1
|
Kalvaitienė G, Picazo Espinosa R, Vaičiūtė D, Kataržytė M. Diverse sources of fecal contamination in macroalgae wrack-affected environment adjacent to river outflow along the Baltic Sea coast. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 357:124429. [PMID: 38925212 DOI: 10.1016/j.envpol.2024.124429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2024] [Revised: 06/21/2024] [Accepted: 06/22/2024] [Indexed: 06/28/2024]
Abstract
We investigated the dynamics of feces-associated microorganisms in areas with wrack accumulation in the southeastern part of the Baltic Sea. Our study covered single-day (2021 ) and multi-day (2022) observations during the recreational season. We collected water, sand, and wrack samples and assessed the abundance of fecal indicator bacteria (FIB), as well metagenomic analysis was conducted to monitor changes in microbial composition. Based on metagenomic data we identified taxa associated with feces, sewage, and ruminant sources. Human-related fecal pollution based on genetic markers correlated with the presence of Lachnospiraceae, Prevotellaceae and Rickenellacea abundance. Higher abundance and diversity of feces-associated and ruminant-associated taxa and the presence of enteric pathogens were observed when wrack accumulated near the river outflow in 2021, suggesting a potential link with fecal pollution from the river. As a preventive measure, it is recommended to remove the wrack to reduce the risk of exposure to potential enteric pathogens if it is accumulated next to the river outflow.
Collapse
Affiliation(s)
- Greta Kalvaitienė
- Klaipėda University, Marine Research Institute, University Avenue 17, 92295 Klaipėda, Lithuania.
| | - Rafael Picazo Espinosa
- Klaipėda University, Marine Research Institute, University Avenue 17, 92295 Klaipėda, Lithuania.
| | - Diana Vaičiūtė
- Klaipėda University, Marine Research Institute, University Avenue 17, 92295 Klaipėda, Lithuania.
| | - Marija Kataržytė
- Klaipėda University, Marine Research Institute, University Avenue 17, 92295 Klaipėda, Lithuania.
| |
Collapse
|
2
|
Quero GM, Guicciardi S, Penna P, Catenacci G, Brandinelli M, Bolognini L, Luna GM. Increasing trends in faecal pollution revealed over a decade in the central Adriatic Sea (Italy). WATER RESEARCH 2024; 262:122083. [PMID: 39067273 DOI: 10.1016/j.watres.2024.122083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 07/08/2024] [Accepted: 07/10/2024] [Indexed: 07/30/2024]
Abstract
Faecal contamination of the coastal sea poses widespread hazard to human and environmental health and is predicted to rise in response to global change and human pressure. For better management and risk reduction it is thus imperative to clarify and predict trends of faecal pollution over spatial and temporal scales, and to assess links with climate and other variables. Here, we investigated the spatio-temporal variation in the Faecal Indicator Bacteria (FIB) Escherichia coli and enterococci, over a time frame spanning 11 years (2011-2021) along a coastal area covering approximately 40 km and 59 bathing sites in the Marche region (Adriatic Sea, Italy), characterized by intense beach tourism, high riverine inputs, resident population, maritime traffic and industrial activities. Our analysis, that considers 5,183 measurements during the bathing season (April to October), shows that FIB abundance varied significantly among years. A general, although not significant, increase over time of both FIB was observed, mainly due to a general reduction of structural zeros (i.e., zeros originated from the actual absence of the response variable) over the examined time period. FIB abundances displayed their maxima and minima in different years according to the municipality, with overall peaks recorded in different months (May-June or September), whereas the lowest values were always observed in October. FIB levels were not significantly related neither to rainfalls nor to river discharge, but the activation of combined sewer overflows (CSOs), typically occurring after intense rainfall events, appeared as a necessary condition for the high faecal contamination levels. Considering climate change scenarios predicting significant increases in extreme weather events, our findings support the usefulness of analysing long-term trends to identify pollution sources, and the prioritization of control strategies to better manage the release of microbial pollutants from combined sewer overflows in coastal waters to reduce human risks.
Collapse
Affiliation(s)
- Grazia Marina Quero
- Institute of Marine Biological Resources and Biotechnologies, National Research Council (CNR-IRBIM), Ancona, Italy; NBFC, National Biodiversity Future Center, Palermo 90133, Italy
| | - Stefano Guicciardi
- Institute of Marine Biological Resources and Biotechnologies, National Research Council (CNR-IRBIM), Ancona, Italy
| | - Pierluigi Penna
- Institute of Marine Biological Resources and Biotechnologies, National Research Council (CNR-IRBIM), Ancona, Italy
| | | | | | | | - Gian Marco Luna
- Institute of Marine Biological Resources and Biotechnologies, National Research Council (CNR-IRBIM), Ancona, Italy; NBFC, National Biodiversity Future Center, Palermo 90133, Italy.
| |
Collapse
|
3
|
Montas Bravo L, Chen Y, Zhang H, Abdool-Ghany AA, Lamm E, Quijada A, Reiner R, Ortega Castineiras C, Knowles A, Precht L, Solo-Gabriele H. Enterococci pathways to coastal waters and implications of sea level rise. WATER RESEARCH 2024; 254:121341. [PMID: 38422693 DOI: 10.1016/j.watres.2024.121341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 02/16/2024] [Accepted: 02/18/2024] [Indexed: 03/02/2024]
Abstract
Highly urban coastal communities in low lying areas and with high water tables are vulnerable to sea-level rise and to corresponding increases in coastal groundwater levels. Stormwater conveyance systems are under increased risk. Rising groundwater levels affect the hydraulics of the stormwater system thereby increasing contaminant transport, for example the fecal indicator bacteria enterococci, to coastal waters. This study offers a unique opportunity to evaluate the impacts of increased contaminant transport on marine coastal environments. Here we assessed historic and recent coastal water quality, stormwater sampling data, groundwater monitoring and tidal elevations near the coastline, in the context of altered hydraulics within the system. Two pathways of enterococci to marine waters were identified. Direct discharge of contaminated stormwater runoff via the stormwater outfalls and tidally driven contaminated groundwater discharge. As sea level continues to rise, we hypothesize that a diminished unsaturated zone coupled with altered hydraulic conditions at the coastal groundwater zone will facilitate the transport of enterococci from urban sediments to the study site (Park View Waterway in Miami Beach, FL USA). We recommend improvements to the stormwater conveyance system, and maintenance of the sanitary sewer system to mitigate these impacts and minimize transport of enterococci, and other stormwater pollutants to coastal waters. The results of this study can be useful to interpret high enterococci levels in low lying coastal areas where groundwater is influenced by rising sea water levels.
Collapse
Affiliation(s)
- Larissa Montas Bravo
- Department of Chemical, Environmental, and Materials Engineering, University of Miami, 1251 Memorial Drive, McArthur Engineering Building, 1251 Memorial Drive, Coral Gables, FL 33146, United States.
| | - Yutao Chen
- Department of Civil and Architectural Engineering, University of Miami, Coral Gables, FL 33146, United States
| | - Hekai Zhang
- Department of Civil and Architectural Engineering, University of Miami, Coral Gables, FL 33146, United States
| | - Afeefa A Abdool-Ghany
- Department of Chemical, Environmental, and Materials Engineering, University of Miami, 1251 Memorial Drive, McArthur Engineering Building, 1251 Memorial Drive, Coral Gables, FL 33146, United States
| | - Erik Lamm
- Department of Civil and Architectural Engineering, University of Miami, Coral Gables, FL 33146, United States
| | - Ashley Quijada
- Department of Chemical, Environmental, and Materials Engineering, University of Miami, 1251 Memorial Drive, McArthur Engineering Building, 1251 Memorial Drive, Coral Gables, FL 33146, United States
| | - Rivka Reiner
- Department of Chemical, Environmental, and Materials Engineering, University of Miami, 1251 Memorial Drive, McArthur Engineering Building, 1251 Memorial Drive, Coral Gables, FL 33146, United States
| | - Cristina Ortega Castineiras
- City of Miami Beach, Department of Public Works, 1700 Convention Center Drive, Miami Beach, FL 33139, United States
| | - Amy Knowles
- City of Miami Beach, Environment and Sustainability Department, 1700 Convention Center Drive, Miami Beach, FL 33139, United States
| | - Lindsey Precht
- City of Miami Beach, Environment and Sustainability Department, 1700 Convention Center Drive, Miami Beach, FL 33139, United States
| | - Helena Solo-Gabriele
- Department of Chemical, Environmental, and Materials Engineering, University of Miami, 1251 Memorial Drive, McArthur Engineering Building, 1251 Memorial Drive, Coral Gables, FL 33146, United States; Department of Civil and Architectural Engineering, University of Miami, Coral Gables, FL 33146, United States
| |
Collapse
|
4
|
Adhikary RK, Starrs D, Wright D, Croke B, Glass K, Lal A. Spatio-Temporal Variation in the Exceedance of Enterococci in Lake Burley Griffin: An Analysis of 16 Years' Recreational Water Quality Monitoring Data. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2024; 21:579. [PMID: 38791793 PMCID: PMC11121496 DOI: 10.3390/ijerph21050579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 04/22/2024] [Accepted: 04/24/2024] [Indexed: 05/26/2024]
Abstract
Recreational waterbodies with high levels of faecal indicator bacteria (FIB) pose health risks and are an ongoing challenge for urban-lake managers. Lake Burley Griffin (LBG) in the Australian Capital city of Canberra is a popular site for water-based recreation, but analyses of seasonal and long-term patterns in enterococci that exceed alert levels (>200 CFU per 100 mL, leading to site closures) are lacking. This study analysed enterococci concentrations from seven recreational sites from 2001-2021 to examine spatial and temporal patterns in exceedances during the swimming season (October-April), when exposure is highest. The enterococci concentrations varied significantly across sites and in the summer months. The frequency of the exceedances was higher in the 2009-2015 period than in the 2001-2005 and 2015-2021 periods. The odds of alert-level concentrations were greater in November, December, and February compared to October. The odds of exceedance were higher at the Weston Park East site (swimming beach) and lower at the Ferry Terminal and Weston Park West site compared to the East Basin site. This preliminary examination highlights the need for site-specific assessments of environmental and management-related factors that may impact the public health risks of using the lake, such as inflows, turbidity, and climatic conditions. The insights from this study confirm the need for targeted monitoring efforts during high-risk months and at specific sites. The study also advocates for implementing measures to minimise faecal pollution at its sources.
Collapse
Affiliation(s)
- Ripon Kumar Adhikary
- National Centre for Epidemiology and Population Health, Australian National University, Canberra 2601, Australia; (K.G.); (A.L.)
- Department of Fisheries and Marine Bioscience, Jashore University of Science and Technology, Jashore 7408, Bangladesh
| | - Danswell Starrs
- Environment, Planning and Sustainable Development Directorate, ACT Government, Canberra 2601, Australia;
- Research School of Biology, Australian National University, Canberra 2601, Australia
| | - David Wright
- Lake and Dam, National Capital Authority, Canberra 2601, Australia;
| | - Barry Croke
- Institute for Water Futures, Mathematical Sciences Institute and Fenner School of Environment and Society, Australian National University, Canberra 2601, Australia;
| | - Kathryn Glass
- National Centre for Epidemiology and Population Health, Australian National University, Canberra 2601, Australia; (K.G.); (A.L.)
| | - Aparna Lal
- National Centre for Epidemiology and Population Health, Australian National University, Canberra 2601, Australia; (K.G.); (A.L.)
| |
Collapse
|
5
|
Abdool-Ghany AA, Sahwell PJ, Klaus J, Gidley ML, Sinigalliano CD, Solo-Gabriele HM. Fecal indicator bacteria levels at a marine beach before, during, and after the COVID-19 shutdown period and associations with decomposing seaweed and human presence. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 851:158349. [PMID: 36041612 DOI: 10.1016/j.scitotenv.2022.158349] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 08/06/2022] [Accepted: 08/24/2022] [Indexed: 06/15/2023]
Abstract
Studies are limited that evaluate seaweed as a source of bacteria to beach waters. The objective of the current study was to evaluate whether seaweed, along with humans and other animals, could be the cause of beach advisories due to elevated levels of enterococci. The monitoring period occurred a year prior to and through the COVID-19 beach shutdown period, which provided a unique opportunity to evaluate bacteria levels during prolonged periods without recreational activity. Samples of water, sediment, and seaweed were measured for enterococci by culture and qPCR, in addition to microbial source tracking by qPCR of fecal bacteria markers from humans, dogs, and birds. During periods of elevated enterococci levels in water, these analyses were supplemented by chemical source tracking of human-associated excretion markers (caffeine, sucralose, acetaminophen, ibuprofen, and naproxen). Results show that enterococci with elevated levels of human fecal markers persist in the seaweed and sediment and are the likely contributor to elevated levels of bacteria to the nearshore waters. During the shutdown period the elevated levels of enterococci in the sediment were isolated to the seaweed stranding areas. During periods when the beaches were open, enterococci were distributed more uniformly in sediment across the supratidal and intertidal zones. It is hypothesized from this study that human foot traffic may be responsible for the spread of enterococci throughout these areas. Overall, this study found high levels of enterococci in decomposing seaweed supporting the hypothesis that decomposing seaweed provides an additional substrate for enterococci to grow.
Collapse
Affiliation(s)
- Afeefa A Abdool-Ghany
- Department of Chemical, Environmental, and Materials Engineering, College of Engineering, University of Miami, Coral Gables, FL, USA
| | - Peter J Sahwell
- Department of Chemical, Environmental, and Materials Engineering, College of Engineering, University of Miami, Coral Gables, FL, USA
| | - James Klaus
- Department of Marine Geosciences, Rosenstiel School of Marine and Atmospheric Sciences, University of Miami, Key Biscayne, FL, USA
| | - Maribeth L Gidley
- University of Miami, Cooperative Institute for Marine and Atmospheric Studies (CIMAS), Miami, FL, USA; National Oceanic and Atmospheric Administration (NOAA), Atlantic Oceanographic and Meteorological Laboratory (AOML), Miami, FL, USA
| | - Christopher D Sinigalliano
- National Oceanic and Atmospheric Administration (NOAA), Atlantic Oceanographic and Meteorological Laboratory (AOML), Miami, FL, USA
| | - Helena M Solo-Gabriele
- Department of Chemical, Environmental, and Materials Engineering, College of Engineering, University of Miami, Coral Gables, FL, USA.
| |
Collapse
|
6
|
Brewton RA, Kreiger LB, Tyre KN, Baladi D, Wilking LE, Herren LW, Lapointe BE. Septic system-groundwater-surface water couplings in waterfront communities contribute to harmful algal blooms in Southwest Florida. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 837:155319. [PMID: 35452738 DOI: 10.1016/j.scitotenv.2022.155319] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 04/11/2022] [Accepted: 04/12/2022] [Indexed: 06/14/2023]
Abstract
As human population growth has expanded in Southwest Florida, water quality has become degraded with an increased occurrence of harmful algal blooms (HABs). Red tide (Karenia brevis) originating offshore, intensifies in nearshore waters along Florida's Gulf Coast, and blue-green algae (Microcystis spp.) originating in Lake Okeechobee is discharged into the Caloosahatchee River. These HABs could be enhanced by anthropogenic nitrogen (N) and phosphorus (P) from adjacent watersheds. North Fort Myers is a heavily developed, low-lying city on the Caloosahatchee River Estuary serviced by septic systems with documented nutrient and bacterial pollution. To identify sources of pollution within North Fort Myers and determine connections with downstream HABs, this multiyear (2017-2020) study examined septic system- groundwater- surface water couplings through the analysis of water table depth, nutrients (N, P), fecal indicator bacteria (FIB), molecular markers (HF183, GFD, Gull2), chemical tracers (sucralose, pharmaceuticals, herbicides, pesticides), stable isotopes of groundwater (δ15N-NH4, δ15N-NO3) and particulate organic matter (POM; δ15N, δ13C), and POM elemental composition (C:N:P). POM samples were also collected during K. brevis and Microcystis spp. HAB events. Most (>80%) water table depth measurements were too shallow to support septic system functioning (<1.07 m). High concentrations of NH4+ and NOx, up to 1094 μM and 482 μM respectively, were found in groundwater and surface water. δ15N values of groundwater (+4.7‰) were similar to septic effluent (+4.9‰), POM (+4.7‰), and downstream HABs (+4.8 to 6.9‰), indicating a human waste N source. In surface water, FIB were elevated and HF183 was detected, while in groundwater and surface water sucralose, carbamazepine, primidone, and acetaminophen were detected. These data suggest that groundwater and surface water in North Fort Myers are coupled and contaminated by septic system effluent, which is negatively affecting water quality and contributing to the maintenance and intensification of downstream HABs.
Collapse
Affiliation(s)
- Rachel A Brewton
- Harbor Branch Oceanographic Institute, Florida Atlantic University, 5600 US 1, Fort Pierce, FL 34946, USA.
| | - Lisa B Kreiger
- Lee County Division of Natural Resources, 1500 Monroe St, Fort Myers, FL 33901, USA
| | - Kevin N Tyre
- Harbor Branch Oceanographic Institute, Florida Atlantic University, 5600 US 1, Fort Pierce, FL 34946, USA
| | - Diana Baladi
- Harbor Branch Oceanographic Institute, Florida Atlantic University, 5600 US 1, Fort Pierce, FL 34946, USA
| | - Lynn E Wilking
- Harbor Branch Oceanographic Institute, Florida Atlantic University, 5600 US 1, Fort Pierce, FL 34946, USA
| | - Laura W Herren
- Harbor Branch Oceanographic Institute, Florida Atlantic University, 5600 US 1, Fort Pierce, FL 34946, USA
| | - Brian E Lapointe
- Harbor Branch Oceanographic Institute, Florida Atlantic University, 5600 US 1, Fort Pierce, FL 34946, USA
| |
Collapse
|
7
|
Vincent K, Starrs D, Wansink V, Waters N, Lal A. Relationships between extreme flows and microbial contamination in inland recreational swimming areas. JOURNAL OF WATER AND HEALTH 2022; 20:781-793. [PMID: 35635772 DOI: 10.2166/wh.2022.294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Inland recreational swimming sites provide significant social value globally. This study focused on public recreational swimming sites across the Murrumbidgee River and its tributaries in the Australian Capital Territory (ACT) throughout the swimming season (September-April) from 2009 to 2020 to determine whether high intestinal enterococci concentrations could be predicted with flow exceedance and routinely monitored physical and chemical parameters of water quality. Enterococci concentrations were positively correlated with the turbidity associated with high-flow conditions. The predictive accuracy of high enterococci levels during high-flow conditions was good (mean percentage correctly classified, 60%). The prediction of high enterococci levels at low flows was significantly less reliable (mean percentage correctly classified, 12-15%). As the ACT is expected to experience decreases in rainfall overall but increases in extreme rainfall events due to climate change, understanding the drivers of elevated intestinal enterococci under extreme flow conditions remains important from a public health perspective.
Collapse
Affiliation(s)
- Kathryn Vincent
- Fenner School of the Environment, Australian National University, Acton, Canberra, Australian Capital Territory, Australia; National Centre for Epidemiology and Population Health, Australian National University, Acton, Canberra, Australian Capital Territory, Australia E-mail:
| | - Danswell Starrs
- Environment, Planning and Sustainable Development Directorate, ACT Government, Dickson, Canberra, Australian Capital Territory; Research School of Biology, Australian National University, Acton, Canberra, Australian Capital Territory, Australia
| | - Victoria Wansink
- Microbiology Unit, ACT Government Analytical Laboratory, ACT Health Directorate, ACT Government, Holder, Canberra, Australian Capital Territory, Australia
| | - Natasha Waters
- Microbiology Unit, ACT Government Analytical Laboratory, ACT Health Directorate, ACT Government, Holder, Canberra, Australian Capital Territory, Australia
| | - Aparna Lal
- National Centre for Epidemiology and Population Health, Australian National University, Acton, Canberra, Australian Capital Territory, Australia E-mail:
| |
Collapse
|
8
|
Tomenchok LE, Abdool-Ghany AA, Elmir SM, Gidley ML, Sinigalliano CD, Solo-Gabriele HM. Trends in regional enterococci levels at marine beaches and correlations with environmental, global oceanic changes, community populations, and wastewater infrastructure. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 793:148641. [PMID: 34328980 DOI: 10.1016/j.scitotenv.2021.148641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2021] [Revised: 06/19/2021] [Accepted: 06/20/2021] [Indexed: 06/13/2023]
Abstract
An increase in the number of advisories issued for recreational beaches across south Florida (due to the fecal indicator bacteria, enterococci) has been observed in recent years. To evaluate the possible reasons for this increase, we reviewed weekly monitoring data for 18 beaches in Miami-Dade County, Florida, for the years 2000-2019. Our objective was to evaluate this dataset for trends in enterococci levels and correlations with various factors that might have influenced enterococci levels at these beaches. For statistical analyses, we divided the 20-year period of record into 5-year increments (2000-2004, 2005-2009, 2010-2014, and 2015-2019). The Wilcoxon rank sum test was used to identify statistically significant differences between the geometric mean of different periods. When all 18 beaches were collectively considered, a significant increase (p = 0.03) in enterococci was observed during 2015-2019, compared to the prior 15-year period of record. To better understand the potential causes for this increase, correlations were evaluated with environmental parameters (rainfall, air temperature, and water temperature), global oceanic changes (sea level and Sargassum), community populations (county population estimates and beach visitation numbers), and wastewater infrastructure (sewage effluent flow rates to ocean outfalls and deep well injection). In relation to the enterococci geometric mean, the correlation with Sargassum was statistically significant at a 95% confidence interval (p = 0.035). Population (p = 0.078), air temperature (p = 0.092), and sea level (p = 0.098) were statistically significant at 90% confidence intervals. Rainfall, water temperature, beach visitation numbers, and sewage effluent flow rates via deep well injection had positive correlations but were not significant factors. Sewage effluent flow rates to ocean outfalls had a negative correlation.
Collapse
Affiliation(s)
- Lara E Tomenchok
- Department of Civil, Architectural, and Environmental Engineering, University of Miami, Coral Gables, FL 33146, USA
| | - Afeefa A Abdool-Ghany
- Department of Civil, Architectural, and Environmental Engineering, University of Miami, Coral Gables, FL 33146, USA
| | - Samir M Elmir
- Miami-Dade County Health Department, 1725 NW 167 Street, Miami, FL 33056, USA
| | - Maribeth L Gidley
- University of Miami, Cooperative Institute for Marine and Atmospheric Studies (CIMAS), Miami, FL 33149, USA; National Oceanic and Atmospheric Administration (NOAA), Atlantic Oceanographic and Meteorological Laboratory (AOML), Miami, FL 33149, USA
| | - Christopher D Sinigalliano
- National Oceanic and Atmospheric Administration (NOAA), Atlantic Oceanographic and Meteorological Laboratory (AOML), Miami, FL 33149, USA
| | - Helena M Solo-Gabriele
- Department of Civil, Architectural, and Environmental Engineering, University of Miami, Coral Gables, FL 33146, USA.
| |
Collapse
|
9
|
Kelly E, Gidley M, Sinigalliano C, Kumar N, Solo-Gabriele HM. Impact of wastewater infrastructure improvements on beach water fecal indicator bacteria levels in Monroe County, Florida. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 763:143024. [PMID: 33168244 DOI: 10.1016/j.scitotenv.2020.143024] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Revised: 09/26/2020] [Accepted: 10/09/2020] [Indexed: 06/11/2023]
Abstract
The effects of wastewater infrastructure construction on regional and local environments is unknown. This project evaluated the effects of such projects in Monroe County, Florida, an area that had undergone regional wastewater infrastructure improvements. We used fecal indicator bacteria (FIB) (fecal coliform and enterococci), as a proxy indicator of beach water quality for an 18-year period of record. At the highest level of aggregation, FIBs for all 17 beaches within the county were combined to evaluate trends on a yearly basis. At the lower level, yearly FIB trends were evaluated for each beach separately. FIB data on infrastructure project period (categorical variables: before, during, and after construction), and the influences of environmental conditions (quantitative variables of rainfall and temperature) were also evaluated. In the multiple regression models, enterococci and fecal coliform were significantly associated with rainfall (24 h, p < 0.0001) and water temperature (p < 0.0001) when only the quantitative variables were considered. When both categorical and quantitative variables were considered, project period was significant for enterococci (p < 0.0001) and fecal coliform (p < 0.0001), as was 24 h lagged rainfall. Overall, the most significant factors for both fecal coliform and enterococci were rainfall and project period. Considering all beaches, infrastructure projects seem to have the collective desired effects in the years following construction, as there were decreased FIBs measured at beach sites. Only through the aggregation of all projects and measurements at all beach sites could the decreases in FIB levels be observed. Local analysis is needed to explain anomalies from these general trends for specific beaches. This understanding of FIBs, their responses to environmental and project factors, and the need for aggregated and local site analysis can provide guidance to managers at other locations with similar issues of failing wastewater infrastructure and frequent FIB exceedances.
Collapse
Affiliation(s)
- E Kelly
- University of Miami Leonard and Jayne Abess Center for Ecosystem Science and Policy, Coral Gables, FL, USA; University of Miami Department of Civil, Architectural and Environmental Engineering, Coral Gables, FL, USA; NSF NIEHS Oceans and Human Health Center, Rosenstiel School of Marine and Atmospheric Science, University of Miami, Miami, FL, USA
| | - M Gidley
- NSF NIEHS Oceans and Human Health Center, Rosenstiel School of Marine and Atmospheric Science, University of Miami, Miami, FL, USA; National Oceanic and Atmospheric Administration (NOAA) Atlantic Oceanographic and Meteorological Laboratory (AOML) Environmental Microbiology, Miami, FL, USA; University of Miami Cooperative Institute for Marine and Atmospheric Studies (CIMAS), Miami, FL, USA
| | - C Sinigalliano
- NSF NIEHS Oceans and Human Health Center, Rosenstiel School of Marine and Atmospheric Science, University of Miami, Miami, FL, USA; National Oceanic and Atmospheric Administration (NOAA) Atlantic Oceanographic and Meteorological Laboratory (AOML) Environmental Microbiology, Miami, FL, USA
| | - N Kumar
- University of Miami Department of Public Health Sciences, Division of Environment & Public Health, Miami, FL, USA
| | - H M Solo-Gabriele
- University of Miami Leonard and Jayne Abess Center for Ecosystem Science and Policy, Coral Gables, FL, USA; University of Miami Department of Civil, Architectural and Environmental Engineering, Coral Gables, FL, USA; NSF NIEHS Oceans and Human Health Center, Rosenstiel School of Marine and Atmospheric Science, University of Miami, Miami, FL, USA.
| |
Collapse
|
10
|
Martínez-Vázquez RM, de Pablo Valenciano J, Caparrós Martínez JL. Marinas and sustainability: Directions for future research. MARINE POLLUTION BULLETIN 2021; 164:112035. [PMID: 33515830 DOI: 10.1016/j.marpolbul.2021.112035] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Revised: 01/08/2021] [Accepted: 01/09/2021] [Indexed: 06/12/2023]
Abstract
Marinas have ceased to be ports dedicated exclusively to recreational boating and nautical sports. Nowadays, marinas offer a variety of services that complement the tourist offering of its locality in addition to auxiliary activities that arise from its main activity. There are considerable economic and social resources generated by these types of facilities that benefit their localities, but they can also have negative effects such as compromising the sustainability of the environment. The objective of this article is to examine the terms related to changes in the ecosystem derived from marinas through the Keywords Plus and the Author Keywords extracted from the WoS database and obtain results that explain how several themes have evolved and how these concepts relate to each other and to other variables. In this way, it will be possible to critically examine the selection of terms that appear in scientific documents. The results show that pollution, antifouling paints, and invasive species are the terms of greatest concern and on which particular emphasis should be placed for future lines of research.
Collapse
Affiliation(s)
| | - Jaime de Pablo Valenciano
- Faculty of Economics and Business, University of Almería, Ctra. De Sacramento, s/n, 04120 Almería, Spain.
| | | |
Collapse
|
11
|
Holcomb DA, Stewart JR. Microbial Indicators of Fecal Pollution: Recent Progress and Challenges in Assessing Water Quality. Curr Environ Health Rep 2020; 7:311-324. [PMID: 32542574 PMCID: PMC7458903 DOI: 10.1007/s40572-020-00278-1] [Citation(s) in RCA: 61] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
PURPOSE OF REVIEW Fecal contamination of water is a major public health concern. This review summarizes recent developments and advancements in water quality indicators of fecal contamination. RECENT FINDINGS This review highlights a number of trends. First, fecal indicators continue to be a valuable tool to assess water quality and have expanded to include indicators able to detect sources of fecal contamination in water. Second, molecular methods, particularly PCR-based methods, have advanced considerably in their selected targets and rigor, but have added complexity that may prohibit adoption for routine monitoring activities at this time. Third, risk modeling is beginning to better connect indicators and human health risks, with the accuracy of assessments currently tied to the timing and conditions where risk is measured. Research has advanced although challenges remain for the effective use of both traditional and alternative fecal indicators for risk characterization, source attribution and apportionment, and impact evaluation.
Collapse
Affiliation(s)
- David A Holcomb
- Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, 135 Dauer Dr., Chapel Hill, NC, 27599-7435, USA
| | - Jill R Stewart
- Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, 135 Dauer Dr., Chapel Hill, NC, 27599-7431, USA.
| |
Collapse
|
12
|
Quilliam RS, Taylor J, Oliver DM. The disparity between regulatory measurements of E. coli in public bathing waters and the public expectation of bathing water quality. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2019; 232:868-874. [PMID: 30530277 DOI: 10.1016/j.jenvman.2018.11.138] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2018] [Revised: 11/07/2018] [Accepted: 11/28/2018] [Indexed: 06/09/2023]
Abstract
The main objectives of the European Union (EU) Bathing Water Directive (BWD) 2006/7/EC are to safeguard public health and protect designated aquatic environments from microbial pollution. The BWD is implemented through legislation by individual EU Member States and uses faecal indicator organisms (FIOs) as microbial pollution compliance parameters to determine season-end bathing water classifications (either 'Excellent', 'Good', 'Sufficient' or 'Poor'). These classifications are based on epidemiological studies that have linked human exposure to FIOs with the risk of contracting a gastrointestinal illness (GI). However, understanding public attitudes towards bathing water quality, together with perceptions of relative exposure risks, is often overlooked and yet critically important for informing environmental management decisions at the beach and ensuring effective risk communication. Therefore, this study aimed to determine the effectiveness of current regulatory strategies for informing beach users about bathing water quality, and to assess public understanding of the BWD classifications in terms of exposure risk and public health. Two UK designated bathing waters were selected as case studies, and questionnaires were deployed to beach-users. The bathing waters had different classification histories and both had electronic signage in operation for communicating daily water quality predictions. The majority of respondents did not recognise the standardised EU bathing water quality classification signs, and were unaware of information boards or the electronic signs predicting the water quality on that particular day. In general, respondents perceived the bathing water at their respective beach to be either 'good' or 'sufficient', which were also the lowest classifications of water quality they would be willing to accept for bathing. However, the lowest level of risk of contracting a gastrointestinal illness that respondents would be willing to accept suggested a significant misunderstanding of the BWD classification system, with the majority (91%) of respondents finding only a <1% risk level acceptable. The 'Good' classification is much less stringent in terms of likelihood of GI. This study has shown that the current public understanding of the BWD classifications in terms of exposure risk and public health is limited, and an investment in methods for disseminating information to the public is needed in order to allow beach-users to make more informed decisions about using bathing waters.
Collapse
Affiliation(s)
- Richard S Quilliam
- Biological and Environmental Sciences, Faculty of Natural Sciences, University of Stirling, FK9 4LA, UK.
| | - Jessica Taylor
- Biological and Environmental Sciences, Faculty of Natural Sciences, University of Stirling, FK9 4LA, UK
| | - David M Oliver
- Biological and Environmental Sciences, Faculty of Natural Sciences, University of Stirling, FK9 4LA, UK
| |
Collapse
|
13
|
Barreras H, Kelly EA, Kumar N, Solo-Gabriele HM. Assessment of local and regional strategies to control bacteria levels at beaches with consideration of impacts from climate change. MARINE POLLUTION BULLETIN 2019; 138:249-259. [PMID: 30660270 PMCID: PMC6342290 DOI: 10.1016/j.marpolbul.2018.10.046] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2018] [Revised: 09/01/2018] [Accepted: 10/22/2018] [Indexed: 05/23/2023]
Abstract
The objective of this study was to evaluate relationships between local factors (beach geomorphology and management) and regional factors (infrastructure improvements and temperature changes) against levels of fecal indicator bacteria (FIB) at recreational beaches. Data were evaluated for 17 beaches located in Monroe County, Florida (Florida Keys), USA, including an assessment of sanitary infrastructure improvements using equivalent dwelling unit (EDU) connections. Results show that elevated FIB levels were associated with beach geomorphologies characterized by impeded flow and by beaches with lax management policies. The decrease in EDUs not connected coincided with a decrease in the fraction of days when bacteria levels were out of compliance. Multivariate factor analysis also identified beach management practices (presence of homeless and concession stands) as being associated with elevated FIB. Overall, results suggest that communities can utilize beach management strategies and infrastructure improvements to overcome the negative water quality impacts anticipated with climate change.
Collapse
Affiliation(s)
- Henry Barreras
- University of Miami, Department of Microbiology and Immunology, Miller School of Medicine, Miami, FL, USA; University of Miami, Department of Public Health Sciences, Division of Environment & Public Health, Miami, FL, USA
| | - Elizabeth A Kelly
- University of Miami, Leonard and Jayne Abess Center for Ecosystem Science and Policy, Coral Gables, FL, USA; NSF NIEHS Oceans and Human Health Center, Rosenstiel School of Marine and Atmospheric Science, University of Miami, Key Biscayne, FL, USA; University of Miami, College of Engineering, Department of Civil, Architectural, and Environmental Engineering, USA
| | - Naresh Kumar
- University of Miami, Department of Public Health Sciences, Division of Environment & Public Health, Miami, FL, USA
| | - Helena M Solo-Gabriele
- University of Miami, Leonard and Jayne Abess Center for Ecosystem Science and Policy, Coral Gables, FL, USA; NSF NIEHS Oceans and Human Health Center, Rosenstiel School of Marine and Atmospheric Science, University of Miami, Key Biscayne, FL, USA; University of Miami, College of Engineering, Department of Civil, Architectural, and Environmental Engineering, USA.
| |
Collapse
|