1
|
Pooja G, Senthil Kumar P, Boobalan C, Rangasamy G. Efficient Removal of Pharmaceutical Contaminants from Aqueous Solution Using Plant-Derived Biosurfactant-Assisted Dissolved Air Flotation Process. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:27676-27689. [PMID: 39699876 DOI: 10.1021/acs.langmuir.4c04520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2024]
Abstract
This study investigates the removal of ibuprofen and diclofenac from aqueous media via a fully pressurized dissolved air flotation system, enhanced by fenugreek-derived saponin, a plant-based biosurfactant. The use of fenugreek saponin in flotation processes distinguishes this work from previous studies as it offers an ecofriendly and efficient alternative to chemical surfactants. The biosurfactant's surface-active properties were confirmed through FT-IR, UV-vis spectroscopy identified key functional groups and structural characteristics of the saponin, NMR provided molecular insights into its bioactive components, and surface tension analyses demonstrated its ability to reduce interfacial tension, indicating effective surfactant behavior. To optimize the saponin extraction, the ultrasound-assisted extraction (UAE) method was employed using a 70% ethanolic solution for 50 min, significantly improving the flotation efficiency. Experimental conditions were carefully optimized to maximize the removal efficiency of both contaminants. For ibuprofen, the optimal pH was 5 with a retention time of 10 min, while for diclofenac, the optimal pH was 4 with a contact time of 15 min. A saponin dosage of 0.4 wt % was used in both cases, with the flotation process operating under a pressure of 15 psig and a flow rate of 0.5 L/min. Under these conditions, the process attained a maximum removal efficiency of 98.59% for ibuprofen and 95.32% for diclofenac. GC-MS results further validated the presence of bioactive components in fenugreek saponin that are responsible for its high contaminant removal capacity. Despite the challenge of scum removal during the flotation process, this study demonstrates the high efficiency of this process in treating low-concentration pollutants. The process is not only rapid but also allows for selective pollutant removal while minimizing the use of harmful chemicals, offering a more sustainable and ecofriendly solution for wastewater treatment.
Collapse
Affiliation(s)
- Gowri Pooja
- Department of Chemical Engineering, Sri Sivasubramaniya Nadar College of Engineering, Kalavakkam 603 110, Tamil Nadu, India
- Centre of Excellence in Water Research (CEWAR), Sri Sivasubramaniya Nadar College of Engineering, Kalavakkam 603 110, Tamil Nadu, India
| | - Ponnusamy Senthil Kumar
- Centre for Pollution Control and Environmental Engineering, School of Engineering and Technology, Pondicherry University, Kalapet, Puducherry 605014, India
| | - Chitra Boobalan
- Department of Chemical Engineering, Sri Sivasubramaniya Nadar College of Engineering, Kalavakkam 603 110, Tamil Nadu, India
- Centre of Excellence in Water Research (CEWAR), Sri Sivasubramaniya Nadar College of Engineering, Kalavakkam 603 110, Tamil Nadu, India
| | - Gayathri Rangasamy
- Department of Civil Engineering, Faculty of Engineering, Karpagam Academy of Higher Education, Pollachi Main Road, Eachanari Post, Coimbatore 641021, Tamil Nadu, India
| |
Collapse
|
2
|
Mouafo HT, Sokamte AT, Mbawala A, Ndjouenkeu R, Devappa S. Biosurfactants from lactic acid bacteria: A critical review on production, extraction, structural characterization and food application. FOOD BIOSCI 2022. [DOI: 10.1016/j.fbio.2022.101598] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
3
|
Jin L, Black W, Sawyer T. Application of Environment-Friendly Rhamnolipids against Transmission of Enveloped Viruses Like SARS-CoV2. Viruses 2021; 13:v13020322. [PMID: 33672561 PMCID: PMC7924030 DOI: 10.3390/v13020322] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2020] [Revised: 02/11/2021] [Accepted: 02/18/2021] [Indexed: 12/13/2022] Open
Abstract
In the face of new emerging respiratory viruses, such as SARS-CoV2, vaccines and drug therapies are not immediately available to curb the spread of infection. Non-pharmaceutical interventions, such as mask-wearing and social distance, can slow the transmission. However, both mask and social distance have not prevented the spread of respiratory viruses SARS-CoV2 within the US. There is an urgent need to develop an intervention that could reduce the spread of respiratory viruses. The key to preventing transmission is to eliminate the emission of SARS-CoV2 from an infected person and stop the virus from propagating in the human population. Rhamnolipids are environmentally friendly surfactants that are less toxic than the synthetic surfactants. In this study, rhamnolipid products, 222B, were investigated as disinfectants against enveloped viruses, such as bovine coronavirus and herpes simplex virus 1 (HSV-1). The 222B at 0.009% and 0.0045% completely inactivated 6 and 4 log PFU/mL of HSV-1 in 5–10 min, respectively. 222B at or below 0.005% is also biologically safe. Moreover, 50 μL of 222B at 0.005% on ~1 cm2 mask fabrics or plastic surface can inactivate ~103 PFU HSV-1 in 3–5 min. These results suggest that 222B coated on masks or plastic surface can reduce the emission of SARS-CoV2 from an infected person and stop the spread of SARS-CoV2.
Collapse
Affiliation(s)
- Ling Jin
- Department of Biomedical Sciences, Carlson College of Veterinary Medicine, Oregon State University, Corvallis, OR 97331, USA;
- Department of Microbiology, College of Science, Oregon State University, Corvallis, OR 97331, USA
- Correspondence: ; Tel.: +1-541-737-9893
| | - Wendy Black
- Department of Biomedical Sciences, Carlson College of Veterinary Medicine, Oregon State University, Corvallis, OR 97331, USA;
| | - Teresa Sawyer
- Electron Microscopy Facility, 145 Linus Pauling Science Center, Oregon State University, Corvallis, OR 97331, USA;
| |
Collapse
|
4
|
Lara VM, Vallejo M, Parada R, Henao Ossa JS, Gliemmo MF, Campos CA. Characterization of the emulsifying activity of biosurfactants produced by lactic acid bacteria isolated from the Argentinian Patagonia. J DISPER SCI TECHNOL 2020. [DOI: 10.1080/01932691.2020.1845961] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Affiliation(s)
- Virginia M. Lara
- Departamento de Industrias, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
- Instituto de Tecnología de Alimentos y Procesos Químicos (ITAPROQ), CONICET – Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Marisol Vallejo
- Laboratorio de Biotecnología Bacteriana, Facultad de Ciencias Naturales y Cs. de la Salud, Universidad Nacional de la Patagonia San Juan Bosco, Trelew, Argentina
| | - Romina Parada
- Laboratorio de Biotecnología Bacteriana, Facultad de Ciencias Naturales y Cs. de la Salud, Universidad Nacional de la Patagonia San Juan Bosco, Trelew, Argentina
| | - Johan S. Henao Ossa
- Departamento de Ciencia y Tecnología, Universidad Nacional de Quilmes, Bernal, Argentina
| | - María F. Gliemmo
- Departamento de Industrias, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
- Instituto de Tecnología de Alimentos y Procesos Químicos (ITAPROQ), CONICET – Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Carmen A. Campos
- Departamento de Industrias, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
- Instituto de Tecnología de Alimentos y Procesos Químicos (ITAPROQ), CONICET – Universidad de Buenos Aires, Buenos Aires, Argentina
| |
Collapse
|
5
|
Chaprão MJ, Soares da Silva RDCF, Rufino RD, Luna JM, Santos VA, Sarubbo LA. Formulation and application of a biosurfactant from Bacillus methylotrophicus as collector in the flotation of oily water in industrial environment. J Biotechnol 2018; 285:15-22. [DOI: 10.1016/j.jbiotec.2018.08.016] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2018] [Revised: 08/12/2018] [Accepted: 08/27/2018] [Indexed: 12/12/2022]
|
6
|
Zaborowska M, Kucharski J, Wyszkowska J. Biochemical and microbiological activity of soil contaminated with o-cresol and biostimulated with Perna canaliculus mussel meal. ENVIRONMENTAL MONITORING AND ASSESSMENT 2018; 190:602. [PMID: 30242485 PMCID: PMC6153515 DOI: 10.1007/s10661-018-6979-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/21/2018] [Accepted: 09/13/2018] [Indexed: 06/08/2023]
Abstract
The choice of the study subject was a consequence of the growing interest in volatile organic compounds which are strongly dispersed in the environment. The knowledge of o-cresol's capability for being broken down by bacteria should be supplemented by studies aimed at determining the biochemical and microbiological activity of soils. o-Cresol was applied at the following rates: 0, 0.1, 1, 10, and 50 mg of o-cresol kg-1 d.m. of soil to determine its effect on the biological properties of soil. The activity of dehydrogenases, catalase, urease, acid phosphatase, alkaline phosphatase, arylsulfatase, and β-glucosidase, the eight groups of microorganism counts, was determined in soil samples after 45 days and the barley yield was determined. Preventive biostimulation with Perna canaliculus mussel meal, illustrated by means of the index of fertility (IF), was conducted in order to eliminate the adverse effect of o-cresol. The soil and crop resistance index (RS) was used to illustrate the response of barley, and R:S-the rhizosphere effect index was used to determine the effect of the crop on the enzymatic activity of soil. o-Cresol had a beneficial effect on the biological activity of soil at an acceptable rate of 0.1 and 1 mg kg-1 d.m. of soil, and it became its inhibitor after being applied at 10 and 50 mg kg-1 d.m. of soil, which also brought about a decrease in the resistance of spring barley. Dehydrogenases are the most sensitive, and catalase is the least sensitive, to the pressure of o-cresol in soil. Mussel meal can be recommended as a biostimulator of soil fertility. It also eliminated the negative effect of o-cresol on its biological activity.
Collapse
Affiliation(s)
- Magdalena Zaborowska
- University of Warmia and Mazury in Olsztyn, Plac Łódzki 3, 10-727 Olsztyn, Poland
| | - Jan Kucharski
- University of Warmia and Mazury in Olsztyn, Plac Łódzki 3, 10-727 Olsztyn, Poland
| | - Jadwiga Wyszkowska
- University of Warmia and Mazury in Olsztyn, Plac Łódzki 3, 10-727 Olsztyn, Poland
| |
Collapse
|
7
|
Recycled Lactobacillus pentosus biomass can regenerate biosurfactants after various fermentative and extractive cycles. Biochem Eng J 2018. [DOI: 10.1016/j.bej.2018.01.021] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
8
|
Bio-recycling of metals: Recycling of technical products using biological applications. Biotechnol Adv 2018; 36:1048-1062. [PMID: 29555455 DOI: 10.1016/j.biotechadv.2018.03.006] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2017] [Revised: 03/05/2018] [Accepted: 03/11/2018] [Indexed: 11/21/2022]
Abstract
The increasing demand of different essential metals as a consequence of the development of new technologies, especially in the so called "low carbon technologies" require the development of innovative technologies that enable an economic and environmentally friendly metal recovery from primary and secondary resources. There is serious concern that the demand of some critical elements might exceed the present supply within a few years, thus necessitating the development of novel strategies and technologies to meet the requirements of industry and society. Besides an improvement of exploitation and processing of ores, the more urgent issue of recycling of strategic metals has to be enforced. However, current recycling rates are very low due to the increasing complexity of products and the low content of certain critical elements, thus hindering an economic metal recovery. On the other hand, increasing environmental consciousness as well as limitations of classical methods require innovative recycling methodologies in order to enable a circular economy. Modern biotechnologies can contribute to solve some of the problems related to metal recycling. These approaches use natural properties of organisms, bio-compounds, and biomolecules to interact with minerals, materials, metals, or metal ions such as surface attachment, mineral dissolution, transformation, and metal complexation. Further, modern genetic approaches, e.g. realized by synthetic biology, enable the smart design of new chemicals. The article presents some recent developments in the fields of bioleaching, biosorption, bioreduction, and bioflotation, and their use for metal recovery from different waste materials. Currently only few of these developments are commercialized. Major limitations are high costs in comparison to conventional methods and low element selectivity. The article discusses future trends to overcome these barriers. Especially interdisciplinary approaches, the combination of different technologies, the inclusion of modern genetic methods, as well as the consideration of existing, yet unexplored natural resources will push innovations in these fields.
Collapse
|
9
|
|
10
|
He Q, Li L, Zhao X, Qu L, Wu D, Peng X. Investigation of foaming causes in three mesophilic food waste digesters: reactor performance and microbial analysis. Sci Rep 2017; 7:13701. [PMID: 29057910 PMCID: PMC5651842 DOI: 10.1038/s41598-017-14258-3] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2017] [Accepted: 10/09/2017] [Indexed: 12/21/2022] Open
Abstract
Foaming negatively affects anaerobic digestion of food waste (FW). To identify the causes of foaming, reactor performance and microbial community dynamics were investigated in three mesophilic digesters treating FW. The digesters were operated under different modes, and foaming was induced with several methods. Proliferation of specific bacteria and accumulation of surface active materials may be the main causes of foaming. Volatile fatty acids (VFAs) and total ammonia nitrogen (TAN) accumulated in these reactors before foaming, which may have contributed to foam formation by decreasing the surface tension of sludge and increasing foam stability. The relative abundance of acid-producing bacteria (Petrimonas, Fastidiosipila, etc.) and ammonia producers (Proteiniphilum, Gelria, Aminobacterium, etc.) significantly increased after foaming, which explained the rapid accumulation of VFAs and NH4+ after foaming. In addition, the proportions of microbial genera known to contribute to foam formation and stabilization significantly increased in foaming samples, including bacteria containing mycolic acid in cell walls (Actinomyces, Corynebacterium, etc.) and those capable of producing biosurfactants (Corynebacterium, Lactobacillus, 060F05-B-SD-P93, etc.). These findings improve the understanding of foaming mechanisms in FW digesters and provide a theoretical basis for further research on effective suppression and early warning of foaming.
Collapse
Affiliation(s)
- Qin He
- Key Laboratory of Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing, 400045, PR China
| | - Lei Li
- Key Laboratory of Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing, 400045, PR China
| | - Xiaofei Zhao
- Key Laboratory of Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing, 400045, PR China
| | - Li Qu
- Key Laboratory of Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing, 400045, PR China
| | - Di Wu
- Key Laboratory of Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing, 400045, PR China
| | - Xuya Peng
- Key Laboratory of Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing, 400045, PR China.
| |
Collapse
|
11
|
Vecino X, Cruz JM, Moldes AB, Rodrigues LR. Biosurfactants in cosmetic formulations: trends and challenges. Crit Rev Biotechnol 2017; 37:911-923. [PMID: 28076995 DOI: 10.1080/07388551.2016.1269053] [Citation(s) in RCA: 112] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Cosmetic products play an essential role in everyone's life. People everyday use a large variety of cosmetic products such as soap, shampoo, toothpaste, deodorant, skin care, perfume, make-up, among others. The cosmetic industry encompasses several environmental, social and economic impacts that are being addressed through the search for more efficient manufacturing techniques, the reduction of waste and emissions and the promotion of personal hygiene, contributing to an improvement of public health and at the same time providing employment opportunities. The current trend among consumers is the pursuit for natural ingredients in cosmetic products, as many of these products exhibit equal, better or additional benefits in comparison with the chemical-based products. In this sense, biosurfactants are natural compounds with great potential in the formulation of cosmetic products given by their biodegradability and impact in health. Indeed, many of these biosurfactants could exhibit a "prebiotic" character. This review covers the current state-of-the-art of biosurfactant research for cosmetic purposes and further discusses the future challenges for cosmetic applications.
Collapse
Affiliation(s)
- X Vecino
- a CEB-Centre of Biological Engineering , University of Minho , Braga , Portugal.,b Chemical Engineering Department, School of Industrial Engineering (EEI) , University of Vigo , Vigo , Pontevedra , Spain
| | - J M Cruz
- b Chemical Engineering Department, School of Industrial Engineering (EEI) , University of Vigo , Vigo , Pontevedra , Spain
| | - A B Moldes
- b Chemical Engineering Department, School of Industrial Engineering (EEI) , University of Vigo , Vigo , Pontevedra , Spain
| | - L R Rodrigues
- a CEB-Centre of Biological Engineering , University of Minho , Braga , Portugal
| |
Collapse
|
12
|
Satpute SK, Kulkarni GR, Banpurkar AG, Banat IM, Mone NS, Patil RH, Cameotra SS. Biosurfactant/s from Lactobacilli species: Properties, challenges and potential biomedical applications. J Basic Microbiol 2016; 56:1140-1158. [PMID: 27436796 DOI: 10.1002/jobm.201600143] [Citation(s) in RCA: 82] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2016] [Accepted: 06/06/2016] [Indexed: 01/18/2023]
Abstract
Lactic acid bacteria are generally believed to have positive roles in maintaining good health and immune system in humans. A number of Lactobacilli spp. are known to produce important metabolites, among which biosurfactants in particular have shown antimicrobial activity against several pathogens in the intestinal tract and female urogenital tract partly through interfering with biofilm formation and adhesion to the epithelial cells surfaces. Around 46 reports are documented on biosurfactant production from Lactobacillus spp. of which six can be broadly classified as cell free biosurfactant and 40 as cell associated biosurfactants and only approximately 50% of those have reported on the structural composition which, in order of occurrence were mainly proteinaceous, glycolipidic, glycoproteins, or glycolipopeptides in nature. Due to the proteinaceous nature, most biosurfactant produced by strains of Lactobacillus are generally believed to be surlactin type with high potential toward impeding pathogens adherence. Researchers have recently focused on the anti-adhesive and antibiofilm properties of Lactobacilli-derived biosurfactants. This review briefly discusses the significance of Lactobacilli-derived biosurfactants and their potential applications in various fields. In addition, we highlight the exceptional prospects and challenges in fermentation economics of Lactobacillus spp.-derived biosurfactants' production processes.
Collapse
Affiliation(s)
- Surekha K Satpute
- Department of Physics, Centre for Advanced Studies in Materials Science and Condensed Matter Physics, Savitribai Phule Pune University, Pune, Maharashtra, India
| | - Gauri R Kulkarni
- Department of Physics, Centre for Advanced Studies in Materials Science and Condensed Matter Physics, Savitribai Phule Pune University, Pune, Maharashtra, India.,Department of Physics, School of Basic Medical Sciences, Savitribai Phule Pune University, Pune, Maharashtra, India
| | - Arun G Banpurkar
- Department of Physics, Centre for Advanced Studies in Materials Science and Condensed Matter Physics, Savitribai Phule Pune University, Pune, Maharashtra, India
| | - Ibrahim M Banat
- School of Biomedical Sciences, University of Ulster, Coleraine, N. Ireland, UK
| | - Nishigandha S Mone
- Department of Physics, Centre for Advanced Studies in Materials Science and Condensed Matter Physics, Savitribai Phule Pune University, Pune, Maharashtra, India
| | - Rajendra H Patil
- Department of Biotechnology, Savitribai Phule Pune University, Pune, Maharashtra, India
| | | |
Collapse
|
13
|
Wong-Villarreal A, Reyes-López L, Corzo-González H, Blanco-González C, Yáñez-Ocampo G. Characterization of Bacteria Isolation of Bacteria from Pinyon Rhizosphere, Producing Biosurfactants from Agro-Industrial Waste. Pol J Microbiol 2016; 65:183-189. [DOI: 10.5604/17331331.1204478] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/17/2015] [Indexed: 11/13/2022] Open
|
14
|
Sharma D, Saharan BS, Kapil S. Biosurfactants of Probiotic Lactic Acid Bacteria. SPRINGERBRIEFS IN MICROBIOLOGY 2016. [DOI: 10.1007/978-3-319-26215-4_2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
15
|
Optimization of liquid-liquid extraction of biosurfactants from corn steep liquor. Bioprocess Biosyst Eng 2015; 38:1629-37. [PMID: 25911424 DOI: 10.1007/s00449-015-1404-9] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2015] [Accepted: 04/17/2015] [Indexed: 10/23/2022]
Abstract
In this work, the optimization of the operational conditions for the chloroform-based extraction of surface-active compounds from corn steep liquor (CSL) was carried out and the nutritional properties of the remnant aqueous phase (CSL-less biosurfactant) was evaluated as microbial fermentation medium. The optimal conditions to obtain biosurfactants from CSL were as follows: chloroform/CSL ratio 2 (v/v), 56 °C at extraction times >30 min. At the optima conditions, 100 % of biosurfactant extract can be obtained from CSL, obtaining 12.0 ± 0.5 g of biosurfactant extract/Kg of CSL. The critical micelle concentration (CMC) of the biosurfactant extract was 399.4 mg L(-1). This value is similar to the CMC of cetrimonium bromide (CTAB), a cationic surfactant used in the formulation of nanoparticles. The extraction of biosurfactant can be also carried out at room temperature although in this case, the extraction yield decreased about 15 %. The extraction of surface-active compounds from agroindustrial streams can suppose important advances for the bio-based surfactants industry. Biosurfactants obtained in this work are not only more eco-friendly than chemical detergents but also can be cost competitive with its chemical counterparts. Furthermore, after the extraction of surface-active compounds, CSL-less biosurfactant was found to be suitable as nutritional supplement for lactic acid bacteria, maintaining its nutritional properties in comparison with regular CSL.
Collapse
|
16
|
Vecino X, Barbosa-Pereira L, Devesa-Rey R, Cruz JM, Moldes AB. Optimization of extraction conditions and fatty acid characterization of Lactobacillus pentosus cell-bound biosurfactant/bioemulsifier. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2015; 95:313-20. [PMID: 24798413 DOI: 10.1002/jsfa.6720] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2014] [Revised: 04/28/2014] [Accepted: 04/28/2014] [Indexed: 05/21/2023]
Abstract
BACKGROUND There is currently much interest in the use of natural biosurfactants and bioemulsifiers, mainly in the cosmetic, pharmaceutical and food industries. However, there are no studies on the optimization of the extraction conditions of cell-bound biosurfactants. In this work, a biosurfactant with emulsifier properties was extracted from Lactobacillus pentosus cells, under different extraction conditions, and characterized. RESULTS During extraction, the most influential independent variable, concerning the emulsifying capacity of biosurfactant, was the operation time, followed by temperature and salt concentration. Biosurfactant from L. pentosus was evaluated by Fourier transform infrared spectroscopy and the composition of fatty acids was analyzed by gas chromatography-mass spectrometry. The hydrophobic chain of the biosurfactant from L. pentosus comprises 548 g kg(-1) linoelaidic acid (C18:2), 221 g kg(-1) oleic or elaidic acid (C18:1), 136 g kg(-1) palmitic acid (C16) and 95 g kg(-1) stearic acid (C18). In addition, emulsions of water and rosemary oil were stabilized with a biosurfactant produced by L. pentosus and compared with emulsions stabilized with polysorbate 20. CONCLUSION The optimum extraction conditions of biosurfactant were achieved at 45 °C at 120 min and using 9 g kg(-1) of salt. In all the assays biosurfactant from L. pentosus yielded more stable emulsions and higher emulsion volumes than polysorbate 20.
Collapse
Affiliation(s)
- Xanel Vecino
- Chemical Engineering Department, School of Industrial Engineering (EEI), University of Vigo, Campus As Lagoas-Marcosende, 36310, Vigo-Pontevedra, Spain
| | | | | | | | | |
Collapse
|
17
|
Vecino X, Bustos G, Devesa-Rey R, Cruz JM, Moldes AB. Salt-Free Aqueous Extraction of a Cell-Bound Biosurfactant: a Kinetic Study. J SURFACTANTS DETERG 2014. [DOI: 10.1007/s11743-014-1637-7] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
18
|
Kougias PG, De Francisci D, Treu L, Campanaro S, Angelidaki I. Microbial analysis in biogas reactors suffering by foaming incidents. BIORESOURCE TECHNOLOGY 2014; 167:24-32. [PMID: 24968108 DOI: 10.1016/j.biortech.2014.05.080] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2014] [Revised: 05/19/2014] [Accepted: 05/21/2014] [Indexed: 05/22/2023]
Abstract
Foam formation can lead to total failure of digestion process in biogas plants. In the present study, possible correlation between foaming and the presence of specific microorganisms in biogas reactors was elucidated. The microbial ecology of continuous fed digesters overloaded with proteins, lipids and carbohydrates before and after foaming incidents was characterized using 16S rRNA gene sequencing. Moreover, the microbial diversity between the liquid and foaming layer was assessed. A number of genera that are known to produce biosurfactants, contain mycolic acid in their cell wall, or decrease the surface tension of the media, increased their relative abundance after foam formation. Finally, a microorganism similar to widely known foaming bacteria (Nocardia and Desulfotomaculum) was found to increase its relative abundance in all reactors once foam was observed, regardless of the used substrate. These findings suggest that foaming and specific microorganisms might have direct association which requires to be further investigated.
Collapse
Affiliation(s)
- Panagiotis G Kougias
- Department of Environmental Engineering, Technical University of Denmark, Kgs. Lyngby DK-2800, Denmark
| | - Davide De Francisci
- Department of Environmental Engineering, Technical University of Denmark, Kgs. Lyngby DK-2800, Denmark
| | - Laura Treu
- Department of Environmental Engineering, Technical University of Denmark, Kgs. Lyngby DK-2800, Denmark
| | - Stefano Campanaro
- Department of Biology, University of Padua, Via U. Bassi 58/b, 35131 Padova, Italy
| | - Irini Angelidaki
- Department of Environmental Engineering, Technical University of Denmark, Kgs. Lyngby DK-2800, Denmark.
| |
Collapse
|