1
|
Ren K, Ming H, Liu S, Lang X, Jin Y, Fan J. Full-length 16S rRNA gene sequencing reveals the operating mode and chlorination-aggravated SWRO biofouling at a nuclear power plant. WATER SCIENCE AND TECHNOLOGY : A JOURNAL OF THE INTERNATIONAL ASSOCIATION ON WATER POLLUTION RESEARCH 2024; 90:1-17. [PMID: 39007303 DOI: 10.2166/wst.2024.185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Accepted: 05/24/2024] [Indexed: 07/16/2024]
Abstract
Reverse osmosis (RO) membrane fouling and biological contamination problems faced by seawater desalination systems are microbiologically related. We used full-length 16S rRNA gene sequencing to assess the bacterial community structure and chlorine-resistant bacteria (CRB) associated with biofilm growth in different treatment processes under the winter mode of a chlorinated seawater desalination system in China. At the outset of the winter mode, certain CRB, such as Acinetobacter, Pseudomonas, and Bacillus held sway over the bacterial community structure, playing a pivotal role in biofouling. At the mode's end, Deinococcus and Paracoccus predominated, with Pseudomonas and Roseovarius following suit, while certain CRB genera still maintained their dominance. RO and chlorination are pivotal factors in shaping the bacterial community structure and diversity, and increases in total heterotrophic bacterial counts and community diversity in safety filters may adversely affect the effectiveness of subsequent RO systems. Besides, the bacterial diversity and culturable biomass in the water produced by the RO system remain high, and some conditionally pathogenic CRBs pose a certain microbial risk as a source of drinking water. Targeted removal of these CRBs will be an important area of research for advancing control over membrane clogging and ensuring water quality safety in the future.
Collapse
Affiliation(s)
- Kaijia Ren
- State Environmental Protection Key Laboratory of Coastal Ecosystem, National Marine Environmental Monitoring Center, Dalian 116021, China; These authors contributed equally to this work
| | - Hongxia Ming
- State Environmental Protection Key Laboratory of Coastal Ecosystem, National Marine Environmental Monitoring Center, Dalian 116021, China; These authors contributed equally to this work
| | - Siyu Liu
- State Environmental Protection Key Laboratory of Coastal Ecosystem, National Marine Environmental Monitoring Center, Dalian 116021, China; College of Marine Ecology and Environment, Shanghai Ocean University, Shanghai 201306, China
| | - Xianlong Lang
- State Environmental Protection Key Laboratory of Coastal Ecosystem, National Marine Environmental Monitoring Center, Dalian 116021, China; College of Marine Technology and Environment, Dalian Ocean University, Dalian 116021, China
| | - Yuan Jin
- State Environmental Protection Key Laboratory of Coastal Ecosystem, National Marine Environmental Monitoring Center, Dalian 116021, China
| | - Jingfeng Fan
- State Environmental Protection Key Laboratory of Coastal Ecosystem, National Marine Environmental Monitoring Center, Dalian 116021, China E-mail:
| |
Collapse
|
2
|
Biodegradation of PLA/CNC composite modified with non-ionic surfactants. Polym Bull (Berl) 2022. [DOI: 10.1007/s00289-022-04618-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
|
3
|
Hoang TKD, Binh QA, Bui XT, Le TH, Dang BT, Nguyen HH, Ngo TTM, Kohler P, Makohliso S, Maryna P, Raab M, Vanobberghen A, Hayter A, Schönenberger K. Assessment of water, sanitation, and hygiene services in district health care facilities in rural area of Mekong Delta, Vietnam. ENVIRONMENTAL MONITORING AND ASSESSMENT 2022; 194:775. [PMID: 36255561 DOI: 10.1007/s10661-022-10179-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Accepted: 11/12/2021] [Indexed: 06/16/2023]
Abstract
Access to sufficient water, sanitation, and hygiene (WASH) services is a crucial requirement for patients during therapy and general well-being in the hospital. However, in low- and middle-income countries, these services are often inadequate, resulting in increased morbidity and mortality of patients. This study aimed at assessing the current situation of WASH services in six District Health Care Facilities (DHCFs) in rural areas of the Mekong Delta provinces, Vietnam. The results showed that these services were available with inappropriate quality, which did not compromise the stakeholders' needs. The revealed WASH infrastructures have raised concerns about the prolonged hospital stays for patients and push nosocomial infections to a high level. The safety of the water supply was doubted as the high E. coli (> 60%) and total coliform incidence (86%) was observed with very low residual chlorine concentration (< 0.1 mg/L) in water quality assessment. Moreover, water supply contained a high concentration of iron (up to 15.55 mg/L) in groundwater in one DHCF. Technical assessment tool analysis proved that the improper management and lack of knowledge by human resources were the primary roots of the observed status WASH services. Improvement of the perceptions of WASH should be done for the hospital staff with collaboration and support from the government to prevent incidents in the future.
Collapse
Affiliation(s)
- Thi-Khanh-Dieu Hoang
- Key Laboratory of Advanced Waste Treatment Technology & Faculty of Environment and Natural Resources, Ho Chi Minh City University of Technology (HCMUT), 268 Ly Thuong Kiet street, district 10, Ho Chi Minh City, 700000, Vietnam
- Vietnam National University Ho Chi Minh (VNU-HCM), Linh Trung Ward, Ho Chi Minh City, 700000, Vietnam
| | - Quach-An Binh
- Dong Nai Technology University, Dong Nai, Bien Hoa City, Vietnam
| | - Xuan-Thanh Bui
- Key Laboratory of Advanced Waste Treatment Technology & Faculty of Environment and Natural Resources, Ho Chi Minh City University of Technology (HCMUT), 268 Ly Thuong Kiet street, district 10, Ho Chi Minh City, 700000, Vietnam.
- Vietnam National University Ho Chi Minh (VNU-HCM), Linh Trung Ward, Ho Chi Minh City, 700000, Vietnam.
| | - Thi-Hieu Le
- Key Laboratory of Advanced Waste Treatment Technology & Faculty of Environment and Natural Resources, Ho Chi Minh City University of Technology (HCMUT), 268 Ly Thuong Kiet street, district 10, Ho Chi Minh City, 700000, Vietnam
- Vietnam National University Ho Chi Minh (VNU-HCM), Linh Trung Ward, Ho Chi Minh City, 700000, Vietnam
| | - Bao-Trong Dang
- HUTECH University, 475A, Dien Bien Phu, Ward 25, Binh Thanh District, Ho Chi Minh City, Vietnam
| | - Hong-Hai Nguyen
- Institute of Environmental Sciences, Nguyen Tat Thanh University, Ho Chi Minh City, Vietnam
| | - Thi-Tra-My Ngo
- Key Laboratory of Advanced Waste Treatment Technology & Faculty of Environment and Natural Resources, Ho Chi Minh City University of Technology (HCMUT), 268 Ly Thuong Kiet street, district 10, Ho Chi Minh City, 700000, Vietnam
- Vietnam National University Ho Chi Minh (VNU-HCM), Linh Trung Ward, Ho Chi Minh City, 700000, Vietnam
| | - Petra Kohler
- EssentialTech Centre, Ecole Polytechnique Fédérale de Lausanne, Station 10, EPFL 1015, Lausanne, Switzerland
| | - Solomzi Makohliso
- EssentialTech Centre, Ecole Polytechnique Fédérale de Lausanne, Station 10, EPFL 1015, Lausanne, Switzerland
| | - Peter Maryna
- University of Applied Sciences & Arts, Northwestern Switzerland, Muttenz, Switzerland
| | - Martin Raab
- Swiss Tropical and Public Health, Allschwil, Switzerland
| | - Alexandre Vanobberghen
- Health Technology and Telemedicine Unit (HTTU) of the Swiss Centre for International Health (SCIH), Basel, Switzerland
| | | | - Klaus Schönenberger
- EssentialTech Centre, Ecole Polytechnique Fédérale de Lausanne, Station 10, EPFL 1015, Lausanne, Switzerland
| |
Collapse
|
4
|
Mikelonis AM, Ratliff K, Youn S. Laboratory results and mathematical modeling of spore surface interactions in stormwater runoff. JOURNAL OF CONTAMINANT HYDROLOGY 2020; 235:103707. [PMID: 32916588 PMCID: PMC7704712 DOI: 10.1016/j.jconhyd.2020.103707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Revised: 08/25/2020] [Accepted: 08/26/2020] [Indexed: 06/11/2023]
Abstract
Development of numerical models to predict stormwater-mediated transport of pathogenic spores in the environment depends on an understanding of adhesion forces that dictate detachment after rain events. Zeta potential values were measured in the laboratory for Bacillus globigii and Bacillus thuringiensis kurstaki, two common surrogates used to represent Bacillus anthracis, in synthetic baseline ultrapure water and laboratory prepared stormwater. Zeta potential curves were also determined for materials representative of urban infrastructure (concrete and asphalt). These data were used to predict the interaction energy between the spores and urban materials using Derjaguin-Landau-Verwey-Overbeek (DLVO) modeling. B. globigii and B. thuringiensis kurstaki sourced from Yakibou Inc., were found to have similar zeta potential curves, whereas spores sourced from the U.S. military's Dugway laboratory were found to diverge. In the ultrapure water, the modeling results use the laboratory data to demonstrate that the energy barriers between the spores and the urban materials were tunable through compression of the electrical double layer of the spores via changes of ionic strength and pH of the water. In the runoff water, charge neutralization dominated surface processes. The cations, metals, and natural organic matter (NOM) in the runoff water contributed to equalizing the zeta potential values for Dugway B. globigii and B. thuringiensis kurstaki, and drastically modified the surface of the concrete and asphalt. All DLVO energy curves using the runoff water were repulsive. The highest energy barrier predicted in this study was for Dugway B. globigii spores interacting with a concrete surface in runoff water, suggesting that this would be the most challenging combination to detach through water-based decontamination.
Collapse
Affiliation(s)
- Anne M Mikelonis
- Office of Research and Development, Center for Environmental Solutions and Emergency Response, Homeland Security and Materials Management Division, U.S. Environmental Protection Agency, 109 T.W. Alexander Drive, Research Triangle Park, NC 27709, USA.
| | - Katherine Ratliff
- Office of Research and Development, Center for Environmental Solutions and Emergency Response, Homeland Security and Materials Management Division, U.S. Environmental Protection Agency, 109 T.W. Alexander Drive, Research Triangle Park, NC 27709, USA
| | - Sungmin Youn
- Marshall University, Department of Civil Engineering, College of Engineering and Computer Sciences, 1 John Marshall Drive, Huntington, WV 25755, United States
| |
Collapse
|
5
|
Buse HY, Morris BJ, Gomez-Alvarez V, Szabo JG, Hall JS. Legionella Diversity and Spatiotemporal Variation in The Occurrence of Opportunistic Pathogens within a Large Building Water System. Pathogens 2020; 9:E567. [PMID: 32668779 PMCID: PMC7400177 DOI: 10.3390/pathogens9070567] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Revised: 07/06/2020] [Accepted: 07/07/2020] [Indexed: 01/22/2023] Open
Abstract
Understanding Legionella survival mechanisms within building water systems (BWSs) is challenging due to varying engineering, operational, and water quality characteristics unique to each system. This study aimed to evaluate Legionella, mycobacteria, and free-living amoebae occurrence within a BWS over 18-28 months at six locations differing in plumbing material and potable water age, quality, and usage. A total of 114 bulk water and 57 biofilm samples were analyzed. Legionella culturability fluctuated seasonally with most culture-positive samples being collected during the winter compared to the spring, summer, and fall months. Positive and negative correlations between Legionella and L. pneumophila occurrence and other physiochemical and microbial water quality parameters varied between location and sample types. Whole genome sequencing of 19 presumptive Legionella isolates, from four locations across three time points, identified nine isolates as L. pneumophila serogroup (sg) 1 sequence-type (ST) 1; three as L. pneumophila sg5 ST1950 and ST2037; six as L. feeleii; and one as Ochrobactrum. Results showed the presence of a diverse Legionella population with consistent and sporadic occurrence at four and two locations, respectively. Viewed collectively with similar studies, this information will enable a better understanding of the engineering, operational, and water quality parameters supporting Legionella growth within BWSs.
Collapse
Affiliation(s)
- Helen Y. Buse
- Homeland Security and Materials Management Division, Center for Environmental Solutions & Emergency Response (CESER), Office of Research and Development (ORD), US Environmental Protection Agency (USEPA), Cincinnati, OH 45268, USA; (J.G.S.); (J.S.H.)
| | - Brian J. Morris
- Pegasus Technical Services, Inc c/o US EPA, Cincinnati, OH 45268, USA;
| | - Vicente Gomez-Alvarez
- Water Infrastructure Division, Center for Environmental Solutions & Emergency Response (CESER), US Environmental Protection Agency (USEPA), Office of Research and Development (ORD), Cincinnati, OH 45268, USA;
| | - Jeffrey G. Szabo
- Homeland Security and Materials Management Division, Center for Environmental Solutions & Emergency Response (CESER), Office of Research and Development (ORD), US Environmental Protection Agency (USEPA), Cincinnati, OH 45268, USA; (J.G.S.); (J.S.H.)
| | - John S. Hall
- Homeland Security and Materials Management Division, Center for Environmental Solutions & Emergency Response (CESER), Office of Research and Development (ORD), US Environmental Protection Agency (USEPA), Cincinnati, OH 45268, USA; (J.G.S.); (J.S.H.)
| |
Collapse
|
6
|
Zhu Z, Shan L, Hu F, Li Z, Zhong D, Yuan Y, Zhang J. Biofilm formation potential and chlorine resistance of typical bacteria isolated from drinking water distribution systems. RSC Adv 2020; 10:31295-31304. [PMID: 35520667 PMCID: PMC9056398 DOI: 10.1039/d0ra04985a] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Accepted: 08/17/2020] [Indexed: 11/30/2022] Open
Abstract
Biofilms are the main carrier of microbial communities throughout drinking water distribution systems (DWDSs), and strongly affect the safety of drinking water. Understanding biofilm formation potential and chlorine resistance is necessary for exploring future disinfection strategies and preventing water-borne diseases. This study investigated biofilm formation of five bacterial strains isolated from a simulated DWDS at different incubation times (24 h, 48 h, and 72 h), then evaluated chlorine resistance of 72 h incubated biofilms under chlorine concentrations of 0.3, 0.6, 1, 2, 4, and 10 mg L−1. All five bacterial strains had biofilm formation potential when incubated for 72 h. The biofilm formation potential of Acinetobacter sp. was stronger than that of Bacillus cereus, Microbacterium sp. and Sphingomonas sp. were moderate, and that of Acidovorax sp. was weak. In contrast, the order of chlorine resistance was Bacillus sp. > Sphingomonas sp. > Microbacterium sp. > Acidovorax sp. > Acinetobacter sp. Thus, the chlorine resistance of a single-species biofilm has little relation with the biofilm formation potential. The biofilm biomass is not a major factor affecting chlorine resistance. Moreover, the chlorine resistance of a single-species biofilm is highly related to the physiological state of bacterial cells, such as their ability to form spores or secrete extracellular polymeric substances, which could reduce the sensitivity of the single-species biofilm to a disinfectant or otherwise protect the biofilm. Biofilms are the main carrier of microbial communities throughout drinking water distribution systems (DWDSs), and strongly affect the safety of drinking water.![]()
Collapse
Affiliation(s)
- Zebing Zhu
- School of Civil Engineering and Architecture
- East China Jiao Tong University
- Nanchang
- China
- State Key Laboratory of Urban Water Resource and Environment
| | - Lili Shan
- School of Civil Engineering and Architecture
- East China Jiao Tong University
- Nanchang
- China
| | - Fengping Hu
- School of Civil Engineering and Architecture
- East China Jiao Tong University
- Nanchang
- China
| | - Zehua Li
- School of Civil Engineering and Architecture
- East China Jiao Tong University
- Nanchang
- China
| | - Dan Zhong
- State Key Laboratory of Urban Water Resource and Environment
- School of Environment
- Harbin Institute of Technology
- Harbin
- China
| | - Yixing Yuan
- State Key Laboratory of Urban Water Resource and Environment
- School of Environment
- Harbin Institute of Technology
- Harbin
- China
| | - Jie Zhang
- State Key Laboratory of Urban Water Resource and Environment
- School of Environment
- Harbin Institute of Technology
- Harbin
- China
| |
Collapse
|
7
|
Le Toquin E, Faure S, Orange N, Gas F. New Biocide Foam Containing Hydrogen Peroxide for the Decontamination of Vertical Surface Contaminated With Bacillus thuringiensis Spores. Front Microbiol 2018; 9:2295. [PMID: 30319592 PMCID: PMC6171482 DOI: 10.3389/fmicb.2018.02295] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2017] [Accepted: 09/07/2018] [Indexed: 01/23/2023] Open
Abstract
Despite scientific advances, bacterial spores remain a major preoccupation in many different fields, such as the hospital, food, and CBRN-E Defense sector. Although many disinfectant technologies exist, there is a lack for the decontamination of difficult to access areas, outdoor sites, or large interior volumes. This study evaluates the decontamination efficiency of an aqueous foam containing hydrogen peroxide, with the efficiency of disinfectant in the liquid form on vertical surfaces contaminated by Bacillus thurengiensis spores. The decontamination efficiency impact of the surfactant and stabilizer agents in the foam and liquid forms was evaluated. No interferences were observed with these two chemical additives. Our results indicate that the decontamination kinetics of both foam and liquid forms are similar. In addition, while the foam form was as efficient as the liquid solution at 4°C, it was even more so at 30°C. The foam decontamination reaction follows the Arrhenius law, which enables the decontamination kinetic to be predicted with the temperature. Moreover, the foam process used via spraying or filling is more attractive due to the generation of lower quantity of liquid effluents. Our findings highlight the greater suitability of foam to decontaminate difficult to access and high volume facilities compared to liquid solutions.
Collapse
Affiliation(s)
- Esther Le Toquin
- Laboratoire Innovations technologiques pour la Détection et le Diagnostic, Service de Pharmacologie et Immunoanalyse, DRF, CEA, INRA, Bagnols-sur-Cèze, France.,Laboratoire de Microbiologie Signaux et Microenvironnement, Université de Rouen, Evreux, France
| | - Sylvain Faure
- Laboratoire des Procédés Supercritiques et Décontamination, Service d'études des technologies pour l'assainissement démantèlement et l'étanchéité, Univ. Montpellier, DEN, CEA, Bagnols-sur-Cèze, France
| | - Nicole Orange
- Laboratoire de Microbiologie Signaux et Microenvironnement, Université de Rouen, Evreux, France
| | - Fabienne Gas
- Laboratoire Innovations technologiques pour la Détection et le Diagnostic, Service de Pharmacologie et Immunoanalyse, DRF, CEA, INRA, Bagnols-sur-Cèze, France
| |
Collapse
|
8
|
Szabo J, Hall J, Reese S, Goodrich J, Panguluri S, Meiners G, Ernst H. Full Scale Drinking Water System Decontamination at the Water Security Test Bed. JOURNAL - AMERICAN WATER WORKS ASSOCIATION 2018; 109:E535-E547. [PMID: 29681646 PMCID: PMC5903577 DOI: 10.5942/jawwa.2017.109.0141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
The EPA's Water Security Test Bed (WSTB) facility is a full-scale representation of a drinking water distribution system. In collaboration with the Idaho National Laboratory (INL), EPA designed the WSTB facility to support full-scale evaluations of water infrastructure decontamination, real-time sensors, mobile water treatment systems, and decontamination of premise plumbing and appliances. The EPA research focused on decontamination of 1) Bacillus globigii (BG) spores, a non-pathogenic surrogate for Bacillus anthracis and 2) Bakken crude oil. Flushing and chlorination effectively removed most BG spores from the bulk water but BG spores still remained on the pipe wall coupons. Soluble oil components of Bakken crude oil were removed by flushing although oil components persisted in the dishwasher and refrigerator water dispenser. Using this full-scale distribution system allows EPA to 1) test contaminants without any human health or ecological risk and 2) inform water systems on effective methodologies responding to possible contamination incidents.
Collapse
Affiliation(s)
- Jeffrey Szabo
- Environmental Engineer, U.S. Environmental Protection Agency, 26 W. Martin Luther King Dr., (MS NG-16), Cincinnati, OH 45268, 513-487-2823
| | - John Hall
- Physical Scientist, U.S. Environmental Protection Agency, 26 W. Martin Luther King Dr. (MS NG-16), Cincinnati, OH 45268, 513-487-2814
| | - Steve Reese
- Engineer, Idaho National Laboratory, 2525 Fremont Ave, Idaho Falls, ID 83402, 208-526-0070
| | - Jim Goodrich
- Senior Research Advisor, U.S. Environmental Protection Agency, 26 W. Martin Luther King Dr. (MS NG-16), Cincinnati, OH 45268, 513-569-7605
| | - Sri Panguluri
- Senior Project Engineer, CB&I Federal Services, LLC, 1600 Gest St., Cincinnati, OH 45204, 513-487-2811
| | - Greg Meiners
- Senior Project Engineer, CB&I Federal Services, LLC, 1600 Gest St., Cincinnati, OH 45204, 513-487-2821
| | - Hiba Ernst
- Division Director, U.S. Environmental Protection Agency, 26 W. Martin Luther King Dr. (MS NG-16), Cincinnati, OH 45268, 513-569-7930
| |
Collapse
|