1
|
Wang Z, Li M, Cao W, Liu Z, Kong D, Jiang W. Efficient photocatalytic degradation of perfluorooctanoic acid by bismuth nanoparticle modified titanium dioxide. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 927:172028. [PMID: 38575014 DOI: 10.1016/j.scitotenv.2024.172028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 03/12/2024] [Accepted: 03/25/2024] [Indexed: 04/06/2024]
Abstract
Perfluorooctanoic acid (PFOA) is potentially toxic and exceptionally stable attributed to its robust CF bond, which is hard to be removed by UV/TiO2 systems. In this research, bismuth nanoparticle (Bi NP) modified titanium oxides (Bi/TiO2) were synthesized by a simple photochemical deposition-calcination method and were applied as photocatalysts for the first time to degrade PFOA. The removal rate of 50 mg/L PFOA reached 99.3 % with 58.6 % defluorination rate after 30 min of irradiation via a mercury lamp. Bi/TiO2 exhibited superior performance in PFOA degradation compared to commercial photocatalysts (TiO2, Ga2O3, Bi2O3 and In2O3). In addition, Bi/TiO2 showed high degradation activity under actual sunlight, achieved 100 % removal rate and 59.3 % defluorination rate within 2 h. Bi NPs increase the light trapping ability of Bi/TiO2 and promote the separation of photogenerated electron-hole pairs via local surface plasmon resonance (LSPR) effect, which results in more photogenerated holes (h+) and hydroxyl radicals (OH). Combined with DFT calculations and intermediate detections, the degradation reaction is initiated from the oxidation of the PFOA carboxyl group via h+, followed by the loss of the CF2 unit step by step with the participation of OH. This work presents a novel approach for the practical implementation of TiO2-based photocatalysts to achieve highly efficient photocatalytic degradation of perfluorocarboxylic acids (PFCAs).
Collapse
Affiliation(s)
- Zhi Wang
- Environment Research Institute, Shandong University, Qingdao 266237, People's Republic of China
| | - Mingyang Li
- Environment Research Institute, Shandong University, Qingdao 266237, People's Republic of China
| | - Wei Cao
- Environment Research Institute, Shandong University, Qingdao 266237, People's Republic of China
| | - Zhenhua Liu
- Environment Research Institute, Shandong University, Qingdao 266237, People's Republic of China
| | - Deyang Kong
- Key Laboratory of Pesticide Environmental Assessment and Pollution Control, Ministry of Ecology and Environment of the People's Republic of China, Nanjing 210042, People's Republic of China
| | - Wei Jiang
- Environment Research Institute, Shandong University, Qingdao 266237, People's Republic of China.
| |
Collapse
|
2
|
Xu T, Liu Y, You TQ, Bao J. Innovation of BiOBr/BiOI@Bi 5O 7I Ternary Heterojunction for Catalytic Degradation of Sodium P-Perfluorous Nonenoxybenzenesulfonate. TOXICS 2024; 12:298. [PMID: 38668521 PMCID: PMC11054398 DOI: 10.3390/toxics12040298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Revised: 04/10/2024] [Accepted: 04/16/2024] [Indexed: 04/29/2024]
Abstract
As an alternative for perfluorooctane sulfonic acid (PFOS), sodium p-perfluorononyloxybenzene sulfonate (OBS) has been widely used in petroleum, fire-fighting materials, and other industries. In order to efficiently and economically remove OBS contaminations from water bodies, in this study, a ternary heterojunction was constructed by coupling BiOBr and BiOI@Bi5O7I for improving the redox capacity and carrier separation ability of the material and investigating the effect of the doping ratios of BiOBr and BiOI@ Bi5O7I on the performance of the catalysts. Furthermore, the effects on the degradation of OBS were also explored by adjusting different catalyst doping ratios, OBS concentrations, catalyst amounts, and pH values. It was observed that when the concentration of OBS was 50 mg/L, the amount of catalyst used was 0.5 g/L, and the pH was not changed. The application of BiOBr/BiOI@ Bi5O7I consisting of 25% BiOBr and 75% BiOI@ Bi5O7I showed excellent stability and adsorption degradation performance for OBS, and almost all of the OBS in the aqueous solution could be removed. The removal rate of OBS by BiOBr/BiOI@ Bi5O7I was more than 20% higher than that of OBS by BiOI@Bi5O7I and BiOBr when the OBS concentration was 100 mg/L. In addition, the reaction rate constants of BiOBr/BiOI@ Bi5O7I were 2.4 and 10.8 times higher than those of BiOI@ Bi5O7I and BiOBr, respectively. Therefore, the BiOBr/BiOI@ Bi5O7I ternary heterojunction can be a novel type of heterojunction for the efficient degradation of OBS in water bodies.
Collapse
Affiliation(s)
| | | | | | - Jia Bao
- School of Environmental and Chemical Engineering, Shenyang University of Technology, Shenyang 110870, China
| |
Collapse
|
3
|
Dey D, Shafi T, Chowdhury S, Dubey BK, Sen R. Progress and perspectives on carbon-based materials for adsorptive removal and photocatalytic degradation of perfluoroalkyl and polyfluoroalkyl substances (PFAS). CHEMOSPHERE 2024; 351:141164. [PMID: 38215829 DOI: 10.1016/j.chemosphere.2024.141164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 12/21/2023] [Accepted: 01/08/2024] [Indexed: 01/14/2024]
Abstract
Per- and polyfluoroalkyl substances (PFAS) (also known as 'forever chemicals') have emerged as trace pollutants of global concern, attributing to their persistent and bio-accumulative nature, pervasive distribution, and adverse public health and environmental impacts. The unregulated discharge of PFAS into aquatic environments represents a prominent threat to the wellbeing of humans and marine biota, thereby exhorting unprecedented action to tackle PFAS contamination. Indeed, several noteworthy technologies intending to remove PFAS from environmental compartments have been intensively evaluated in recent years. Amongst them, adsorption and photocatalysis demonstrate remarkable ability to eliminate PFAS from different water matrices. In particular, carbon-based materials, because of their diverse structures and many exciting properties, offer bountiful opportunities as both adsorbent and photocatalyst, for the efficient abatement of PFAS. This review, therefore, presents a comprehensive summary of the diverse array of carbonaceous materials, including biochar, activated carbon, carbon nanotubes, and graphene, that can serve as ideal candidates in adsorptive and photocatalytic treatment of PFAS contaminated water. Specifically, the efficacy of carbon-mediated PFAS removal via adsorption and photocatalysis is summarised, together with a cognizance of the factors influencing the treatment efficiency. The review further highlights the neoteric development on the novel innovative approach 'concentrate and degrade' that integrates selective adsorption of trace concentrations of PFAS onto photoactive surface sites, with enhanced catalytic activity. This technique is way more energy efficient than conventional energy-intensive photocatalysis. Finally, the review speculates the cardinal challenges associated with the practical utility of carbon-based materials, including their scalability and economic feasibility, for eliminating exceptionally stable PFAS from water matrices.
Collapse
Affiliation(s)
- Debanjali Dey
- Department of Biotechnology, Indian Institute of Technology Kharagpur, West Bengal, 721302, India
| | - Tajamul Shafi
- School of Environmental Science and Engineering, Indian Institute of Technology Kharagpur, West Bengal, 721302, India
| | - Shamik Chowdhury
- School of Environmental Science and Engineering, Indian Institute of Technology Kharagpur, West Bengal, 721302, India.
| | - Brajesh Kumar Dubey
- Department of Civil Engineering, Indian Institute of Technology Kharagpur, West Bengal, 721302, India; School of Water Resources, Indian Institute of Technology Kharagpur, West Bengal, 721302, India
| | - Ramkrishna Sen
- Department of Biotechnology, Indian Institute of Technology Kharagpur, West Bengal, 721302, India
| |
Collapse
|
4
|
Yadav M, Osonga FJ, Sadik OA. Unveiling nano-empowered catalytic mechanisms for PFAS sensing, removal and destruction in water. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 912:169279. [PMID: 38123092 DOI: 10.1016/j.scitotenv.2023.169279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 11/14/2023] [Accepted: 12/09/2023] [Indexed: 12/23/2023]
Abstract
Per- and polyfluoroalkyl substances (PFAS) are organofluorine compounds used to manufacture various industrial and consumer goods. Due to their excellent physical and thermal stability ascribed to the strong CF bond, these are ubiquitously present globally and difficult to remediate. Extensive toxicological and epidemiological studies have confirmed these substances to cause adverse health effects. With the increasing literature on the environmental impact of PFAS, the regulations and research have also expanded. Researchers worldwide are working on the detection and remediation of PFAS. Many methods have been developed for their sensing, removal, and destruction. Amongst these methods, nanotechnology has emerged as a sustainable and affordable solution due to its tunable surface properties, high sorption capacities, and excellent reactivities. This review comprehensively discusses the recently developed nanoengineered materials used for detecting, sequestering, and destroying PFAS from aqueous matrices. Innovative designs of nanocomposites and their efficiency for the sensing, removal, and degradation of these persistent pollutants are reviewed, and key insights are analyzed. The mechanistic details and evidence available to support the cleavage of the CF bond during the treatment of PFAS in water are critically examined. Moreover, it highlights the challenges during PFAS quantification and analysis, including the analysis of intermediates in transitioning nanotechnologies from the laboratory to the field.
Collapse
Affiliation(s)
- Manavi Yadav
- Department of Chemistry and Environmental Sciences, New Jersey Institutes of Technology (NJIT), United States of America
| | - Francis J Osonga
- Department of Chemistry and Environmental Sciences, New Jersey Institutes of Technology (NJIT), United States of America
| | - Omowunmi A Sadik
- Department of Chemistry and Environmental Sciences, New Jersey Institutes of Technology (NJIT), United States of America.
| |
Collapse
|
5
|
Juve JMA, Donoso Reece JA, Wong MS, Wei Z, Ateia M. Photocatalysts for chemical-free PFOA degradation - What we know and where we go from here? JOURNAL OF HAZARDOUS MATERIALS 2024; 462:132651. [PMID: 37827098 DOI: 10.1016/j.jhazmat.2023.132651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Revised: 08/11/2023] [Accepted: 09/26/2023] [Indexed: 10/14/2023]
Abstract
Perfluorooctanoic acid (PFOA) is a toxic and recalcitrant perfluoroalkyl substance commonly detected in the environment. Its low concentration challenges the development of effective degradation techniques, which demands intensive chemical and energy consumption. The recent stringent health advisories and the upgrowth and advances in photocatalytic technologies claim the need to evaluate and compare the state-of-the-art. Among these systems, chemical-free photocatalysis emerges as a cost-effective and sustainable solution for PFOA degradation and potentially other perfluorinated carboxylic acids. This review (I) classifies the state-of-the-art of chemical-free photocatalysts for PFOA degradation in families of materials (Ti, Fe, In, Ga, Bi, Si, and BN), (II) describes the evolution of catalysts, identifies and discusses the strategies to enhance their performance, (III) proposes a simplified cost evaluation tool for simple techno-economical analysis of the materials; (IV) compares the features of the catalysts expanding the classic degradation focus to other essential parameters, and (V) identifies current research gaps and future research opportunities to enhance the photocatalyst performance. We aim that this critical review will assist researchers and practitioners to develop rational photocatalyst designs and identify research gaps for green and effective PFAS degradation.
Collapse
Affiliation(s)
- Jan-Max Arana Juve
- Centre for Water Technology (WATEC) & Department of Biological and Chemical Engineering, Aarhus University, Universitetsbyen 36, 8000 Aarhus C, Denmark; Department of Chemical and Biomolecular Engineering, Rice University, Houston, TX, USA
| | - Juan A Donoso Reece
- Department of Chemical and Biomolecular Engineering, Rice University, Houston, TX, USA
| | - Michael S Wong
- Department of Chemical and Biomolecular Engineering, Rice University, Houston, TX, USA
| | - Zongsu Wei
- Centre for Water Technology (WATEC) & Department of Biological and Chemical Engineering, Aarhus University, Universitetsbyen 36, 8000 Aarhus C, Denmark.
| | - Mohamed Ateia
- Department of Chemical and Biomolecular Engineering, Rice University, Houston, TX, USA; Center for Environmental Solutions & Emergency Response, US Environmental Protection Agency, Cincinnati, OH, USA.
| |
Collapse
|
6
|
Zhang K, Deng J, Lin WH, Hu S. Vitamin B 12 and iron-rich sludge-derived biochar enhanced PFOA biodegradation: Importance of direct inter-species electron transfer and functional microbes. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 346:118978. [PMID: 37742566 DOI: 10.1016/j.jenvman.2023.118978] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2023] [Revised: 08/19/2023] [Accepted: 09/09/2023] [Indexed: 09/26/2023]
Abstract
Owing to the strong C-F bond in nature and the rigidity of the poly-fluoroalkyl chain, perfluorooctanoic acid (PFOA) is difficult to be eliminated by reactive species and microbes in environments, thus posing a serious threat to ecosystems. Vitamin B12 as a cofactor for enzymes, and biochar as the electron providers and conductors, were integrated to enhance PFOA biodegradation. The raw material of biochar was the sludge after dewatering by adding 50 mg/g DS of Fe(III). After pyrolysis under high temperature (800 °C), biochar (SC800) detected high content of Fe(II) (197.64 mg/g) and abundant oxygen-containing functional groups, thus boosting PFOA biodegradation via donating electrons. 99.9% of PFOA could be removed within 60 d as 0.1 g/L SC800 was presented in the microbial systems containing vitamin B12. Moreover, vitamin B12 facilitated the evolution of Sporomusa which behaved the deflorination. Via providing reactive sites and mediating direct inter-species electron transfer (DIET), SC800 boosted PFOA biodegradation. Corresponding novel results in the present study could guide the development of bioremediation technologies for PFOA-polluted sites.
Collapse
Affiliation(s)
- Kaikai Zhang
- School of Environment, Tsinghua University, Beijing, 100091, PR China
| | - Jiayu Deng
- School of Environment, Tsinghua University, Beijing, 100091, PR China
| | - Wei-Han Lin
- College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, 350002, PR China
| | - Shaogang Hu
- College of Environmental Sciences and Engineering, Peking University, Beijing, 100871, PR China.
| |
Collapse
|
7
|
Van Thuan D, Ngo HL, Thi HP, Thu Hien CT. Photodegradation of hazardous organic pollutants using titanium oxides -based photocatalytic: A review. ENVIRONMENTAL RESEARCH 2023; 229:116000. [PMID: 37127104 DOI: 10.1016/j.envres.2023.116000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 04/13/2023] [Accepted: 04/25/2023] [Indexed: 05/03/2023]
Abstract
Titanium oxide-based photocatalysts (TOBPs) have been widely utilized as potential materials for numerous applications, such as wastewater treatment, water-splitting reactions, carbon dioxide (CO2) reduction and photosynthesis. However, the large bandgap of intrinsic TiO2 limits their absorption toward visible light, which is the central part of the solar spectrum, resulting in low photocatalytic activities under sunlight. To overcome this obstacle, several strategies, such as doping with either metal or non-metal elements or combining with other compounds, are efficient ways to reduce the bandgap of TiO2, leading to effectively extending their absorption toward the visible region and increasing their catalytic performance. In this review, we discussed the application of TOBPs for the photodegradation of hazardous organic pollutants in wastewater to produce quality reused water. The synthesis of TiO2 and the enhancement of photocatalytic activities of TOBPs by different techniques with detailed information were provided. Application of TOBPs for decomposing hazardous organic pollutants such as dyes, phenolic compounds and pharmaceuticals under optimum conditions have been listed. Also, the photodegradation mechanisms of hazardous organic compounds have been investigated. This work also brings ideas for future perspectives and research plan to inhibit the disadvantages and expand the application of TOBPs to remove toxic organic pollutants.
Collapse
Affiliation(s)
- Doan Van Thuan
- VKTech Research Center, NTT Hi-Tech Institute, Nguyen Tat Thanh University, Nguyen Tat Thanh Street, Ward 13, District 4, Ho Chi Minh City, Viet Nam
| | - Hoang Long Ngo
- VKTech Research Center, NTT Hi-Tech Institute, Nguyen Tat Thanh University, Nguyen Tat Thanh Street, Ward 13, District 4, Ho Chi Minh City, Viet Nam
| | - Huong Pham Thi
- Laboratory of Environmental Sciences and Climate Change, Institute for Computational Science and Artificial Intelligence, Van Lang University, Ho Chi Minh City, Viet Nam; Faculty of Environment, Van Lang University, Ho Chi Minh City, Viet Nam.
| | - Chu Thi Thu Hien
- Department of Chemistry, Faculty of Building Materials, Ha Noi University of Civil Engineering (HUCE), Giai Phong, Hai Ba Trung, Hanoi, 10000, Viet Nam.
| |
Collapse
|
8
|
Mohamed HEA, Hilal‐Alnaqbi A, Dagher S, Akhozheya B, Maaza M. Green synthesis of CdWO
4
Nanorods with Enhanced Photocatalytic Activity Utilizing Hyphaene Thebaica Fruit. ChemistrySelect 2022. [DOI: 10.1002/slct.202201442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Hamza Elsayed Ahmed Mohamed
- UNESCO-UNISA Africa Chair in Nanosciences/Nanotechnology College of Graduate Studies University of South Africa Pretoria South Africa
- Nanosciences African Network (NANOAFNET) iThemba LABS-National Research Foundation of South Africa, SomersetWest Western Cape 7129 South Africa
| | | | - Sawsan Dagher
- Department of Electromechanical Engineering Abu Dhabi Polytechnic Abu Dhabi, UAE
| | - Boshra Akhozheya
- Department of Building & Architectural Engineering Polytechnic University of Milan Milan Italy
| | - Malik Maaza
- UNESCO-UNISA Africa Chair in Nanosciences/Nanotechnology College of Graduate Studies University of South Africa Pretoria South Africa
- Nanosciences African Network (NANOAFNET) iThemba LABS-National Research Foundation of South Africa, SomersetWest Western Cape 7129 South Africa
| |
Collapse
|
9
|
Wang M, Cai Y, Zhou B, Yuan R, Chen Z, Chen H. Removal of PFASs from water by carbon-based composite photocatalysis with adsorption and catalytic properties: A review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 836:155652. [PMID: 35508243 DOI: 10.1016/j.scitotenv.2022.155652] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 04/24/2022] [Accepted: 04/28/2022] [Indexed: 05/27/2023]
Abstract
Per- and polyfluoroalkyl substances (PFASs) are a class of persistent organic pollutants widely distributed in aquatic environments. The adsorption and photocatalytic methods have been widely used to remove PFASs in water because of their respective advantages. Still, they have apparent defects when used alone. Therefore, the adsorption and photocatalytic technologies are combined through suitable preparation methods, and the excellent properties of the two are used to synergize the treatment of organic pollutants. This strategy of "concentrating" pollutants and then degrading them in a centralized manner plays an essential role in removing trace PFASs. Nevertheless, a review focusing on this kind of adsorption photocatalyst system is lacking. This review will fill this gap and provide a reference for developing a carbon-based composite photocatalyst. Firstly, different carbon-based composite photocatalysts are reviewed in detail, focusing on the differences in various composite materials' excellent adsorption and catalytic properties. Secondly, the factors influencing the removal effect of carbon-based composite photocatalysts are discussed. Thirdly, the removal mechanism of carbon-based composite photocatalysts is summarized in detail. The removal process involves two steps: adsorption and photodegradation. The adsorption process involves multiple cooperative adsorption mechanisms, and photocatalytic degradation includes oxidative and reductive degradation. Fourthly, the comparison of adsorption-photocatalysis with common treatment techniques (including removal rate, range of adaptation, cost, and the possibility of expanding application) is summarized. Finally, the prospects of carbon-based composite photocatalysts for repairing PFASs are given by evaluating the performance of different composites.
Collapse
Affiliation(s)
- Mingran Wang
- Beijing Key Laboratory of Resource-oriented Treatment of Industrial Pollutants, School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Yanping Cai
- Beijing Key Laboratory of Resource-oriented Treatment of Industrial Pollutants, School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Beihai Zhou
- Beijing Key Laboratory of Resource-oriented Treatment of Industrial Pollutants, School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Rongfang Yuan
- Beijing Key Laboratory of Resource-oriented Treatment of Industrial Pollutants, School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Zhongbing Chen
- Faculty of Environmental Sciences, Czech University of Life Sciences Prague, Kamýcká 129, 16500 Prague, Czech Republic
| | - Huilun Chen
- Beijing Key Laboratory of Resource-oriented Treatment of Industrial Pollutants, School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, China.
| |
Collapse
|
10
|
Qi Y, Cao H, Pan W, Wang C, Liang Y. The role of dissolved organic matter during Per- and Polyfluorinated Substance (PFAS) adsorption, degradation, and plant uptake: A review. JOURNAL OF HAZARDOUS MATERIALS 2022; 436:129139. [PMID: 35605500 DOI: 10.1016/j.jhazmat.2022.129139] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2021] [Revised: 05/08/2022] [Accepted: 05/10/2022] [Indexed: 06/15/2023]
Abstract
The negative effects of polyfluoroalkyl substances (PFAS) on the environment and health have recently attracted much attention. This article reviews the influence of soil- and water-derived dissolved organic matter (DOM) on the environmental fate of PFAS. In addition to being co-adsorped with PFAS to increase the adsorption capacity, DOM competes with PFAS for adsorption sites on the surface of the material, thereby reducing the removal rate of PFAS or increasing water solubility, which facilitates desorption of PFAS in the soil. It can quench some active species and inhibit the degradation of PFAS. In contrast, before DOM in water self-degrades, DOM has a greater promoting effect on the degradation of PFAS because DOM can complex with iron, iodine, among others, and act as an electron shuttle to enhance electron transfer. In soil aggregates, DOM can prevent microorganisms from being poisoned by direct exposure to PFAS. In addition, DOM increases the desorption of PFAS in plant root soil, affecting its bioavailability. In general, DOM plays a bidirectional role in adsorption, degradation, and plant uptake of PFAS, which depends on the types and functional groups of DOM. It is necessary to enhance the positive role of DOM in reducing the environmental risks posed by PFAS. In future, attention should be paid to the DOM-induced reduction of PFAS and development of a green and efficient continuous defluorination technology.
Collapse
Affiliation(s)
- Yuwen Qi
- Key Laboratory of Pollution Processes and Environmental Criteria, Ministry of Education, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300071, China
| | - Huimin Cao
- Key Laboratory of Pollution Processes and Environmental Criteria, Ministry of Education, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300071, China
| | - Weijie Pan
- Key Laboratory of Pollution Processes and Environmental Criteria, Ministry of Education, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300071, China
| | - Cuiping Wang
- Key Laboratory of Pollution Processes and Environmental Criteria, Ministry of Education, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300071, China.
| | - Yanna Liang
- Department of Environmental and Sustainable Engineering, University at Albany, SUNY, Albany, NY 12222, USA
| |
Collapse
|
11
|
Yin S, Villagrán D. Design of nanomaterials for the removal of per- and poly-fluoroalkyl substances (PFAS) in water: Strategies, mechanisms, challenges, and opportunities. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 831:154939. [PMID: 35367257 DOI: 10.1016/j.scitotenv.2022.154939] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 03/26/2022] [Accepted: 03/27/2022] [Indexed: 06/14/2023]
Abstract
Due to their persistent and pervasive distribution and their adverse effects on human health, the removal of per- and polyfluoroalkyl substances (PFAS) from the environment has been the focus of current research. Recent studies have shown that engineered nanomaterials provide great opportunities for their removal by chemical, physical and electrochemical adsorption methods, or as photo- or electrocatalysts that promote their degradation. This review summarizes and discusses the performance of recently reported nanomaterials towards PFAS removal in water treatment applications. We discuss the performance, mechanisms, and PFAS removal conditions of a variety of nanomaterials, including carbon-based, non-metal, single-metal, and multi-metal nanomaterials. We show that nanotechnology provides significant opportunities for PFAS remediation and further nanomaterial development can provide solutions for the removal of PFAS from the environment. We also provide an overview of the current challenges.
Collapse
Affiliation(s)
- Sheng Yin
- Department of Chemistry and Biochemistry, The University of Texas at El Paso, El Paso, TX 79968, USA; Nanosystems Engineering Research Center for Nanotechnology-Enabled Water Treatment (NEWT), USA
| | - Dino Villagrán
- Department of Chemistry and Biochemistry, The University of Texas at El Paso, El Paso, TX 79968, USA; Nanosystems Engineering Research Center for Nanotechnology-Enabled Water Treatment (NEWT), USA.
| |
Collapse
|
12
|
Leung SCE, Shukla P, Chen D, Eftekhari E, An H, Zare F, Ghasemi N, Zhang D, Nguyen NT, Li Q. Emerging technologies for PFOS/PFOA degradation and removal: A review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 827:153669. [PMID: 35217058 DOI: 10.1016/j.scitotenv.2022.153669] [Citation(s) in RCA: 67] [Impact Index Per Article: 33.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Revised: 01/31/2022] [Accepted: 01/31/2022] [Indexed: 05/20/2023]
Abstract
Perfluorooctane sulfonate (PFOS) and perfluorooctanoic acid (PFOA) are highly recalcitrant anthropogenic chemicals that are ubiquitously present in the environment and are harmful to humans. Typical water and wastewater treatment processes (coagulation, flocculation, sedimentation, and filtration) are proven to be largely ineffective, while adsorption with granular activated carbon (GAC) has been the chief option to capture them from aqueous sources followed by incineration. However, this process is time-consuming, and produces additional solid waste and air pollution. Treatment methods for PFOS and PFOA generally follow two routes: (1) removal from source and reduce the risk; (2) degradation. Emerging technologies focusing on degradation are critically reviewed in this contribution. Various processes such as bioremediation, electrocoagulation, foam fractionation, sonolysis, photocatalysis, mechanochemical, electrochemical degradation, beams of electron and plasma have been developed and studied in the past decade to address PFAS crisis. The underlying mechanisms of these PFAS degradation methods have been categorized. Two main challenges have been identified, namely complexity in large scale operation and the release of toxic byproducts. Based on the literature survey, we have provided a strength-weakness-opportunity-threat (SWOT) analysis and quantitative rating on their efficiency, environmental impact and technology readiness.
Collapse
Affiliation(s)
- Shui Cheung Edgar Leung
- Queensland Micro- and Nanotechnology Centre, Griffith University, Brisbane, QLD 4111, Australia; School of Engineering and Built Environment, Griffith University, Brisbane, QLD 4111, Australia
| | - Pradeep Shukla
- Queensland Alliance for Environmental Health Sciences, Department of Chemical Engineering, The University of Queensland, St. Lucia, QLD 4072, Australia
| | - Dechao Chen
- Queensland Micro- and Nanotechnology Centre, Griffith University, Brisbane, QLD 4111, Australia
| | - Ehsan Eftekhari
- School of Engineering and Built Environment, Griffith University, Brisbane, QLD 4111, Australia; Golder Associates Pty Ltd, Level 4, 45 Francis Street, Northbridge, Western Australia 6003, Australia
| | - Hongjie An
- Queensland Micro- and Nanotechnology Centre, Griffith University, Brisbane, QLD 4111, Australia
| | - Firuz Zare
- School of Electrical Engineering and Robotics, Faculty of Engineering, Queensland University of Technology, Garden Point, QLD 4000, Australia
| | - Negareh Ghasemi
- School of Information Technology and Electrical Engineering, The University of Queensland, St. Lucia, QLD 4072, Australia
| | - Dongke Zhang
- Centre for Energy (M473), The University of Western Australia, 35 Stirling Highway, Crawley, WA 6009, Australia
| | - Nam-Trung Nguyen
- Queensland Micro- and Nanotechnology Centre, Griffith University, Brisbane, QLD 4111, Australia
| | - Qin Li
- Queensland Micro- and Nanotechnology Centre, Griffith University, Brisbane, QLD 4111, Australia; School of Engineering and Built Environment, Griffith University, Brisbane, QLD 4111, Australia.
| |
Collapse
|
13
|
Yu C, Hou J, Zhang B, Liu S, Pan X, Song H, Hou X, Yan Q, Zhou C, Liu G, Zhang Y, Xin Y. In-situ electrodeposition synthesis of Z-scheme rGO/g-C 3N 4/TNAs photoelectrodes and its degradation mechanism for oxytetracycline in dual-chamber photoelectrocatalytic system. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2022; 308:114615. [PMID: 35131709 DOI: 10.1016/j.jenvman.2022.114615] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 01/20/2022] [Accepted: 01/24/2022] [Indexed: 06/14/2023]
Abstract
The dual-chamber photoelectrocatalytic (PEC) system possess advantages in the degradation efficiency and processing cost of organic contaminants. In this study, TiO2 nanotube arrays modified by rGO and g-C3N4 (rGO/g-C3N4/TNAs) photoelectrodes were successfully prepared. The surface micromorphology, chemical structure, crystal structure, and basic element composition of rGO/g-C3N4/TNAs photoelectrodes were studied by SEM, FTIR, XRD, Raman, and XPS. UV-vis absorption, photoluminescence (PL) spectra, and photoelectrochemical (PECH) tests were used to explore the photoelectrochemical characteristics of rGO/g-C3N4/TNAs photoelectrodes. Under simulated sunlight illumination, the dual-chamber PEC system with external bias voltage was used to investigate the degradation of oxytetracycline (OTC) on rGO/g-C3N4/TNAs photoelectrodes. The results showed that rGO and g-C3N4 were successfully loaded on TNAs, and the separation efficiency of electrons and holes at rGO/g-C3N4/TNAs photoelectrodes was improved. The light absorption range of rGO/g-C3N4/TNAs photoelectrodes extends to the visible light region and has better light absorption performance. Compared with the photocatalytic process, when 1.2 V bias voltage was applied, the degradation efficiency of OTC in anode and cathode chambers in PEC were increased by 3.28% and 44.01% within 60 min, respectively. In addition, the anode and cathode chambers have different degradation effects on OTC. Both the external bias voltage and initial pH have significant effects in cathode chamber, but have little effect in photoanode chamber. The fluorescence excitation-emission matrix spectra and liquid chromatography-tandem mass spectrometry showed that there were different intermediates in the degradation process of OTC. This study indicated that for the dual-chamber PEC system, rGO/g-C3N4/TNAs photoelectrodes exhibited excellent photocatalytic performance and have potential application prospects in water environmental remediation.
Collapse
Affiliation(s)
- Chengze Yu
- Qingdao Engineering Research Center for Rural Environment, College of Resources and Environment, Qingdao Agricultural University, Qingdao, 266109, China; State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China; State Environmental Protection Key Laboratory of Simulation and Control of Groundwater Pollution, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| | - Jiaqi Hou
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China; State Environmental Protection Key Laboratory of Simulation and Control of Groundwater Pollution, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| | - Bin Zhang
- Qingdao Engineering Research Center for Rural Environment, College of Resources and Environment, Qingdao Agricultural University, Qingdao, 266109, China
| | - Shiqi Liu
- Qingdao Engineering Research Center for Rural Environment, College of Resources and Environment, Qingdao Agricultural University, Qingdao, 266109, China
| | - Xiangrui Pan
- Qingdao Engineering Research Center for Rural Environment, College of Resources and Environment, Qingdao Agricultural University, Qingdao, 266109, China
| | - Heng Song
- Qingdao Engineering Research Center for Rural Environment, College of Resources and Environment, Qingdao Agricultural University, Qingdao, 266109, China
| | - Xiangting Hou
- Qingdao Engineering Research Center for Rural Environment, College of Resources and Environment, Qingdao Agricultural University, Qingdao, 266109, China
| | - Qinghua Yan
- Qingdao Engineering Research Center for Rural Environment, College of Resources and Environment, Qingdao Agricultural University, Qingdao, 266109, China
| | - Chengzhi Zhou
- Qingdao Engineering Research Center for Rural Environment, College of Resources and Environment, Qingdao Agricultural University, Qingdao, 266109, China
| | - Guocheng Liu
- Qingdao Engineering Research Center for Rural Environment, College of Resources and Environment, Qingdao Agricultural University, Qingdao, 266109, China
| | - Yingjie Zhang
- School of Marine Science and Technology, Sino-Europe Membrane Technology Research Institute Harbin Institute of Technology, Weihai, 264209, China
| | - Yanjun Xin
- Qingdao Engineering Research Center for Rural Environment, College of Resources and Environment, Qingdao Agricultural University, Qingdao, 266109, China.
| |
Collapse
|
14
|
Navidpour AH, Hosseinzadeh A, Zhou JL, Huang Z. Progress in the application of surface engineering methods in immobilizing TiO 2 and ZnO coatings for environmental photocatalysis. CATALYSIS REVIEWS 2021. [DOI: 10.1080/01614940.2021.1983066] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Amir H. Navidpour
- Centre for Green Technology, School of Civil and Environmental Engineering, University of Technology Sydney, Ultimo, NSW, Australia
| | - Ahmad Hosseinzadeh
- Centre for Green Technology, School of Civil and Environmental Engineering, University of Technology Sydney, Ultimo, NSW, Australia
| | - John L. Zhou
- Centre for Green Technology, School of Civil and Environmental Engineering, University of Technology Sydney, Ultimo, NSW, Australia
| | - Zhenguo Huang
- Centre for Green Technology, School of Civil and Environmental Engineering, University of Technology Sydney, Ultimo, NSW, Australia
| |
Collapse
|
15
|
Paumo HK, Dalhatou S, Katata-Seru LM, Kamdem BP, Tijani JO, Vishwanathan V, Kane A, Bahadur I. TiO2 assisted photocatalysts for degradation of emerging organic pollutants in water and wastewater. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2021.115458] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
16
|
Recent Developments of TiO 2-Based Photocatalysis in the Hydrogen Evolution and Photodegradation: A Review. NANOMATERIALS 2020; 10:nano10091790. [PMID: 32916899 PMCID: PMC7558756 DOI: 10.3390/nano10091790] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Revised: 08/28/2020] [Accepted: 08/29/2020] [Indexed: 01/01/2023]
Abstract
The growth of industrialization, which is forced to use non-renewable energy sources, leads to an increase in environmental pollution. Therefore, it is necessary not only to reduce the use of fossil fuels to meet energy needs but also to replace it with cleaner fuels. Production of hydrogen by splitting water is considered one of the most promising ways to use solar energy. TiO2 is an amphoteric oxide that occurs naturally in several modifications. This review summarizes recent advances of doped TiO2-based photocatalysts used in hydrogen production and the degradation of organic pollutants in water. An intense scientific and practical interest in these processes is aroused by the fact that they aim to solve global problems of energy conservation and ecology.
Collapse
|
17
|
Kokkinos P, Mantzavinos D, Venieri D. Current Trends in the Application of Nanomaterials for the Removal of Emerging Micropollutants and Pathogens from Water. Molecules 2020; 25:molecules25092016. [PMID: 32357416 PMCID: PMC7248945 DOI: 10.3390/molecules25092016] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Revised: 04/10/2020] [Accepted: 04/21/2020] [Indexed: 12/20/2022] Open
Abstract
Water resources contamination has a worldwide impact and is a cause of global concern. The need for provision of clean water is becoming more and more demanding. Nanotechnology may support effective strategies for the treatment, use and reuse of water and the development of next-generation water supply systems. The excellent properties and effectiveness of nanomaterials make them particularly suitable for water/wastewater treatment. This review provides a comprehensive overview of the main categories of nanomaterials used in catalytic processes (carbon nanotubes/graphitic carbon nitride (CNT/g-C3N4) composites/graphene-based composites, metal oxides and composites, metal–organic framework and commercially available nanomaterials). These materials have found application in the removal of different categories of pollutants, including pharmaceutically active compounds, personal care products, organic micropollutants, as well as for the disinfection of bacterial, viral and protozoa microbial targets, in water and wastewater matrices. Apart from reviewing the characteristics and efficacy of the aforementioned nanoengineered materials for the removal of different pollutants, we have also recorded performance limitations issues (e.g., toxicity, operating conditions and reuse) for their practical application in water and wastewater treatment on large scale. Research efforts and continuous production are expected to support the development of eco-friendly, economic and efficient nanomaterials for real life applications in the near future.
Collapse
Affiliation(s)
- Petros Kokkinos
- Department of Chemical Engineering, University of Patras, Caratheodory 1, University Campus, GR-26504 Patras, Greece
- Correspondence: ; Tel.: +30-6972025932
| | - Dionissios Mantzavinos
- Department of Chemical Engineering, University of Patras, Caratheodory 1, University Campus, GR-26504 Patras, Greece
| | - Danae Venieri
- School of Environmental Engineering, Technical University of Crete, GR-73100 Chania, Greece
| |
Collapse
|
18
|
Li P, Zhi D, Zhang X, Zhu H, Li Z, Peng Y, He Y, Luo L, Rong X, Zhou Y. Research progress on the removal of hazardous perfluorochemicals: A review. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2019; 250:109488. [PMID: 31499465 DOI: 10.1016/j.jenvman.2019.109488] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Revised: 08/21/2019] [Accepted: 08/27/2019] [Indexed: 05/27/2023]
Abstract
Perfluorinated substances are global and ubiquitous pollutants. The persistent organic pollution of perfluorochemicals (PFCs) have drawn attentions worldwide. In view of the current need for sustainable development, many researchers began to study the remediation techniques for PFCs. Due to its unique hydrophobic and oil-phobic characteristics, the requirements for the PFCs removal process are different, so that their remediation techniques are still under continuous exploration. Hence, this review summarized the removal behaviors of various PFCs on different materials which supply a good foundation for future investigations in this field. It is evident from previous literature that every remediation techniques for PFCs has its own advantages. Among various currently evaluated removal methods, adsorption seems to be one of the most commonly used and recognized techniques for PFCs pollution control. Other innovative and promising techniques, such as physical and/or chemical methods, have also been tested for their effectiveness in removing perfluorinated compounds.
Collapse
Affiliation(s)
- Peipei Li
- Hunan International Scientific and Technological Cooperation Base of Agricultural Typical Pollution Remediation and Wetland Protection, College of Resources and Environment, Hunan Agricultural University, Changsha, 410128, China
| | - Dan Zhi
- Hunan International Scientific and Technological Cooperation Base of Agricultural Typical Pollution Remediation and Wetland Protection, College of Resources and Environment, Hunan Agricultural University, Changsha, 410128, China
| | - Xiaoxiao Zhang
- State Key Laboratory of Urban Water Resources and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, PR China
| | - Hongmei Zhu
- Hunan International Scientific and Technological Cooperation Base of Agricultural Typical Pollution Remediation and Wetland Protection, College of Resources and Environment, Hunan Agricultural University, Changsha, 410128, China.
| | - Zhiyong Li
- Hunan International Scientific and Technological Cooperation Base of Agricultural Typical Pollution Remediation and Wetland Protection, College of Resources and Environment, Hunan Agricultural University, Changsha, 410128, China
| | - Yutao Peng
- College of Resources and Environmental Sciences, China Agricultural University, Beijing, 100193, China
| | - Yangzhou He
- Hunan International Scientific and Technological Cooperation Base of Agricultural Typical Pollution Remediation and Wetland Protection, College of Resources and Environment, Hunan Agricultural University, Changsha, 410128, China
| | - Lin Luo
- Hunan International Scientific and Technological Cooperation Base of Agricultural Typical Pollution Remediation and Wetland Protection, College of Resources and Environment, Hunan Agricultural University, Changsha, 410128, China
| | - Xiangmin Rong
- Hunan International Scientific and Technological Cooperation Base of Agricultural Typical Pollution Remediation and Wetland Protection, College of Resources and Environment, Hunan Agricultural University, Changsha, 410128, China
| | - Yaoyu Zhou
- Hunan International Scientific and Technological Cooperation Base of Agricultural Typical Pollution Remediation and Wetland Protection, College of Resources and Environment, Hunan Agricultural University, Changsha, 410128, China.
| |
Collapse
|
19
|
Solar Concentration for Wastewaters Remediation: A Review of Materials and Technologies. APPLIED SCIENCES-BASEL 2018. [DOI: 10.3390/app9010118] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
As the effectiveness of conventional wastewater treatment processes is increasingly challenged by the growth of industrial activities, a demand for low-cost and low-impact treatments is emerging. A possible solution is represented by systems coupling solar concentration technology with advanced oxidation processes (AOP). In this paper, a review of solar concentration technologies for wastewater remediation is presented, with a focus on photocatalyst materials used in this specific research context. Recent results, though mostly on model systems, open promising perspectives for the use of concentrated sunlight as the energy source powering AOPs. We identify (i) the development of photocatalyst materials capable of efficiently working with sunlight, and (ii) the transition to real wastewater investigation as the most critical issues to be addressed by research in the field.
Collapse
|