1
|
Camcıoğlu Ş, Özyurt B, Oturan N, Portehault D, Trellu C, Oturan MA. Heterogeneous catalysts for electro-Fenton degradation of cytostatic drug cytarabine. CHEMOSPHERE 2025; 370:143892. [PMID: 39638122 DOI: 10.1016/j.chemosphere.2024.143892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 10/14/2024] [Accepted: 12/02/2024] [Indexed: 12/07/2024]
Abstract
In the present work, a reduced graphene oxide (rGO) modified-Fe3O4 doped bifunctional carbon felt cathode (rGO-Fe3O4/CF) that is capable of generating and converting H2O2 into hydroxyl radicals (•OH) on-site was fabricated, thus removing the need for an external catalyst. In addition, an rGO-modified cathode (rGO/CF) with high H2O2 production efficiency and a heterogeneous Fenton catalyst (CNT-Fe3O4) with magnetic properties were fabricated. The study examined the degradation and mineralization of the cytostatic drug cytarabine (CYT) using two HEF configurations: (i) a bifunctional cathode rGO-Fe3O4/CF and (ii) a combination of the rGO/CF cathode with CNT-Fe3O4 catalyst. The effects of parameters such as catalyst concentration, initial pH, and applied current were studied. HPLC and ion chromatography analyses were used to identify carboxylic acids and inorganic end-products, respectively. The results show that 0.1 mM CYT was completely degraded within 18 min at an applied current of 300 mA in the HEF system with the rGO-Fe3O4/CF bifunctional cathode. Total organic carbon (TOC) analysis revealed that the bifunctional cathode system achieved 98.2% mineralization of CYT after 4 h of treatment at 300 mA. Using the rGO/CF cathode and CNT-Fe3O4 catalyst cell, total degradation of 0.1 mM CYT occurred within 7 min, and nearly total mineralization (97.3% TOC removal) was achieved at 300 mA after 4 h.
Collapse
Affiliation(s)
- Şule Camcıoğlu
- Ankara University, Faculty of Engineering, Department of Chemical Engineering, 06100, Tandogan, Ankara, Turkiye; Université Gustave Eiffel, Laboratoire Géomatériaux et Environnement EA 4508, 77454, Marne-la-Vallée, Cedex 2, France.
| | - Baran Özyurt
- Ankara University, Faculty of Engineering, Department of Chemical Engineering, 06100, Tandogan, Ankara, Turkiye; Université Gustave Eiffel, Laboratoire Géomatériaux et Environnement EA 4508, 77454, Marne-la-Vallée, Cedex 2, France.
| | - Nihal Oturan
- Université Gustave Eiffel, Laboratoire Géomatériaux et Environnement EA 4508, 77454, Marne-la-Vallée, Cedex 2, France.
| | - David Portehault
- Sorbonne Université, CNRS, Laboratoire de Chimie de La Matière Condensée de Paris (CMCP), 4 Place Jussieu, Paris, France.
| | - Clément Trellu
- Université Gustave Eiffel, Laboratoire Géomatériaux et Environnement EA 4508, 77454, Marne-la-Vallée, Cedex 2, France.
| | - Mehmet A Oturan
- Université Gustave Eiffel, Laboratoire Géomatériaux et Environnement EA 4508, 77454, Marne-la-Vallée, Cedex 2, France.
| |
Collapse
|
2
|
Periyasamy S, Farissi S, Rayaroth MP, Kannan M, Nambi IM, Liu D. Electrochemical oxidation of Florfenicol in aqueous solution with mixed metal oxide electrode: Operational factors, reaction by-products and toxicity evaluation. CHEMOSPHERE 2024; 362:142665. [PMID: 38906192 DOI: 10.1016/j.chemosphere.2024.142665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 06/17/2024] [Accepted: 06/18/2024] [Indexed: 06/23/2024]
Abstract
Veterinary antibiotics have become an emerging pollutant in water and wastewater sources due to excess usage, toxicity and resistance to traditional water and wastewater treatment. The present study explored the degradation of a model antibiotic- Florfenicol (FF) using electrochemical oxidation (EO) with Ti-RuO2/IrO2 anode. The anode material was characterized using SEM-EDS studies expressing stable structure and optimal interaction of the neighboring metal oxides with each other. The EDS results showed the presence of Ru, Ir, Ti, O and C elements with 6.44%, 2.57%, 9.61%, 52.74% and 28.64% atomic weight percentages, respectively. Optimization studies revealed pH 5, 30 mA cm-2 current density and 0.05 M Na2SO4 for 5 mg L-1 FF achieved 90% TOC removal within 360 min treatment time. The degradation followed pseudo-first order kinetics. LC-Q-TOF-MS studies revealed six predominant byproducts illustrating hydroxylation, deflourination, and dechlorination to be the major degradation mechanisms during the electrochemical oxidation of FF. Ion chromatography studies revealed an increase in Cl-, F- and NO3- ions as treatment time progressed with Cl- decreasing after the initial phase of the treatment. Toxicity studies using Zebrafish (Danio rerio) embryo showed the treated sample to be toxic inducing developmental disorders such as pericardial edema, yolk sac edema, spinal curvature and tail malformation at 96 h post fertilization (hpf). Compared to control, delayed hatching and coagulation were observed in treated embryos. Overall, this study sets the stage for understanding the effect of mixed metal oxide (MMO) anodes on the degradation of veterinary antibiotic-polluted water and wastewater sources using electrochemical oxidation.
Collapse
Affiliation(s)
- Selvendiran Periyasamy
- Environmental and Water Resources Division, Department of Civil Engineering, Indian Institute of Technology Madras, Chennai-600036, Tamil Nadu, India.
| | - Salman Farissi
- Department of Environmental Science, Central University of Kerala, Kasaragod, Kerala, India
| | - Manoj P Rayaroth
- Department of Life Sciences, School of Science, GITAM (Deemed to be) University, Visakhapatnam-530045, India
| | - Maharajan Kannan
- Department of Zoology, University of Allahabad, Prayagraj-211002, India
| | - Indumathi M Nambi
- Environmental and Water Resources Division, Department of Civil Engineering, Indian Institute of Technology Madras, Chennai-600036, Tamil Nadu, India
| | - Dezhao Liu
- College of Bio-systems Engineering and Food Science, Zhejiang University, Hangzhou, 310058, China
| |
Collapse
|
3
|
Shah AA, Walia S, Kazemian H. Advancements in combined electrocoagulation processes for sustainable wastewater treatment: A comprehensive review of mechanisms, performance, and emerging applications. WATER RESEARCH 2024; 252:121248. [PMID: 38335752 DOI: 10.1016/j.watres.2024.121248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 01/25/2024] [Accepted: 01/31/2024] [Indexed: 02/12/2024]
Abstract
This review explores the potential and challenges of combining electrochemical, especially electrocoagulation (EC) process, with various - wastewater treatment methods such as membranes, chemical treatments, biological methods, and oxidation processes to enhance pollutant removal and reduce costs. It emphasizes the advantages of using electrochemical processes as a pretreatment step, including increased volume and improved quality of permeate water, mitigation of membrane fouling, and lower environmental impact. Pilot-scale studies are discussed to validate the effectiveness of combined EC processes, particularly for industrial wastewater. Factors such as electrode materials, coating materials, and the integration of a third process are discussed as potential avenues for improving the environmental sustainability and cost-effectiveness of the combined EC processes. This review also discusses factors for improvement and explores the EC process combined with Advanced Oxidation Processes (AOP). The conclusion highlights the need for combined EC processes, which include reducing electrode consumption, evaluating energy efficiency, and conducting pilot-scale investigations under continuous flow conditions. Furthermore, it emphasizes future research on electrode materials and technology commercialization. Overall, this review underscores the importance of combined EC processes in meeting the demand for clean water resources and emphasizes the need for further optimization and implementation in industrial applications.
Collapse
Affiliation(s)
- Aatif Ali Shah
- Materials Technology & Environmental Research (MATTER) lab, University of Northern British Columbia, Prince George, BC, Canada; Environment Science Program, Faculty of Environment, University of Northern British Columbia, Prince George, BC V2N4Z9, Canada.
| | - Sunil Walia
- Materials Technology & Environmental Research (MATTER) lab, University of Northern British Columbia, Prince George, BC, Canada
| | - Hossein Kazemian
- Materials Technology & Environmental Research (MATTER) lab, University of Northern British Columbia, Prince George, BC, Canada; Northern Analytical Lab Services (Northern BC's Environmental and Climate Solutions Innovation Hub), University of Northern British Columbia, Prince George, BC, Canada; Environment Science Program, Faculty of Environment, University of Northern British Columbia, Prince George, BC V2N4Z9, Canada.
| |
Collapse
|
4
|
Ahmad A, Priyadarshini M, Yadav S, Ghangrekar MM, Surampalli RY. 3D electro-Fenton augmented with iron-biochar particle electrodes derived from waste iron bottle caps and sugarcane bagasse for the remediation of sodium dodecyl sulphate. ENVIRONMENTAL RESEARCH 2024; 245:117998. [PMID: 38145735 DOI: 10.1016/j.envres.2023.117998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Revised: 12/04/2023] [Accepted: 12/19/2023] [Indexed: 12/27/2023]
Abstract
The present work demonstrates a novel strategy of synthesizing iron-biochar (Fe@BCSB) composite made with the waste iron bottle cap and sugar cane bagasse for implementation in the three-dimensional electro-Fenton (3DEF) process. The catalytic ability of the Fe@BCSB composite was explored to remediate the sodium dodecyl sulphate (SDS) surfactant from wastewater at neutral pH. At the optimum operating condition of Fe@BCSB dose of 1.0 g L-1, current density of 4.66 mA cm-2, and Na2SO4 dose of 50 mM, nearly 92.7 ± 3.1% of 20 mg L-1 of SDS abatement was attained during 120 min of electrolysis time. Moreover, the Fe@BCSB showed significant recyclability up to six cycles. Besides, other organics were successfully treated with more than 85% abatement efficiency in the proposed Fe@BCSB-supported 3DEF process. The total operating cost obtained during SDS treatment was around 0.31 US$ m-3 of wastewater. The phytotoxicity test revealed the positive impact of the 3DEF-treated effluent on the germination of the Vigna radiata. The electron paramagnetic resonance conveyed •OH as the prevailing reactive species for the oxidation of SDS in the 3DEF process. Further, about 81.3 ± 3.8% of SDS and 53.7 ± 4.1% of mineralization efficacy were acquired from the real institutional sewage.
Collapse
Affiliation(s)
- Azhan Ahmad
- Department of Civil Engineering, Indian Institute of Technology Kharagpur, Kharagpur, 721302, India
| | - Monali Priyadarshini
- School of Environmental Science and Engineering, Indian Institute of Technology Kharagpur, Kharagpur, 721302, India
| | - Shraddha Yadav
- School of Environmental Science and Engineering, Indian Institute of Technology Kharagpur, Kharagpur, 721302, India
| | - Makarand M Ghangrekar
- Department of Civil Engineering, Indian Institute of Technology Kharagpur, Kharagpur, 721302, India; School of Environmental Science and Engineering, Indian Institute of Technology Kharagpur, Kharagpur, 721302, India.
| | - Rao Y Surampalli
- Global Institute for Energy, Environment and Sustainability, Kansas, USA
| |
Collapse
|
5
|
Rai D, Sinha S. Characterization and electrochemical properties of TiO 2-rNTs/SnO 2-Sb/PbO 2 electrodes for the mineralization of persistent organic pollutants using anodic oxidation coupled Electro-Fenton treatment: Effect of precursor selection. CHEMOSPHERE 2024; 352:141307. [PMID: 38307338 DOI: 10.1016/j.chemosphere.2024.141307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 01/23/2024] [Accepted: 01/25/2024] [Indexed: 02/04/2024]
Abstract
The present study compares the effect of using different solvents on the electrochemical properties of the reduced TiO2 nanotubes (TiO2-rNTs) layered Ti/TiO2-rNTs/SnO2-Sb/PbO2 anodes. The electrodes are prepared using three different solvent-based precursors: (i) isopropanol, (ii) ethylene glycol and citric acid (Pechini method), and (iii) 2-hydroxyethylammonium acetate (2HEAA) ionic liquid (IL) via the thermal decomposition route. The decomposition mechanism of precursor solutions was explored using the thermogravimetric (TGA) analysis. Further, the physicochemical properties of the electrodes are examined using Field emission Scanning Electron microscopy (FE-SEM), X-ray diffraction spectroscopy (XRD), and X-ray photoelectron emission spectroscopy (XPS). The results revealed that solvents with higher viscosity and slower decomposition rates support better film uniformity and higher stability of the electrode. The TiO2 -rNTs bottom layer and PbO2 top layer helped obtain higher film stability, increased working potential window (2.2 V vs. SHE) of the electrode, and the repeatability of the results. The performance of different electrodes based on the precursor solution is found as IL ≫ Pechini > Isopropanol. 4-chlorophenol (4-CP) is used as a model pollutant to test the performance of IL-Ti/TiO2-rNTs/SnO2-Sb/PbO2 anode in an anodic oxidation (AO) coupled electro-Fenton (EF) treatment. Further, the reliability of the electrode is evaluated by mineralizing other persistent organic pollutants (POPs) like tetracyclin, phenol, 2-chlorophenol (2-CP), and 2,4-dichlorophenol (2,4-DCP). Under the optimized conditions, the proposed system was able to mineralize the tetracyclin, phenol, 2-CP, 2,4-DCP, and 4-CP up to 78.91, 82.07, 74.96, 78.78, and 69.3 %, respectively. Moreover, the degradation mechanism of chlorophenols is proposed.
Collapse
Affiliation(s)
- Devendra Rai
- Department of Chemical Engineering, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand, 247667, India.
| | - Shishir Sinha
- Department of Chemical Engineering, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand, 247667, India.
| |
Collapse
|
6
|
Gökkuş Ö, Brillas E, Sirés I. Sequential use of a continuous-flow electrocoagulation reactor and a (photo)electro-Fenton recirculation system for the treatment of Acid Brown 14 diazo dye. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 912:169143. [PMID: 38070549 DOI: 10.1016/j.scitotenv.2023.169143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2023] [Revised: 12/03/2023] [Accepted: 12/04/2023] [Indexed: 12/18/2023]
Abstract
The decolorization and TOC removal of solutions of Acid Brown 14 (AB14) diazo dye containing 50 mg L-1 of total organic carbon (TOC) have been first studied in a continuous-flow electrocoagulation (EC) reactor of 3 L capacity with Fe electrodes of ∼110 cm2 area each. Total loss of color with poor TOC removal was found in chloride, sulfate, and/or hydrogen carbonate matrices after 18 min of this treatment. The best performance was found using 5 anodes and 4 cathodes of Fe at 13.70 A and low liquid flow rate of 10 L h-1, in aerated 39.6 mM NaCl medium within a pH range of 4.0-10.0. The effluent obtained from EC was further treated by electro-Fenton (EF) using a 2.5 L pre-pilot flow plant, which was equipped with a filter-press cell comprising a Pt anode and an air-diffusion cathode for H2O2 electrogeneration. Operating with 0.10-1.0 mM Fe2+ as catalyst at pH 3.0 and 50 mA cm-2, a similar TOC removal of 68 % was found as maximal in chloride and sulfate media using the sequential EC-EF process. The EC-treated solutions were also treated by photoelectro-Fenton (PEF) employing a photoreactor with a 125 W UVA lamp. The sequential EC-PEF process yielded a much higher TOC reduction, close to 90 % and 97 % in chloride and sulfate media, respectively, due to the rapid photolysis of the final Fe(III)-carboxylate complexes. The formation of recalcitrant chloroderivatives from generated active chlorine limited the mineralization in the chloride matrix. For practical applications of this two-step technology, the high energy consumption of the UVA lamp in PEF could be reduced by using free sunlight.
Collapse
Affiliation(s)
- Ömür Gökkuş
- Department of Environmental Engineering, Erciyes University, 38039 Kayseri, Türkiye
| | - Enric Brillas
- Laboratori d'Electroquímica dels Materials i del Medi Ambient, Departament de Ciència de Materials i Química Física, Secció de Química Física, Facultat de Química, Universitat de Barcelona, Martí i Franquès 1-11, 08028 Barcelona, Spain
| | - Ignasi Sirés
- Laboratori d'Electroquímica dels Materials i del Medi Ambient, Departament de Ciència de Materials i Química Física, Secció de Química Física, Facultat de Química, Universitat de Barcelona, Martí i Franquès 1-11, 08028 Barcelona, Spain.
| |
Collapse
|
7
|
Yan L, Liu R, Zhang C, Fu D. Investigation into the electrochemical advanced oxidation of p-arsanilic acid: Peculiar role of electrolytes and unexpected formation of coupling byproducts. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 906:167538. [PMID: 37797755 DOI: 10.1016/j.scitotenv.2023.167538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 09/19/2023] [Accepted: 09/30/2023] [Indexed: 10/07/2023]
Abstract
Although banned in some countries, p-arsanilic acid (ASA) is still widely used as feed additive in poultry production. As a result, ASA is usually released into the aquatic environment without any treatments. Although ASA exhibits low toxicity, it can be transformed into highly toxic aromatic amines and inorganic arsenic species (As (V) as H2AsO4- and HAsO42-) under natural environmental conditions. Hence, it is necessary to develop efficient technologies for its removal or degradation. In this contribution, electrochemical advanced oxidation technology with boron-doped diamond (BDD) had been initially used to degrade ASA pollutants. A five-level central composite rotatable design (CCRD) was implemented to optimize the various influencing factors involved, among applied current density, NaCl concentration, Na2SO4 concentration and NaHCO3 concentration on the oxidation efficiency; the latter was assessed in terms of ASA degradation percentage. The results obtained highlighted the unique and important roles of electrolytes during the electrolytic oxidations. Meanwhile, the major degradation byproducts detected were also strongly dependent on the electrolyte adopted. In particular, several oligomer byproducts with novel structures were initially identified in BDD-treated ASA solutions. Two different electrochemical transformation pathways of ASA on BDD anode were thus proposed. This study demonstrated the effectiveness of BDD technology in the degradation of ASA, as well as the potential minor risk of its application in actual ASA wastewater treatment.
Collapse
Affiliation(s)
- Lihua Yan
- College of Science, Nanjing Agricultural University, Nanjing 210095, China; College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Ruochen Liu
- College of Science, Nanjing Agricultural University, Nanjing 210095, China
| | - Chunyong Zhang
- College of Science, Nanjing Agricultural University, Nanjing 210095, China; State Key Laboratory of Bioelectronics, Southeast University, Nanjing 210096, China.
| | - Degang Fu
- State Key Laboratory of Bioelectronics, Southeast University, Nanjing 210096, China
| |
Collapse
|
8
|
Song X, Zhang M, Xiu X, Wang C, Li P, Zang L, Song M, Xu C. Accelerated removal of sulfadiazine by heterogeneous electro-Fenton system with Pt-FeO X/graphene single-atom alloy cathodes. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 349:119541. [PMID: 37988893 DOI: 10.1016/j.jenvman.2023.119541] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 10/02/2023] [Accepted: 11/04/2023] [Indexed: 11/23/2023]
Abstract
Heterogeneous electro-Fenton (EF) process is emerging as an attractive treatment technology for removal of sulfadiazine (SDZ), in which in situ generation of H2O2 and Fe(II) are crucial steps. In this study, Pt-FeOX/G was synthesized as a heterogeneous EF catalyst by incorporating Pt single atoms into a FeOX nanocrystal. The optimized Pt1-FeOX/G cathode exhibited an SDZ conversion of >90% within 30 min over a broad pH range (3-11). The Pt1-FeOX/G cathode under a strong alkaline medium exhibited very prominent selectivity to H2O2 via 2e- oxygen reduction reaction with a maximum H2O2 concentration of 211.93 mg L-1. The hydroxyl radicals in the cathodic chamber were mainly derived from the in situ conversion of generated H2O2 in the heterogeneous EF system. The structure-activity results of Pt-FeOX/G suggested that the SDZ removal efficiency was closely related to the decentralized morphology and electronic configuration of the Pt-FeOX microcrystalline structure. Three possible SDZ degradation pathways, dominated by S-N bond cleavage, were proposed based on the stage products. The toxicity of the major products was determined using the ecological structure-activity relationship model in conjunction with trophic aquatic organisms. This study demonstrated the feasibility of enhancing heterogeneous EF catalysis for antibiotic-polluted water using multifunctional single-atom alloy cathodes.
Collapse
Affiliation(s)
- Xiaozhe Song
- College of Environmental Science and Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250353, PR China.
| | - Minglu Zhang
- College of Environmental Science and Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250353, PR China
| | - Xiaochen Xiu
- College of Environmental Science and Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250353, PR China
| | - Chunyu Wang
- College of Environmental Science and Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250353, PR China
| | - Peiwei Li
- College of Environmental Science and Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250353, PR China
| | - Lihua Zang
- College of Environmental Science and Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250353, PR China.
| | - Mingming Song
- College of Environmental Science and Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250353, PR China
| | - Chongqing Xu
- College of Environmental Science and Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250353, PR China.
| |
Collapse
|
9
|
Raj R, Tripathi A, Das S, Ghangrekar MM. Waste coconut shell-derived carbon monolith as an efficient binder-free cathode for electrochemical advanced oxidation treatment of endocrine-disrupting compounds. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 348:119328. [PMID: 37857210 DOI: 10.1016/j.jenvman.2023.119328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2023] [Revised: 10/11/2023] [Accepted: 10/12/2023] [Indexed: 10/21/2023]
Abstract
Discharge of endocrine-disrupting compounds such as methylparaben (MePa) into natural water bodies deteriorates the aquatic ecosystem. In this regard, electrochemical oxidation (EO) and electro-Fenton (EF) processes are acknowledged as effective methods to eliminate biorecalcitrant compounds from different wastewater matrices. In these systems, the H2O2-producing ability of carbon-based cathodes is put to advantage for producing homogenous hydroxyl radicals by simulating Fenton's reaction, which dramatically augments the contaminant removal efficiency. However, commercial carbon based cathodes are not economically affordable, especially for voluminous treatment. Hence in the present work, waste-derived carbonised coconut shell (CCS) monolith was employed as a cathode in EO and EF treatment of MePa. Almost the entire MePa with initial concentration of 10 mg/L was removed in 60 min by EO and 45 min by EF process at neutral pH, applied current density of 7.5 mA/cm2, NaCl concentration of 1.0 g/L and 10 mg/L of Fe2O3 dosing. The MePa removal efficiency of the CCS cathode-fitted system after 60 min was better than the commercial graphite plate and Ti-based mixed metal oxide employing system due to higher H2O2 electrosynthesis (H2O2 = 9.0 ± 0.6 mg/L after 60 min). Moreover, the same setup was used for treating 10 mg/L of MePa-spiked real sewage and demonstrated MePa and total organic carbon removal efficiency of 80.16 ± 2.31% and 37.42 ± 3.50%, respectively, in 45 min. Further, the CCS-mediated EF treatment achieved >90% removal of MePa for eight continuous batch cycles and recorded a current density drop of just 0.23% per cycle. The degradation pathway and toxicity assessment of the intermediates using the Ecological Structure Activity Relationships (ECOSAR) tool supported the eco-friendliness of the current treatment scheme.
Collapse
Affiliation(s)
- Rishabh Raj
- School of Environmental Science and Engineering, Indian Institute of Technology Kharagpur, Kharagpur, 721302, India.
| | - Akash Tripathi
- Department of Civil Engineering, Indian Institute of Technology Kharagpur, Kharagpur, 721302, India
| | - Sovik Das
- Department of Civil Engineering, Indian Institute of Technology Delhi, Delhi, 110016, India
| | - M M Ghangrekar
- School of Environmental Science and Engineering, Indian Institute of Technology Kharagpur, Kharagpur, 721302, India; Department of Civil Engineering, Indian Institute of Technology Kharagpur, Kharagpur, 721302, India.
| |
Collapse
|
10
|
Shao C, Ren S, Zhang Y, Wen Z, Zhang Z, Wang A. Insights into antibiotic cefaclor mineralization by electro-Fenton and photoelectro-Fenton processes using a Ti/Ti 4O 7 anode: Performance, mechanism, and toxic chlorate/perchlorate formation. ENVIRONMENTAL RESEARCH 2023; 238:117185. [PMID: 37742753 DOI: 10.1016/j.envres.2023.117185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 09/05/2023] [Accepted: 09/20/2023] [Indexed: 09/26/2023]
Abstract
A comparative degradation of antibiotic cefaclor (CEC) between Ti/Ti4O7 and Ti/RuO2 anodes, in terms of degradation kinetics, mineralization efficiency, and formation of toxic chlorate (ClO3-) and perchlorate (ClO4-), was performed with electrochemical-oxidation (EO), electro-Fenton (EF), and photoelectro-Fenton (PEF) processes. Besides, CEC degradation by EF with boron-doped diamond (BDD) anode was also tested. Results showed CEC decays always followed pseudo-first-order kinetics, with increasing apparent rate constants in the sequence of EO < EF < PEF. The mineralization efficiency of the processes with Ti/Ti4O7 anode was higher than that of Ti/RuO2 anode, but slightly lower than that of BDD anode. Under the optimal conditions, 94.8% mineralization was obtained in Ti/Ti4O7-PEF, which was much higher than 64.4% in Ti/RuO2-PEF. The use of Ti/RuO2 gave no generation of ClO3- or ClO4-, while the use of Ti/Ti4O7 yielded a small amount of ClO3- and trace amounts of ClO4-. Conversely, the use of BDD led to the highest generation of ClO3- and ClO4-. The reaction mechanism was studied systematically by detecting the generated H2O2 and •OH. The initial N of CEC was released as NH4+ and, in smaller proportion, as NO3-. Four short-chain carboxylic acids and nine aromatic intermediates were also detected, a possible reaction sequence for CEC mineralization was finally proposed.
Collapse
Affiliation(s)
- Chaoran Shao
- School of the Environment, Beijing Key Laboratory of Aqueous Typical Pollutants Control and Water Quality Safeguard, Beijing Jiaotong University, China
| | - Songyu Ren
- School of the Environment, Beijing Key Laboratory of Aqueous Typical Pollutants Control and Water Quality Safeguard, Beijing Jiaotong University, China
| | - Yanyu Zhang
- School of the Environment, Beijing Key Laboratory of Aqueous Typical Pollutants Control and Water Quality Safeguard, Beijing Jiaotong University, China
| | - Zhenjun Wen
- School of the Environment, Beijing Key Laboratory of Aqueous Typical Pollutants Control and Water Quality Safeguard, Beijing Jiaotong University, China
| | - Zhongguo Zhang
- Institute of Resources and Environment, Beijing Academy of Science and Technology, China
| | - Aimin Wang
- School of the Environment, Beijing Key Laboratory of Aqueous Typical Pollutants Control and Water Quality Safeguard, Beijing Jiaotong University, China.
| |
Collapse
|
11
|
Haider MR, Jiang WL, Han JL, Mahmood A, Djellabi R, Liu H, Asif MB, Wang AJ. Boosting Hydroxyl Radical Yield via Synergistic Activation of Electrogenerated HOCl/H 2O 2 in Electro-Fenton-like Degradation of Contaminants under Chloride Conditions. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:18668-18679. [PMID: 36730709 DOI: 10.1021/acs.est.2c07752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Hydroxyl radical production via catalytic activation of HOCl is a new type of Fenton-like process. However, metal-chlorocomplex formation under high chloride conditions could deactivate the catalyst and reduce the process efficiency. Herein, in situ electrogenerated HOCl was activated to •OH via a metal-free, B/N-codoped carbon nanofiber cathode for the first time to degrade contaminant under high chloride condition. The results show 98% degradation of rhodamine B (RhB) within 120 min (k = 0.036 min-1) under sulfate conditions, while complete degradation (k = 0.188 min-1) was obtained in only 30 min under chloride conditions. An enhanced degradation mechanism consists of an Adsorb & Shuttle process, wherein adsorption concentrates the pollutants at the cathode surface and they are subsequently oxidized by the large amount of •OH produced via activation of HOCl and H2O2 at the cathode. Density functional theory calculations verify the pyridinic N as the active site for the activation of HOCl and H2O2. The process efficiency was also evaluated by treating tetracycline and bisphenol A as well as high chloride-containing real secondary effluents from a pesticide manufacturing plant. High yields of •OH and HOCl allow continuous regeneration of the cathode for several cycles, limiting its fast deactivation, which is promising for real application.
Collapse
Affiliation(s)
- Muhammad Rizwan Haider
- State Key Laboratory of Urban Water Resource and Environment, School of Civil & Environmental Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen518055, P.R. China
- Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing100085, P.R. China
| | - Wen-Li Jiang
- State Key Laboratory of Urban Water Resource and Environment, School of Civil & Environmental Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen518055, P.R. China
- Department of Civil and Environmental Engineering, University of California, Berkeley, California94720, United States
| | - Jing-Long Han
- State Key Laboratory of Urban Water Resource and Environment, School of Civil & Environmental Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen518055, P.R. China
| | - Ayyaz Mahmood
- College of Physics and Optical Engineering, Shenzhen University, Shenzhen518060, P.R. China
| | - Ridha Djellabi
- Department d'Enginyeria Química, Universitat Rovira i Virgili, Av. Països Catalans 26, 43007Tarragona, Spain
| | - Huiling Liu
- School of Science, Hunan University of Technology and Business, Changsha410205, Hunan, China
| | - Muhammad Bilal Asif
- Advanced Membrane and Porous Materials Center (AMPMC), Physical Science and Engineering Division, King Abdullah University of Science and Technology, Thuwal23955, Saudi Arabia
| | - Ai-Jie Wang
- State Key Laboratory of Urban Water Resource and Environment, School of Civil & Environmental Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen518055, P.R. China
- Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing100085, P.R. China
| |
Collapse
|
12
|
Pacheco-Álvarez M, Fuentes-Ramírez R, Brillas E, Peralta-Hernández JM. Assessing the electrochemical degradation of reactive orange 84 with Ti/IrO 2-SnO 2-Sb 2O 5 anode using electrochemical oxidation, electro-Fenton, and photoelectro-Fenton under UVA irradiation. CHEMOSPHERE 2023; 339:139666. [PMID: 37532204 DOI: 10.1016/j.chemosphere.2023.139666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 07/25/2023] [Accepted: 07/26/2023] [Indexed: 08/04/2023]
Abstract
Today, water shortage problems around the world have forced the search for new treatment alternatives, in this context, electrochemical oxidation technology is a hopeful process for wastewater treatment, although it is still needed exploration of new efficient and economically viable electrode materials. In this way, mixed metal oxide anodes look like promising alternatives but their preparation is still a significant point to study, searching for finding low-cost materials to improve electrocatalytic efficiencies. In an exploration of this kind of highly efficient materials, this work presents the results obtained using an MMO Ti/IrO2-SnO2-Sb2O5 anode. All the prepared anodes exhibited excellent physical and electrochemical properties. The electrochemical oxidation of 100 mL and 200 mg L-1 Reactive Orange 84 (RO 84) diazo dye was studied using 3 cm2 of such synthesized anodes by applying current densities of 25, 50, and 100 mA cm-2. Faster and more efficient electrochemical oxidation occurred at 100 mA cm-2 with 50 mM of Na2SO4 + 10 mM NaCl as supporting electrolyte at pH 3.0. The degradation and mineralization processes of the above solution were enhanced with the electro-Fenton process with 0.05 mM Fe2+ and upgraded using photoelectron-Fenton with UVA light. This process yielded 91% COD decay with a low energy consumption of 0.1137 kWh (g COD)-1 at 60 min. The evolution of a final carboxylic acid like oxalic was followed by HPLC analysis. The Ti/IrO2-SnO2-Sb2O5 is then an efficient and low-cost anode for the photoelectro-Fenton treatment of RO 84 in a chloride and sulfate media.
Collapse
Affiliation(s)
- Martin Pacheco-Álvarez
- Departamento de Química, División de Ciencias Naturales y Exactas, Universidad de Guanajuato, Cerro de La Venada S/n, Pueblito de Rocha, 36040, Guanajuato, Mexico
| | - Rosalba Fuentes-Ramírez
- Departamento de Ingeniería Química, División de Ciencias Naturales y Exactas, Universidad de Guanajuato, Noria Alta S/n, 36050, Guanajuato, Mexico
| | - Enric Brillas
- Laboratori D'Electroquímica Dels Materials I Del Medi Ambient, Secció de Química Física, Facultat de Química, Universitat de Barcelona, Martí I Franquès 1-11, Barcelona, CP 08028, Spain
| | - Juan M Peralta-Hernández
- Departamento de Química, División de Ciencias Naturales y Exactas, Universidad de Guanajuato, Cerro de La Venada S/n, Pueblito de Rocha, 36040, Guanajuato, Mexico.
| |
Collapse
|
13
|
Rai D, Sinha S. Impact of different anode materials on electro-Fenton process and tannery wastewater treatment using sequential electro-Fenton and electrocoagulation. CHEMOSPHERE 2023; 336:139225. [PMID: 37356583 DOI: 10.1016/j.chemosphere.2023.139225] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Revised: 04/29/2023] [Accepted: 06/13/2023] [Indexed: 06/27/2023]
Abstract
The influence of anode materials on the electrochemical treatment of tannery wastewater (TWW) was evaluated using Pt, Ti/RuO2-IrO2 (DSA), Ti/SnO2-Sb, Ti/PbO2, and Ti/SnO2-Sb/PbO2 electrodes. The comparison of the degradation mechanism of these electrodes in the electro-Fenton (EF) treatment was evaluated. The Ti/SnO2-Sb/PbO2 anode was efficient, with high electrocatalytic activity, stability, and reproducibility of the degradation results. Further, the study was extended to define the ability of sequential EF and electrocoagulation (EC) processes to clean TWW. The EC treatment was conducted using Al electrodes, and the performance of the combined treatment was evaluated by the removal of chemical oxygen demand (COD), turbidity, total suspended solids (TSS), sulfide, and Cr removal. The role of chlorides and sulfate salts during both treatments was evaluated by monitoring the concentration changes of these anions during the whole treatment using ion chromatography (IC). A sequential 1.5 h EF and 1 h EC treatment were applied to achieve a satisfactory degradation of (81.2 ± 3.9)% COD, >98% Cr, >99% turbidity, TSS, and sulfide removal. Additionally, the combined treatment was found to be more efficient towards the COD removal, achieving about 22.5% higher COD removal consuming almost the same amount of electrical energy.
Collapse
Affiliation(s)
- Devendra Rai
- Department of Chemical Engineering, Indian Institute of Technology Roorkee, Roorkee 247667, Uttarakhand, India.
| | - Shishir Sinha
- Department of Chemical Engineering, Indian Institute of Technology Roorkee, Roorkee 247667, Uttarakhand, India.
| |
Collapse
|
14
|
Yakamercan E, Bhatt P, Aygun A, Adesope AW, Simsek H. Comprehensive understanding of electrochemical treatment systems combined with biological processes for wastewater remediation. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 330:121680. [PMID: 37149253 DOI: 10.1016/j.envpol.2023.121680] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Revised: 03/17/2023] [Accepted: 04/19/2023] [Indexed: 05/08/2023]
Abstract
The presence of toxic pollutants in wastewater discharge can affect the environment negatively due to presence of the organic and inorganic contaminants. The application of the electrochemical process in wastewater treatment is promising, specifically in treating these harmful pollutants from the aquatic environment. This review focused on recent applications of the electrochemical process for the remediation of such harmful pollutants from aquatic environments. Furthermore, the process conditions that affect the electrochemical process performance are evaluated, and the appropriate treatment processes are suggested according to the presence of organic and inorganic contaminants. Electrocoagulation, electrooxidation, and electro-Fenton applications in wastewater have shown effective performance with high removal rates. The disadvantages of these processes are the formation of toxic intermediate metabolites, high energy consumption, and sludge generation. To overcome such disadvantages combined ecotechnologies can be applied in large-scale wastewater pollutants removal. The combination of electrochemical and biological treatment has gained importance, increased removal performance remarkably, and decreased operational costs. The critical discussion with depth information in this review could be beneficial for wastewater treatment plant operators throughout the world.
Collapse
Affiliation(s)
- Elif Yakamercan
- Department Environmental Engineering Department, Bursa Technical University, Bursa, Turkiye
| | - Pankaj Bhatt
- Department of Agricultural & Biological Engineering, Purdue University, West Lafayette, IN, 47906, USA
| | - Ahmet Aygun
- Department Environmental Engineering Department, Bursa Technical University, Bursa, Turkiye
| | - Adedolapo W Adesope
- Department of Agricultural & Biological Engineering, Purdue University, West Lafayette, IN, 47906, USA
| | - Halis Simsek
- Department of Agricultural & Biological Engineering, Purdue University, West Lafayette, IN, 47906, USA.
| |
Collapse
|
15
|
Priyadarshini M, Ahmad A, Ghangrekar MM. Efficient upcycling of iron scrap and waste polyethylene terephthalate plastic into Fe 3O 4@C incorporated MIL-53(Fe) as a novel electro-Fenton catalyst for the degradation of salicylic acid. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 322:121242. [PMID: 36758930 DOI: 10.1016/j.envpol.2023.121242] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 01/25/2023] [Accepted: 02/07/2023] [Indexed: 06/18/2023]
Abstract
The current research demonstrates the efficiency of a low-cost MIL-53(Fe)-metal-organic framework (MOF) derived Fe3O4@C (MIL-53(Fe)@Fe3O4@C) electrocatalyst in a batch-scale electro-Fenton (EF) process for the degradation of salicylic acid (SA) from wastewater. The electrocatalyst was prepared from the combination of polyethylene terephthalate (PET) and iron scrap wastes. The result showed 91.68 ± 3.61% degradation of 50 mg L-1 of SA under optimum current density of 5.2 mA cm-2, and pH of 7.0 during 180 min of electrolysis time. The degradation of SA from waste catalyst was similar to the chemical-based MIL-53(Fe)-derived Fe3O4@C (cFe) cathode catalyst. The presence of chloride ions (Cl-) in the water matrix has shown a strong inhibitory effect on the elimination of SA, followed by nitrate (NO3-), and bicarbonate (HCO3-) ions. The multiple cyclic voltammetry (CV) analysis and reusability test of waste cathode catalyst showed only 8.03% drop of current density at the end of the 20th cycle and 5% drop of degradation efficiency after 6th cycle with low leaching of iron. The radical scavenging experiment revealed that the HO• generated via electrochemical generation of H2O2 had a prominent contribution in the removal of SA compared to HO2•/O2•-. Besides, possible catalysis mechanism and degradation pathways were deduced. Furthermore, a satisfactory performance in the treatment of SA spiked in real water matrices was also observed by waste-derived Fe3O4@C cathode catalyst (wFe). Additionally, the total operating cost and toxicity analysis showed that the as-synthesized wFe cathode catalyst could be appropriate for removing organic pollutants from wastewater in the large-scale application.
Collapse
Affiliation(s)
- Monali Priyadarshini
- School of Environmental Science and Engineering, Indian Institute of Technology Kharagpur, Kharagpur, 721302, India
| | - Azhan Ahmad
- Department of Civil Engineering, Indian Institute of Technology Kharagpur, Kharagpur, 721302, India
| | - Makarand M Ghangrekar
- School of Environmental Science and Engineering, Indian Institute of Technology Kharagpur, Kharagpur, 721302, India; Department of Civil Engineering, Indian Institute of Technology Kharagpur, Kharagpur, 721302, India.
| |
Collapse
|
16
|
Zou Y, Qi H, Sun Z. In-situ catalytic degradation of sulfamethoxazole with efficient CuCo-O@CNTs/NF cathode in a neutral electro-Fenton-like system. CHEMOSPHERE 2022; 296:134072. [PMID: 35216983 DOI: 10.1016/j.chemosphere.2022.134072] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 02/17/2022] [Accepted: 02/19/2022] [Indexed: 06/14/2023]
Abstract
In this paper, a CuCo-O@CNTs/NF electrode was successfully prepared and used for in-situ degradation of sulfamethoxazole (SMX) in an electro-Fenton-like system. Carbon nanotubes (CNTs) and coral-like copper-cobalt oxides were successively loaded on nickel foam (NF). CNTs contributed to improving the dispersibility and stability of copper-cobalt oxides, and the coral-like copper-cobalt oxide catalyst was anchored on CNTs without any adhesive. In the electro-Fenton-like system, dissolved oxygen can be reduced to superoxide anions in a one-electron step, which could be further transformed into hydrogen peroxide and then reacted with the active components on the electrode to generate reactive oxygen species (ROS) to participate in the degradation of SMX. Almost 100% SMX removal was obtained within 60 min in a wide near-neutral pH range (5.6-9.0), and the electrode could still achieve a 90.4% removal rate after ten recycle runs. Radical-quenching results showed that superoxide anions were the main species in the degradation of SMX. In addition, a possible degradation pathway of SMX was proposed. According to the result of toxicological simulations, the toxicity of the pollutant solution during the degradation process exhibited a decreasing trend. This study provides new insights for in-situ catalysis of electrodes with bimetallic active components to generate ROS for high-efficiency degradation of refractory organic pollutants.
Collapse
Affiliation(s)
- Yelong Zou
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Beijing University of Technology, Beijing, 100124, PR China.
| | - Haiqiang Qi
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Beijing University of Technology, Beijing, 100124, PR China.
| | - Zhirong Sun
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Beijing University of Technology, Beijing, 100124, PR China.
| |
Collapse
|
17
|
Gong Z, Wang H, Vayenas DV, Yan Q. Enhanced electrochemical removal of sulfadiazine using stainless steel electrode coated with activated algal biochar. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2022; 306:114535. [PMID: 35051817 DOI: 10.1016/j.jenvman.2022.114535] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 01/06/2022] [Accepted: 01/14/2022] [Indexed: 06/14/2023]
Abstract
With the increasingly discharging and inappropriately disposing of antibiotics from human disease treatment and breeding industry, extensive development of antibiotic resistance in bacteria raised serious public health concern. In this work, algal biochar was coated onto the stainless steel mesh, and was employed as cathodic electrode for the degradation of sulfadiazine (SDZ) in an electro-Fenton (EF) system. It was found that algal biochar pyrolyzed at 600 °C with 1:1 KOH achieved best catalytic performance to generate H2O2 via oxygen reduction. Moreover, removal efficiency of SDZ reached 96.11% in 4 h with an initial concentration of 25 μg/mL, under the optimized condition as: initial pH at 3, 50 mM of Na2SO4 as electrolyte and an applied current of 20 mA/cm2. In addition, it was found that the SDZ removal kept at about 96.99% even after four repeated degradation process. Moreover, four possible SDZ degradative pathways during the EF process were proposed according to determined intermediates, model optimization and density functional theory calculation. Finally, acute and chronic biotoxicity of the degradative products against fish and green algae was evaluated, to further elaborate the environmental impact of SDZ after electrochemical degradation.
Collapse
Affiliation(s)
- Zhihao Gong
- School of Environmental and Civil Engineering, Jiangnan University, Wuxi, 214122, PR China
| | - Han Wang
- School of Environmental and Civil Engineering, Jiangnan University, Wuxi, 214122, PR China; Jiangsu Key Laboratory of Anaerobic Biotechnology, Wuxi, 214122, PR China
| | - Dimitris V Vayenas
- Department of Chemical Engineering, University of Patras, Caratheodory 1, University Campus, GR, 26504, Patras, Greece; Institute of Chemical Engineering and High Temperature Chemical Processes (FORTH/ICE-HT), Stadiou Str., Platani, GR, 26504, Patras, Greece
| | - Qun Yan
- School of Environmental and Civil Engineering, Jiangnan University, Wuxi, 214122, PR China; Jiangsu Key Laboratory of Anaerobic Biotechnology, Wuxi, 214122, PR China; Jiangsu Collaborative Innovation Center of Technology and Material of Water Treatment, Suzhou, 215011, PR China.
| |
Collapse
|
18
|
Nidheesh PV, Behera B, Babu DS, Scaria J, Kumar MS. Mixed industrial wastewater treatment by the combination of heterogeneous electro-Fenton and electrocoagulation processes. CHEMOSPHERE 2022; 290:133348. [PMID: 34922960 DOI: 10.1016/j.chemosphere.2021.133348] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 12/10/2021] [Accepted: 12/15/2021] [Indexed: 06/14/2023]
Abstract
Mixed industrial wastewater treatment efficiency of combined electro-Fenton (EF) and electrocoagulation (EC) processes was investigated in the present study. Alkali modified laterite soil was used as a heterogeneous EF catalyst and found superior performance than the raw laterite soil. Initially, the effect of catalyst dosage, initial pH, and applied voltage on the performance of EF process was carried out. A total of 54.57% COD removal was observed after 60 min of the EF treatment. Further treatment was carried out with EC process at different voltages. A total of 85.27% COD removal after 2 h treatment was observed by combining two electrochemical processes. Performance of EF followed by EC (EF + EC) process was compared with EC followed by EF (EC + EF) process. Even though efficiency is the same, EF + EC is a better strategy than EC + EF as it nullifies the neutralization requirement after EF process in addition to high mineralization efficiency, enhanced biodegradability, and lesser sludge generation.
Collapse
Affiliation(s)
- P V Nidheesh
- CSIR- National Environmental Engineering Research Institute, Nagpur, Maharashtra, India.
| | - Bibhudutta Behera
- CSIR- National Environmental Engineering Research Institute, Nagpur, Maharashtra, India; Institute of Environment and Sustainable Development, Banaras Hindu University, Varanasi, Uttar Pradesh, India
| | - D Syam Babu
- CSIR- National Environmental Engineering Research Institute, Nagpur, Maharashtra, India
| | - Jaimy Scaria
- CSIR- National Environmental Engineering Research Institute, Nagpur, Maharashtra, India
| | - M Suresh Kumar
- CSIR- National Environmental Engineering Research Institute, Nagpur, Maharashtra, India
| |
Collapse
|
19
|
Chen P, Mu Y, Chen Y, Tian L, Jiang XH, Zou JP, Luo SL. Shifts of surface-bound •OH to homogeneous •OH in BDD electrochemical system via UV irradiation for enhanced degradation of hydrophilic aromatic compounds. CHEMOSPHERE 2022; 291:132817. [PMID: 34752837 DOI: 10.1016/j.chemosphere.2021.132817] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 11/02/2021] [Accepted: 11/05/2021] [Indexed: 06/13/2023]
Abstract
Indirect electrochemical oxidation by hydroxyl radicals is the predominant degradation mechanism in electrolysis with a boron-doped diamond (BDD) anode. However, this electrochemical method exhibits low reactivity in removal of hydrophilic aromatic pollutants owing to mass transfer limitation. In this study, the combination of ultraviolet light and BDD electrolysis could increase the degradation rate of hydrophilic aromatic pollutants by approximately 8-10 times relative to electrolysis alone. According to the results of the scavenging experiments and identification of benzoic acid oxidation products, surface-bound hydroxyl radical (•OH(surface)) was the primary reactive species degrading aromatic pollutants in the BDD electrolysis process, whereas freely-diffusing homogeneous hydroxyl radical (•OH(free)) was the major reactive species in the UV-assisted BDD electrolysis process. Cyclic voltammetry revealed that UV light decomposed H2O2 formed on the BDD anode surface, thus retarding O2 evolution and facilitating •OH(free) generation. This work also explored the potential application of UV-assisted BDD electrolysis in removing COD from bio-pretreated landfill leachate containing high concentrations of hydrophilic aromatic pollutants. This study shed light on the importance of the existing state of •OH on removal of pollutants during BDD electrolysis, and provided a facile and efficient UV-assisted strategy for promoting degradation of hydrophilic aromatic pollutants.
Collapse
Affiliation(s)
- Peng Chen
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang Hangkong University, Nanchang 330063, PR China
| | - Yi Mu
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang Hangkong University, Nanchang 330063, PR China.
| | - Ying Chen
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang Hangkong University, Nanchang 330063, PR China
| | - Lei Tian
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang Hangkong University, Nanchang 330063, PR China
| | - Xun-Heng Jiang
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang Hangkong University, Nanchang 330063, PR China
| | - Jian-Ping Zou
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang Hangkong University, Nanchang 330063, PR China.
| | - Sheng-Lian Luo
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang Hangkong University, Nanchang 330063, PR China
| |
Collapse
|
20
|
Kuchtová G, Mikulášek P, Dušek L. The role of dye’s structure on the degradation rate during indirect anodic oxidation. MONATSHEFTE FUR CHEMIE 2022. [DOI: 10.1007/s00706-022-02897-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
21
|
Using chitosan-based heterogeneous catalyst for degradation of Acid Blue 25 in the effective electro-Fenton process with rotating cathodes. J Electroanal Chem (Lausanne) 2022. [DOI: 10.1016/j.jelechem.2021.115983] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2022]
|
22
|
Titchou FE, Zazou H, Afanga H, El Gaayda J, Ait Akbour R, Lesage G, Rivallin M, Cretin M, Hamdani M. Electrochemical oxidation treatment of Direct Red 23 aqueous solutions: Influence of the operating conditions. SEP SCI TECHNOL 2021. [DOI: 10.1080/01496395.2021.1982978] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Fatima Ezzahra Titchou
- Faculty of Sciences, Chemical Department, Ibn Zohr University, Dakhla District, Agadir, Morocco
| | - Hicham Zazou
- Faculty of Sciences, Chemical Department, Ibn Zohr University, Dakhla District, Agadir, Morocco
| | - Hanane Afanga
- Faculty of Sciences, Chemical Department, Ibn Zohr University, Dakhla District, Agadir, Morocco
| | - Jamila El Gaayda
- Faculty of Sciences, Chemical Department, Ibn Zohr University, Dakhla District, Agadir, Morocco
| | - Rachid Ait Akbour
- Faculty of Sciences, Chemical Department, Ibn Zohr University, Dakhla District, Agadir, Morocco
| | - Geoffroy Lesage
- Institut Européen des Membranes, Iem, Univ Montpellier, Cnrs, Enscm, Montpellier, France
| | - Matthieu Rivallin
- Institut Européen des Membranes, Iem, Univ Montpellier, Cnrs, Enscm, Montpellier, France
| | - Marc Cretin
- Institut Européen des Membranes, Iem, Univ Montpellier, Cnrs, Enscm, Montpellier, France
| | - Mohamed Hamdani
- Faculty of Sciences, Chemical Department, Ibn Zohr University, Dakhla District, Agadir, Morocco
| |
Collapse
|