1
|
Hou X, Hu X, Li Y, Zhang H, Niu L, Huang R, Xu J. From disruption to adaptation: Response of phytoplankton communities in representative impounded lakes to China's South-to-North Water Diversion Project. WATER RESEARCH 2024; 261:122001. [PMID: 38964215 DOI: 10.1016/j.watres.2024.122001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Revised: 06/08/2024] [Accepted: 06/24/2024] [Indexed: 07/06/2024]
Abstract
Impounded lakes are often interconnected in large-scale water diversion projects to form a coordinated system for water allocation and regulation. The alternating runoff and transferred water can significantly impact local ecosystems, which are initially reflected in the sensitive phytoplankton. Nonetheless, limited information is available on the temporal dynamics and assembly patterns of phytoplankton community in impounded lakes responding to continuous and periodic water diversion. Herein, a long-term monitoring from 2013 to 2020 were conducted to systematically investigate the response of phytoplankton community, including its characteristics, stability, and the ecological processes governing community assembly, in representative impounded lakes to the South-to-North Water Diversion Project (SNWDP) in China. In the initial stage of the SNWDP, the phytoplankton diversity indices experienced a decrease during both non-water diversion periods (8.5 %∼21.2 %) and water diversion periods (5.6 %∼12.2 %), implying a disruption in the aquatic ecosystem. But the regular delivery of high-quality water from the Yangtze River gradually increased phytoplankton diversity and mediated ecological assembly processes shifting from stochastic to deterministic. Meanwhile, reduced nutrients restricted the growth of phytoplankton, pushing species to interact more closely to maintain the functionality and stability of the co-occurrence network. The partial least squares path model revealed that ecological process (path coefficient = 0.525, p < 0.01) and interspecies interactions in networks (path coefficient = -0.806, p < 0.01) jointly influenced the keystone and dominant species, ultimately resulting in an improvement in stability (path coefficient = 0.878, p < 0.01). Overall, the phytoplankton communities experienced an evolutionary process from short-term disruption to long-term adaptation, demonstrating resilience and adaptability in response to the challenges posed by the SNWDP. This study revealed the response and adaptation mechanism of phytoplankton communities in impounded lakes to water diversion projects, which is helpful for maintaining the lake ecological health and formulating rational water management strategies.
Collapse
Affiliation(s)
- Xing Hou
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing, 210098, PR China; Institute of Water Science and Technology, Hohai University, Nanjing, 210098, PR China
| | - Xiaodong Hu
- Jiangsu Hydraulic Research Institute, Nanjing, 210017, PR China
| | - Yi Li
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing, 210098, PR China.
| | - Huanjun Zhang
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing, 210098, PR China
| | - Lihua Niu
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing, 210098, PR China.
| | - Rui Huang
- Jiangsu Hydraulic Research Institute, Nanjing, 210017, PR China
| | - Jixiong Xu
- Jiangsu Hydraulic Research Institute, Nanjing, 210017, PR China
| |
Collapse
|
2
|
Bai Y, Lin H, Wang C, Wang Q, Qu J. Digitalizing river aquatic ecosystems. J Environ Sci (China) 2024; 137:677-680. [PMID: 37980050 DOI: 10.1016/j.jes.2023.03.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 03/07/2023] [Accepted: 03/08/2023] [Indexed: 11/20/2023]
Abstract
Traditional river health assessment relies on limited water quality indices and representative organism activity, but does not comprehensively obtain biotic and abiotic information of the ecosystem. Here, we propose a new approach to evaluate the ecological and health risks of river aquatic ecosystems. First, detailed physicochemical and biological characterization of a river ecosystem can be obtained through pollutant determination (especially emerging pollutants) and DNA/RNA sequencing. Second, supervised machine learning can be applied to perform classification analysis of characterization data and ascertain river ecosystem ecology and health. Our proposed methodology transforms river ecosystem health assessment and can be applied in river management.
Collapse
Affiliation(s)
- Yaohui Bai
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China.
| | - Hui Lin
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Chenchen Wang
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; School of Environmental and Municipal Engineering, Tianjin Chengjian University, Tianjin 300384, China
| | - Qiaojuan Wang
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jiuhui Qu
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; Center for Water and Ecology, Tsinghua University, Beijing 100084, China.
| |
Collapse
|
3
|
Liang J, Ding J, Zhu Z, Gao X, Li S, Li X, Yan M, Zhou Q, Tang N, Lu L, Li X. Decoupling the heterogeneity of sediment microbial communities along the urbanization gradients: A Bayesian-based approach. ENVIRONMENTAL RESEARCH 2023; 238:117255. [PMID: 37775011 DOI: 10.1016/j.envres.2023.117255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 09/21/2023] [Accepted: 09/25/2023] [Indexed: 10/01/2023]
Abstract
Comprehending the response of microbial communities in rivers along urbanization gradients to hydrologic characteristics and pollution sources is critical for effective watershed management. However, the effects of complex factors on riverine microbial communities remain poorly understood. Thus, we established a bacteria-based index of biotic integrity (Ba-IBI) to evaluate the microbial community heterogeneity of rivers along an urbanization gradient. To examine the response of Ba-IBI to multiple stressors, we employed a Bayesian network based on structural equation modeling (SEM-BN) and revealed the key control factors influencing Ba-IBI at different levels of urbanization. Our findings highlight that waterborne nutrients have the most significant direct impact on Ba-IBI (r = -0.563), with a particular emphasis on ammonia nitrogen, which emerged as the primary driver of microbial community heterogeneity in the Liuyang River basin. In addition, our study confirmed the substantial adverse effects of urbanization on river ecology, as urban land use had the greatest indirect effect on Ba-IBI (r = -0.460). Specifically, the discharge load from wastewater treatment plants (WWTP) was found to significantly negatively affect the Ba-IBI of the entire watershed. In the low urbanized watersheds, rice cultivation (RC) and concentrated animal feeding operations (CAFO) are key control factors, and an increase in their emissions can lead to a sharp decrease in Ba-IBI. In moderately urbanized watersheds, the Ba-IBI tended to decrease as the level of RC emissions increased, while in those with moderate RC emissions, an increase in point source emissions mitigated the negative impact of RC on Ba-IBI. In highly urbanized watersheds, Ba-IBI was not sensitive to changes in stressors. Overall, our study presents a novel approach by integrating Ba-IBI with multi-scenario analysis tools to assess the effects of multiple stressors on microbial communities in river sediments, providing valuable insights for more refined environmental decision-making.
Collapse
Affiliation(s)
- Jie Liang
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 41082, PR China.
| | - Junjie Ding
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 41082, PR China
| | - Ziqian Zhu
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 41082, PR China
| | - Xiang Gao
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 41082, PR China
| | - Shuai Li
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 41082, PR China
| | - Xin Li
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 41082, PR China
| | - Min Yan
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 41082, PR China
| | - Qinxue Zhou
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 41082, PR China
| | - Ning Tang
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 41082, PR China
| | - Lan Lu
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 41082, PR China
| | - Xiaodong Li
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 41082, PR China
| |
Collapse
|
4
|
Ge Y, Gu X, Zeng Q, Mao Z, Chen H, Yang H. Development and testing of a planktonic index of biotic integrity (P-IBI) for Lake Fuxian, China. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:105873-105884. [PMID: 37723388 DOI: 10.1007/s11356-023-29818-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Accepted: 09/06/2023] [Indexed: 09/20/2023]
Abstract
Lake Fuxian has the largest reserves of high-quality water resources in China, and understanding its ecological health status is the basis of its environmental protection. Based on a seasonal field investigation of the plankton community, we established a planktonic index of biotic integrity (P-IBI) evaluation system to assess the lake's ecosystem health. The biological integrity of Lake Fuxian was relatively good during winter and spring, but gradually deteriorated from summer to autumn. Areas with poor biological integrity were mainly distributed near tourist attractions along the lake's west coast. Redundancy analysis (RDA) was performed to explore the relationships between the P-IBI, its selected indicators, and the environmental variables. Water temperature (WT), pH, ammonia nitrogen (NH3-N), and dissolved oxygen (DO) significantly influenced the P-IBI and its selected indicators. NH3-N and DO were significantly positively correlated with the P-IBI, indicating that it could be used as a water quality indicator to indirectly reflect lake biological integrity. We demonstrated that the P-IBI can effectively reflect temporal and spatial variations of biological integrity and could be used as a potential tool to evaluate Lake Fuxian ecosystem health.
Collapse
Affiliation(s)
- You Ge
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing, 210008, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xiaohong Gu
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing, 210008, China.
| | - Qingfei Zeng
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing, 210008, China
| | - Zhigang Mao
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing, 210008, China
| | - Huihui Chen
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing, 210008, China
| | - Huiting Yang
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing, 210008, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
5
|
Wang L, Zhu M, Li Y, Zhao Z. Assessing the effects of aquaculture on tidal flat ecological status using multi-metrics interaction-based index of biotic integrity (Mt-IBI). ENVIRONMENTAL RESEARCH 2023; 228:115789. [PMID: 37011797 DOI: 10.1016/j.envres.2023.115789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 03/16/2023] [Accepted: 03/27/2023] [Indexed: 05/16/2023]
Abstract
Given tidal flat special environmental conditions and the degree of pollution caused by human activities, there is an urgent need to quantitatively assess their ecological status. Bioindication has become an indispensable part of environmental quality monitoring on account of its sensitivity to environmental disturbance. Thus, this study used bio-indicators to establish a multi-metrics-based index of biotic integrity (Mt-IBI) to evaluate the ecological status of the tidal flats with/without aquaculture through metagenomic sequencing. Four core indexes that were significantly correlated to other indexes with redundancy (p < 0.05), including Escherichia, beta-lactam antibiotic resistance genes, cellulase and xyloglucanases and the keystone species with 21° in the network, were selected after the screening processes. By implementing Mt-IBI in the tidal flats, the ecological health of the sampling sites was categorized into three levels, with Mt-IBI values of 2.01-2.63 (severe level), 2.81-2.93 (moderate level) and 3.23-4.18 (mild level), respectively. Through SEM analysis, water chemical oxygen demand and antibiotics were determined to be the primary controlling factors of the ecological status of tidal flat regions influenced by aquaculture, followed by salinity and total nitrogen. It is worth noting that the alteration of microbial communities impacted ecological status through the mediation of antibiotics. It is hoped that the results of our study will provide a theoretical basis for coastal environment restoration and that the use of Mt-IBI to assess ecosystem status in different aquatic environments will be further popularized in the future.
Collapse
Affiliation(s)
- Linqiong Wang
- College of Oceanography, Hohai University, Xikang Road #1, Nanjing, China
| | - Mengjie Zhu
- College of Environment, Hohai University, Xikang Road #1, Nanjing, China
| | - Yi Li
- College of Environment, Hohai University, Xikang Road #1, Nanjing, China.
| | - Zhe Zhao
- College of Oceanography, Hohai University, Xikang Road #1, Nanjing, China
| |
Collapse
|
6
|
Wang S, Zhang P, Zhang D, Chang J. Evaluation and comparison of the benthic and microbial indices of biotic integrity for urban lakes based on environmental DNA and its management implications. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 341:118026. [PMID: 37192593 DOI: 10.1016/j.jenvman.2023.118026] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2022] [Revised: 04/17/2023] [Accepted: 04/24/2023] [Indexed: 05/18/2023]
Abstract
With the intensification of human disturbance in urban lakes, the loss of eukaryotic biodiversity (macroinvertebrates, etc.) reduces the accuracy of the index of biotic integrity (IBI) assessment. Therefore, how to accurately evaluate the ecological status of urban lakes based on IBI has become an important issue. In this study, 17 sampling sites from four lakes in Wuhan City, China were selected to analyze the composition and diversity characteristics of benthic and microbial communities and their relationship with environmental factors based on eDNA high-throughput sequencing, and compare the application effects of the benthic index of biotic integrity (B-IBI) and the microbial index of biotic integrity (M-IBI). Canonical correspondence analysis showed that the key environmental factors affecting benthic family/genus composition were temperature, conductivity, total phosphorus (TP), and total nitrogen (TN). Redundancy analysis showed that pH, TP, conductivity, and ammonia nitrogen had the greatest impact on microbial phyla/genera. After screening, four and six core metrics were determined from candidate parameters to establish B-IBI and M-IBI. The B-IBI evaluation results showed that healthy, sub-heathy, and poor accounted for 58.8%, 35.3%, and 5.9%, respectively, in the sites. The results of the M-IBI evaluation showed that 29.4% of the sites were healthy, 47.1% were sub-healthy, and 23.5% were common. M-IBI was positively correlated with water quality (r = 0.74, P < 0.001), whereas B-IBI was not. Further results showed that M-IBI was negatively correlated with the relative abundance of bloom-forming cyanobacteria Planktothrix (r = -0.54, P < 0.05). Therefore, M-IBI is more sensitive than B-IBI and can better reflect the actual water pollution status. This study can provide a new perspective for ecological assessment and management of urban lakes strongly disturbed by human activities.
Collapse
Affiliation(s)
- Siyang Wang
- State Key Laboratory of Water Resources Engineering and Management, Wuhan University, Wuhan, Hubei, 430072, P.R. China
| | - Peng Zhang
- State Key Laboratory of Water Resources Engineering and Management, Wuhan University, Wuhan, Hubei, 430072, P.R. China; Hubei Key Laboratory of Water System Science for Sponge City Construction(Wuhan University), Wuhan, 430072, China.
| | - Ditao Zhang
- State Key Laboratory of Water Resources Engineering and Management, Wuhan University, Wuhan, Hubei, 430072, P.R. China; Institute for Ecological Research and Pollution Control of Plateau Lakes, School of Ecology and Environmental Science, Yunnan University, Kunming, 650500, China
| | - Jianbo Chang
- State Key Laboratory of Water Resources Engineering and Management, Wuhan University, Wuhan, Hubei, 430072, P.R. China; Hubei Key Laboratory of Water System Science for Sponge City Construction(Wuhan University), Wuhan, 430072, China
| |
Collapse
|
7
|
Yuan B, Guo M, Wu W, Zhou X, Li M, Xie S. Spatial and Seasonal Patterns of Sediment Bacterial Communities in Large River Cascade Reservoirs: Drivers, Assembly Processes, and Co-occurrence Relationship. MICROBIAL ECOLOGY 2023; 85:586-603. [PMID: 35338380 DOI: 10.1007/s00248-022-01999-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Accepted: 03/14/2022] [Indexed: 06/14/2023]
Abstract
Sediment bacteria play an irreplaceable role in promoting the function and biogeochemical cycle of the freshwater ecosystem; however, little is known about their biogeographical patterns and community assembly mechanisms in large river suffering from cascade development. Here, we investigated the spatiotemporal distribution patterns of bacterial communities employing next-generation sequencing analysis and multivariate statistical analyses from the Lancang River cascade reservoirs during summer and winter. We found that sediment bacterial composition has a significant seasonal turnover due to the modification of cascade reservoirs operation mode, and the spatial consistency of biogeographical models (including distance-decay relationship and covariation of community composition with geographical distance) also has subtle changes. The linear regression between the dissimilarity of bacterial communities in sediments, geographical and environmental distance showed that the synergistic effects of geographical and environmental factors explained the influence on bacterial communities. Furthermore, the environmental difference explained little variations (19.40%) in community structure, implying the homogeneity of environmental conditions across the cascade reservoirs of Lancang River. From the quantification of the ecological process, the homogeneous selection was recognized as the dominating factor of bacterial community assembly. The co-occurrence topological network analyses showed that the key genera were more important than the most connected genera. In general, the assembly of bacterial communities in sediment of cascade reservoirs was mediated by both deterministic and stochastic processes and is always dominated by homogeneous selection with the seasonal switching, but the effects of dispersal limitation and ecological drift cannot be ignored.
Collapse
Affiliation(s)
- Bo Yuan
- College of Geology and Environment, Xi'an University of Science and Technology, Xi'an, 710054, Shaanxi, China.
| | - Mengjing Guo
- State Key Laboratory of Eco-Hydraulics in Northwest Arid Region, Xi'an University of Technology, Xi'an, 710048, Shaanxi, China
| | - Wei Wu
- State Key Laboratory of Eco-Hydraulics in Northwest Arid Region, Xi'an University of Technology, Xi'an, 710048, Shaanxi, China
| | - Xiaode Zhou
- State Key Laboratory of Eco-Hydraulics in Northwest Arid Region, Xi'an University of Technology, Xi'an, 710048, Shaanxi, China
| | - Miaojie Li
- College of Geology and Environment, Xi'an University of Science and Technology, Xi'an, 710054, Shaanxi, China
| | - Shuguang Xie
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing, 100871, China
| |
Collapse
|
8
|
Hu X, Hu M, Zhu Y, Wang G, Xue B, Shrestha S. Phytoplankton community variation and ecological health assessment for impounded lakes along the eastern route of China's South-to-North Water Diversion Project. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2022; 318:115561. [PMID: 35738123 DOI: 10.1016/j.jenvman.2022.115561] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2022] [Revised: 05/22/2022] [Accepted: 06/16/2022] [Indexed: 06/15/2023]
Abstract
Interbasin water diversion projects have been proven to effectively alleviate water resource shortages in areas along water diversion lines, but few studies have focused on ecological health in impounded lakes compared with research on water quality and pollutants. Herein, monitoring data were collected during the nonwater diversion period (NWDP) and the water diversion period (WDP) from 2018 to 2019, and the index of biological integrity (IBI) method based on phytoplankton communities was used to evaluate the ecological health of the impounded lakes (Nansi Lake and Dongping Lake) along the eastern route of the South-to-North Water Diversion Project. The results demonstrated that water diversion improved the water quality of the impounded lakes during the WDP, especially total nitrogen and ammonia nitrogen. Meanwhile, the water diversion affected the phytoplankton community structure and diversity, and network analysis further revealed water diversion could be beneficial to the ecological health of impounded lakes. Furthermore, the P-IBI showed that the overall ecological health assessment was "good" during the WDP. Water diversion substantially improved the ecological health status and stability of the impounded lakes during the dry season. Finally, the direct correlations between the water quality parameters and the P-IBI were weak, and water quality parameters could indirectly affect the P-IBI by changing the phytoplankton community structure. These findings will enhance our understanding of the ecological health of the impounded lakes of the South-to-North Water Diversion Project. Furthermore, this study will provide a reference to support the ecosystem security of impounded lakes in other large water diversion projects.
Collapse
Affiliation(s)
- Xiaoyi Hu
- Key Laboratory of Hydrological Cycle and Sponge City Technology, College of Water Sciences, Beijing Normal University, Beijing, 100875, China
| | - Man Hu
- Key Laboratory of Hydrological Cycle and Sponge City Technology, College of Water Sciences, Beijing Normal University, Beijing, 100875, China
| | - Yi Zhu
- Key Laboratory of Hydrological Cycle and Sponge City Technology, College of Water Sciences, Beijing Normal University, Beijing, 100875, China.
| | - Guoqiang Wang
- Key Laboratory of Hydrological Cycle and Sponge City Technology, College of Water Sciences, Beijing Normal University, Beijing, 100875, China
| | - Baolin Xue
- Key Laboratory of Hydrological Cycle and Sponge City Technology, College of Water Sciences, Beijing Normal University, Beijing, 100875, China
| | - Sangam Shrestha
- Water Engineering and Management, Asian Institute of Technology, Pathum Thani, 12120, Thailand
| |
Collapse
|
9
|
Zhu M, Li Y, Zhang W, Wang L, Wang H, Niu L, Hui C, Lei M, Wang L, Zhang H, Yang G. Determination of the direct and indirect effects of bend on the urban river ecological heterogeneity. ENVIRONMENTAL RESEARCH 2022; 207:112166. [PMID: 34619129 DOI: 10.1016/j.envres.2021.112166] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 09/29/2021] [Accepted: 09/30/2021] [Indexed: 06/13/2023]
Abstract
The ecological heterogeneity created by river bends benefits the diversity of microorganisms, which is vital for the pollutant degradation and overall river health. However, quantitative tools capable of determining the interactions among different trophic levels and species are lacking, and research regarding ecological heterogeneity has been limited to a few species. By integrating the multi-species-based index of biotic integrity (Mt-IBI) and the structure equation model (SEM), an interactions-based prediction modeling framework was established. Based on DNA metabarcoding, a multi-species (i.e., bacteria, protozoans, and metazoans) based index of biotic integrity including 309 candidate metrics was developed. After a three-step screening process, eight core metrics were obtained to assess the ecological heterogeneity, quantitatively. The Mt-IBI value, which ranged from 2.08 to 7.17, was calculated as the sum of each single core metric value. The Mt-IBI revealed that the ecological heterogeneity of concave banks was higher than other sites. According to the result of the SEM, D90 was the controlling factor (r = -0.779) of the ecological heterogeneity under the influence of the river bends. The bend-induced redistribution of sediment particle further influenced the concentrations of carbon, nitrogen, and sulphur. The nitrogen group (r = 0.668) also played an essential role in determining the ecological heterogeneity, follow by carbon group (r = 0.455). Furthermore, the alteration of niches would make a difference on the ecological heterogeneity. This multi-species interactions-based prediction modeling framework proposed a novel method to quantify ecological heterogeneity and provided insight into the enhancement of ecological heterogeneity in river bends.
Collapse
Affiliation(s)
- Mengjie Zhu
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing, 210098, China
| | - Yi Li
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing, 210098, China.
| | - Wenlong Zhang
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing, 210098, China
| | - Linqiong Wang
- Key Laboratory of Marine Hazards Forecasting, Ministry of Natural Resources, College of Oceanography, Hohai University, Nanjing, 210098, China
| | - Haolan Wang
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing, 210098, China
| | - Lihua Niu
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing, 210098, China
| | - Cizhang Hui
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing, 210098, China
| | - Mengting Lei
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing, 210098, China
| | - Longfei Wang
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing, 210098, China
| | - Huanjun Zhang
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing, 210098, China
| | - Gang Yang
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing, 210098, China
| |
Collapse
|
10
|
Zhang W, Yang G, Wang H, Li Y, Niu L, Zhang H, Wang L. Predicting bend-induced heterogeneity in sediment microbial communities by integrating bacteria-based index of biotic integrity and supervised learning algorithms. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2022; 304:114267. [PMID: 34896801 DOI: 10.1016/j.jenvman.2021.114267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2021] [Revised: 11/30/2021] [Accepted: 12/06/2021] [Indexed: 06/14/2023]
Abstract
Prioritizing the relationship between heterogeneity of sediment habitats and river bends is critical when planning and reconstructing urban rivers. However, the exact relationship between ecological heterogeneity and river bends remains ambiguous. Therefore, this research proposed a new approach to quantify and predict bend-induced ecological heterogeneity, incorporating the bacteria-based index of biotic integrity (Ba-IBI), path model, and random forest regression model. The developed Ba-IBI quantified heterogeneity in sediment microbial communities, ranging from low (1.40) to high (3.97). A path model was developed and validated in order to further investigate the relative contributions of environmental factors to the Ba-IBI. The established path model, which was considered acceptable with a CMIN/df = 1.949 < 4, suggested that primary environmental factors affecting the sediment bacterial communities were flow velocity and ammonium concentration in sediment. To further characterize the relationship between environmental factors and the Ba-IBI, a function was constructed using the random forest regression model that predicts the responses of sediment bacterial communities to environmental factors with R2 = 0.6126. The proposed approach and prediction tools will provide knowledge to improve natural channel design and post-project evaluations in river restoration projects.
Collapse
Affiliation(s)
- Wenlong Zhang
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing, 210098, PR China
| | - Gang Yang
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing, 210098, PR China
| | - Haolan Wang
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing, 210098, PR China
| | - Yi Li
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing, 210098, PR China.
| | - Lihua Niu
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing, 210098, PR China
| | - Huanjun Zhang
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing, 210098, PR China
| | - Longfei Wang
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing, 210098, PR China
| |
Collapse
|
11
|
Mei X, Zeng F, Xu F, Su H. Toxic effects of shale gas fracturing flowback fluid on microbial communities in polluted soil. ENVIRONMENTAL MONITORING AND ASSESSMENT 2021; 193:786. [PMID: 34755223 DOI: 10.1007/s10661-021-09544-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Accepted: 10/19/2021] [Indexed: 06/13/2023]
Abstract
A large amount of shale gas fracturing flowback fluid (FFBF) from the process of shale gas exploitation causes obvious ecological harm to health of soil and water. However, biological hazard of soil microbial populations by fracturing flowback fluid remains rarely reported. In this study, the microbiological compositions were assessed via analyzing diversity of microbial populations. The results showed significant differences between polluted soil by fracturing flowback fluid and unpolluted soil in different pH and temperature conditions. And then, the microbe-index of biological integrity (M-IBI) was used to evaluate the toxicity of the fracturing flowback fluid based on analysis of microbial integrity. The results showed that polluted soil lacks key microbial species known to be beneficial to soil health, including denitrifying bacteria and cellulose-decomposing bacteria, and 35 °C is a critical value for estimating poor and sub-healthy level of damage to microbial integrity by fracturing flowback fluid. Our results provide a valuable reference for the evaluation of soil damage by fracturing flowback fluid.
Collapse
Affiliation(s)
- Xudong Mei
- Chongqing Environmental Protection Engineering Technology Center for Shale Gas Development, Fuling, 408000, People's Republic of China
| | - Fanhai Zeng
- Chongqing Environmental Protection Engineering Technology Center for Shale Gas Development, Fuling, 408000, People's Republic of China
| | - FengLin Xu
- Chongqing Environmental Protection Engineering Technology Center for Shale Gas Development, Fuling, 408000, People's Republic of China
| | - HaiFeng Su
- Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Science, 266 Fangzheng Avenue, Shuitu High-tech Park, Beibei, Chongqing, 400714, People's Republic of China.
- Key Laboratory of Degraded and Unused Land Consolidation Engineering, the Ministry of Natural and Resources, XiAn, ShanXi province, 710075, People's Republic of China.
- Zhejiang A&F University, No.666 Wusu Street, Lin'an District, Hangzhou, Zhejiang, 311300, People's Republic of China.
| |
Collapse
|
12
|
Wang J, Fan H, He X, Zhang F, Xiao J, Yan Z, Feng J, Li R. Response of bacterial communities to variation in water quality and physicochemical conditions in a river-reservoir system. Glob Ecol Conserv 2021. [DOI: 10.1016/j.gecco.2021.e01541] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
|
13
|
Sagova-Mareckova M, Boenigk J, Bouchez A, Cermakova K, Chonova T, Cordier T, Eisendle U, Elersek T, Fazi S, Fleituch T, Frühe L, Gajdosova M, Graupner N, Haegerbaeumer A, Kelly AM, Kopecky J, Leese F, Nõges P, Orlic S, Panksep K, Pawlowski J, Petrusek A, Piggott JJ, Rusch JC, Salis R, Schenk J, Simek K, Stovicek A, Strand DA, Vasquez MI, Vrålstad T, Zlatkovic S, Zupancic M, Stoeck T. Expanding ecological assessment by integrating microorganisms into routine freshwater biomonitoring. WATER RESEARCH 2021; 191:116767. [PMID: 33418487 DOI: 10.1016/j.watres.2020.116767] [Citation(s) in RCA: 68] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Revised: 12/14/2020] [Accepted: 12/19/2020] [Indexed: 06/12/2023]
Abstract
Bioindication has become an indispensable part of water quality monitoring in most countries of the world, with the presence and abundance of bioindicator taxa, mostly multicellular eukaryotes, used for biotic indices. In contrast, microbes (bacteria, archaea and protists) are seldom used as bioindicators in routine assessments, although they have been recognized for their importance in environmental processes. Recently, the use of molecular methods has revealed unexpected diversity within known functional groups and novel metabolic pathways that are particularly important in energy and nutrient cycling. In various habitats, microbial communities respond to eutrophication, metals, and natural or anthropogenic organic pollutants through changes in diversity and function. In this review, we evaluated the common trends in these changes, documenting that they have value as bioindicators and can be used not only for monitoring but also for improving our understanding of the major processes in lotic and lentic environments. Current knowledge provides a solid foundation for exploiting microbial taxa, community structures and diversity, as well as functional genes, in novel monitoring programs. These microbial community measures can also be combined into biotic indices, improving the resolution of individual bioindicators. Here, we assess particular molecular approaches complemented by advanced bioinformatic analysis, as these are the most promising with respect to detailed bioindication value. We conclude that microbial community dynamics are a missing link important for our understanding of rapid changes in the structure and function of aquatic ecosystems, and should be addressed in the future environmental monitoring of freshwater ecosystems.
Collapse
Affiliation(s)
- M Sagova-Mareckova
- Dept. of Microbiology, Nutrition and Dietetics, Czech University of Life Sciences, Kamýcká 129, Prague 6, 16500, Czechia.
| | - J Boenigk
- Biodiversity, University of Duisburg-Essen, Universitaetsstraße 5, 45141 Essen, Germany
| | - A Bouchez
- UMR CARRTEL, INRAE, UMR Carrtel, 75 av. de Corzent, FR-74203 Thonon les Bains cedex, France; University Savoie Mont-Blanc, UMR CARRTEL, FR-73370 Le Bourget du Lac, France
| | - K Cermakova
- ID-Gene Ecodiagnostics, Campus Biotech Innovation Park, 15, av. Sécheron, 1202 Geneva, Switzerland
| | - T Chonova
- UMR CARRTEL, INRAE, UMR Carrtel, 75 av. de Corzent, FR-74203 Thonon les Bains cedex, France; University Savoie Mont-Blanc, UMR CARRTEL, FR-73370 Le Bourget du Lac, France
| | - T Cordier
- Department of Genetics and Evolution, University of Geneva, Science III, 4 Boulevard d'Yvoy, 1205 Geneva, Switzerland
| | - U Eisendle
- University of Salzburg, Hellbrunnerstraße 34, 5020 Salzburg, Austria
| | - T Elersek
- National Institute of Biology, Vecna pot 111, SI-1000 Ljubljana, Slovenia
| | - S Fazi
- Water Research Institute, National Research Council of Italy (IRSA-CNR), Via Salaria km 29,300 - C.P. 10, 00015 Monterotondo St., Rome, Italy
| | - T Fleituch
- Institute of Nature Conservation, Polish Academy of Sciences, ul. Adama Mickiewicza 33, 31-120 Krakow, Poland
| | - L Frühe
- Ecology Group, Technische Universität Kaiserslautern, D-67663 Kaiserslautern, Germany
| | - M Gajdosova
- Dept. of Ecology, Faculty of Science, Charles University, Viničná 7, 12844 Prague, Czechia
| | - N Graupner
- Biodiversity, University of Duisburg-Essen, Universitaetsstraße 5, 45141 Essen, Germany
| | - A Haegerbaeumer
- Dept. of Animal Ecology, Bielefeld University, Konsequenz 45, 33615 Bielefeld, Germany
| | - A-M Kelly
- School of Natural Sciences, Trinity College Dublin, University of Dublin, College Green, Dublin 2, D02 PN40, Ireland
| | - J Kopecky
- Epidemiology and Ecology of Microoganisms, Crop Research Institute, Drnovská 507, 16106 Prague 6, Czechia
| | - F Leese
- Biodiversity, University of Duisburg-Essen, Universitaetsstraße 5, 45141 Essen, Germany; Aquatic Ecosystem Resarch, University of Duisburg-Essen, Universitaetsstrasse 5 D-45141 Essen, Germany
| | - P Nõges
- Institute of Agricultural and Environmental Sciences, Estonian University of Life Sciences, Kreutzwaldi 5, Tartu 51006, Estonia
| | - S Orlic
- Institute Ruđer Bošković, Bijenička 54, 10000 Zagreb, Croatia; Center of Excellence for Science and Technology Integrating Mediterranean, Bijenička 54,10 000 Zagreb, Croatia
| | - K Panksep
- Institute of Agricultural and Environmental Sciences, Estonian University of Life Sciences, Kreutzwaldi 5, Tartu 51006, Estonia
| | - J Pawlowski
- ID-Gene Ecodiagnostics, Campus Biotech Innovation Park, 15, av. Sécheron, 1202 Geneva, Switzerland; Department of Genetics and Evolution, University of Geneva, Science III, 4 Boulevard d'Yvoy, 1205 Geneva, Switzerland; Institute of Oceanology, Polish Academy of Sciences, Powstańców Warszawy 55, 81-712 Sopot, Poland
| | - A Petrusek
- Dept. of Ecology, Faculty of Science, Charles University, Viničná 7, 12844 Prague, Czechia
| | - J J Piggott
- School of Natural Sciences, Trinity College Dublin, University of Dublin, College Green, Dublin 2, D02 PN40, Ireland
| | - J C Rusch
- Norwegian Veterinary Institute, P.O. Box 750, Sentrum, NO-0106 Oslo, Norway; Department of Biosciences, University of Oslo, P.O. Box 1066, Blindern, NO-0316 Oslo, Norway
| | - R Salis
- Department of Biology, Faculty of Science, Lund University, Sölvegatan 37, 223 62 Lund, Sweden
| | - J Schenk
- Dept. of Animal Ecology, Bielefeld University, Konsequenz 45, 33615 Bielefeld, Germany
| | - K Simek
- Institute of Hydrobiology, Biology Centre CAS, Branišovská 31, 370 05 České Budějovice, Czechia
| | - A Stovicek
- Dept. of Microbiology, Nutrition and Dietetics, Czech University of Life Sciences, Kamýcká 129, Prague 6, 16500, Czechia
| | - D A Strand
- Norwegian Veterinary Institute, P.O. Box 750, Sentrum, NO-0106 Oslo, Norway
| | - M I Vasquez
- Department of Chemical Engineering, Cyprus University of Technology, 30 Arch. Kyprianos Str., 3036 Limassol, Cyprus
| | - T Vrålstad
- Norwegian Veterinary Institute, P.O. Box 750, Sentrum, NO-0106 Oslo, Norway
| | - S Zlatkovic
- Ministry of Environmental Protection, Omladinskih brigada 1, 11070 Belgrade, Serbia; Agency "Akvatorija", 11. krajiške divizije 49, 11090 Belgrade, Serbia
| | - M Zupancic
- National Institute of Biology, Vecna pot 111, SI-1000 Ljubljana, Slovenia
| | - T Stoeck
- Ecology Group, Technische Universität Kaiserslautern, D-67663 Kaiserslautern, Germany
| |
Collapse
|
14
|
Li Y, Gao L, Niu L, Zhang W, Yang N, Du J, Gao Y, Li J. Developing a statistical-weighted index of biotic integrity for large-river ecological evaluations. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2021; 277:111382. [PMID: 33069143 DOI: 10.1016/j.jenvman.2020.111382] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Revised: 06/14/2020] [Accepted: 09/13/2020] [Indexed: 06/11/2023]
Abstract
The efficiency, accuracy and universality of ecological assessment methods comprise an important foundation for comprehensive assessment and restoration of large river ecological health at the watershed scale. New evaluation metrics and methods are urgently needed to be developed to adapt the characteristics of large rivers, including geographical differences in surface runoff, regional ecological complexity, and seasonal changes. In this study, a bacteria-weighted index of biotic integrity was developed to assess the ecological health of large rivers (lrBW-IBI) based on compositional and functional characteristics of sediment bacterial communities from 33 sections of the lower mainstream of Yangtze River. Five key metrics were determined by range, responsiveness, and redundancy tests. Principal component analysis (PCA), entropy method, criteria importance through intercriteria correlation and random forest were applied to calculate weighted coefficients of key metrics. The optimal lrBW-IBI was observed through the sum of PCA weighted-metrics: the relative abundance of Latescibacteria (0.234), Gemmatimonadaceae (0.149), Nitrospira spp. (0.234), Rhizobiales (0.228), and nitrogenase NifH (0.156). According to PCA based lrBW-IBI, 12.12%, 24.24%, 39.39%, and 24.24% of river sections were labeled excellent, good, moderate, and relatively poor, respectively. The ecological status of the lower mainstream of the Yangtze River did not change significantly across seasons but declined gradually from upstream to downstream. This study provides a new assessment tool for the ecological health of large rivers and highlights the importance of microbial ecological index in river ecology.
Collapse
Affiliation(s)
- Yi Li
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Xikang Road #1, Nanjing, 210098, PR China
| | - Lin Gao
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Xikang Road #1, Nanjing, 210098, PR China
| | - Lihua Niu
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Xikang Road #1, Nanjing, 210098, PR China.
| | - Wenlong Zhang
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Xikang Road #1, Nanjing, 210098, PR China
| | - Nan Yang
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Xikang Road #1, Nanjing, 210098, PR China
| | - Jiming Du
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Xikang Road #1, Nanjing, 210098, PR China
| | - Yu Gao
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Xikang Road #1, Nanjing, 210098, PR China
| | - Jie Li
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Xikang Road #1, Nanjing, 210098, PR China
| |
Collapse
|