1
|
Sutar AA, Rotte VM. A novel test set up to study three-dimensional electrokinetic dewatering of dredged soil. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 370:122611. [PMID: 39326082 DOI: 10.1016/j.jenvman.2024.122611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 09/05/2024] [Accepted: 09/18/2024] [Indexed: 09/28/2024]
Abstract
The dredged soil obtained from maintenance activities of water bodies has emerged as a potential alternate fill material for infrastructure development. However, dredged soil requires stabilization due to high initial water content, low shear strength and high compressibility. Among several methods, stabilization of dredged soil by using electrokinetics is one of the effective ground improvement techniques that uses electric field to dewater and strengthen the soil. In this context, a series of experiments were conducted on dredged soil by using a combination of electrokinetic treatment with and without 6 kPa seating pressure (viz., low surcharge). A customized and patented electrokinetic dewatering (EKD) test set up was used for the three-dimensional electrokinetic treatment of soil. The potential difference (in the range of 6 V-48 V) within the soil was achieved by inserting stainless steel pipes of 21.4 mm outer diameter, 1.2 mm thickness, and 170 mm length. Two control tests (with and without seating pressure of 6 kPa) also were performed to understand the effectiveness of EKD. From the study, up to 1057% and 427% increase in dewatering was noted in EKD tests due to application of 24 V (optimum voltage noted in EKD tests) as compared to control tests, without and with seating pressure, respectively. Further, seating pressure with EKD resulted in effective control of crack formation in the dredged soil and uniform improvement in shear strength along the depth (up to 95 kPa). The combination of low surcharge with EKD, adopted in the study, is also expected to yield lower differential settlement, and hence better performance of geotechnical structures built on improved dredged soil. The novel 3-dimensional patented EKD test setup with Arduino-programmed automatic water pumping enables collecting and accurately measuring dewatered effluent volume, performing cone penetration tests on undisturbed soil, and collecting soil samples for determination of water content/physiochemical properties from different locations. Overall, the developed EKD setup can be utilized for evaluating the effectiveness and adopting real-time progress management for EKD or other ground improvement methods, and remediation of sludge, mine tailings, dredged sediments, and contaminated soils.
Collapse
Affiliation(s)
- Abhishek A Sutar
- Department of Civil Engineering, Institute of Infrastructure, Technology, Research and Management, Ahmedabad, 380026, India.
| | - Veerabhadra M Rotte
- Department of Civil Engineering, Institute of Infrastructure, Technology, Research and Management, Ahmedabad, 380026, India.
| |
Collapse
|
2
|
Hu W, Cheng WC, Wang Y, Wen S, Xue ZF. Applying a nanocomposite hydrogel electrode to mitigate electrochemical polarization and focusing effect in electrokinetic remediation of a Cu- and Pb-contaminated loess. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 333:122039. [PMID: 37336350 DOI: 10.1016/j.envpol.2023.122039] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 06/12/2023] [Accepted: 06/13/2023] [Indexed: 06/21/2023]
Abstract
Inappropriate handling of copper (Cu) and lead (Pb)-containing wastewater resulting from metallurgical and smelting industries in Northwest China encourages their migration to surrounding environments. Their accumulation causes damage to liver and kidney function. The electrokinetic (EK) technology is considered to be an alternative to traditional remediation technologies because of its great maneuverability. The EK remediation is accompanied by the electrode polarization and the focusing effect toward affecting removal efficiency. In this study, a nanocomposite hydrogel (NCH) electrode was proposed and applied to the EK remediation of Cu- and Pb-contaminated loess. The mechanical, adsorption capacity, adsorption kinetics, and electrochemical properties of the NCH electrode were investigated in detail, followed by microscopic analyses of Scanning Electron Microscope (SEM), Energy Dispersive X-ray Spectroscopy (EDS), and Raman spectrometer. Results showed that the enhancement of the mechanical properties of the NCH electrode was attributed to the crosslinks of graphene nanoparticles, calcium alginate, and hydrogen bonds, while the Cu or Pb adsorption by the NCH electrode was in a chemisorption manner. The second layer formation might address the increase in adsorption capacity with increasing temperature. These results highlight the relative merits of the NCH electrode and verify the potential of applying the NCH electrode to the EK remediation of Cu- and Pb-contamianted loess.
Collapse
Affiliation(s)
- Wenle Hu
- School of Civil Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China; Shaanxi Key Laboratory of Geotechnical and Underground Space Engineering (XAUAT), Xi'an, 710055, China.
| | - Wen-Chieh Cheng
- School of Civil Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China; Shaanxi Key Laboratory of Geotechnical and Underground Space Engineering (XAUAT), Xi'an, 710055, China.
| | - Yihan Wang
- School of Civil Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China; Shaanxi Key Laboratory of Geotechnical and Underground Space Engineering (XAUAT), Xi'an, 710055, China.
| | - Shaojie Wen
- School of Civil Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China; Shaanxi Key Laboratory of Geotechnical and Underground Space Engineering (XAUAT), Xi'an, 710055, China.
| | - Zhong-Fei Xue
- School of Civil Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China; Shaanxi Key Laboratory of Geotechnical and Underground Space Engineering (XAUAT), Xi'an, 710055, China.
| |
Collapse
|
3
|
Li J, Li F, Tong M, Guo S. Treatment of PAHs contaminated soil in abandoned industrial site using combined method of improved in situ capping and electrokinetic enhanced-bioremediation. JOURNAL OF HAZARDOUS MATERIALS 2023; 455:131606. [PMID: 37178532 DOI: 10.1016/j.jhazmat.2023.131606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 05/07/2023] [Accepted: 05/08/2023] [Indexed: 05/15/2023]
Abstract
In situ capping and bioremediation are common technologies for treating contaminated soil at industrial sites. However, these two technologies have some shortcomings for treating soil heavily contaminated with organic matter, such as the limited adsorption in capping layer and the low biodegradation efficiency. This study proposed the method of an improved in situ capping combined with electrokinetic enhanced-bioremediation, and investigated its feasibility for treating heavily polycyclic aromatic hydrocarbons (PAHs) contaminated soil at an abandoned industrial site. By analyzing the changes in soil properties, PAHs concentration, and microbial community in experiments with voltages of 0, 0.8, 1.2, and 1.6 V cm-1, it was found that improved in situ capping could effectively sequester PAHs migration by adsorption and biodegradation, and electric field could enhance PAHs removal from contaminated soil and bio-barrier. In the experiments with electric field, soil environment under the voltage of 1.2 V cm-1 was more favorable for the growth and metabolism of microorganisms, and the residual PAHs concentrations (19.47 ± 0.76 mg kg-1 and 619.38 ± 20.05 mg kg-1) in the bio-barrier and contaminated soil of experiment with 1.2 V cm-1 were the lowest, which indicated that optimization of the electric field conditions could lead to better effects.
Collapse
Affiliation(s)
- Jingming Li
- Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Fengmei Li
- Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016, China; National-Local Joint Engineering Laboratory of Contaminated Soil Remediation by Bio-physicochemical Synergistic Process, Shenyang 110016, China
| | - Menghan Tong
- Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shuhai Guo
- Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016, China; National-Local Joint Engineering Laboratory of Contaminated Soil Remediation by Bio-physicochemical Synergistic Process, Shenyang 110016, China.
| |
Collapse
|
4
|
Bai M, Liu Z, Liu Z, Yu H, Lu L. Removal of mixed contaminants from landfill leachate-contaminated soil by flushing with bio-surfactant: laboratory column tests. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:53702-53711. [PMID: 36867332 DOI: 10.1007/s11356-023-26094-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Accepted: 02/20/2023] [Indexed: 06/19/2023]
Abstract
Landfill leachate-contaminated soil is widespread all over the world. In order to study the removal of mixed contaminants from landfill leachate-contaminated soil by flushing with bio-surfactant, soil column test was conducted to select an optimum concentration of bio-surfactant saponin (SAP) at first. Then, the removal efficiencies of organic contaminants, ammonia nitrogen, and heavy metals from landfill leachate-contaminated soil by flushing with SAP were studied. At last, the toxicity of contaminated soil before and after flushing was estimated by sequential extraction of heavy metals and plant growth test. The test results showed that the SAP solution with the concentration of 2.5 CMC could effectively remove the mixed contaminants from soil and would not introduce excessive pollutants of SAP in soil. Specifically, the removal efficiencies of organic contaminant and ammonia nitrogen were 47.01% and 90.42%, respectively. And the removal efficiencies of Cu, Zn, and Cd were 29.42%, 22.55%, and 17.68%, respectively. During flushing, hydrophobic organic compounds as well as physisorption and ion-exchange ammonia nitrogen in soil were removed by the solubilization effect of SAP, and heavy metals were removed by the chelation of SAP. After flushing with SAP, the reduced partition index (IR) value of Cu and Cd increased, and the mobility index (MF) value of Cu decreased. In addition, flushing with SAP reduced the plant toxicity of contaminated soil, and the residual SAP in soil promoted the plant growth. Therefore, flushing with SAP offered great potentials in remediating the landfill leachate-contaminated soil.
Collapse
Affiliation(s)
- Mei Bai
- Jiangsu Key Laboratory of Urban Underground Engineering and Environmental Safety, Southeast University, Nanjing, 211189, Jiangsu Province, China
| | - Zhibin Liu
- Jiangsu Key Laboratory of Urban Underground Engineering and Environmental Safety, Southeast University, Nanjing, 211189, Jiangsu Province, China.
| | - Zhu Liu
- Jiangsu Key Laboratory of Urban Underground Engineering and Environmental Safety, Southeast University, Nanjing, 211189, Jiangsu Province, China
| | - Haitao Yu
- Jiangsu Key Laboratory of Urban Underground Engineering and Environmental Safety, Southeast University, Nanjing, 211189, Jiangsu Province, China
| | - Liangliang Lu
- Jiangsu Key Laboratory of Urban Underground Engineering and Environmental Safety, Southeast University, Nanjing, 211189, Jiangsu Province, China
| |
Collapse
|
5
|
Sun H, Song Y, Liu W, Zhang M, Duan T, Cai Y. Coupling soil washing with chelator and cathodic reduction treatment for a multi-metal contaminated soil: Effect of pH controlling. Electrochim Acta 2023. [DOI: 10.1016/j.electacta.2023.142178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/08/2023]
|
6
|
Abou-Shady A, Ali ME, Ismail S, Abd-Elmottaleb O, Kotp YH, Osman MA, Hegab RH, Habib AA, Saudi AM, Eissa D, Yaseen R, Ibrahim GA, Yossif TM, El-Araby H, Selim EMM, Tag-Elden MA, Elwa AES, El-Harairy A. Comprehensive review of progress made in soil electrokinetic research during 1993–2020, Part I: process design modifications with brief summaries of main output. SOUTH AFRICAN JOURNAL OF CHEMICAL ENGINEERING 2023. [DOI: 10.1016/j.sajce.2023.01.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
|
7
|
Miller de Melo Henrique J, Isidro J, Sáez C, López-Vizcaíno R, Yustres A, Navarro V, Dos Santos EV, Rodrigo MA. Enhancing soil vapor extraction with EKSF for the removal of HCHs. CHEMOSPHERE 2022; 296:134052. [PMID: 35189200 DOI: 10.1016/j.chemosphere.2022.134052] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 02/14/2022] [Accepted: 02/16/2022] [Indexed: 06/14/2023]
Abstract
This paper evaluates the combination of electrokinetic soil flushing (EKSF) with soil vapor extraction (SVE) for the removal of four hexachlorocyclohexane (HCH) isomers contained in a real matrix. Results demonstrate that the combination of EKSF and SVE can be positive, but it is required the application of high electric fields (3 V cm-1) in order to promote a higher temperature in the system, which improves the volatilization of the HCH contained in the system. Electrokinetic transport is also enhanced with the application of higher electric gradients, but these transport processes are slower than the volatilization processes, which are the primary in this system. Hence collection of species in the electrolyte wells is negligible as compared to the compound dragged with air by the SVE but the temperature increase demonstrates a good performance. Combination of EKSF with SVE can efficiently exhaust the four HCH isomers reaching a removal of more than 90% after 15 days of treatment (20% more than values attained by SVE) but it is required the application of high electric fields to promote a higher temperature in the system (to improve the volatilization) and EK transport (to improve the dragging). 1-D transport model can be easily used to estimate the average pore water velocity and the effective diffusion of each compound under the different experimental conditions tested.
Collapse
Affiliation(s)
- João Miller de Melo Henrique
- Postgraduate Program in Chemical Engineering, School of Science and Technology, Federal University of Rio Grande do Norte, 59078-970, Natal, RN, Brazil; Department of Chemical Engineering, Faculty of Chemical Sciences & Technologies, Universidad de Castilla La Mancha, Campus Universitario, s/n, 13071, Ciudad Real, Spain
| | - Julia Isidro
- Department of Chemical Engineering, Faculty of Chemical Sciences & Technologies, Universidad de Castilla La Mancha, Campus Universitario, s/n, 13071, Ciudad Real, Spain
| | - Cristina Sáez
- Department of Chemical Engineering, Faculty of Chemical Sciences & Technologies, Universidad de Castilla La Mancha, Campus Universitario, s/n, 13071, Ciudad Real, Spain
| | - Rubén López-Vizcaíno
- Geoenvironmental Group, Civil Engineering School, University of Castilla-La Mancha, Avda. Camilo José Cela s/n, 13071, Ciudad Real, Spain
| | - Angel Yustres
- Geoenvironmental Group, Civil Engineering School, University of Castilla-La Mancha, Avda. Camilo José Cela s/n, 13071, Ciudad Real, Spain
| | - Vicente Navarro
- Geoenvironmental Group, Civil Engineering School, University of Castilla-La Mancha, Avda. Camilo José Cela s/n, 13071, Ciudad Real, Spain
| | - Elisama V Dos Santos
- Postgraduate Program in Chemical Engineering, School of Science and Technology, Federal University of Rio Grande do Norte, 59078-970, Natal, RN, Brazil
| | - Manuel A Rodrigo
- Department of Chemical Engineering, Faculty of Chemical Sciences & Technologies, Universidad de Castilla La Mancha, Campus Universitario, s/n, 13071, Ciudad Real, Spain.
| |
Collapse
|
8
|
Fan R, Tian H, Wu Q, Yi Y, Yan X, Liu B. Mechanism of bio-electrokinetic remediation of pyrene contaminated soil: Effects of an electric field on the degradation pathway and microbial metabolic processes. JOURNAL OF HAZARDOUS MATERIALS 2022; 422:126959. [PMID: 34449353 DOI: 10.1016/j.jhazmat.2021.126959] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Revised: 08/17/2021] [Accepted: 08/17/2021] [Indexed: 06/13/2023]
Abstract
In this study, the mechanism of bio-electrokinetic (BIO-EK) remediation to improve the degradation of pyrene was evaluated based on an analysis of the intermediate products and the microbial community. The results show that BIO-EK remediation has a higher pyrene degradation efficiency on pyrene and its intermediate products than the bioremediation and electrokinetic (EK) remediation processes. A series of intermediate products were detected. According to the type of the intermediate products, two degradation pathways, biological metabolism and electrochemical oxidation, are proposed in the BIO-EK remediation of pyrene. Furthermore, the primary microbial taxa involved in the pollutant degradation changed, which led to variations in the functional gene components. The abundant and functional genes related to metabolism were specifically analyzed. The results indicate that the electric field promotes the expression of metabolisms associated with 14 carbohydrates, 13 lipids, 13 amino acids, five energies, and in particular, 11 xenobiotics. These results suggest that in addition to the promotion effect on the microbial metabolism caused by the electric field, BIO-EK remediation can promote the degradation of pollutants due to the coexistence of a microbial metabolic pathway and an electrochemical oxidation pathway.
Collapse
Affiliation(s)
- Ruijuan Fan
- School of Biological Science & Engineering, North Minzu University, Yinchuan 750021, China; Key Laboratory of Ecological Protection of Agro-pastoral Ecotones in the Yellow River Basin, National Ethnic Affairs Commission of the People's Republic of China, Yinchuan 750021, China.
| | - Haihua Tian
- School of Biological Science & Engineering, North Minzu University, Yinchuan 750021, China
| | - Qiong Wu
- School of Biological Science & Engineering, North Minzu University, Yinchuan 750021, China
| | - Yuanyuan Yi
- School of Biological Science & Engineering, North Minzu University, Yinchuan 750021, China
| | - Xingfu Yan
- School of Biological Science & Engineering, North Minzu University, Yinchuan 750021, China; Key Laboratory of Ecological Protection of Agro-pastoral Ecotones in the Yellow River Basin, National Ethnic Affairs Commission of the People's Republic of China, Yinchuan 750021, China
| | - Bingru Liu
- School of Biological Science & Engineering, North Minzu University, Yinchuan 750021, China; Key Laboratory of Ecological Protection of Agro-pastoral Ecotones in the Yellow River Basin, National Ethnic Affairs Commission of the People's Republic of China, Yinchuan 750021, China
| |
Collapse
|
9
|
Zhao B, Sun Z, Liu Y. An overview of in-situ remediation for nitrate in groundwater. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 804:149981. [PMID: 34517309 DOI: 10.1016/j.scitotenv.2021.149981] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 08/19/2021] [Accepted: 08/24/2021] [Indexed: 06/13/2023]
Abstract
Faced with the increasing nitrate pollution in groundwater, in-situ remediation has been widely studied and applied on field-scale as an efficient, economical and less disturbing remediation technology. In this review, we discussed various in-situ remediation for nitrate in groundwater and elaborate on biostimulation, phytoremediation, electrokinetic remediation, permeable reactive barrier and combined remediation. This review described principles of each in-situ remediation, application, the latest progress, problems and challenges on field-scale. Factors affecting the efficiency of in-situ remediation for nitrate in groundwater are also summarized. Finally, this review presented the prospect of in-situ remediation for nitrate pollution in groundwater. The objective of this review is to examine the state of knowledge on in-situ remediation for nitrate in groundwater and critically evaluate factors which affect the up-scaling of laboratory and bench-scale research to field-scale application. This helps to better understand the control mechanisms of various in-situ remediation for nitrate pollution in groundwater and the design options available for application to the field-scale.
Collapse
Affiliation(s)
- Bei Zhao
- China University of Geosciences (Beijing), Beijing 100083, China
| | - Zhanxue Sun
- State Key Laboratory of Nuclear Resources and Environment, East China University of Technology, Nanchang 330013, China.
| | - Yajie Liu
- State Key Laboratory of Nuclear Resources and Environment, East China University of Technology, Nanchang 330013, China
| |
Collapse
|
10
|
Ma W, Sun T, Xu Y, Zheng S, Sun Y. In‒situ immobilization remediation, soil aggregate distribution, and microbial community composition in weakly alkaline Cd‒contaminated soils: A field study. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 292:118327. [PMID: 34634410 DOI: 10.1016/j.envpol.2021.118327] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 09/01/2021] [Accepted: 10/07/2021] [Indexed: 06/13/2023]
Abstract
Biochar has advantages of a large specific surface area and micropore structure, which is beneficial for immobilization remediation of heavy metal‒contaminated soils. A field experiment was conducted to investigate the effects of rice husk biochar (BC) (7.5, 15, and 15 t hm-2) on Cd availability in soils and accumulation in maize (Zea mays L), soil aggregate structure, and microbial community abundance. The results show that BC treatment promoted the formation of large aggregates (5-8 and 2-5 mm) and enhanced aggregate stability, whereas it decreased the proportion of ≤0.25 mm soil aggregates. The geometric mean diameter and mean weight diameter under BC‒treated soils increased by 9.9%-40.5% and 3.6%-32.7%, respectively, indicating that the stability of soil aggregates increased. Moreover, BC facilitated the migration of Cd from large particles (>0.5 mm aggregates) to small particles (<0.25 mm aggregates). The application of BC decreased diethylenetriamine pentaacetic acid ‒extractable Cd by 17.6%-32.12% in contrast with the control. The amount of Cd in maize was reduced by 56.7%-81.1% for zhengdan958, 52.4%-85.9% for Sanbei218, and 73.7%-90.4% for Liyu16. When compared with the control groups, BC addition significantly (P < 0.05) increased the number of Ace observed, Shannon diversity indices, and the relative abundances of Proteobacteria, Acidobacteria, and Bacteroidetes. Therefore, rice husk BC exhibited a certain feasibility in immobilizing remediation of weakly alkaline Cd‒contaminated soils.
Collapse
Affiliation(s)
- Wenyan Ma
- Key Laboratory of Original Agro‒Environmental Pollution Prevention and Control, Ministry of Agriculture and Rural Affairs (MARA), Agro‒Environmental Protection Institute, MARA, Tianjin, 300191, China; Tianjin Key Laboratory of Agro‒Environment and Agro‒Product Safety, Agro‒Environmental Protection Institute, MARA, Tianjin, 300191, China
| | - Tong Sun
- Key Laboratory of Original Agro‒Environmental Pollution Prevention and Control, Ministry of Agriculture and Rural Affairs (MARA), Agro‒Environmental Protection Institute, MARA, Tianjin, 300191, China; Tianjin Key Laboratory of Agro‒Environment and Agro‒Product Safety, Agro‒Environmental Protection Institute, MARA, Tianjin, 300191, China
| | - Yingming Xu
- Key Laboratory of Original Agro‒Environmental Pollution Prevention and Control, Ministry of Agriculture and Rural Affairs (MARA), Agro‒Environmental Protection Institute, MARA, Tianjin, 300191, China; Tianjin Key Laboratory of Agro‒Environment and Agro‒Product Safety, Agro‒Environmental Protection Institute, MARA, Tianjin, 300191, China
| | - Shunan Zheng
- Rural Energy & Environment Agency, MARA, Beijing, 100125, China
| | - Yuebing Sun
- Key Laboratory of Original Agro‒Environmental Pollution Prevention and Control, Ministry of Agriculture and Rural Affairs (MARA), Agro‒Environmental Protection Institute, MARA, Tianjin, 300191, China; Tianjin Key Laboratory of Agro‒Environment and Agro‒Product Safety, Agro‒Environmental Protection Institute, MARA, Tianjin, 300191, China.
| |
Collapse
|
11
|
Bolan N, Sarkar B, Vithanage M, Singh G, Tsang DCW, Mukhopadhyay R, Ramadass K, Vinu A, Sun Y, Ramanayaka S, Hoang SA, Yan Y, Li Y, Rinklebe J, Li H, Kirkham MB. Distribution, behaviour, bioavailability and remediation of poly- and per-fluoroalkyl substances (PFAS) in solid biowastes and biowaste-treated soil. ENVIRONMENT INTERNATIONAL 2021; 155:106600. [PMID: 33964642 DOI: 10.1016/j.envint.2021.106600] [Citation(s) in RCA: 59] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Revised: 03/26/2021] [Accepted: 04/22/2021] [Indexed: 05/22/2023]
Abstract
Aqueous film-forming foam, used in firefighting, and biowastes, including biosolids, animal and poultry manures, and composts, provide a major source of poly- and perfluoroalkyl substances (PFAS) input to soil. Large amounts of biowastes are added to soil as a source of nutrients and carbon. They also are added as soil amendments to improve soil health and crop productivity. Plant uptake of PFAS through soil application of biowastes is a pathway for animal and human exposure to PFAS. The complexity of PFAS mixtures, and their chemical and thermal stability, make remediation of PFAS in both solid and aqueous matrices challenging. Remediation of PFAS in biowastes, as well as soils treated with these biowastes, can be achieved through preventing and decreasing the concentration of PFAS in biowaste sources (i.e., prevention through source control), mobilization of PFAS in contaminated soil and subsequent removal through leaching (i.e., soil washing) and plant uptake (i.e., phytoremediation), sorption of PFAS, thereby decreasing their mobility and bioavailability (i.e., immobilization), and complete removal through thermal and chemical oxidation (i.e., destruction). In this review, the distribution, bioavailability, and remediation of PFAS in soil receiving solid biowastes, which include biosolids, composts, and manure, are presented.
Collapse
Affiliation(s)
- Nanthi Bolan
- The Global Centre for Environmental Remediation, College of Engineering, Science and Environment, University of Newcastle, Callaghan, NSW, Australia, The Cooperative Centre for High Performance Soils, Callaghan, NSW, Australia.
| | - Binoy Sarkar
- Lancaster Environment Centre, Lancaster University, Lancaster LA1 4YQ, United Kingdom
| | - Meththika Vithanage
- Ecosphere Resilience Research Center, Faculty of Applied Sciences, University of Sri Jayewardenepura, Nugegoda 10250, Sri Lanka
| | - Gurwinder Singh
- The Global Innovative Centre for Advanced Nanomaterials, College of Engineering, Science and Environment, University of Newcastle, Callaghan, NSW, Australia; The Cooperative Centre for High Performance Soils, Callaghan, NSW, Australia
| | - Daniel C W Tsang
- Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong
| | - Raj Mukhopadhyay
- Division of Irrigation and Drainage Engineering, ICAR-Central Soil Salinity Research Institute, Karnal 132001, India
| | - Kavitha Ramadass
- The Global Innovative Centre for Advanced Nanomaterials, College of Engineering, Science and Environment, University of Newcastle, Callaghan, NSW, Australia; The Cooperative Centre for High Performance Soils, Callaghan, NSW, Australia
| | - Ajayan Vinu
- The Global Innovative Centre for Advanced Nanomaterials, College of Engineering, Science and Environment, University of Newcastle, Callaghan, NSW, Australia; The Cooperative Centre for High Performance Soils, Callaghan, NSW, Australia
| | - Yuqing Sun
- Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong
| | - Sammani Ramanayaka
- Lancaster Environment Centre, Lancaster University, Lancaster LA1 4YQ, United Kingdom; Ecosphere Resilience Research Center, Faculty of Applied Sciences, University of Sri Jayewardenepura, Nugegoda 10250, Sri Lanka
| | - Son A Hoang
- The Global Centre for Environmental Remediation, College of Engineering, Science and Environment, University of Newcastle, Callaghan, NSW, Australia, The Cooperative Centre for High Performance Soils, Callaghan, NSW, Australia
| | - Yubo Yan
- School of Chemistry and Chemical Engineering, Huaiyin Normal University, Huai'an 223300, China
| | - Yang Li
- Key Laboratory of Water and Sediment Sciences of Ministry of Education, State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, PR China
| | - Jörg Rinklebe
- University of Wuppertal, Faculty of Architecture und Civil Engineering, Institute of Soil Engineering, Waste- and Water Science, Laboratory of Soil- and Groundwater-Management, Germany; Department of Environment, Energy and Geoinformatics, Sejong University, Seoul 05006, Korea.
| | - Hui Li
- Department of Environment, Energy and Geoinformatics, Sejong University, Seoul 05006, Korea
| | - M B Kirkham
- Department of Plant, Soil and Microbial Sciences, Michigan State University, East Lansing, MI 48824, USA; Department of Agronomy, Kansas State University, Manhattan, KS 66506, USA
| |
Collapse
|
12
|
The Remediation Characteristics of Heavy Metals (Copper and Lead) on Applying Recycled Food Waste Ash and Electrokinetic Remediation Techniques. APPLIED SCIENCES-BASEL 2021. [DOI: 10.3390/app11167437] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Most food waste is incinerated and reclaimed in Korea. Due to the development of industry, soil and groundwater pollution are serious. The purpose of this study was to study recycled materials and eco-friendly remediation methods to prevent secondary pollution after remediation. In this study, recycled food waste ash was filled in a permeable reactive barrier (PRB) and used as a heavy metal adsorption material. In situ remediation electrokinetic techniques (EK) and acetic acid were used. Electrokinetic remediation is a technology that can remove various polluted soils and pollutants, and is an economical and highly useful remediation technique. Thereafter, the current density increased constantly over time, and it was confirmed that it increased after electrode exchange and then decreased. Based on this result, the acetic acid was constantly injected and it was reconfirmed through the water content after the end of the experiment. In the case of both heavy metals, the removal efficiency was good after 10 days of operation and 8 days after electrode exchange, but, in the case of lead, it was confirmed that experiments are needed by increasing the operation date before electrode exchange. It was confirmed that the copper removal rate was about 74% to 87%, and the lead removal rate was about 11% to 43%. After the end of the experiment, a low pH was confirmed at x/L = 0.9, and it was also confirmed that there was no precipitation of heavy metals and there was a smooth movement by the enhancer and electrolysis after electrode exchange.
Collapse
|
13
|
Electrokinetics couples with the adsorption of activated carbon-supported hydroxycarbonate green rust that enhances the removal of Sr cations from the stock solution in batch and column. Sep Purif Technol 2021. [DOI: 10.1016/j.seppur.2021.118531] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
14
|
Fan R, Ma W, Zhang H. Microbial community responses to soil parameters and their effects on petroleum degradation during bio-electrokinetic remediation. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 748:142463. [PMID: 33113694 DOI: 10.1016/j.scitotenv.2020.142463] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Revised: 09/12/2020] [Accepted: 09/15/2020] [Indexed: 06/11/2023]
Abstract
This study evaluated the interactions among total petroleum hydrocarbons (TPH), soil parameters, and microbial communities during the bio-electrokinetic (BIO-EK) remediation process. The study was conducted on a petroleum-contaminated saline-alkali soil inoculated with petroleum-degrading bacteria with a high saline-alkali resistance. The results showed that the degradation of TPH was better explained by second-order kinetics, and the efficacy and sustainability of the BIO-EK were closely related to soil micro-environmental factors and microbial community structures. During a 98-d remediation process, the removal rate of TPH was highest in the first 35 d, and then decreased gradually in the later period, which was concurrent with changes in the soil physicochemical properties (conductivity, inorganic ions, pH, moisture, and temperature) and subsequent shifts in the microbial community structures. According to the redundancy analysis (RDA), TPH, soil temperature, and electric conductivity, as well as SO42-, Cl-, and K+ played a better role in explaining the changes in the microbial community at 0-21 d. However, pH and NO3- better explained the changes in the microbial community at 63-98 d. In particular, the dominant genera, Marinobacter and Bacillus, showed a positive correlation with TPH, conductivity, and SO42-, Cl-, and K+, but a negative relationship with pH and NO3. Rhodococcus was positively correlated with soil temperature. The efficacy and sustainability of the BIO-EK remediation process is likely to be improved by controlling these properties.
Collapse
Affiliation(s)
- Ruijuan Fan
- College of Biological Science & Engineering, North Minzu University, Yinchuan 750021, China; Ningxia Key Laboratory for the Development and Application of Microbial Resources in Extreme Environments, North Minzu University, Yinchuan 750021, China.
| | - Wenping Ma
- College of Biological Science & Engineering, North Minzu University, Yinchuan 750021, China
| | - Hanlei Zhang
- College of Biological Science & Engineering, North Minzu University, Yinchuan 750021, China
| |
Collapse
|
15
|
Titaley IA, Simonich SLM, Larsson M. Recent Advances in the Study of the Remediation of Polycyclic Aromatic Compound (PAC)-Contaminated Soils: Transformation Products, Toxicity, and Bioavailability Analyses. ENVIRONMENTAL SCIENCE & TECHNOLOGY LETTERS 2020; 7:873-882. [PMID: 35634165 PMCID: PMC9139952 DOI: 10.1021/acs.estlett.0c00677] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Polycyclic aromatic compounds (PACs) encompass a diverse group of compounds, often found in historically contaminated sites. Different experimental techniques have been used to remediate PACs-contaminated soils. This brief review surveyed over 270 studies concerning remediation of PACs-contaminated soils and found that, while these studies often measured the concentration of 16 parent polycyclic aromatic hydrocarbons (PAHs) pre- and post-remediation, only a fraction of the studies included the measurement of PAC-transformation products (PAC-TPs) and other PACs (n = 33). Only a few studies also incorporated genotoxicity/toxicity/mutagenicity analysis pre- and post-remediation (n = 5). Another aspect that these studies often neglected to include was bioavailability, as none of the studies that included measurement of PAH-TPs and PACs included bioavailability investigation. Based on the literature analysis, future remediation studies need to consider chemical analysis of PAH-TPs and PACs, genotoxicity/toxicity/mutagenicity, and bioavailability analyses pre- and post-remediation. These assessments will help address numerous concerns including, among others, the presence, properties, and toxicity of PACs and PAH-TPs, risk assessment of soil post-remediation, and the bioavailability of PAH-TPs. Other supplementary techniques that help assist these analyses and recommendations for future analyses are also discussed.
Collapse
Affiliation(s)
- Ivan A. Titaley
- Man-Technology-Environment (MTM) Research Centre, School of Science and Technology, Örebro University, Örebro SE-701 82, Sweden
- Department of Environmental and Molecular Toxicology, Oregon State University, Corvallis, OR 97331, USA
- Corresponding Author: Phone: +1 541 737 9208, Fax: +1 541 737 0497
| | - Staci L. Massey Simonich
- Department of Environmental and Molecular Toxicology, Oregon State University, Corvallis, OR 97331, USA
- Department of Chemistry, Oregon State University, Corvallis, OR 97331, USA
| | - Maria Larsson
- Man-Technology-Environment (MTM) Research Centre, School of Science and Technology, Örebro University, Örebro SE-701 82, Sweden
| |
Collapse
|
16
|
Wang W, Li D, Liu X. From aliphatic compounds contaminated soil to active building material: An emerging opportunity for soil remediation and waste utilisation. ENVIRONMENTAL RESEARCH 2020; 190:109986. [PMID: 32777277 DOI: 10.1016/j.envres.2020.109986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Revised: 07/15/2020] [Accepted: 07/19/2020] [Indexed: 06/11/2023]
Abstract
Soil contaminated with the production wastewater of 4,4'-diaminostilbene-2,2'-disulfonic acid is extremely hazardous and difficult to bioremediate. In this study, a cost-effective method was developed to reduce the risk of contaminated soil and produce building materials through a combination of ultrasonic processing and solidification/stabilisation. Ultrasonic processing conditions of 5 min at 40 kHz were found to significantly improve the compressive strength of bricks. The results of scanning electron microscopy, X-ray diffraction, and thermogravimetric analysis demonstrated that the enhanced strength was due to the ultrasonic processing controlling the shape and scale of the crystals and microstructure of the cement paste. Furthermore, the effect of the activating agent, CaO, on the leaching toxicity of the bricks was closely related to the curing temperature. Under natural dry conditions (10-25 °C), the leaching toxicity decreased along with the reduction of CaO. However, under high artificial temperature conditions (40 °C), increasing the CaO was beneficial for decreasing the leaching toxicity. The addition of 2.91% CaO was suitable for improving brick performance under both natural dry (10-25 °C) and artificial temperature curing conditions (40 °C). The results of GC-MS revealed that 64.8% and 66.7% of organic species and organic volume, respectively, were reduced in the leachate of the bricks, which was produced by CaO activation and ultrasonic treatments. It was demonstrated that the optimal combined process for cost-effectively transforming hazardous soil to active building materials is feasible.
Collapse
Affiliation(s)
- Wenbing Wang
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, PR China; School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, PR China.
| | - Deping Li
- School of China-UK Low Carbon College, Shanghai Jiao Tong University, Shanghai, 200240, PR China
| | - Xuntao Liu
- School of Accountancy, Hubei University of Economics, Hubei, 430205, PR China.
| |
Collapse
|
17
|
Motlagh AM, Yang Z, Saba H. Groundwater quality. WATER ENVIRONMENT RESEARCH : A RESEARCH PUBLICATION OF THE WATER ENVIRONMENT FEDERATION 2020; 92:1649-1658. [PMID: 33428311 DOI: 10.1002/wer.1412] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Accepted: 07/16/2020] [Indexed: 06/12/2023]
Abstract
Groundwater is a vital component of water supply for residential, industrial, and agricultural purposes. However, many groundwater basins are being used unsustainably and groundwater contamination is a growing water quality problem. Although anthropogenic activities and natural processes have been increasing the contamination in this valuable water resource, several remediation techniques have been developed in the last few decades to reduce these contamination levels. This review paper focuses on the recent studies developed on groundwater pollutions, remediation practices, and groundwater quality management. PRACTITIONER POINTS: Groundwater pollution is mainly due to anthropogenic activities and it is considered as a growing water quality problem. Groundwater bioremediation is one of the sustainable long-term solutions that uses the microorganisms to degrade the complex environmental pollutants. Groundwater quality management techniques play a significant role to restore or maintain water quality, which is critical for the sustainable development.
Collapse
Affiliation(s)
| | - Zhengjian Yang
- Department of Chemical, Biological and Environmental Engineering, Oregon State University, Corvallis, OR, USA
| | - Humayra Saba
- Department of Civil Engineering, California State University, Sacramento, CA, USA
| |
Collapse
|
18
|
Souza LRR, Pomarolli LC, da Veiga MAMS. From classic methodologies to application of nanomaterials for soil remediation: an integrated view of methods for decontamination of toxic metal(oid)s. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:10205-10227. [PMID: 32064582 DOI: 10.1007/s11356-020-08032-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Accepted: 02/10/2020] [Indexed: 06/10/2023]
Abstract
Soil pollution with toxic elements is a recurrent issue due to environmental disasters, fossil fuel burning, urbanization, and industrialization, which have contributed to soil contamination over the years. Therefore, the remediation of toxic metals in soil is always an important topic since contaminated soil can affect the environment, agricultural safety, and human health. Many remediation methods have been developed; however, it is essential to ensure that they are safe, and also take into account the limitation of each methodology (including high energy input and generation of residues). This scenario has motivated this review, where we explore soil contamination with arsenic, lead, mercury, and chromium and summarize information about the methods employed to remediate each of these toxic elements such as phytoremediation, soil washing, electrokinetic remediation, and nanoparticles besides elucidating some mechanisms involved in the remediation. Considering all the discussed techniques, nowadays, different techniques can be combined together in order to improve the efficiency of remediation besides the new approach of the techniques and the use of one technique for remediating more than one contaminant.
Collapse
|