
- HYU-KITECH Joint Department, Hanyang University, Ansan 15588, Republic of Korea;
| | - Hyewon Lee
- Advanced Textile R&D Department, Research Institute of Convergence Technology, Korea Institute of Industrial Technology (KITECH), 143 Hanggaulro, Sangnok-gu, Ansan 15588, Republic of Korea; (S.R.); (D.K.)
| | - Yoonjin Kim
- Advanced Textile R&D Department, Research Institute of Convergence Technology, Korea Institute of Industrial Technology (KITECH), 143 Hanggaulro, Sangnok-gu, Ansan 15588, Republic of Korea; (S.R.); (D.K.)
| | - Youngbok Lee
- HYU-KITECH Joint Department, Hanyang University, Ansan 15588, Republic of Korea;
- Department of Applied Chemistry, Hanyang University, Ansan 15588, Republic of Korea
- Department of Chemical and Molecular Engineering, Center for Bionano Intelligence Education and Research, Hanyang University, Ansan 15588, Republic of Korea
| | - Myungwoong Kim
- Department of Chemistry and Chemical Engineering, Inha University, Incheon 22212, Republic of Korea
| | - Heedong Lee
- Advanced Textile R&D Department, Research Institute of Convergence Technology, Korea Institute of Industrial Technology (KITECH), 143 Hanggaulro, Sangnok-gu, Ansan 15588, Republic of Korea; (S.R.); (D.K.)
| | - Hoik Lee
- Advanced Textile R&D Department, Research Institute of Convergence Technology, Korea Institute of Industrial Technology (KITECH), 143 Hanggaulro, Sangnok-gu, Ansan 15588, Republic of Korea; (S.R.); (D.K.)
- HYU-KITECH Joint Department, Hanyang University, Ansan 15588, Republic of Korea;
| |
Collapse
|
12
|
Dey S, Samanta P, Dutta D, Kundu D, Ghosh AR, Kumar S. Face masks: a COVID-19 protector or environmental contaminant? ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:93363-93387. [PMID: 37548785 DOI: 10.1007/s11356-023-29063-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Accepted: 07/26/2023] [Indexed: 08/08/2023]
Abstract
Face masks, a prime component of personal protective equipment (PPE) items, have become an integral part of human beings to survive under the ongoing COVID-19 pandemic situation. The global population requires an estimated 130 billion face masks and 64 billion gloves/month, while the COVID-19 pandemic has led to the daily disposal of approximately 3.5 billion single-use face masks, resulting in a staggering 14,245,230.63 kg of face mask waste. The improper disposal of face mask wastes followed by its mismanagement is a challenge to the scientists as the wastes create pollution leading to environmental degradation, especially plastic pollution (macro/meso/micro/nano). Each year, an estimated 0.15-0.39 million tons of COVID-19 face mask waste, along with 173,000 microfibers released daily from discarded surgical masks, could enter the marine environment, while used masks have a significantly higher microplastic release capacity (1246.62 ± 403.50 particles/piece) compared to new masks (183.00 ± 78.42 particles/piece). Surgical face masks emit around 59 g CO2-eq greenhouse gas emissions per single use, cloth face masks emit approximately 60 g CO2-eq/single mask, and inhaling or ingesting microplastics (MPs) caused adverse health problems including chronic inflammation, granulomas or fibrosis, DNA damage, cellular damage, oxidative stress, and cytokine secretion. The present review critically addresses the role of face masks in reducing COVID-19 infections, their distribution pattern in diverse environments, the volume of waste produced, degradation in the natural environment, and adverse impacts on different environmental segments, and proposes sustainable remediation options to tackle environmental challenges posed by disposable COVID-19 face masks.
Collapse
Affiliation(s)
- Sukhendu Dey
- Department of Environmental Science, The University of Burdwan, Burdwan, 713 104, West Bengal, India
| | - Palas Samanta
- Department of Environmental Science, Sukanta Mahavidyalaya, University of North Bengal, Dhupguri, 735 210, West Bengal, India
| | - Deblina Dutta
- Department of Environmental Science and Engineering, School of Engineering and Sciences, SRM University-AP, Amaravati, Andhra Pradesh, 522 240, India
| | - Debajyoti Kundu
- Department of Environmental Science and Engineering, School of Engineering and Sciences, SRM University-AP, Amaravati, Andhra Pradesh, 522 240, India
| | - Apurba Ratan Ghosh
- Department of Environmental Science, The University of Burdwan, Burdwan, 713 104, West Bengal, India
| | - Sunil Kumar
- CSIR-National Environmental Engineering Research Institute (CSIR-NEERI), Nehru Marg, Nagpur, 440 020, Maharashtra, India.
| |
Collapse
|
13
|
Saleem J, Moghal ZKB, McKay G. Designing super-fast trimodal sponges using recycled polypropylene for organics cleanup. Sci Rep 2023; 13:14163. [PMID: 37644209 PMCID: PMC10465528 DOI: 10.1038/s41598-023-41506-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Accepted: 08/28/2023] [Indexed: 08/31/2023] Open
Abstract
Sorbent pads and films have been commonly used for environmental remediation purposes, but designing their internal structure to optimize access to the entire volume while ensuring cost-effectiveness, ease of fabrication, sufficient strength, and reusability remains challenging. Herein, we report a trimodal sorbent film from recycled polypropylene (PP) with micropores, macro-voids, and sponge-like 3D cavities, developed through selective dissolution, thermally induced phase separation, and annealing. The sorbent has hundreds of cavities per cm2 that are capable of swelling up to twenty-five times its thickness, allowing for super-fast saturation kinetics (within 30 s) and maximum oil sorption (97 g/g). The sorption mechanism follows a pseudo-second-order kinetic model. Moreover, the sorbent is easily compressible, and its structure is retained during oil sorption, desorption, and resorption, resulting in 96.5% reuse efficiency. The oil recovery process involves manually squeezing the film, making the cleanup process efficient with no chemical treatment required. The sorbent film possesses high porosity for effective sorption with sufficient tensile strength for practical applications. Our integrated technique results in a strengthened porous polymeric structure that can be tailored according to end-use applications. This study provides a sustainable solution for waste management that offers versatility in its functionality.
Collapse
Affiliation(s)
- Junaid Saleem
- Division of Sustainable Development, College of Science and Engineering, Hamad Bin Khalifa University, Qatar Foundation, Doha, Qatar.
| | | | - Gordon McKay
- Division of Sustainable Development, College of Science and Engineering, Hamad Bin Khalifa University, Qatar Foundation, Doha, Qatar
| |
Collapse
|
14
|
Wang L, Li S, Ahmad IM, Zhang G, Sun Y, Wang Y, Sun C, Jiang C, Cui P, Li D. Global face mask pollution: threats to the environment and wildlife, and potential solutions. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 887:164055. [PMID: 37178835 PMCID: PMC10174332 DOI: 10.1016/j.scitotenv.2023.164055] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 04/20/2023] [Accepted: 05/07/2023] [Indexed: 05/15/2023]
Abstract
Face masks are an indispensable low-cost public healthcare necessity for containing viral transmission. After the coronavirus disease (COVID-19) became a pandemic, there was an unprecedented demand for, and subsequent increase in face mask production and use, leading to global ecological challenges, including excessive resource consumption and significant environmental pollution. Here, we review the global demand volume for face masks and the associated energy consumption and pollution potential throughout their life cycle. First, the production and distribution processes consume petroleum-based raw materials and other energy sources and release greenhouse gases. Second, most methods of mask waste disposal result in secondary microplastic pollution and the release of toxic gases and organic substances. Third, face masks discarded in outdoor environments represent a new plastic pollutant and pose significant challenges to the environment and wildlife in various ecosystems. Therefore, the long-term impacts on environmental and wildlife health aspects related to the production, use, and disposal of face masks should be considered and urgently investigated. Here, we propose five reasonable countermeasures to alleviate these global-scale ecological crises induced by mask use during and following the COVID-19 pandemic era: increasing public awareness; improving mask waste management; innovating waste disposal methods; developing biodegradable masks; and formulating relevant policies and regulations. Implementation of these measures will help address the pollution caused by face masks.
Collapse
Affiliation(s)
- Limin Wang
- Hebei Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology, College of Life Sciences, Hebei Normal University; Shijiazhuang 050024, China; Hebei Collaborative Innovation Center for Eco-Environment, Hebei Normal University, Shijiazhuang 050024, China
| | - Shengxuan Li
- School of Languages and Culture, Hebei GEO University; Shijiazhuang 050031, China
| | - Ibrahim M Ahmad
- Hebei Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology, College of Life Sciences, Hebei Normal University; Shijiazhuang 050024, China
| | - Guiying Zhang
- Hebei Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology, College of Life Sciences, Hebei Normal University; Shijiazhuang 050024, China
| | - Yanfeng Sun
- Ocean College of Hebei Agricultural University, Qinhuangdao 066003, China
| | - Yang Wang
- Hebei Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology, College of Life Sciences, Hebei Normal University; Shijiazhuang 050024, China; Hebei Collaborative Innovation Center for Eco-Environment, Hebei Normal University, Shijiazhuang 050024, China
| | - Congnan Sun
- Hebei Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology, College of Life Sciences, Hebei Normal University; Shijiazhuang 050024, China; Hebei Collaborative Innovation Center for Eco-Environment, Hebei Normal University, Shijiazhuang 050024, China
| | - Chuan Jiang
- Hebei Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology, College of Life Sciences, Hebei Normal University; Shijiazhuang 050024, China; Hebei Collaborative Innovation Center for Eco-Environment, Hebei Normal University, Shijiazhuang 050024, China
| | - Peng Cui
- Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment, Nanjing 210042, China
| | - Dongming Li
- Hebei Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology, College of Life Sciences, Hebei Normal University; Shijiazhuang 050024, China; Hebei Collaborative Innovation Center for Eco-Environment, Hebei Normal University, Shijiazhuang 050024, China..
| |
Collapse
|
15
|
Cubas ALV, Moecke EHS, Provin AP, Dutra ARA, Machado MM, Gouveia IC. The Impacts of Plastic Waste from Personal Protective Equipment Used during the COVID-19 Pandemic. Polymers (Basel) 2023; 15:3151. [PMID: 37571045 PMCID: PMC10421242 DOI: 10.3390/polym15153151] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 06/13/2023] [Accepted: 07/14/2023] [Indexed: 08/13/2023] Open
Abstract
The period from 2019 to 2022 has been defined by the COVID-19 pandemic, resulting in an unprecedented demand for and use of Personal Protective Equipment (PPE). However, the disposal of PPE without considering its environmental impact and proper waste management practices has become a growing concern. The increased demand for PPE during the pandemic and associated waste management practices have been analyzed. Additionally, the discussion around treating these residues and exploring more environmentally friendly alternatives, such as biodegradable or reusable PPE, is crucial. The extensive use of predominantly non-degradable plastics in PPE has led to their accumulation in landfills, with potential consequences for marine environments through the formation of microplastics. Therefore, this article seeks to establish a connection between these issues and the Sustainable Development Goals, emphasizing the importance of efficient management aligned with sustainable development objectives to address these emerging challenges and ensure a more sustainable future.
Collapse
Affiliation(s)
- Anelise Leal Vieira Cubas
- Environmental Science Master’s Program, University of Southern Santa Catarina (Unisul), Avenida Pedra Branca, 25, Palhoça 88137-270, Brazil; (E.H.S.M.); (A.P.P.); (A.R.A.D.)
| | - Elisa Helena Siegel Moecke
- Environmental Science Master’s Program, University of Southern Santa Catarina (Unisul), Avenida Pedra Branca, 25, Palhoça 88137-270, Brazil; (E.H.S.M.); (A.P.P.); (A.R.A.D.)
| | - Ana Paula Provin
- Environmental Science Master’s Program, University of Southern Santa Catarina (Unisul), Avenida Pedra Branca, 25, Palhoça 88137-270, Brazil; (E.H.S.M.); (A.P.P.); (A.R.A.D.)
| | - Ana Regina Aguiar Dutra
- Environmental Science Master’s Program, University of Southern Santa Catarina (Unisul), Avenida Pedra Branca, 25, Palhoça 88137-270, Brazil; (E.H.S.M.); (A.P.P.); (A.R.A.D.)
| | - Marina Medeiros Machado
- Environmental Engineering, Federal University of Ouro Preto (UFOP), Ouro Preto 35402-163, Brazil;
| | - Isabel C. Gouveia
- FibEnTech R&D—Fiber Materials and Environmental Technologies, University of Beira Interior, Rua Marquês d’Ávila e Bolama, 6201-001 Covilhã, Portugal;
| |
Collapse
|
16
|
Ortega F, Calero M, Rico N, Martín-Lara MA. COVID-19 personal protective equipment (PPE) contamination in coastal areas of Granada, Spain. MARINE POLLUTION BULLETIN 2023; 191:114908. [PMID: 37086548 PMCID: PMC10080275 DOI: 10.1016/j.marpolbul.2023.114908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 03/31/2023] [Accepted: 04/02/2023] [Indexed: 05/03/2023]
Abstract
The use of disposable personal protective equipment (PPE) as a control measure to avoid transmission against COVID-19 has generated a challenge to the waste management and enhances plastic pollution in the environment. The research aims to monitor the presence of PPE waste and other plastic debris, in a time interval where the use of face mask at specific places was still mandatory, on the coastal areas of Granada (Spain) which belongs to the Mediterranean Sea. Four beaches called La Rijana, La Charca, La Rábita and Calahonda were examined during different periods. The total amount of sampled waste was 17,558 plastic units. The abundance, characteristics and distribution of PPE and other plastic debris were determined. Results showed that the observed amount of total plastic debris were between 2.531·10-2 and 24.487·10-2 units per square meter, and up to 0.136·10-2 for PPE debris, where face masks represented the 92.22 % of the total PPE debris, being these results comparable to previous studies in other coastal areas in the world. On the other hand, total plastic debris densities were in the range from 2.457·10-2 to 92.219·10-2 g/m2 and densities were up to 0.732·10-2 for PPE debris. PPE debris supposed 0.79 % of the weight of total waste and the 0.51 % of total items. Concerning non-PPE plastic waste: cigarettes filters, food containers and styrofoam were the most abundant items (42.95, 10.19 and 16.37 % of total items, respectively). During vacation periods, total plastic debris amount increased 92.19 % compared to non-vacation periods. Regarding type of beaches, the presence of plastic debris was significantly higher on touristic/recreational than in fishing beaches. Data showed no significant differences between accessible and no-accessible beaches, but between periods with restrictive policy about mask face use and periods with non-restrictive policy data suggest significant differences between densities (g/m2) for PPE litter. The amount of PPEs debris is also correlated with the number of cigarettes filters (Person's r = 0.650), food containers (r = 0.782) and other debris (r = 0.63). Finally, although interesting results were provided in this study, further research is required to better understand the consequences of this type of pollution and to provide viable solutions to this problem.
Collapse
Affiliation(s)
- F Ortega
- Chemical Engineering Department, Faculty of Sciences, University of Granada, Granada, Spain.
| | - M Calero
- Chemical Engineering Department, Faculty of Sciences, University of Granada, Granada, Spain.
| | - N Rico
- Department of Statistics and Operations Research, Faculty of Sciences, University of Granada, Granada, Spain.
| | - M A Martín-Lara
- Chemical Engineering Department, Faculty of Sciences, University of Granada, Granada, Spain.
| |
Collapse
|
17
|
El-Sayyad GS, Elfadil D, Gaballah MS, El-Sherif DM, Abouzid M, Nada HG, Khalil MS, Ghorab MA. Implication of nanotechnology to reduce the environmental risks of waste associated with the COVID-19 pandemic. RSC Adv 2023; 13:12438-12454. [PMID: 37091621 PMCID: PMC10117286 DOI: 10.1039/d3ra01052j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Accepted: 04/14/2023] [Indexed: 04/25/2023] Open
Abstract
The COVID-19 pandemic is the largest global public health outbreak in the 21st century so far. It has contributed to a significant increase in the generation of waste, particularly personal protective equipment and hazardous medical, as it can contribute to environmental pollution and expose individuals to various hazards. To minimize the risk of infection, the entire surrounding environment should be disinfected or neutralized regularly. Effective medical waste management can add value by reducing the spread of COVID-19 and increasing the recyclability of materials instead of sending them to landfill. Developing an antiviral coating for the surface of objects frequently used by the public could be a practical solution to prevent the spread of virus particles and the inactivation of virus transmission. Relying on an abundance of engineered materials identifiable by their useful physicochemical properties through versatile chemical functionalization, nanotechnology offers a number of approaches to address this emergency. Here, through a multidisciplinary perspective encompassing various fields such as virology, biology, medicine, engineering, chemistry, materials science, and computer science, we describe how nanotechnology-based strategies can support the fight against COVID-19 well as infectious diseases in general, including future pandemics. In this review, the design of the antiviral coating to combat the spread of COVID-19 was discussed, and technological attempts to minimize the coronavirus outbreak were highlighted.
Collapse
Affiliation(s)
- Gharieb S El-Sayyad
- Department of Microbiology and Immunology, Faculty of Pharmacy, Ahram Canadian University (ACU) Giza Egypt
- Department of Microbiology and Immunology, Faculty of Pharmacy, Galala University New Galala City Suez Egypt
- Drug Microbiology Laboratory, Drug Radiation Research Department, National Center for Radiation Research and Technology (NCRRT), Egyptian Atomic Energy Authority (EAEA) Cairo Egypt
| | - Dounia Elfadil
- Biology and Chemistry Department, Hassan II University of Casablanca Morocco
| | - Mohamed S Gaballah
- College of Engineering (Key Laboratory for Clean Renewable Energy Utilization Technology, Ministry of Agriculture), China Agricultural University Beijing 100083 PR China
- Department of Physical Pharmacy and Pharmacokinetics, Faculty of Pharmacy, Poznan University of Medical Sciences Rokietnicka 3 St. 60-806 Poznan Poland
| | - Dina M El-Sherif
- National Institute of Oceanography and Fisheries (NIOF) Cairo Egypt
| | - Mohamed Abouzid
- Department of Physical Pharmacy and Pharmacokinetics, Faculty of Pharmacy, Poznan University of Medical Sciences Rokietnicka 3 St. 60-806 Poznan Poland
- Doctoral School, Poznan University of Medical Sciences 60-812 Poznan Poland
| | - Hanady G Nada
- Drug Microbiology Laboratory, Drug Radiation Research Department, National Center for Radiation Research and Technology (NCRRT), Egyptian Atomic Energy Authority (EAEA) Cairo Egypt
- Department of Microbiology, Faculty of Science, Ain Shams University Cairo Egypt
| | - Mohamed S Khalil
- Agricultural Research Center, Central Agricultural Pesticides Laboratory Alexandria Egypt
| | - Mohamed A Ghorab
- Wildlife Toxicology Laboratory, Department of Animal Science, Institute for Integrative Toxicology (IIT), Michigan State University East Lansing MI 48824 USA
| |
Collapse
|
18
|
Iheanacho S, Ogbu M, Bhuyan MS, Ogunji J. Microplastic pollution: An emerging contaminant in aquaculture. AQUACULTURE AND FISHERIES 2023. [DOI: 10.1016/j.aaf.2023.01.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/26/2023]
|
19
|
Lunag MN, Abana AS, Agcaoili JP, Arellano JKT, Caluza CAG, Decena NBV, Paz ERD, Delgado LAB, Obero AF, Ocampo DME, Sacdalan CAD. Face mask and medical waste generation in the City of Baguio, Philippines: its current management and GHG footprint. JOURNAL OF MATERIAL CYCLES AND WASTE MANAGEMENT 2023; 25:1216-1226. [PMID: 36743944 PMCID: PMC9884183 DOI: 10.1007/s10163-023-01601-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Accepted: 01/16/2023] [Indexed: 06/18/2023]
Abstract
The daily use of facemask to prevent virus transmission increases the negative effect on the environment because of improper waste disposal. Due to the absence of baseline data, the impact of facemask and medical waste generation, as well as the community's management practice, should be studied to avoid further environmental degradation. In this study, we surveyed 384 respondents and conducted computational analysis to provide an overview of the household's facemask usage and ecological footprint in combating Covid-19. Results showed that most respondents (48.7%) use two facemasks per day. Thus, an estimated 417,834 facemasks are disposed daily, generating 3,585 kg/day of additional waste. The average medical waste of Covid-infected individuals is 3.29 kg per day per capita. This yields 22,438 kg. of CO2 eq., which could contribute to the global warming potential; however, there is also a potential recovery of 61.572 gigajoules of energy for power generation. Most respondents are aware of proper facemask waste management practices, but some lacks application regarding responsible waste disposal. Despite the contribution of facemask to the overall solid waste generation, the city's current management remains a challenge since disposable facemasks are potentially mixed with other types of waste from its storage, collection, and disposal. Supplementary Information The online version contains supplementary material available at 10.1007/s10163-023-01601-2.
Collapse
Affiliation(s)
- Marcelino N. Lunag
- Faculty, School of Engineering and Architecture, Saint Louis University, 2600 Baguio City, Philippines
| | - Alexander S. Abana
- School of Engineering and Architecture, Saint Louis University, 2600 Baguio City, Philippines
| | - Juco P. Agcaoili
- School of Engineering and Architecture, Saint Louis University, 2600 Baguio City, Philippines
| | | | - Coleen Angela G. Caluza
- School of Engineering and Architecture, Saint Louis University, 2600 Baguio City, Philippines
| | - Nick Brylle V. Decena
- School of Engineering and Architecture, Saint Louis University, 2600 Baguio City, Philippines
| | - Emmanuel R. Dela Paz
- School of Engineering and Architecture, Saint Louis University, 2600 Baguio City, Philippines
| | - Lyka Angela B. Delgado
- School of Engineering and Architecture, Saint Louis University, 2600 Baguio City, Philippines
| | - Aaron F. Obero
- School of Engineering and Architecture, Saint Louis University, 2600 Baguio City, Philippines
| | - Don Miguel E. Ocampo
- School of Engineering and Architecture, Saint Louis University, 2600 Baguio City, Philippines
| | | |
Collapse
|
20
|
Kibria MG, Masuk NI, Safayet R, Nguyen HQ, Mourshed M. Plastic Waste: Challenges and Opportunities to Mitigate Pollution and Effective Management. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH 2023; 17:20. [PMID: 36711426 PMCID: PMC9857911 DOI: 10.1007/s41742-023-00507-z] [Citation(s) in RCA: 62] [Impact Index Per Article: 62.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 12/30/2022] [Accepted: 01/02/2023] [Indexed: 05/20/2023]
Abstract
The present world is now facing the challenge of proper management and resource recovery of the enormous amount of plastic waste. Lack of technical skills for managing hazardous waste, insufficient infrastructure development for recycling and recovery, and above all, lack of awareness of the rules and regulations are the key factors behind this massive pile of plastic waste. The severity of plastic pollution exerts an adverse effect on the environment and total ecosystem. In this study, a comprehensive analysis of plastic waste generation, as well as its effect on the human being and ecological system, is discussed in terms of source identification with respect to developed and developing countries. A detailed review of the existing waste to energy and product conversion strategies is presented in this study. Moreover, this study sheds light on sustainable waste management procedures and identifies the key challenges to adopting effective measures to minimise the negative impact of plastic waste.
Collapse
Affiliation(s)
- Md. Golam Kibria
- Department of Mechanical Engineering, Rajshahi University of Engineering and Technology (RUET), Rajshahi, 6204 Bangladesh
| | - Nahid Imtiaz Masuk
- Department of Mechanical Engineering, Rajshahi University of Engineering and Technology (RUET), Rajshahi, 6204 Bangladesh
| | - Rafat Safayet
- Department of Mechanical Engineering, Rajshahi University of Engineering and Technology (RUET), Rajshahi, 6204 Bangladesh
| | - Huy Quoc Nguyen
- Faculty of Heat and Refrigeration Engineering, The University of Danang—University of Science and Technology, Danang, 550000 Vietnam
| | - Monjur Mourshed
- Department of Mechanical Engineering, Rajshahi University of Engineering and Technology (RUET), Rajshahi, 6204 Bangladesh
- Mechanical and Automotive Engineering, School of Engineering, RMIT University, Bundoora, 3083 Australia
| |
Collapse
|
21
|
Dharmaraj S, Ashokkumar V, Chew KW, Chia SR, Show PL, Ngamcharussrivichai C. Novel strategy in biohydrogen energy production from COVID - 19 plastic waste: A critical review. INTERNATIONAL JOURNAL OF HYDROGEN ENERGY 2022; 47:42051-42074. [PMID: 34776598 PMCID: PMC8576595 DOI: 10.1016/j.ijhydene.2021.08.236] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 08/18/2021] [Accepted: 08/26/2021] [Indexed: 06/06/2023]
Abstract
Usage of plastics in the form of personal protective equipment, medical devices, and common packages has increased alarmingly during these pandemic times. Though they have served as an excellent protection source in minimizing the coronavirus disease (COVID-19) spreading, they have still emerged as major environmental pollutants nowadays. These non-degradable COVID-19 plastic wastes (CPW) were treated through incineration and landfilling process, which may lead to either the release of harmful gases or contaminating the surrounding environment. Further, they can cause numerous health hazards to the human and animal populations. These plastic wastes can be efficiently managed through thermochemical processes like pyrolysis or gasification, which assist in degrading the plastic waste and also effectively convert them into useful energy-yielding products. The pyrolysis process promotes the formation of liquid fuels and chemicals, whereas gasification leads to syngas and hydrogen fuel production. These energy-yielding products can help to compensate for the fossil fuels depletion in the near future. There are many insights explained in terms of the types of reactors and influential factors that can be adopted for the pyrolysis and gasification process, to produce high efficient energy products from the wastes. In addition, advanced technologies including co-gasification and two-stage gasification were also reviewed.
Collapse
Affiliation(s)
- Selvakumar Dharmaraj
- Department of Marine Biotechnology, Academy of Maritime Education and Training [AMET] (Deemed to be University), Chennai 603112, Tamil Nadu, India
| | - Veeramuthu Ashokkumar
- Center of Excellence in Catalysis for Bioenergy and Renewable Chemicals (CBRC), Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand
| | - Kit Wayne Chew
- School of Energy and Chemical Engineering, Xiamen University Malaysia, Jalan Sunsuria, Bandar Sunsuria, 43900, Sepang, Selangor Darul Ehsan, Malaysia
- College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, Fujian, China
| | - Shir Reen Chia
- Institute of Sustainable Energy, Universiti Tenaga Nasional (UNITEN), Jalan IKRAM-UNITEN, 43000, Kajang, Selangor, Malaysia
| | - Pau Loke Show
- Department of Chemical and Environmental Engineering, Faculty of Engineering, University of Nottingham Malaysia Campus, Jalan Broga, 43500, Semenyih, Selangor Darul Ehsan, Malaysia
| | - Chawalit Ngamcharussrivichai
- Center of Excellence in Catalysis for Bioenergy and Renewable Chemicals (CBRC), Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand
- Center of Excellence on Petrochemical and Materials Technology (PETROMAT), Chulalongkorn University, Pathumwan, Bangkok 10330, Thailand
| |
Collapse
|
22
|
Ammendolia J, Saturno J, Bond AL, O'Hanlon NJ, Masden EA, James NA, Jacobs S. Tracking the impacts of COVID-19 pandemic-related debris on wildlife using digital platforms. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 848:157614. [PMID: 35901900 PMCID: PMC9310380 DOI: 10.1016/j.scitotenv.2022.157614] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2022] [Revised: 07/19/2022] [Accepted: 07/20/2022] [Indexed: 05/23/2023]
Abstract
Since the start of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2; COVID-19) pandemic in December 2019, there have been global surges of single-use plastic use. Due to the importance of personal protective equipment (PPE) and sanitation items in protecting against virus transmission and from testing, facemasks, respirators, disposable gloves and disposable wet wipes have become global staples in households and institutions. Widespread use and insufficient infrastructure, combined with improper waste management have resulted in an emerging category of litter. With widespread presence in the environment, such items pose a direct threat to wildlife as animals can interact with them in a series of ways. We examined the scope of COVID-19 pandemic-related debris, including PPE and sanitation items, on wildlife from April 2020 to December 2021. We document the geographic occurrence of incidents, debris types, and consequences of incidents that were obtained from social media searches, unpublished reports from colleagues, and reports available from the citizen science database "Birds and Debris". There were 114 unique sightings of wildlife interactions with pandemic-related debris (38 from 2020 and 76 from 2021). Within the context of this dataset, most incidents involved birds (83.3 %), while fewer affected mammals (10.5 %), invertebrates (3.5 %), fish (1.8 %), and sea turtles (0.9 %). Sightings originated in 23 countries, and consisted mostly of entanglements (42.1 %) and nest incorporations (40.4 %). We verified sightings by contacting the original observers and were able to identify replicated sightings and increase the resolution of the data collected compared with previously published results. Due to the complexities associated with global use and accessibility of digital platforms, we likely underestimate the number of animals harmed by debris. Overall, the global scope of this study demonstrates that online and social media platforms are a valuable way to collect biologically relevant citizen science data and track rapidly emerging environmental challenges.
Collapse
Affiliation(s)
- Justine Ammendolia
- Faculty of Graduate Studies, Interdisciplinary Studies, Dalhousie University, Halifax B3H 4R2, Canada.
| | - Jacquelyn Saturno
- School for Resources and Environmental Studies, Dalhousie University, Halifax B3H 4R2, Canada
| | - Alexander L Bond
- Bird Group, The Natural History Museum, Akeman Street, Tring, Hertfordshire HP23 6AP, UK
| | - Nina J O'Hanlon
- Centre for Energy and the Environment, Environmental Research Institute, North Highland College - University of the Highlands and Islands, Ormlie Road, Thurso, Caithness KW14 7EE, United Kingdom
| | - Elizabeth A Masden
- Centre for Energy and the Environment, Environmental Research Institute, North Highland College - University of the Highlands and Islands, Ormlie Road, Thurso, Caithness KW14 7EE, United Kingdom
| | - Neil A James
- Centre for Energy and the Environment, Environmental Research Institute, North Highland College - University of the Highlands and Islands, Ormlie Road, Thurso, Caithness KW14 7EE, United Kingdom
| | - Shoshanah Jacobs
- Department of Integrative Biology, University of Guelph, 50 Stone Road East, Guelph, Ontario N1G 2W1, Canada
| |
Collapse
|
23
|
Mwakilama E, Mboma A, Kafumba-Ngongondo J. COVID-19, the environment and animal life in Malawi compared to other countries: A brief scooping review for a research agenda in the developing countries. PHYSICS AND CHEMISTRY OF THE EARTH (2002) 2022; 127:103197. [PMID: 35818391 PMCID: PMC9259188 DOI: 10.1016/j.pce.2022.103197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 05/27/2022] [Accepted: 06/30/2022] [Indexed: 06/15/2023]
Abstract
The impact of COVID-19 on the human population in Malawi has been documented. However, its impact on the animal population and the environment has not been thoroughly researched. Because of the well-known inter-relationship between human and animal populations and the environment, a study based on a brief scooping review of previous related studies, media and survey reports, was conducted. The findings reveal that except for a few selected studies, the research gap on COVID-19's impact on the environment and animals in Malawi is wide compared to other countries. Nonetheless, from the few identified related studies, this study has revealed that as the restriction of movement and closure of borders disrupted the supply chain of forest resources in the country, the COVID-19 pandemic has led to increased pressure on forests as a coping strategy due to significant loss of jobs in the informal sector. Although the quality of water and air improved in most parts of the globe due to reduced human activity, there is no substantial literature on the same in Malawi partly due to ineffective monitoring systems. However, COVID-19 has exposed the deficiencies in water security in Malawi, thereby creating opportunities to address them. Conversely, increased demand for water at household levels due to restricted movements contributed to environmental pollution at suburb levels. In particular, the less developed and overpopulated countries suffered from land pollution due to poor disposal of plastic generated from hospitals and personal protection equipment. Elsewhere, studies show that minimal human interference with animals outside homes resulted in an increase of fish and bird biomasses. But, unemployment rates caused by the pandemic have seriously contributed to illegal poaching in developing countries. Therefore, a rapid assessment of the impact of the pandemic on environment in Malawi, to generate the evidence needed for policy makers to use in support of the affected and also plan for the recovery and sustainability of wildlife, is recommended.
Collapse
Affiliation(s)
- Elias Mwakilama
- Pan African University Institute for Basic Sciences Technology and Innovation (PAUSTI), Nairobi, Kenya
- Department of Mathematical Sciences, University of Malawi, Zomba, Malawi
| | | | | |
Collapse
|
24
|
Maquart PO, Froehlich Y, Boyer S. Plastic pollution and infectious diseases. Lancet Planet Health 2022; 6:e842-e845. [PMID: 36208647 DOI: 10.1016/s2542-5196(22)00198-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 07/19/2022] [Accepted: 08/16/2022] [Indexed: 06/16/2023]
Affiliation(s)
- Pierre-Olivier Maquart
- Medical and Veterinary Entomology Unit, Institut Pasteur du Cambodge, Phnom Penh, Cambodia.
| | | | - Sebastien Boyer
- Medical and Veterinary Entomology Unit, Institut Pasteur du Cambodge, Phnom Penh, Cambodia
| |
Collapse
|
25
|
Sendra M, Rodriguez-Romero A, Yeste MP, Blasco J, Tovar-Sánchez A. Products released from surgical face masks can provoke cytotoxicity in the marine diatom Phaeodactylum tricornutum. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 841:156611. [PMID: 35691357 DOI: 10.1016/j.scitotenv.2022.156611] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 06/06/2022] [Accepted: 06/06/2022] [Indexed: 06/15/2023]
Abstract
Surgical face masks are more present than ever as personal protective equipment due to the COVID-19 pandemic. In this work, we show that the contents of regular surgical masks: i) polypropylene microfibres and ii) some added metals such as: Al, Fe, Cu, Mn, Zn and Ba, may be toxic to some marine life. This work has got two objectives: i) to study the release rate of the products from face masks in marine water and ii) to assess the toxicity in Phaeodactylum tricornutum of these by-products. To achieve these two objectives, we performed release kinetic experiments by adding masks in different stages of fragmentation to marine water (i.e. whole face masks and fragments of them 1.52 ± 0.86 mm). Released microfibres were found after one month in shaking marine water; 0.33 ± 0.24 and 21.13 ± 13.19 fibres·mL-1 were collected from the whole and fragmented face masks, respectively. Significant amounts of dissolved metals such as Mn, Zn and Ni, as well as functional groups only in the water containing the face mask fragments were detected. Water from both treatments was employed to study its toxicity on the marine diatom. Only the water from the face mask fragments showed a significant, dose-dependent, decrease in cell density in P. tricornutum; 53.09 % lower than in the controls. Although the water from the face mask fragments showed greater effects on the microalgae population than the water from the whole face mask, the latter treatment did show significant changes in the photosynthetic apparatus and intrinsic properties of the cells. These results indicate that during fragmentation and degradation face masks a significant chemical print can be observed in the marine environment.
Collapse
Affiliation(s)
- Marta Sendra
- Department of Biotechnology and Food Science, Faculty of Sciences, University of Burgos, Plaza Misael Bañuelos, 09001 Burgos, Spain.
| | - Araceli Rodriguez-Romero
- Department of Analytical Chemistry, Faculty of Marine and Environmental Sciences, Marine Research Institute (INMAR), University of Cadiz, Cadiz, Spain
| | - María Pilar Yeste
- Department of Material Science, Metallurgical Engineering and Inorganic Chemistry, University of Cádiz, Spain
| | - Julián Blasco
- Department of Ecology and Coastal Management, Institute of Marine Sciences of Andalusia (CSIC), Campus Río S. Pedro, 11510, Puerto Real, Cádiz, Spain
| | - Antonio Tovar-Sánchez
- Department of Ecology and Coastal Management, Institute of Marine Sciences of Andalusia (CSIC), Campus Río S. Pedro, 11510, Puerto Real, Cádiz, Spain
| |
Collapse
|
26
|
Jemec Kokalj A, Dolar A, Drobne D, Škrlep L, Škapin AS, Marolt G, Nagode A, van Gestel CAM. Effects of microplastics from disposable medical masks on terrestrial invertebrates. JOURNAL OF HAZARDOUS MATERIALS 2022; 438:129440. [PMID: 35803191 DOI: 10.1016/j.jhazmat.2022.129440] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 06/17/2022] [Accepted: 06/20/2022] [Indexed: 05/06/2023]
Abstract
This study investigated impacts of microplastics from disposable polypropylene medical masks on woodlice Porcellio scaber, mealworm larvae Tenebrio molitor and enchytraeids Enchytraeus crypticus. Effects of microplastics on survival, reproduction, immune parameters and energy-related traits were assessed after 21 days exposure in soil. Microplastics obtained from each medical mask layer separately differed in size and shape (inner frontal layer: 45.1 ± 21.5 µm, fibers; middle filtering layer: 55.6 ± 28.5 µm, fragments; outer layer: 42.0 ± 17.8 µm, fibers) and composition of additives. Overall, the concentrations of metals and organic chemicals were too low to cause effects on soil invertebrates. The microplastics from disposable medical masks at 0.06%, 0.5%, 1.5%, w/w did not induce severe adverse effects on survival or reproduction (for enchytraeids). A transient immune response of woodlice and a change in energy-related traits in mealworms were observed, which was most clearly seen for the microplastics from the outer layer. This was reflected in increased electron transfer system activity of mealworms and different immune response dynamics of woodlice. In conclusion, the tested soil invertebrates respond to microplastics from disposable medical masks, but it remains unclear what these changes mean for their fitness on the long term.
Collapse
Affiliation(s)
- Anita Jemec Kokalj
- University of Ljubljana, Biotechnical Faculty, Department of Biology, Jamnikarjeva 101, SI-1000 Ljubljana, Slovenia.
| | - Andraž Dolar
- University of Ljubljana, Biotechnical Faculty, Department of Biology, Jamnikarjeva 101, SI-1000 Ljubljana, Slovenia
| | - Damjana Drobne
- University of Ljubljana, Biotechnical Faculty, Department of Biology, Jamnikarjeva 101, SI-1000 Ljubljana, Slovenia
| | - Luka Škrlep
- Slovenian National Building and Civil Engineering Institute, Dimičeva ulica 12, SI-1000 Ljubljana, Slovenia
| | - Andrijana Sever Škapin
- Slovenian National Building and Civil Engineering Institute, Dimičeva ulica 12, SI-1000 Ljubljana, Slovenia; Faculty of Polymer Technology - FTPO, Ozare 19, 2380, Slovenj Gradec, Slovenia
| | - Gregor Marolt
- University of Ljubljana, Faculty of Chemistry and Chemical Technology, Večna pot 113, SI-1000 Ljubljana, Slovenia
| | - Ana Nagode
- University of Ljubljana, Biotechnical Faculty, Department of Biology, Jamnikarjeva 101, SI-1000 Ljubljana, Slovenia; Vrije Universiteit Amsterdam, Faculty of Science, Amsterdam Institute for Life and Environment (A-LIFE), De Boelelaan 1085, 1081 HV Amsterdam, the Netherlands
| | - Cornelis A M van Gestel
- Vrije Universiteit Amsterdam, Faculty of Science, Amsterdam Institute for Life and Environment (A-LIFE), De Boelelaan 1085, 1081 HV Amsterdam, the Netherlands
| |
Collapse
|
27
|
Environmental Hazard of Polypropylene from Disposable Face Masks Linked to the COVID-19 Pandemic and Its Possible Mitigation Techniques through a Green Approach. J CHEM-NY 2022. [DOI: 10.1155/2022/9402236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
The COVID-19 outbreak again underlined plastic items’ importance in our daily lives. The public has widely utilized disposable face masks constructed of polypropylene polymer materials as effective and inexpensive personal protective equipment (PPE) to inhibit virus transmission. The consequences of this have resulted in millions of tons of plastic garbage littering the environment due to inappropriate disposal and mismanagement. Surgical masks are among them, and this study aimed to assess the biodegrading efficiency of disposable face masks using Pseudomonas aeruginosa VJ 1. This work used a bacterial strain, Pseudomonas aeruginosa VJ 1, obtained from sewage water-contaminated surface soil in Tiruchirappalli, India, to investigate the biodegradation of polypropylene (PP) face masks. The mask pieces were incubated with Pseudomonas aeruginosa VJ 1 culture in three different solid and liquid media for 30 days at 37°C. Surface changes and variations in the intensity of functional groups and carbonyl index variations were confirmed using Field Emission Scanning Electron Microscopy (FE-SEM) and Fourier Transform Infrared Spectroscopy (FTIR) analysis to ensure microbial degradation (up to 5.37% weight reduction of PP films within 30 days). These findings show that Pseudomonas aeruginosa VJ 1 could be a good choice for biodegrading PP masks without harming our health or the environment. There is a need for a novel solution for the degradation of PP. The methods and strain presented here reveal the potential biodegrading agents of PP masks.
Collapse
|
28
|
Mahyari KF, Sun Q, Klemeš JJ, Aghbashlo M, Tabatabaei M, Khoshnevisan B, Birkved M. To what extent do waste management strategies need adaptation to post-COVID-19? THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 837:155829. [PMID: 35561899 PMCID: PMC9087148 DOI: 10.1016/j.scitotenv.2022.155829] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 05/02/2022] [Accepted: 05/06/2022] [Indexed: 05/02/2023]
Abstract
The world has been grappling with the crisis of the COVID-19 pandemic for more than a year. Various sectors have been affected by COVID-19 and its consequences. The waste management system is one of the sectors affected by such unpredictable pandemics. The experience of COVID-19 proved that adaptability to such pandemics and the post-pandemic era had become a necessity in waste management systems and this requires an accurate understanding of the challenges that have been arising. The accurate information and data from most countries severely affected by the pandemic are not still available to identify the key challenges during and post-COVID-19. The documented evidence from literature has been collected, and the attempt has been made to summarize the rising challenges and the lessons learned. This review covers all raised challenges concerning the various aspects of the waste management system from generation to final disposal (i.e., generation, storage, collection, transportation, processing, and burial of waste). The necessities and opportunities are recognized for increasing flexibility and adaptability in waste management systems. The four basic pillars are enumerated to adapt the waste management system to the COVID-19 pandemic and post-COVID-19 conditions. Striving to support and implement a circular economy is one of its basic strategies.
Collapse
Affiliation(s)
- Khadijeh Faraji Mahyari
- Department of Mechanical Engineering of Agricultural Machinery, Faculty of Agricultural Engineering and Technology, College of Agriculture and Natural Resources, University of Tehran, Iran
| | - Qiaoyu Sun
- Center for Science and Technology Personnel Exchange and Development Service, Ministry of Science and Technology of the People's Republic of China, No.54 Sanlihe Road, Xicheng District, Beijing, PR China
| | - Jiří Jaromír Klemeš
- Sustainable Process Integration Laboratory - SPIL, NETME Centre, Faculty of Mechanical Engineering, Brno University of Technology - VUT Brno, Technická 2896/2, 616 69 Brno, Czech Republic
| | - Mortaza Aghbashlo
- Department of Mechanical Engineering of Agricultural Machinery, Faculty of Agricultural Engineering and Technology, College of Agriculture and Natural Resources, University of Tehran, Iran
| | - Meisam Tabatabaei
- Higher Institution Centre of Excellence (HICoE), Institute of Tropical Aquaculture and Fisheries (AKUATROP), Universiti Malaysia Terengganu, 21030 Kuala Nerus, Terengganu, Malaysia; Henan Province Engineering Research Center for Biomass Value-added Products, School of Forestry, Henan Agricultural University, Zhengzhou 450002, China
| | - Benyamin Khoshnevisan
- Department of Chemical Engineering, Biotechnology and Environmental Technology, University of Southern Denmark, Denmark.
| | - Morten Birkved
- Department of Chemical Engineering, Biotechnology and Environmental Technology, University of Southern Denmark, Denmark.
| |
Collapse
|
29
|
Stanislas TT, Bilba K, de Oliveira Santos RP, Onésippe-Potiron C, Savastano Junior H, Arsène MA. Nanocellulose-based membrane as a potential material for high performance biodegradable aerosol respirators for SARS-CoV-2 prevention: a review. CELLULOSE (LONDON, ENGLAND) 2022; 29:8001-8024. [PMID: 35990792 PMCID: PMC9383689 DOI: 10.1007/s10570-022-04792-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Accepted: 08/02/2022] [Indexed: 05/14/2023]
Abstract
The controversy surrounding the transmission of COVID-19 in 2020 has revealed the need to better understand the airborne transmission route of respiratory viruses to establish appropriate strategies to limit their transmission. The effectiveness in protecting against COVID-19 has led to a high demand for face masks. This includes the single-use of non-degradable masks and Filtering Facepiece Respirators by a large proportion of the public, leading to environmental concerns related to waste management. Thus, nanocellulose-based membranes are a promising environmental solution for aerosol filtration due to their biodegradability, renewability, biocompatibility, high specific surface area, non-toxicity, ease of functionalization and worldwide availability. Although the technology for producing high-performance aerosol filter membranes from cellulose-based materials is still in its initial stage, several promising results show the prospects of the use of this kind of materials. This review focuses on the overview of nanocellulose-based filter media, including its processing, desirable characteristics and recent developments regarding filtration, functionalization, biodegradability, and mechanical behavior. The porosity control, surface wettability and surface functional groups resulting from the silylation treatment to improve the filtration capacity of the nanocellulose-based membrane is discussed. Future research trends in this area are planned to develop the air filter media by reinforcing the filter membrane structure of CNF with CNCs. In addition, the integration of sol-gel technology into the production of an air filter can tailor the pore size of the membrane for a viable physical screening solution in future studies. Graphical abstract
Collapse
Affiliation(s)
- Tido Tiwa Stanislas
- Laboratoire COVACHIM-M2E EA3592, UFR SEN, Université des Antilles, Campus de Fouillole, BP 250, 97157 Pointe-à-Pitre, Guadeloupe France
- Research Nucleus on Materials for Biosystems, Faculty of Animal Science and Food Engineering, University of São Paulo, Duque de Caxias Norte, 225, Pirassununga, SP 13635-900 Brazil
- Mechanic and Adapted Materials Laboratory, ENSET, University of Douala, P.O. BOX 1872, Douala, Cameroon
| | - Ketty Bilba
- Laboratoire COVACHIM-M2E EA3592, UFR SEN, Université des Antilles, Campus de Fouillole, BP 250, 97157 Pointe-à-Pitre, Guadeloupe France
| | - Rachel Passos de Oliveira Santos
- Research Nucleus on Materials for Biosystems, Faculty of Animal Science and Food Engineering, University of São Paulo, Duque de Caxias Norte, 225, Pirassununga, SP 13635-900 Brazil
| | - Cristel Onésippe-Potiron
- Laboratoire COVACHIM-M2E EA3592, UFR SEN, Université des Antilles, Campus de Fouillole, BP 250, 97157 Pointe-à-Pitre, Guadeloupe France
| | - Holmer Savastano Junior
- Research Nucleus on Materials for Biosystems, Faculty of Animal Science and Food Engineering, University of São Paulo, Duque de Caxias Norte, 225, Pirassununga, SP 13635-900 Brazil
| | - Marie-Ange Arsène
- Laboratoire COVACHIM-M2E EA3592, UFR SEN, Université des Antilles, Campus de Fouillole, BP 250, 97157 Pointe-à-Pitre, Guadeloupe France
| |
Collapse
|
30
|
Mészáros E, Bodor A, Szierer Á, Kovács E, Perei K, Tölgyesi C, Bátori Z, Feigl G. Indirect effects of COVID-19 on the environment: How plastic contamination from disposable surgical masks affect early development of plants. JOURNAL OF HAZARDOUS MATERIALS 2022; 436:129255. [PMID: 35739774 PMCID: PMC9158377 DOI: 10.1016/j.jhazmat.2022.129255] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 05/25/2022] [Accepted: 05/26/2022] [Indexed: 05/23/2023]
Abstract
Personal protective equipment, used extensively during the COVID-19 pandemic, heavily burdened the environment due to improper waste management. Owing to their fibrous structure, layered non-woven polypropylene (PP) disposable masks release secondary fragments at a much higher rate than other plastic waste types, thus, posing a barely understood new form of ecological hazard. Here we show that PP mask fragments of different sizes induce morphogenic responses in plants during their early development. Using in vitro systems and soil-filled rhizotrons, we found that several PP mask treatments modified the root growth of Brassica napus (L.) regardless of the experimental system. The environment around the root and mask fragments seemed to influence the effect of PP fabric fragment contamination on early root growth. In soil, primary root length was clearly inhibited by larger PP mask fragments at 1 % concentration, while the two smallest sizes of applied mask fragments caused distinct, concentration-dependent changes in the lateral root numbers. Our results indicate that PP can act as a stressor: contamination by PP surgical masks affects plant growth and hence, warrants attention. Further investigations regarding the effects of plastic pollution on plant-soil interactions involving various soil types are urgently needed.
Collapse
Affiliation(s)
- Enikő Mészáros
- Department of Plant Biology, University of Szeged, Hungary
| | - Attila Bodor
- Institute of Biophysics, Biological Research Centre, Szeged, Hungary; Department of Biotechnology, University of Szeged, Hungary
| | - Ádám Szierer
- Department of Plant Biology, University of Szeged, Hungary
| | - Etelka Kovács
- Department of Biotechnology, University of Szeged, Hungary
| | - Katalin Perei
- Department of Biotechnology, University of Szeged, Hungary
| | | | - Zoltán Bátori
- Department of Ecology, University of Szeged, Hungary
| | - Gábor Feigl
- Department of Plant Biology, University of Szeged, Hungary.
| |
Collapse
|
31
|
Uncontrolled Disposal of Used Masks Resulting in Release of Microplastics and Co-Pollutants into Environment. WATER 2022. [DOI: 10.3390/w14152403] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
The global panic caused by COVID-19 has continued to increase people’s demand for masks. However, due to inadequate management and disposal practice, these masks have, unfortunately, entered the environment and release a large amount of microplastics (MPs), posing a serious threat to the environment and human health. Understanding the occurrence of mask waste in various environments, release of mask-origin MPs, and related environmental risk is essential to mask-waste management in current and future epidemic prevention and control. This paper focuses on the global distribution of mask waste, the potential release of waste-origin MPs, and the impact on the environment. Specifically, the physical and chemical properties of polypropylene (the most common plastic material in a mask), which show a high adsorption capacity for heavy metals and organic pollutants and play a role as a support for microbial growth, were extensively reported. In addition, several important issues that need to be resolved are raised, which offers a direction for future research. This review focuses on the essentiality of handling masks to avoid potential environmental issues.
Collapse
|
32
|
Borongan G, NaRanong A. Factors in enhancing environmental governance for marine plastic litter abatement in Manila, the Philippines: A combined structural equation modeling and DPSIR framework. MARINE POLLUTION BULLETIN 2022; 181:113920. [PMID: 35839663 DOI: 10.1016/j.marpolbul.2022.113920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Revised: 06/26/2022] [Accepted: 07/02/2022] [Indexed: 06/15/2023]
Abstract
This empirical study examines the factors enhancing environmental governance for marine plastic litter abatement in Manila, the Philippines. We use a combined covariance-based hybrid structural equation modeling (SEM) and DPSIR framework, with data collected via an online survey from 456 barangays in Manila, the Philippines. The survey was processed and analyzed using a combined model, validated through interviews and focused group discussions. With Higher-Order Model good internal consistency (0.917) and achieved measures of CFI (0.992), RMSEA (0.036), and SRMR (0.019), the findings revealed that environmental governance (COVID-19 waste), community participation, socio-economic factors, and solution measures have positively affected marine plastic litter (MPL) abatement. Notwithstanding, environmental governance (SWM policies and guidelines) has a negative impact on MPL abatement. There is, however, no link between waste infrastructure and MPL abatement. The findings provide significant perspectives in Manila to enhance environmental governance for MPL abatement. This paper presents policy-actions implications drawn from DPSIR-SEM.
Collapse
Affiliation(s)
- Guilberto Borongan
- National Institute of Development Administration, Bangkapi, Bangkok, Thailand; Asian Institute of Technology, Pathum Thani, Thailand.
| | - Anchana NaRanong
- National Institute of Development Administration, Bangkapi, Bangkok, Thailand
| |
Collapse
|
33
|
Tesfaldet YT, Ndeh NT. Public face masks wearing during the COVID-19 pandemic: A comprehensive analysis is needed for potential implications. JOURNAL OF HAZARDOUS MATERIALS ADVANCES 2022; 7:100125. [PMID: 37520802 PMCID: PMC9271010 DOI: 10.1016/j.hazadv.2022.100125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 07/06/2022] [Accepted: 07/07/2022] [Indexed: 11/30/2022]
Abstract
Face mask-wearing as a public health measure has been practiced since the coronavirus 2019 (COVID-19) pandemic outbreak. Extensive research has shown that face masks are an effective non-pharmaceutical measure to contain the spread of respiratory infections. However, recent studies indicate that face masks release microplastics and other contaminants that have adverse health effects on humans. This communication reviews the evidence for face mask as a potential source of contaminants capable of adversely affecting human health. The benefits of face masks in reducing the transmission of SARS-Cov-2 (severe acute respiratory syndrome coronavirus 2) and seasonal communicable diseases were addressed. In addition, the risk of inhaling microplastics and organic contaminants, as well as the associated exposure level, were discussed. Finally, the potential research gaps that need to be addressed were outlined to provide a holistic view of the problem. This communication has illustrated that face mask-wearing as a public health measure to contain the spread of COVID-19 could be a potential risk factor for human health. Very few studies have been done on microplastics, organic pollutants, and trace metal inhalation from surgical masks. However, future work providing a comprehensive understanding of the risk and exposure levels needs to be undertaken.
Collapse
Affiliation(s)
- Yacob T Tesfaldet
- International Program in Hazardous Substance and Environmental Management, Graduate School, Chulalongkorn University, Bangkok 10330, Thailand
| | - Nji T Ndeh
- International Program in Hazardous Substance and Environmental Management, Graduate School, Chulalongkorn University, Bangkok 10330, Thailand
| |
Collapse
|
34
|
Monolina P, Chowdhury MMH, Haque MN. The use of Personal Protective Equipment (PPE) and associated environmental challenges: A study on Dhaka, Bangladesh. Heliyon 2022; 8:e09847. [PMID: 35818535 PMCID: PMC9259513 DOI: 10.1016/j.heliyon.2022.e09847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 04/13/2022] [Accepted: 06/28/2022] [Indexed: 11/16/2022] Open
Abstract
The Covid-19 pandemic has caused health crisis and concerns worldwide. The use of Personal Protective Equipment (PPE) has been the primary behavioral and policy response to avert the infection of coronavirus. The emergence of the situation resulted in increased production of PPE, creating a surge in plastic pollution and carbon footprint. The consumption of PPEs is unavoidable; however, proper PPE waste disposal plays a vital role in lessening the associated environmental impacts. This study aims to provide an overview of the environmental challenges associated with Covid-19 pandemic faced in the households located at the heart of Bangladesh, Dhaka City Corporation (DCC) area. The study determines carbon footprint in terms of carbon emission equivalent and plastic pollution potential associated with PPEs. The study further implies that there is a gap in the 3R Strategy implementation in Bangladesh hindering the nation in achieving UN's SDG-12. The findings depict that the proper implementation of the 3R strategy is fundamental for ensuring more a resilient, sustainable and livable environment in the in-pandemic and post-pandemic era and further emphasizes that a strengthened policy framework, operational environmental policy tools, environmental education, and the society and stakeholders' spontaneous response to the plastic pollution challenge are essentially required.
Collapse
Affiliation(s)
- Prokriti Monolina
- Department of Urban and Regional Planning, Khulna University of Engineering and Technology, Khulna-9203, Bangladesh
| | - Md. Mozammel Hasan Chowdhury
- Department of Urban and Regional Planning, Khulna University of Engineering and Technology, Khulna-9203, Bangladesh
| | - Md. Nazmul Haque
- Department of Urban and Regional Planning, Khulna University of Engineering and Technology, Khulna-9203, Bangladesh
| |
Collapse
|
35
|
Yang S, Cheng Y, Liu T, Huang S, Yin L, Pu Y, Liang G. Impact of waste of COVID-19 protective equipment on the environment, animals and human health: a review. ENVIRONMENTAL CHEMISTRY LETTERS 2022; 20:2951-2970. [PMID: 35791338 PMCID: PMC9247942 DOI: 10.1007/s10311-022-01462-5] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Accepted: 05/10/2022] [Indexed: 05/06/2023]
Abstract
During the Corona Virus Disease 2019 (COVID-19) pandemic, protective equipment, such as masks, gloves and shields, has become mandatory to prevent person-to-person transmission of coronavirus. However, the excessive use and abandoned protective equipment is aggravating the world's growing plastic problem. Moreover, above protective equipment can eventually break down into microplastics and enter the environment. Here we review the threat of protective equipment associated plastic and microplastic wastes to environments, animals and human health, and reveal the protective equipment associated microplastic cycle. The major points are the following:1) COVID-19 protective equipment is the emerging source of plastic and microplastic wastes in the environment. 2) protective equipment associated plastic and microplastic wastes are polluting aquatic, terrestrial, and atmospheric environments. 3) Discarded protective equipment can harm animals by entrapment, entanglement and ingestion, and derived microplastics can also cause adverse implications on animals and human health. 4) We also provide several recommendations and future research priority for the sustainable environment. Therefore, much importance should be attached to potential protective equipment associated plastic and microplastic pollution to protect the environment, animals and humans.
Collapse
Affiliation(s)
- Sheng Yang
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, China
| | - Yanping Cheng
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, China
| | - Tong Liu
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, China
| | - Shaoping Huang
- Department of Histology and Embryology, Medical School, Southeast University, Nanjing, China
| | - Lihong Yin
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, China
| | - Yuepu Pu
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, China
| | - Geyu Liang
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, China
| |
Collapse
|
36
|
Tamene A, Habte A, Endale F, Gizachew A. A Qualitative Study of Factors Influencing Unsafe Work Behaviors Among Environmental Service Workers: Perspectives of Workers, and Safety Managers: The Case of Government Hospitals in Addis Ababa, Ethiopia. ENVIRONMENTAL HEALTH INSIGHTS 2022; 16:11786302221109357. [PMID: 35782317 PMCID: PMC9243478 DOI: 10.1177/11786302221109357] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Accepted: 06/07/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND Environmental Service (EVS) is a term that refers to cleaning in healthcare facilities. EVS personnel are exposed to a variety of hazards, including physical, chemical, ergonomic, cognitive, and biological hazards that contribute to the development of diseases and disabilities. Recognizing the conditions that promote unsafe behavior is the first step in reducing such hazards. The purpose of this study was to (a) investigate the attitudes and perceptions of safety among employees and safety managers in Addis Ababa hospitals, and (b) figure out what factors inhibit healthy work behaviors. METHODS The data for this study was gathered using 2 qualitative data gathering methods: key informant interviews and individual in-depth interviews. About 25 personnel from 3 Coronavirus treatment hospitals were interviewed to understand more about the factors that make safe behavior challenging. The interviews were recorded, transcribed, and then translated into English. Open Code 4.02 was used for thematic analysis. RESULTS Poor safety management and supervision, a hazardous working environment, and employee perceptions, skills, and training levels were all identified as key factors in the preponderance of unsafe work behaviors among environmental service workers. CONCLUSIONS Different types of personal and environmental factors were reported to affect safe work behavior among environmental service personnel. Individual responsibility is vital in reducing or eliminating these risk factors for unsafe behaviors, but management's involvement in providing resources for safe work behavior is critical.
Collapse
Affiliation(s)
- Aiggan Tamene
- Aiggan Tamene, School of Public Health,
College of Medicine and Health Sciences, Wachemo University, Hossana P.O BOX,
667, Ethiopia.
| | | | | | | |
Collapse
|
37
|
Cudjoe D, Wang H, Zhu B. Thermochemical treatment of daily COVID-19 single-use facemask waste: Power generation potential and environmental impact analysis. ENERGY (OXFORD, ENGLAND) 2022; 249:123707. [PMID: 35295590 PMCID: PMC8912986 DOI: 10.1016/j.energy.2022.123707] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 03/01/2022] [Accepted: 03/09/2022] [Indexed: 06/14/2023]
Abstract
The utilization of single-use face masks as the standard PPE to minimize the spread of the COVID-19 pandemic has resulted in increased facemask waste. Improper management of the increased facemask waste has a consequential environmental impact. This requires swift actions to invest and implement innovative technologies to manage single-use facemask waste. Thermochemical treatment of disposable face masks could minimize COVID-19 plastic waste and produce value-added products. The present study evaluates the power generation potential and environmental impact of treating estimated daily single-use facemask waste in Africa and Asia via incineration. The environmental assessment was expressed as global warming potential and acidification potential. The formulation of the model equations method was used to estimate the power generation potential. The IPCC guidelines for national greenhouse gas inventory methodology and EPA "compilation of air pollutant emissions factors" (AP-42) were used to compute greenhouse and acid gases. The key findings show that the daily single-use facemask waste produced in Asia was 19.12 million kg/day, generating 32.65 million kWh/day of electricity. In Africa, 3.53 million kg/day of single-use facemask waste was produced, generating 6.03 million kWh/day of power. The results also show Asia's total global warming potential was 787,097.6 kt CO2eq/day, and 145,687.7 kt CO2eq/day was recorded in Africa. Besides, the total daily acidification potential of the incineration process in Asia was 7,078,904 kg SO2eq/day, while that in Africa was 1,308,362 kg SO2eq/day. This study will provide scientific guidance for environmental sustainability for treating single-use facemask waste via incineration technology for power generation.
Collapse
Affiliation(s)
- Dan Cudjoe
- School of Business, Nanjing University of Information Science & Technology, Nanjing, 210044, China
| | - Hong Wang
- School of Management and Economics, Beijing Institute of Technology, Beijing, 100081, China
| | - Bangzhu Zhu
- School of Business, Nanjing University of Information Science & Technology, Nanjing, 210044, China
| |
Collapse
|
38
|
Sönmez VZ, Ayvaz C, Ercan N, Sivri N. Evaluation of Istanbul from the environmental components' perspective: what has changed during the pandemic? ENVIRONMENTAL MONITORING AND ASSESSMENT 2022; 194:462. [PMID: 35644795 PMCID: PMC9148846 DOI: 10.1007/s10661-022-10105-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Accepted: 05/15/2022] [Indexed: 06/15/2023]
Abstract
This study aims to determine the 1-year change over the pandemic period in Istanbul, the megacity with the highest population in Turkey, based on environmental components. Among the environmental topics, water consumption habits, changes in air quality, changes due to noise elements, and most importantly, the changes in usage habits of disposable plastic materials that directly affect health have been revealed. The results obtained showed that, in Istanbul, 8.1 × 108 gloves should be considered waste, and considering the population living in districts along coastal areas, the number of waste masks that are likely to end up in the sea was 325.648 pieces/day. The results of the air quality and noise measurements during the pandemic showed that reductions in parallel with human activities were recorded with the lockdown effect. The average noise values of the districts along both sides of the Bosporus, where urbanization is concentrated, were between 50 and 59 dB. The precautions taken during the pandemic have had an effective role in reducing air pollution in Istanbul. In the measurements, the parameters with effective reductions were PM10 (7-47%), PM2.5 (13-48%), NO2 (13-38%), and SO2 (10-56%). As a result, Istanbul's year of changes during the pandemic period, in terms of water, air, noise, and solid plastic wastes, which are the most important components of the environment, is presented.
Collapse
Affiliation(s)
- Vildan Zülal Sönmez
- Department of Environmental Engineering, Istanbul University-Cerrahpasa, Istanbul, Turkey
| | - Coşkun Ayvaz
- Department of Environmental Engineering, Istanbul University-Cerrahpasa, Istanbul, Turkey
| | - Nevra Ercan
- Department of Chemical Engineering, Istanbul University-Cerrahpasa, Istanbul, Turkey
| | - Nüket Sivri
- Department of Environmental Engineering, Istanbul University-Cerrahpasa, Istanbul, Turkey
| |
Collapse
|
39
|
Chen Z, Zhang W, Yang H, Min K, Jiang J, Lu D, Huang X, Qu G, Liu Q, Jiang G. A pandemic-induced environmental dilemma of disposable masks: solutions from the perspective of the life cycle. ENVIRONMENTAL SCIENCE. PROCESSES & IMPACTS 2022; 24:649-674. [PMID: 35388819 DOI: 10.1039/d1em00509j] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The coronavirus disease 2019 (COVID-19) has swept the world and still afflicts humans. As an effective means of protection, wearing masks has been widely adopted by the general public. The massive use of disposable masks has raised some emerging environmental and bio-safety concerns: improper handling of used masks may transfer the attached pathogens to environmental media; disposable masks mainly consist of polypropylene (PP) fibers which may aggravate the global plastic pollution; and the risks of long-term wearing of masks are elusive. To maximize the utilization and minimize the risks, efforts have been made to improve the performance of masks (e.g., antivirus properties and filtration efficiency), extend their functions (e.g., respiration monitoring and acting as a sampling device), develop new disinfection methods, and recycle masks. Despite that, from the perspective of the life cycle (from production, usage, and discard to disposal), comprehensive solutions are urgently needed to solve the environmental dilemma of disposable masks in both technologies (e.g., efficient use of raw materials, prolonging the service life, and enabling biodegradation) and policies (e.g., stricter industry criteria and garbage sorting).
Collapse
Affiliation(s)
- Zigu Chen
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China.
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100190, China
| | - Weican Zhang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China.
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100190, China
| | - Hang Yang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China.
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100190, China
| | - Ke Min
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China.
- Key Laboratory of Phytochemical R&D of Hunan Province, Ministry of Education Key Laboratory of Chemical Biology & Traditional Chinese Medicine Research, Hunan Normal University, Changsha 410081, China
| | - Jie Jiang
- Shenzhen Center for Disease Control and Prevention, Shenzhen 518055, China
| | - Dawei Lu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China.
| | - Xiu Huang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China.
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100190, China
| | - Guangbo Qu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China.
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100190, China
| | - Qian Liu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China.
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100190, China
- Institute of Environment and Health, Jianghan University, Wuhan 430056, China
| | - Guibin Jiang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China.
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100190, China
| |
Collapse
|
40
|
Malagón-Rojas J, Mendez-Molano D, Almentero J, Toloza-Pérez YG, Parra-Barrera EL, Gómez-Rendón CP. Environmental Effects of the COVID-19 Pandemic: The Experience of Bogotá, 2020. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:6350. [PMID: 35627886 PMCID: PMC9141921 DOI: 10.3390/ijerph19106350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 05/02/2022] [Accepted: 05/04/2022] [Indexed: 02/01/2023]
Abstract
During the novel coronavirus disease (COVID-19) pandemic, several environmental factors have influenced activities and protection policy measures in cities. This has had a major effect on climate change and global environmental catastrophe. In many countries, the strategy of closing various activities such as tourism and industrial production stopped normal life, transportation, etc. This closure has a positive impact on the environment. However, the massive use of masks and personal protection could significantly increase pollution worldwide. The impact on the environment needs to be calculated to have information for public health actions. In this study, we present a first overview of the potential impacts of COVID-19 on some environmental matrices in Bogotá, Colombia.
Collapse
Affiliation(s)
- Jeadran Malagón-Rojas
- Instituto Nacional de Salud, Bogotá 111321, Colombia; (D.M.-M.); (J.A.); (Y.G.T.-P.); (E.L.P.-B.)
- Doctorado en Salud Pública, El Bosque University, Bogotá 110121, Colombia;
| | - Daniela Mendez-Molano
- Instituto Nacional de Salud, Bogotá 111321, Colombia; (D.M.-M.); (J.A.); (Y.G.T.-P.); (E.L.P.-B.)
| | - Julia Almentero
- Instituto Nacional de Salud, Bogotá 111321, Colombia; (D.M.-M.); (J.A.); (Y.G.T.-P.); (E.L.P.-B.)
| | - Yesith G. Toloza-Pérez
- Instituto Nacional de Salud, Bogotá 111321, Colombia; (D.M.-M.); (J.A.); (Y.G.T.-P.); (E.L.P.-B.)
| | - Eliana L. Parra-Barrera
- Instituto Nacional de Salud, Bogotá 111321, Colombia; (D.M.-M.); (J.A.); (Y.G.T.-P.); (E.L.P.-B.)
| | | |
Collapse
|
41
|
Practical Challenges and Opportunities for Marine Plastic Litter Reduction in Manila: A Structural Equation Modeling. SUSTAINABILITY 2022. [DOI: 10.3390/su14106128] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Land-based plastic pollution has increased to the level of an epidemic due to improper plastic waste management, attributed to plastic waste flux into the marine environment. The extant marine plastic litter (MPL) literature focuses primarily on the monitoring and assessment of the problem, but it fails to acknowledge the link between the challenges and opportunities for MPL reduction. The study aimed to examine the practical challenges and opportunities influencing the reduction of marine plastic litter in Manila in the Philippines. Data collected through an online survey from 426 barangays were analyzed using structural equation modeling (SEM) and were then validated using interviews and focused group discussions. Good internal consistency (0.917) and convergent and discriminant validity were achieved. The empirical study has established structural model fit measures of RMSEA (0.021), SRMR (0.015), CFI (0.999), and TLI (0.994), with a good parsimonious fit of the chi-square/degrees of freedom ratio of 1.190. The findings revealed that environmental governance regarding waste management policies and guidelines, COVID-19 regulations for waste management, community participation, and socio-economic activities have positively affected marine plastic litter leakage and solution measures. Environmental governance significantly and partially mediates the effects of, e.g., COVID-19-related waste and socio-economic activities on MPL leakage. However, there is no relationship between the waste management infrastructure and environmental governance. The findings shed light on how to enhance environmental governance to reduce marine plastic litter and address Manila’s practical challenges.
Collapse
|
42
|
Amuah EEY, Agyemang EP, Dankwa P, Fei-Baffoe B, Kazapoe RW, Douti NB. Are used face masks handled as infectious waste? Novel pollution driven by the COVID-19 pandemic. RESOURCES, CONSERVATION & RECYCLING ADVANCES 2022; 13:200062. [PMID: 34939066 PMCID: PMC8628605 DOI: 10.1016/j.rcradv.2021.200062] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 11/26/2021] [Accepted: 11/27/2021] [Indexed: 12/24/2022]
Abstract
The extensive use of face masks has raised concerns about environmental pollution through improper disposal of used face masks after the emergence of COVID-19. The increasing use of PPEs to preventing the spread of COVID-19 has resulted in several environmental hazards, creating a new environmental barrier for solid waste management and worsened plastic pollution. This study aimed at assessing the occurrence and distribution of face masks in a metropolitan (Adum - Kumasi), municipal (Ejisu), community (Abenase) and an institution (KNUST) in Ghana. The study showed that a total of 535 face masks were numerated along a stretch of 1,720 m with a density ranging from 0.04 m to 0.42 m. A no significant relationship (P = 0.602) was established between the observation distances and the number of waste face masks numerated. The study also showed that for a 1% increase in the number of face masks on working days, there would be a 0.775% increase in non-working days. A review of literature showed that the disposal of used face masks results in the release of micro- and nano-plastics, Pb, Cu, Sb, Zn, Mn, Ti, Fe and Ca into environmental media. Plastic pollution may be a concern to ecosystems due to its persistence in the environment, lack of environmental awareness, sensitization and education, and poor waste management systems. To ensure a sustainable management of waste face masks, significant efforts are needed. These may include proper disposal, redesigning and producing masks from biodegradable materials, incorporating waste face masks into construction materials, and recycling PPE by pyrolyzing are suggested options for the effective management of face masks.
Collapse
Affiliation(s)
- Ebenezer Ebo Yahans Amuah
- Department of Environmental Science, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana
| | | | - Paul Dankwa
- Department of Environmental Sciences, C. K. Tedam University of Technology and Applied Sciences, Navrongo, Ghana
| | - Bernard Fei-Baffoe
- Department of Environmental Science, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana
| | | | - Nang Biyogue Douti
- Department of Environmental Sciences, C. K. Tedam University of Technology and Applied Sciences, Navrongo, Ghana
| |
Collapse
|
43
|
Sendra M, Pereiro P, Yeste MP, Novoa B, Figueras A. Surgical face masks as a source of emergent pollutants in aquatic systems: Analysis of their degradation product effects in Danio rerio through RNA-Seq. JOURNAL OF HAZARDOUS MATERIALS 2022; 428:128186. [PMID: 35042165 PMCID: PMC9761780 DOI: 10.1016/j.jhazmat.2021.128186] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 12/14/2021] [Accepted: 12/28/2021] [Indexed: 05/06/2023]
Abstract
Surgical face masks are the most popularised and effective personal equipment for protecting public health during the COVID-19 pandemic. They are composed of plastic polymer fibres with a large amount of inorganic and organic compounds that can be released into aquatic environments through degradation processes. This source of microplastics and inorganic and organic substances could potentially impact aquatic organisms. In this study, the toxicogenomic effects of face masks at different stages of degradation in water were analysed in zebrafish larvae (Danio rerio) through RNA-Seq. Larvae were exposed for 10 days to three treatments: 1) face mask fragments in an initial stage of degradation (poorly degraded masks -PDM- products) with the corresponding water; 2) face mask fragments in an advanced stage of degradation (highly degraded masks -HDM- products) with the corresponding water; and 3) water derived from HDM (W-HDM). Transcriptome analyses revealed that the three treatments provoked the down-regulation of genes related to reproduction, especially the HDM products, suggesting that degradation products derived from face masks could act as endocrine disruptors. The affected genes are involved in different steps of reproduction, including gametogenesis, sperm-egg recognition and binding or fertilisation. Immune-related genes and metabolic processes were also differentially affected by the treatments.
Collapse
Affiliation(s)
- Marta Sendra
- Institute of Marine Research (IIM), National Research Council (CSIC), Eduardo Cabello 6, 36208 Vigo, Spain
| | - Patricia Pereiro
- Institute of Marine Research (IIM), National Research Council (CSIC), Eduardo Cabello 6, 36208 Vigo, Spain
| | - María Pilar Yeste
- Department of Material Science, Metallurgical Engineering and Inorganic Chemistry, University of Cádiz, Spain
| | - Beatriz Novoa
- Institute of Marine Research (IIM), National Research Council (CSIC), Eduardo Cabello 6, 36208 Vigo, Spain.
| | - Antonio Figueras
- Institute of Marine Research (IIM), National Research Council (CSIC), Eduardo Cabello 6, 36208 Vigo, Spain.
| |
Collapse
|
44
|
France RL. First landscape-scale survey of the background level of COVID-19 face mask litter: Exploring the potential for citizen science data collection during a 'pollution pilgrimage' of walking a 250-km roadside transect. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 816:151569. [PMID: 34774631 PMCID: PMC8580556 DOI: 10.1016/j.scitotenv.2021.151569] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 11/05/2021] [Accepted: 11/05/2021] [Indexed: 05/21/2023]
Abstract
The COVID-19 pandemic has generated a global problem through the cavalier or deliberate disposal of personal protective equipment (PPE) by the general public. This has raised concerns that the billions of discarded face masks pose a threat to wildlife through entanglement or, when broken down, through ingestion of derived microplastics. Previous quantitative surveys of the magnitude of such litter have focused on areas where people congregate, such as tourist beaches and large cities. The present survey is the first to provide data on the background level of face mask litter through a landscape of variable land-use. A 250-km transect along an historic road between Montreal and Quebec City (Canada) was surveyed during a walking pilgrimage, revealing an overall density of 0.0001 ± 0.00006 face masks m-2. Average densities were significantly higher in areas of human occupation compared to agricultural and forested rural land. However, there was no significant correlation between population size of communities and the number of face masks encountered, nor in litter extent and proximity to municipalities. This may be due to the confounding influence of inter-community differences in scheduled street cleaning operations. Seventy-six percent of face masks were of the disposable surgical variety, with the remaining 24% being reusable cloth masks. This, and the fact that only 10% of the former and none of the latter exhibited broken ear straps, insinuates that the litter could be due to accidental loss rather than inappropriate discarding by individuals en route. Scaling-up these findings in relation to the global road network generates a preliminary background estimate for roadside litter of >17 million face masks. The present study endorses the call made by others to engage citizen scientists in surveying PPE litter, in particular, the thousands who each year walk the medieval pilgrimage routes through the landscape of Europe.
Collapse
Affiliation(s)
- Robert L France
- Department of Plants, Food and Environmental Science, Dalhousie University, Truro, Nova Scotia B2N 5E3, Canada.
| |
Collapse
|
45
|
Delgado-Gallardo J, Sullivan GL, Tokaryk M, Russell JE, Davies GR, Johns KV, Hunter AP, Watson TM, Sarp S. Disposable FFP2 and Type IIR Medical-Grade Face Masks: An Exhaustive Analysis into the Leaching of Micro- and Nanoparticles and Chemical Pollutants Linked to the COVID-19 Pandemic. ACS ES&T WATER 2022; 2:527-538. [PMID: 35403122 PMCID: PMC8982497 DOI: 10.1021/acsestwater.1c00319] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Revised: 03/13/2022] [Accepted: 03/14/2022] [Indexed: 05/06/2023]
Abstract
The COVID-19 pandemic has increased the worldwide production and use of disposable plastic face masks (DPFMs). The release of micro- and nanopollutants into the environment is one of the impacts derived from regulated and unregulated disposal of DPFMs. This study focuses on the emission of pollutants from medical-grade DPFMs when submerged in deionized water, simulating regulated and unregulated disposal of these masks. Three brands of FFP2 and three brands of Type IIR medical masks, produced in various countries (UK, EU, and non-EU), were investigated. Field emission gun scanning electron microscopy (FEG-SEM) was used to obtain high-resolution images of the micro- and nanoparticles, and 0.02 μm pore size inorganic membranes were used to retain and subsequently analyze smaller particle size nanoparticles (>20 nm) released from the DPFMs. Particles and fibers in the micro- and nanoscale were found in all six DPFM brands. SEM with energy-dispersive spectroscopy analysis revealed the presence of particles containing different heavy metals like lead, mercury, and arsenic. Inductively coupled plasma mass spectrometry analysis confirmed the leaching of trace heavy metals to water (antimony up to 2.41 μg/L and copper up to 4.68 μg/L). Liquid chromatography-mass spectrometry analysis identified polar organic species related to plastic additives and contaminants such as polyamide-66 monomers and oligomers.
Collapse
Affiliation(s)
| | - G. L. Sullivan
- SPECIFIC,
College of Engineering, Swansea University, Swansea SA2 8PP, U.K.
| | - M. Tokaryk
- SPEC,
College of Engineering, Swansea University, Swansea SA2 8PP, U.K.
| | - J. E. Russell
- Advanced
Imaging of Materials Facility, Bay Campus, College of Engineering, Swansea University, Swansea SA1 8EN, U.K.
| | - G. R. Davies
- Technical
Development Center Analytical Laboratory, Tata Steel Europe, Harbourside
Business Park, Port Talbot SA13 1SB, U.K.
| | - K. V. Johns
- Technical
Development Center Analytical Laboratory, Tata Steel Europe, Harbourside
Business Park, Port Talbot SA13 1SB, U.K.
| | - A. P. Hunter
- National
Mass Spectrometry Facility, Swansea University
Medical School, Singleton
Park, Swansea SA2 8PP, U.K.
| | - T. M. Watson
- SPECIFIC,
College of Engineering, Swansea University, Swansea SA2 8PP, U.K.
| | - S. Sarp
- SPEC,
College of Engineering, Swansea University, Swansea SA2 8PP, U.K.
| |
Collapse
|
46
|
Plastic Waste Management towards Energy Recovery during the COVID-19 Pandemic: The Example of Protective Face Mask Pyrolysis. ENERGIES 2022. [DOI: 10.3390/en15072629] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
This paper presents an assessment of the impact of the COVID-19 pandemic on the waste management sector, and then, based on laboratory tests and computer calculations, indicates how to effectively manage selected waste generated during the pandemic. Elemental compositions—namely, C, H, N, S, Cl, and O—were determined as part of the laboratory tests, and the pyrolysis processes of the above wastes were analysed using the TGA technique. The calculations were performed for a pilot pyrolysis reactor with a continuous flow of 240 kg/h in the temperature range of 400–900 °C. The implemented calculation model was experimentally verified for the conditions of the refuse-derived fuel (RDF) pyrolysis process. As a result of the laboratory tests and computer simulations, comprehensive knowledge was obtained about the pyrolysis of protective masks, with particular emphasis on the gaseous products of this process. The high calorific value of the pyrolysis gas, amounting to approx. 47.7 MJ/m3, encourages the management of plastic waste towards energy recovery. The proposed approach may be helpful in the initial assessment of the possibility of using energy from waste, depending on its elemental composition, as well as in the assessment of the environmental effects.
Collapse
|
47
|
Tesfaldet YT, Ndeh NT. Assessing face masks in the environment by means of the DPSIR framework. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 814:152859. [PMID: 34995587 PMCID: PMC8724021 DOI: 10.1016/j.scitotenv.2021.152859] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 12/24/2021] [Accepted: 12/29/2021] [Indexed: 05/05/2023]
Abstract
The use of face masks outside the health care facility dates back a century ago. However, face masks use noticeably soared due to the COVID-19 (Coronavirus disease 2019) pandemic. As a result, an unprecedented influx of discarded face masks is ending up in the environment. This review paper delves into face masks in the environment using the DPSIR (driving forces, pressures, states, impacts, and responses) framework to simplify and communicate the environmental indicators. Firstly, the historical, and briefly the economic trajectory of face masks are discussed. Secondly, the main driving forces of face masks use with an emphasis on public health are explored. Then, the pressures exerted by efforts to fulfill the human needs (driving forces) are investigated. In turn, the state of the environment due to the influx of masks along with the impacts are examined. Furthermore, the upstream, and downstream societal responses to mitigate the environmental damages of the driving forces, pressures, states, and impacts are reviewed. In summary, it has been shown from this review that the COVID-19 pandemic has been causing a surge in face mask usage, which translates to face masks pollution in both terrestrial and aquatic environments. This implies proper usage and disposal of face masks is paramount to the quality of human health and the environment, respectively. Moreover, further research on eco-friendly face masks is indispensable to mitigating the environmental damages occurring due to the mass use of surgical masks worldwide.
Collapse
Affiliation(s)
- Yacob T Tesfaldet
- International Program in Hazardous Substance and Environmental Management, Graduate School, Chulalongkorn University, Bangkok 10330, Thailand.
| | - Nji T Ndeh
- International Program in Hazardous Substance and Environmental Management, Graduate School, Chulalongkorn University, Bangkok 10330, Thailand
| |
Collapse
|
48
|
Pizarro-Ortega CI, Dioses-Salinas DC, Fernández Severini MD, Forero López AD, Rimondino GN, Benson NU, Dobaradaran S, De-la-Torre GE. Degradation of plastics associated with the COVID-19 pandemic. MARINE POLLUTION BULLETIN 2022; 176:113474. [PMID: 35231785 PMCID: PMC8866080 DOI: 10.1016/j.marpolbul.2022.113474] [Citation(s) in RCA: 57] [Impact Index Per Article: 28.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 02/12/2022] [Accepted: 02/15/2022] [Indexed: 05/08/2023]
Abstract
The ongoing COVID-19 pandemic has resulted in an unprecedented form of plastic pollution: personal protective equipment (PPE). Numerous studies have reported the occurrence of PPE in the marine environment. However, their degradation in the environment and consequences are poorly understood. Studies have reported that face masks, the most abundant type of PPE, are significant sources of microplastics due to their fibrous microstructure. The fibrous material (mostly consisting of polypropylene) exhibits physical changes in the environment, leading to its fracture and detachment of microfibers. Most studies have evaluated PPE degradation under controlled laboratory conditions. However, in situ degradation experiments, including the colonization of PPE, are largely lacking. Although ecotoxicological studies are largely lacking, the first attempts to understand the impact of MPs released from face masks showed various types of impacts, such as fertility and reproduction deficiencies in both aquatic and terrestrial organisms.
Collapse
Affiliation(s)
| | | | - Melisa D Fernández Severini
- Instituto Argentino de Oceanografía (IADO), CONICET/UNS, CCT-Bahía Blanca, Camino La Carrindanga, km 7.5, Edificio E1, Bahía Blanca, B8000FWB Buenos Aires, Argentina
| | - Ana D Forero López
- Instituto Argentino de Oceanografía (IADO), CONICET/UNS, CCT-Bahía Blanca, Camino La Carrindanga, km 7.5, Edificio E1, Bahía Blanca, B8000FWB Buenos Aires, Argentina
| | - Guido Noé Rimondino
- Instituto de Investigaciones en Fisicoquímica de Córdoba (INFIQC), Departamento de Fisicoquímica, Facultad de Ciencias Químicas. Universidad Nacional de Córdoba, Ciudad Universitaria (X5000HUA), Córdoba, Argentina
| | - Nsikak U Benson
- Department of Chemistry, Covenant University, Km 10 Idiroko Road, Ota, Nigeria
| | - Sina Dobaradaran
- Systems Environmental Health and Energy Research Center, The Persian Gulf Biomedical Sciences Research Institute, Bushehr University of Medical Sciences, Bushehr, Iran; Department of Environmental Health Engineering, Faculty of Health and Nutrition, Bushehr University of Medical Sciences, Bushehr, Iran; Instrumental Analytical Chemistry and Centre for Water and Environmental Research (ZWU), Faculty of Chemistry, University of Duisburg-Essen, Universitätsstr. 5, Essen, Germany
| | - Gabriel Enrique De-la-Torre
- Grupo de Investigación de Biodiversidad, Medio Ambiente y Sociedad, Universidad San Ignacio de Loyola, Lima, Peru.
| |
Collapse
|
49
|
Kalina M, Kwangulero J, Ali F, Tilley E. "You need to dispose of them somewhere safe": Covid-19, masks, and the pit latrine in Malawi and South Africa. PLoS One 2022; 17:e0262741. [PMID: 35192618 PMCID: PMC8863218 DOI: 10.1371/journal.pone.0262741] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Accepted: 01/04/2022] [Indexed: 11/19/2022] Open
Abstract
The ongoing Covid-19 pandemic has generated an immense amount of potentially infectious waste, primarily face masks, which require rapid and sanitary disposal in order to mitigate the spread of the disease. Yet, within Africa, large segments of the population lack access to reliable municipal solid waste management (SWM) services, both complicating the disposal of hazardous waste, and public health efforts. Drawing on extensive qualitative fieldwork, including 96 semi-structured interviews, across four different low-income communities in Blantyre, Malawi and Durban, South Africa, the purpose of this article is to respond to a qualitative gap on mask disposal behaviours, particularly from within low-income and African contexts. Specifically, our purpose was to understand what behaviours have arisen over the past year, across the two disparate national contexts, and how they have been influenced by individual risk perceptions, established traditional practice, state communication, and other media sources. Findings suggest that the wearing of cloth masks simplifies disposal, as cloth masks can (with washing) be reused continuously. However, in communities where disposable masks are more prevalent, primarily within Blantyre, the pit latrine had been adopted as the most common space for 'safe' disposal for a used mask. We argue that this is not a new behaviour, however, and that the pit latrine was already an essential part of many low-income households SWM systems, and that within the Global South, the pit latrine fulfils a valuable and uncounted solid waste management function, in addition to its sanitation role.
Collapse
Affiliation(s)
- Marc Kalina
- Department of Mechanical and Process Engineering (MAVT), ETH Zürich, Zürich, Switzerland
- School of Engineering, University of KwaZulu-Natal, Durban, South Africa
| | - Jonathan Kwangulero
- Department of Environmental Health, University of Malawi, The Polytechnic, Blantyre, Malawi
| | - Fathima Ali
- School of Engineering, University of KwaZulu-Natal, Durban, South Africa
| | - Elizabeth Tilley
- Department of Mechanical and Process Engineering (MAVT), ETH Zürich, Zürich, Switzerland
| |
Collapse
|
50
|
Soo XYD, Wang S, Yeo CCJ, Li J, Ni XP, Jiang L, Xue K, Li Z, Fei X, Zhu Q, Loh XJ. Polylactic acid face masks: Are these the sustainable solutions in times of COVID-19 pandemic? THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 807:151084. [PMID: 34678364 PMCID: PMC8531277 DOI: 10.1016/j.scitotenv.2021.151084] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2021] [Revised: 10/14/2021] [Accepted: 10/15/2021] [Indexed: 05/19/2023]
Abstract
The global massive consumption of disposable face masks driven by the ongoing COVID-19 pandemic has emerged as a blooming disaster to both the land and marine environment that might last for generations. Growing public concerns have been raised over the management and control of this new form of plastic pollution, and one of the proposed sustainable solution is to use renewable and/or biodegradable resources to develop mask materials in order to minimize their environmental impacts. As a representative biodegradable polymer, polylactic acid (PLA) has been proposed as a promising candidate to produce non-woven face masks instead of those fossil-based polymers. To further explore the feasibility of this alternative mask material, the present work aims to study both the hydrolytic and bio-degradation behaviors of pure PLA-derived 3-ply disposable face masks at ambient temperature. Hydrolytic degradability was investigated at different pH conditions of 2, 7 and 13 with the whole piece of face mask soaked for regular timed intervals up to 8 weeks. Weight loss study showed neutral and acidic conditions had minimal effect on PLA masks, but rapid degradation occurred under basic conditions in the first week with a sharp 25% decrease in weight that slowly tapered off, coupled with solution pH dropping from 13 to 9.6. This trend was supported by mechanical property, bacterial filtration efficiency (BFE) and particulate filtration efficiency (PFE) studies. Masks soaked in basic conditions had their modulus and tensile strength dropped by more than 50% after 8 weeks where the middle layer reached 68% and 90% respectively just after 48 h, and BFE and PFE decreased by 14% and 43% respectively after 4 weeks, which was much more significant than those in neutral and acidic conditions. Base degradation was also supported by nuclear magnetic resonance (NMR) and fourier transform infrared (FTIR), which disclosed that only the middle layer undergo major degradation with random chain scission and cleavage of enol or enolate chain ends, while outer and inner layers were much less affected. Scanning electron microscopy (SEM) attributed this observation to thinner PLA fibers for the middle layer of 3-7 μm diameter, which on average is 3 times smaller. This degradation was further supported by gel permeation chromatography (GPC) which saw an increase in lower molecular weight fragment Mw ~ 800 Da with soaking duration. The biodegradation behavior was studied under OECD 301F specification in sewage sludge environment. Similarly, degradation to the middle meltblown layer was more extensive, where the average weight loss and carbon loss was 25.8% and 25.7% respectively, double that of outer/inner spunbond layer. The results showed that the face masks did not completely disintegrate after 8 weeks, but small solubilized fragments of PLA formed in the biodegradation process can be completely mineralized into carbon dioxide without generation of secondary microplastic pollution in the environment. PLA masks are therefore a slightly greener option to consider in times of a pandemic that the world was caught unprepared; however future research on masks could be geared towards a higher degradability material that fully breaks down into non-harmful components while maintaining durability, filtration and protection properties for users.
Collapse
Affiliation(s)
- Xiang Yun Debbie Soo
- Institute of Materials Research and Engineering, Agency for Science, Technology and Research, 2 Fusionopolis Way, Innovis, #08-03, Singapore 138634, Singapore
| | - Suxi Wang
- Institute of Materials Research and Engineering, Agency for Science, Technology and Research, 2 Fusionopolis Way, Innovis, #08-03, Singapore 138634, Singapore
| | - Chee Chuan Jayven Yeo
- Institute of Materials Research and Engineering, Agency for Science, Technology and Research, 2 Fusionopolis Way, Innovis, #08-03, Singapore 138634, Singapore
| | - Jiuwei Li
- School of Civil and Environmental Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore; Residues and Resource Reclamation Centre, Nanyang Environment and Water Research Institute, 1 Cleantech Loop, Singapore 637141, Singapore
| | - Xi Ping Ni
- Institute of Materials Research and Engineering, Agency for Science, Technology and Research, 2 Fusionopolis Way, Innovis, #08-03, Singapore 138634, Singapore
| | - Lu Jiang
- School of Biomedicine and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou 510006, People's Republic of China
| | - Kun Xue
- Institute of Materials Research and Engineering, Agency for Science, Technology and Research, 2 Fusionopolis Way, Innovis, #08-03, Singapore 138634, Singapore
| | - Zibiao Li
- Institute of Materials Research and Engineering, Agency for Science, Technology and Research, 2 Fusionopolis Way, Innovis, #08-03, Singapore 138634, Singapore.
| | - Xunchang Fei
- School of Civil and Environmental Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore; Residues and Resource Reclamation Centre, Nanyang Environment and Water Research Institute, 1 Cleantech Loop, Singapore 637141, Singapore.
| | - Qiang Zhu
- Institute of Materials Research and Engineering, Agency for Science, Technology and Research, 2 Fusionopolis Way, Innovis, #08-03, Singapore 138634, Singapore.
| | - Xian Jun Loh
- Institute of Materials Research and Engineering, Agency for Science, Technology and Research, 2 Fusionopolis Way, Innovis, #08-03, Singapore 138634, Singapore.
| |
Collapse
|