1
|
Kása E, Petri I, Szabados M, Ágoston Á, Sápi A, Kónya Z, Kukovecz Á, Stirling A, Sipos P, Kutus B. Utilization of desilication products as efficient adsorbents for the removal of basic fuchsine. JOURNAL OF HAZARDOUS MATERIALS 2024; 480:136234. [PMID: 39461295 DOI: 10.1016/j.jhazmat.2024.136234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 10/08/2024] [Accepted: 10/19/2024] [Indexed: 10/29/2024]
Abstract
Desilication products (DSPs) are one of the main components of bauxite residue, which is currently discharged without further usage. The present study reports on the use of DSPs as adsorbents for basic fuchsine dye. Using artificial spent liquor, we synthesized not only neat DSP but also solids in the presence of various organics, to account for their likely occurrence during the Bayer process. The physico-chemical properties of all DSPs are similar, except for the specific surface area (SSA), which decreases as the organic content in the final product increases. Further, we compared the adsorption characteristics of DSP to those of Y-type faujasite (FAUY). Strikingly, both time-dependent adsorption measurements and adsorption isotherms showed that DSP, despite its 28-fold smaller SSA, binds 4-5 times more dye molecules. Computational modelling for sodalite (as a model for DSP) and FAUY indicates not only more favourable adsorbent-adsorbate interactions, but also more available free Si-OH sites for binding of fuchsine in the case of sodalite. Finally, we find that organic impurities present in the Bayer liquor do not alter the adsorption capacity of neat DSP to any significant degree; therefore, this adsorbent tolerates numerous organic contaminants without decreasing its affinity to the binding of fuchsine.
Collapse
Affiliation(s)
- Eszter Kása
- Department of Molecular and Analytical Chemistry, University of Szeged, Dóm tér 7-8, Szeged H-6720 Hungary
| | - Ivett Petri
- Department of Molecular and Analytical Chemistry, University of Szeged, Dóm tér 7-8, Szeged H-6720 Hungary
| | - Márton Szabados
- Department of Molecular and Analytical Chemistry, University of Szeged, Dóm tér 7-8, Szeged H-6720 Hungary
| | - Áron Ágoston
- Department of Physical Chemistry and Materials Science, University of Szeged, Rerrich B. tér 1, Szeged H-6720 Hungary
| | - András Sápi
- Department of Applied and Environmental Chemistry, University of Szeged, Rerrich B. tér 1, Szeged H-6720 Hungary
| | - Zoltán Kónya
- Department of Applied and Environmental Chemistry, University of Szeged, Rerrich B. tér 1, Szeged H-6720 Hungary
| | - Ákos Kukovecz
- Department of Applied and Environmental Chemistry, University of Szeged, Rerrich B. tér 1, Szeged H-6720 Hungary
| | - András Stirling
- Institute of Organic Chemistry, Research Centre for Natural Sciences, Magyar tudósok körútja 2, Budapest H-1117 Hungary; Department of Chemistry, Eszterházy Károly University, Leányka utca 6, 3300 Eger, Hungary.
| | - Pál Sipos
- Department of Molecular and Analytical Chemistry, University of Szeged, Dóm tér 7-8, Szeged H-6720 Hungary
| | - Bence Kutus
- Department of Molecular and Analytical Chemistry, University of Szeged, Dóm tér 7-8, Szeged H-6720 Hungary.
| |
Collapse
|
2
|
Coutinho R, Hoshima HY, Vianna MTG, Marques M. Sustainable application of modified Luffa cylindrica biomass for removal of trimethoprim in water by adsorption with process optimization. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:55280-55300. [PMID: 39227535 DOI: 10.1007/s11356-024-34797-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Accepted: 08/21/2024] [Indexed: 09/05/2024]
Abstract
The present study describes a set of methodological procedures (seldom applied together), including (i) development of an alternative adsorbent derived from abundant low-cost plant biomass; (ii) use of simple low-cost biomass modification techniques based on physical processing and chemical activation; (iii) design of experiments (DoE) applied to optimize the removal of a pharmaceutical contaminant from water; (iv) at environmentally relevant concentrations, (v) that due to initial low concentrations required determination by ultra-performance liquid phase chromatography coupled to mass spectrometry (UPLC-MS/MS). A central composite rotational design (CCRD) was employed to investigate the performance of vegetable sponge biomass (Luffa cylindrica), physically processed (crushing and sieving) and chemically activated with phosphoric acid, in the adsorption of the antibiotic trimethoprim (TMP) from water. The optimized model identified pH as the most significant variable, with maximum drug removal (91.1 ± 5.7%) achieved at pH 7.5, a temperature of 22.5 °C, and an adsorbent/adsorbate ratio of 18.6 mg µg-1. The adsorption mechanisms and surface properties of the adsorbent were examined through characterization techniques such as scanning electron microscopy (SEM), point of zero charge (pHpzc) measurement, thermogravimetric analysis (TGA), specific surface area, and Fourier-transform infrared spectroscopy (FTIR). The best kinetic fit was obtained by the Avrami fractional-order model. The hypothesis of a hybrid behavior of the adsorbent was suggested by the equilibrium results presented by the Langmuir and Freundlich models and reinforced by the Redlich-Peterson model, which achieved the best fit (R2 = 0.982). The thermodynamic study indicated an exothermic, spontaneous, and favorable process. The maximum adsorption capacity of the material was 2.32 × 102 µg g-1 at an equilibrium time of 120 min. Finally, a sustainable and promising adsorbent for the polishing of aqueous matrices contaminated by contaminants of emerging concern (CECs) at environmentally relevant concentrations is available for future investigations.
Collapse
Affiliation(s)
- Rodrigo Coutinho
- Department of Sanitary and Environmental Engineering, Rio de Janeiro State University, Rio de Janeiro, Brazil.
| | - Henrique Yahagi Hoshima
- Department of Sanitary and Environmental Engineering, Rio de Janeiro State University, Rio de Janeiro, Brazil
| | - Marco Tadeu Gomes Vianna
- Department of Sanitary and Environmental Engineering, Rio de Janeiro State University, Rio de Janeiro, Brazil
| | - Marcia Marques
- Department of Sanitary and Environmental Engineering, Rio de Janeiro State University, Rio de Janeiro, Brazil
| |
Collapse
|
3
|
Ren J, Zhang S, Wang Y, Yang H. Adsorption Properties and Mechanisms of Methylene Blue by Modified Sphagnum Moss Bio-Based Adsorbents. MATERIALS (BASEL, SWITZERLAND) 2024; 17:4329. [PMID: 39274718 PMCID: PMC11396775 DOI: 10.3390/ma17174329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 08/05/2024] [Accepted: 08/28/2024] [Indexed: 09/16/2024]
Abstract
The abundant pore structure and carbon composition of sphagnum peat moss render it a bio-based adsorbent for efficient methylene blue removal from wastewater. By utilizing sphagnum moss sourced from Guizhou, China, as raw material, a cost-effective and highly efficient bio-based adsorbent material was prepared through chemical modification. The structure and performance of the modified sphagnum moss were characterized using SEM, EDS, FTIR, and TGA techniques. Batch adsorption experiments explored the effects of contact time, adsorbent dosage, pH, initial dye concentration, and temperature on adsorption performance. Kinetics, isotherm models, and thermodynamics elucidated the adsorption behavior and mechanism. The modified sphagnum moss exhibited increased surface roughness and uniform surface modification, enhancing active site availability for improved adsorption. Experimental data aligned well with the Freundlich isotherm model and pseudo-second-order kinetic model, indicating efficient adsorption. The study elucidated the adsorption mechanism, laying a foundation for effective methylene blue removal. The utilization of modified sphagnum moss demonstrates significant potential in effectively removing MB from contaminated solutions due to its robust adsorption capability and efficient reusability.
Collapse
Affiliation(s)
- Junpeng Ren
- School of Chemistry and Materials Science, Guizhou Education University, Guiyang 550018, China
| | - Shijiang Zhang
- School of Chemistry and Materials Science, Guizhou Education University, Guiyang 550018, China
| | - Yu Wang
- School of Chemistry and Materials Science, Guizhou Education University, Guiyang 550018, China
| | - Hengxiu Yang
- Guizhou Provincial Key Laboratory of Computational Nano-Material Science, Guizhou Education University, Guiyang 550018, China
| |
Collapse
|
4
|
Adeyi AA, Ogundola DO, Popoola LT, Bernard E, Udeagbara SG, Ogunyemi AT, Olateju II, Zainul R. Potassium permanganate-modified eggshell biosorbent for the removal of diclofenac from liquid environment: adsorption performance, isotherm, kinetic, and thermodynamic analyses. ENVIRONMENTAL MONITORING AND ASSESSMENT 2024; 196:802. [PMID: 39120741 DOI: 10.1007/s10661-024-12964-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Accepted: 08/01/2024] [Indexed: 08/10/2024]
Abstract
This study assess how well diclofenac (DCF) can be separated from aqueous solution using potassium permanganate-modified eggshell biosorbent (MEB). The MEB produced was characterised using XRD, FTIR, and SEM. Batch experiments were conducted to examine and assess the impact of contact time, adsorbent dosage, initial concentration, and temperature on the adsorption capacity of the MEB in the DCF sequestration. The best parameters to obtained 95.64% DCF removal from liquid environment were 0.05 g MEB weight, 50 mg/L initial concentration, and 60 min contact time at room temperature. The maximum DCF sequestration capacity was found to be 159.57 mg/g with 0.05 g of MEB at 298 K. The adsorption isotherm data were more accurately predicted by the Freundlich model, indicating a process of heterogeneous multilayer adsorption. The results of the kinetic study indicated that the pseudo-second-order kinetic models best matched the experimental data. The findings revealed that the dynamic of DCF entrapment is largely chemisorption and diffusion controlled. Based on the values of thermodynamic parameters, the process is both spontaneous and endothermic. The primary processes of DCF sorption mechanism onto the MEB were chemical surface complexation, hydrogen bonding, π-π stacking, and electrostatic interactions. The produced MEB showed effective DCF separation from the aqueous solution and continued to have maximal adsorption capability even after five regeneration cycles. These findings suggest that MEB could be highly efficient adsorbent for the removal of DCF from pharmaceutical wastewater.
Collapse
Affiliation(s)
- Abel A Adeyi
- Department Chemical and Petroleum Engineering, College of Engineering, Afe Babalola University Ado-Ekiti (ABUAD), PMB 5454, Ado-Ekiti, 360211, Ekiti State, Nigeria.
| | - Damilola O Ogundola
- Department Chemical and Petroleum Engineering, College of Engineering, Afe Babalola University Ado-Ekiti (ABUAD), PMB 5454, Ado-Ekiti, 360211, Ekiti State, Nigeria
| | - Lekan T Popoola
- Department Chemical and Petroleum Engineering, College of Engineering, Afe Babalola University Ado-Ekiti (ABUAD), PMB 5454, Ado-Ekiti, 360211, Ekiti State, Nigeria
| | - Esther Bernard
- Department of Chemical Engineering, Nasarawa State University Keffi (NSUK), PMB 1022, Keffi, Nigeria
| | - Stephen G Udeagbara
- Department Chemical and Petroleum Engineering, College of Engineering, Afe Babalola University Ado-Ekiti (ABUAD), PMB 5454, Ado-Ekiti, 360211, Ekiti State, Nigeria
| | - Adebayo T Ogunyemi
- Department Chemical and Petroleum Engineering, College of Engineering, Afe Babalola University Ado-Ekiti (ABUAD), PMB 5454, Ado-Ekiti, 360211, Ekiti State, Nigeria
| | - Idowu I Olateju
- Department Chemical and Petroleum Engineering, College of Engineering, Afe Babalola University Ado-Ekiti (ABUAD), PMB 5454, Ado-Ekiti, 360211, Ekiti State, Nigeria
| | - Rahadian Zainul
- Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Negeri Padang, Sumatera Barat, Indonesia
| |
Collapse
|
5
|
Wang Y, Dong Y, Shao J, Zhao Z, Zhai H. Study on Preparation of Calcium-Based Modified Coal Gangue and Its Adsorption Dye Characteristics. Molecules 2024; 29:2183. [PMID: 38792045 PMCID: PMC11123816 DOI: 10.3390/molecules29102183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 04/24/2024] [Accepted: 05/03/2024] [Indexed: 05/26/2024] Open
Abstract
Efficient and thorough treatment of dye wastewater is essential to achieve ecological harmony. In this study, a new type of calcium-based modified coal gangue (Ca-CG) was prepared by using solid waste coal gangue as raw material and a CaCl2 modifier, which was used for the removal of malachite green, methylene blue, crystal violet, methyl violet and other dyes in water. When the dosage of Ca-CG was 1-5 g/L, the dosage of Ca-CG was the main factor affecting the dye adsorption effect. The adsorption effects of Ca-CG on four dyes were as follows: malachite green > crystal violet > methylene blue > methyl violet. Kinetics, isotherms and thermodynamic analysis showed that the adsorption of malachite green, methyl blue, crystal violet and methyl violet by Ca-CG fitted the second-order kinetic model, and adsorption with chemical reaction is the main process. The adsorption of four dyes by Ca-CG conformed to the Freundlich model, which is dominated by multi-molecular layer adsorption, and the adsorption was easy to carry out. The adsorption process of Ca-CG on the four dyes was spontaneous. The results of FTIR, XRD and SEM showed that the calcium-based materials such as lipscombite and dolomite were the key to the adsorption of malachite green by Ca-CG, and the main mechanisms for the adsorption of malachite green by Ca-CG are surface precipitation, electrostatic action, and chelation reaction. Ca-CG adsorption has great potential for the removal of dye wastewater.
Collapse
Affiliation(s)
- Yihan Wang
- College of Civil Engineering, Liaoning Technical University, Fuxin 123000, China; (Y.W.); (H.Z.)
| | - Yanrong Dong
- College of Civil Engineering, Liaoning Technical University, Fuxin 123000, China; (Y.W.); (H.Z.)
| | - Junli Shao
- College of Mechanics and Engineering, Liaoning Technical University, Fuxin 123000, China
| | - Zilong Zhao
- College of Mining, Liaoning Technical University, Fuxin 123000, China;
| | - Hongyu Zhai
- College of Civil Engineering, Liaoning Technical University, Fuxin 123000, China; (Y.W.); (H.Z.)
| |
Collapse
|
6
|
Anvari S, Hosseini M, Jahanshahi M, Banisheykholeslami F. Design of chitosan/boehmite biocomposite for the removal of anionic and nonionic dyes from aqueous solutions: Adsorption isotherms, kinetics, and thermodynamics studies. Int J Biol Macromol 2024; 259:129219. [PMID: 38184037 DOI: 10.1016/j.ijbiomac.2024.129219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 12/27/2023] [Accepted: 01/02/2024] [Indexed: 01/08/2024]
Abstract
This study introduces a chitosan/boehmite biocomposite as an efficient adsorbent for removing anionic Congo Red (CR) and non-ionic Bromothymol Blue (BTB) from water. Boehmite nanoparticles were synthesized using the Sol-gel method and then attached to chitosan particles using sodium tripolyphosphate through co-precipitation method. Characterized through FTIR, FE-SEM, BET, and XRD, the biosorbent displayed structural integrity with optimized pH conditions of 3 for CR and 4 for BTB, achieving over 90 % adsorption within 30 min. Pseudo second order kinetics model and Langmuir isotherm revealed monolayer sorption with capacities of 64.93 mg/g for CR and 90.90 mg/g for BTB. Thermodynamics indicated a spontaneous and exothermic process, with physisorption as the primary mechanism. The biosorbent demonstrated excellent performance and recyclability over five cycles, highlighting its potential for eco-friendly dye removal in contaminated waters.
Collapse
Affiliation(s)
- Sina Anvari
- Department of Chemical Engineering, Babol Noshirvani University of Technology, Babol, Iran
| | - Morteza Hosseini
- Department of Chemical Engineering, Babol Noshirvani University of Technology, Babol, Iran.
| | - Mohsen Jahanshahi
- Nanotechnology Research Institute, Department of Chemical Engineering, Babol Noshirvani University of Technology, Babol, Iran
| | | |
Collapse
|
7
|
Kushwaha P, Agarwal M. Utilization of metal industry solid waste as an adsorbent for adsorption of anionic and cationic dyes from aqueous solution through the batch and continuous study. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:46748-46765. [PMID: 36723835 DOI: 10.1007/s11356-023-25531-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Accepted: 01/19/2023] [Indexed: 06/18/2023]
Abstract
Industrial waste, for instance, textile effluents when released into the ecological system without first being treated or with inappropriate levels of treatment, can lead to serious issues deteriorating the environment and human health. Moreover, solid waste from various industries has also become a major issue due to massive urbanization. For instance, the waste from the metal industry has been rapidly increasing such as Jarosite which has various metals, metal oxides, and silica in its composition. Therefore, Jarosite was utilized as an adsorbent for the adsorption of anionic Congo red (CR) and cationic Methylene blue (MB) dyes from aqueous solutions. The processed adsorbent sample was characterized by BET, XRD, SEM, EDS, FTIR, and XPS techniques. The effects of initial dye concentration, pH, adsorbent dose, temperature, and contact time were examined. The metal industry waste is used as a low-cost abundant adsorbent with great potential for adsorption ability to remove the CR (97.5%) and MB (68.5%) at pH 7, contact time 90 min, adsorbent dose 0.1 g, and initial dye concentration 50 mg/L. The adsorption data followed the adsorption isotherm and Kinetics for both dyes. The removal of both dyes was a physical adsorption process, endothermic and spontaneous reaction. Column adsorption investigation was described by AB (Adams-Bohart) and YN (Yoon-Nelson) models. According to the economic view, the utilization of jarosite for dye removal is a cost-effective approach, because it is collected free of cost from industries. Henceforth, for the first time, toxic metal industry waste was successfully utilized as an adsorbent for wastewater treatment.
Collapse
Affiliation(s)
- Pushpendra Kushwaha
- Department of Chemical Engineering, Malaviya National Institute of Technology, Jaipur, 302017, India
| | - Madhu Agarwal
- Department of Chemical Engineering, Malaviya National Institute of Technology, Jaipur, 302017, India.
| |
Collapse
|
8
|
Pulikkal AK, Laskar N, Anjudikkal J. Effective adsorption of polycyclic aromatic Congo red dye by modified garlic peel. J DISPER SCI TECHNOL 2023. [DOI: 10.1080/01932691.2023.2181180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/27/2023]
Affiliation(s)
- Ajmal Koya Pulikkal
- Department of Chemistry, National Institute of Technology Mizoram, Aizawl, India
| | - Nirban Laskar
- Department of Civil Engineering, Mizoram University, Tanhril, India
| | - Jamsheera Anjudikkal
- Department of Chemistry, National Institute of Technology Mizoram, Aizawl, India
| |
Collapse
|
9
|
Wan H, Wang C, Gong L, Zhu X, Yan J, Lu J, Zhang W. Potential Application of Discarded Natural Coal Gangue for the Removal of Tetracycline Hydrochloride (TC) from an Aqueous Solution. TOXICS 2022; 11:20. [PMID: 36668746 PMCID: PMC9865974 DOI: 10.3390/toxics11010020] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 12/18/2022] [Accepted: 12/20/2022] [Indexed: 06/17/2023]
Abstract
The generation and accumulation of discarded coal gangue (CG) have severe environmental impacts. CG can adsorb other pollutants in the aquatic environment. However, previous studies have not assessed whether CG can adsorb the emerging contaminant tetracycline hydrochloride (TC). Here, discarded CG taken from a mine was pretreated by crushing, cleaning, and sieving and subsequently applied to the adsorption of TC. The adsorption studies were carried out by batch equilibrium adsorption experiments. Our findings indicated that the adsorption behavior could be accurately described using the quasi-first order kinetic and Langmuir adsorption isotherm models, indicating that monolayer adsorption was the main mechanism mediating the interaction between CG and TC. The adsorption process was classified as a thermodynamic endothermic and spontaneous reaction, which was controlled by chemical and physical adsorption, including electrostatic interaction and cation exchange. The pH of the solution had a great influence on the TC adsorption capacity of GC, with higher adsorption occurring in acidic environments compared to alkaline environments. This was attributed to the changes in CG Zeta potential and TC pKa at different pH conditions. Collectively, our findings demonstrated the potential applicability of discarded CG for the adsorption of TC and provided insights into the adsorption mechanisms.
Collapse
Affiliation(s)
- Hongyou Wan
- School of Ecology and Environment, Zhengzhou University, Zhengzhou 450001, China
- Research Centre of Engineering and Technology for Synergetic Control of Environmental Pollution and Carbon Emissions of Henan Province, Zhengzhou 450001, China
| | - Chen Wang
- School of Ecology and Environment, Zhengzhou University, Zhengzhou 450001, China
| | - Lin Gong
- School of Ecology and Environment, Zhengzhou University, Zhengzhou 450001, China
| | - Xinfeng Zhu
- Henan Key Laboratory of Water Pollution Control and Rehabilitation Technology, Pingdingshan 467036, China
| | - Jingwei Yan
- School of Ecology and Environment, Zhengzhou University, Zhengzhou 450001, China
| | - Jiajia Lu
- School of Ecology and Environment, Zhengzhou University, Zhengzhou 450001, China
| | - Wei Zhang
- School of Ecology and Environment, Zhengzhou University, Zhengzhou 450001, China
- Research Centre of Engineering and Technology for Synergetic Control of Environmental Pollution and Carbon Emissions of Henan Province, Zhengzhou 450001, China
- Henan Key Laboratory of Water Pollution Control and Rehabilitation Technology, Pingdingshan 467036, China
- Zhengzhou Key Laboratory of Water Resource and Environment, Zhengzhou 450001, China
- Yellow River Institute for Ecological Protection and Regional Coordination Development, Zhengzhou University, Zhengzhou 450001, China
- Henan International Joint Laboratory of Water Cycle Simulation and Environmental Protection, Zhengzhou 450001, China
- Henan Key Laboratory of Water Resources Conservation and Intensive Utilization in the Yellow River Basin, Zhengzhou 450001, China
| |
Collapse
|
10
|
Removal of Reactive Black Dye in Water by Magnetic Mesoporous Carbon from Macadamia Nutshell. ADSORPT SCI TECHNOL 2022. [DOI: 10.1155/2022/9884474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The novel and intriguing role of Fe(NO3)3 as a chemical activator in carbonization of macadamia nutshell is introduced in this work. Magnetic mesoporous carbon was achieved by chemical activation of macadamia nutshell with Fe(NO3)3 under nitrogen atmosphere at 850°C (MMC-850). Porosity of MMC-850 included SBET 317 m2/g with Vmicro 0.0796 cm3/g and considerably high Vmeso 0.4318 cm3/g. Not only did MMC-850 possesses good magnetic properties with saturation magnetization and coercive force of 31.48 emu/g and 506.6 Oe, respectively, but MMC-850 also showed high-removal efficiency of reactive black dye (RB5) with maximum adsorption capacity at 123.51 mg/g. The experimental data fit the Langmuir isotherm and Elovich model. Thermal regeneration was effective in degrading RB5 and removal ability was above 90% after two regeneration cycles. RB5 removal from water by MMC-850 as an adsorbent is considered a facile and inexpensive method since macadamia nutshell is a food by-product which is a green and renewable carbon precursor. MMC-850 is a potential adsorbent because it can be separated from wastewater treatment system using magnetic force. Besides, MMC-850 particle is not brittle compared to other porous biochar/activated carbon with similar size; therefore, it is an excellent candidate for column packing or scaling up for wastewater treatment facilities in the future.
Collapse
|
11
|
Chen Y, D'Errico G, Fabbricino M, Gallucci N, Pontoni L, Race M, Yao S. Role of organic nanoparticles on transport and fate of various dyes in aqueous solution. ENVIRONMENTAL RESEARCH 2022; 215:114179. [PMID: 36100103 DOI: 10.1016/j.envres.2022.114179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 08/12/2022] [Accepted: 08/19/2022] [Indexed: 06/15/2023]
Abstract
This work studies the interaction of organic nanoparticles (ON) with various dyes in aqueous solution, to elucidate the role of ON on transport and fate of dyes in the environment, and on dyes removal from wastewater. Studied dyes are Acid Red 66 (AR66), Methylene Blue (MB), Reactive Black 5 (RB5), and Reactive Violet 5 (RV5). ON are extracted from organic matter of anthropogenic origin through resuspension of its colloidal fraction, and successive filtration and dialysis of the obtained suspension. Mechanisms of interaction are investigated initially through three-dimensional excitation emission matrix (3DEEM) analysis. Obtained data indicate that dynamic interactions occur strongly between dye molecules and ON aggregates. 3DEEM spectra of mixed samples containing ON together with one of the tested dyes, present a shape similar to the one of ON alone, but each of them is characterized by specific differences in terms of peaks quenching and shift. The analysis of these singularities suggests that dye molecules are bound to the functional groups of ON through H-bonds, according to the following steps: i) dyes reach the surface of ON aggregates; ii) the molecules pass through the hydrophilic surface of ON aggregates, and reach their hydrophobic core; iii) the dyes are sequestrated into the hydrophobic core of ON aggregates. Nuclear magnetic resonance (NMR) and electron paramagnetic resonance (EPR) spectroscopies analysis confirm the formation of supramolecular aggregates with stable micellar hydrophobic structure, mainly consisting of aliphatic fractions of ON, which explain the disappearance of aromatic groups signals from dyes.
Collapse
Affiliation(s)
- Yao Chen
- College of Architecture and Environment, Sichuan University, Chengdu, 610065, China
| | - Gerardino D'Errico
- Department of Chemical Sciences, University of Naples Federico II, Complesso di Monte Sant'Angelo Angelo, Via Cinthia, I-80126, Naples, NA, Italy
| | - Massimiliano Fabbricino
- Department of Civil, Architectural and Environmental Engineering, University of Naples Federico II, Via Claudio 21, Naples, 80125, Italy.
| | - Noemi Gallucci
- Department of Chemical Sciences, University of Naples Federico II, Complesso di Monte Sant'Angelo Angelo, Via Cinthia, I-80126, Naples, NA, Italy
| | - Ludovico Pontoni
- Department of Civil, Architectural and Environmental Engineering, University of Naples Federico II, Via Claudio 21, Naples, 80125, Italy
| | - Marco Race
- Department of Civil and Mechanical Engineering, University of Cassino and Southern Lazio, Via di Biasio 43, 03043, Cassino, Italy
| | - Sicong Yao
- Department of Civil, Architectural and Environmental Engineering, University of Naples Federico II, Via Claudio 21, Naples, 80125, Italy
| |
Collapse
|
12
|
Zhang Y, Haris M, Zhang L, Zhang C, Wei T, Li X, Niu Y, Li Y, Guo J, Li X. Amino-modified chitosan/gold tailings composite for selective and highly efficient removal of lead and cadmium from wastewater. CHEMOSPHERE 2022; 308:136086. [PMID: 35998726 DOI: 10.1016/j.chemosphere.2022.136086] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 07/30/2022] [Accepted: 08/14/2022] [Indexed: 06/15/2023]
Abstract
In this work, a novel amino-modified chitosan/tailings composite (CS-PEI-nGT) was successfully synthesized from gold tailings particle treated by ball milling (nGT), chitosan (CS) and polyethyleneimine (PEI) as raw materials, for Lead (Pb(Ⅱ)) and Cadmium (Cd(Ⅱ)) removal from aqueous solutions. The CS-PEI-nGT was characterized by using FTIR, XRD, SEM, BET, TGA and XPS techniques. The results showed that CS-PEI-nGT had maximum adsorption capacity of 192.78 mg·g-1 and 99.46 mg·g-1 for Pb(Ⅱ) and Cd(Ⅱ) respectively at pH 5. The adsorption kinetics was described well by pseudo-second-order kinetic adsorption model, and suggested that chemisorption as the rate-controlling step for adsorption of Pb(Ⅱ) and Cd(Ⅱ). The isotherm data was accurately explained by Langmuir model with higher correlation coefficient (R2) of 0.9911 and 0.9642 for Pb(Ⅱ) and Cd(Ⅱ) respectively. In addition, CS-PEI-nGT retained its selective adsorption capacity for Pb(Ⅱ) and Cd(Ⅱ), compared to other metals such as Zn(Ⅱ), Mn(Ⅱ), Mg(Ⅱ) and Al(Ⅲ). The mechanism of the adsorption was investigated and the results revealed that amino (-NH2), silicon oxide groups (Si-O) and hydroxyl (-OH) functional groups on composite surface were accountable for metals adsorption, suggesting surface complexation, electrostatic interactions and ion exchange. Our work presents a promising strategy for tailings recycling and highly efficient removal of toxic metals ions from wastewater.
Collapse
Affiliation(s)
- Yi Zhang
- School of Environmental Science and Engineering, Shaanxi University of Science & Technology, Xi'an 710021, PR China
| | - Muhammad Haris
- School of Environmental Science and Engineering, Shaanxi University of Science & Technology, Xi'an 710021, PR China
| | - Lei Zhang
- School of Environmental Science and Engineering, Shaanxi University of Science & Technology, Xi'an 710021, PR China
| | - Chao Zhang
- School of Environmental Science and Engineering, Shaanxi University of Science & Technology, Xi'an 710021, PR China
| | - Ting Wei
- School of Environmental Science and Engineering, Shaanxi University of Science & Technology, Xi'an 710021, PR China
| | - Xiang Li
- College of Chemistry and Chemical Engineering, Shaanxi University of Science & Technology, Xi'an 710021, PR China
| | - Yuhua Niu
- College of Chemistry and Chemical Engineering, Shaanxi University of Science & Technology, Xi'an 710021, PR China
| | - Yongtao Li
- School of Environmental Science and Engineering, Shaanxi University of Science & Technology, Xi'an 710021, PR China; College of Resources and Environment, South China Agricultural University, Guangzhou 510642, PR China
| | - Junkang Guo
- School of Environmental Science and Engineering, Shaanxi University of Science & Technology, Xi'an 710021, PR China.
| | - Xiaojing Li
- School of Environmental Science and Engineering, Shaanxi University of Science & Technology, Xi'an 710021, PR China.
| |
Collapse
|
13
|
Azam K, Shezad N, Shafiq I, Akhter P, Akhtar F, Jamil F, Shafique S, Park YK, Hussain M. A review on activated carbon modifications for the treatment of wastewater containing anionic dyes. CHEMOSPHERE 2022; 306:135566. [PMID: 35787877 DOI: 10.1016/j.chemosphere.2022.135566] [Citation(s) in RCA: 36] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 06/14/2022] [Accepted: 06/28/2022] [Indexed: 06/15/2023]
Abstract
Polluted water resources, particularly those polluted with industrial effluents' dyes, are carcinogenic and hence pose a severe threat to sustainable and longstanding worldwide development. Meanwhile, adsorption is a promising process for polluted/wastewater treatment. In particular, activated carbon (AC) is popular among various wastewater treatment adsorbents, especially in the organic contaminants' remediation in wastewater. Hence, the AC's synthesis from degradable and non-degradable resources, the carbon activation involved in the AC synthesis, and the AC's modification to cutting-edge and effective materials have been modern-research targets in recent years. Likewise, the main research focuses worldwide have been the salient AC characteristics, such as its surface chemistry, porosity, and enhanced surface area. Notably, various modified-AC synthesis methods have been employed to enhance the AC's potential for improved contaminants-removal. Hence, we critically analyze the different modified ACs (with enhanced (surface) functional groups and textural properties) of their capacity to remove different-natured anionic dyes in wastewater. We also discuss the corresponding AC modification techniques, the factors affecting the AC properties, and the modifying agents' influence on the AC's morphological/adsorptive properties. Finally, the AC research of future interest has been proposed by identifying the current AC research gaps, especially related to the AC's application in wastewater treatment.
Collapse
Affiliation(s)
- Kshaf Azam
- Department of Chemical Engineering, COMSATS University Islamabad, Lahore Campus, Defence Road, Off Raiwind Road, Lahore, Pakistan
| | - Nasir Shezad
- Department of Chemical Engineering, COMSATS University Islamabad, Lahore Campus, Defence Road, Off Raiwind Road, Lahore, Pakistan; Division of Materials Science, Luleå University of Technology, 97187, Luleå, Sweden
| | - Iqrash Shafiq
- Department of Chemical Engineering, COMSATS University Islamabad, Lahore Campus, Defence Road, Off Raiwind Road, Lahore, Pakistan
| | - Parveen Akhter
- Department of Chemistry, The University of Lahore, 1-km Defence Road, Off Raiwind Road, Lahore, Pakistan
| | - Farid Akhtar
- Division of Materials Science, Luleå University of Technology, 97187, Luleå, Sweden
| | - Farrukh Jamil
- Department of Chemical Engineering, COMSATS University Islamabad, Lahore Campus, Defence Road, Off Raiwind Road, Lahore, Pakistan
| | - Sumeer Shafique
- Department of Chemical Engineering, COMSATS University Islamabad, Lahore Campus, Defence Road, Off Raiwind Road, Lahore, Pakistan
| | - Young-Kwon Park
- School of Environmental Engineering, University of Seoul, Seoul, 02504, Republic of Korea.
| | - Murid Hussain
- Department of Chemical Engineering, COMSATS University Islamabad, Lahore Campus, Defence Road, Off Raiwind Road, Lahore, Pakistan.
| |
Collapse
|
14
|
Purtika, Thakur A, Jawa GK. Comparative study on effect of ionic liquids on static stability of green emulsion liquid membrane. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.128776] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
15
|
Shao S, Ma B, Wang C, Chen Y. Extraction of valuable components from coal gangue through thermal activation and HNO3 leaching. J IND ENG CHEM 2022. [DOI: 10.1016/j.jiec.2022.06.033] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
16
|
Zhao H, Li P, He X. Remediation of cadmium contaminated soil by modified gangue material: Characterization, performance and mechanisms. CHEMOSPHERE 2022; 290:133347. [PMID: 34929268 DOI: 10.1016/j.chemosphere.2021.133347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2021] [Revised: 12/05/2021] [Accepted: 12/15/2021] [Indexed: 06/14/2023]
Abstract
Nowadays, remediation of soil contaminated with potentially toxic metal is a great international concern. In this study, a novel modified gangue material (MGE) is synthesized from coal gangue (GE) through a low-temperature assisted with alkali roasting method, and is applied to the immobilization of cadmium (Cd2+) in contaminated soil. The various instruments (SEM-EDS, FTIR, XRD, TGA, and XPS) are employed to investigate the changes of microstructure and function of GE before and after the modification. The results showed that a large number of active groups (Si-O, Al-O, Fe-O, -OH, -CO, and -COOH) are observed on the surface of MGE, which is conducive to the removal of Cd2+. Besides, the adsorption kinetics, and isotherm models are introduced to analyze the potential adsorption mechanism, which suggesting that the adsorption behavior can be well fitted by pseudo-second-order and Langmuir models. The potential mechanisms of MGE include the ion exchange, complexation, electronic attraction, and precipitation. According to the pot experiment, the application of MGE can significantly improve the growth of pakchoi, and increase the pH of soils. Meanwhile, the content of available Cd2+ is reduced in the treatment with MGE, by a factor of 14.2%-29.8%. Correspondingly, the content of Cd2+ in different parts of pakchoi is also decreased. The study shows that the MGE can be strongly recommended as an efficient and safe amendment to stabilize Cd2+ in contaminated soil.
Collapse
Affiliation(s)
- Hanghang Zhao
- School of Water and Environment, Chang'an University, No. 126 Yanta Road, Xi'an, 710054, Shaanxi, China; Key Laboratory of Subsurface Hydrology and Ecological Effects in Arid Region of the Ministry of Education, Chang'an University, No. 126 Yanta Road, Xi'an, 710054, Shaanxi, China
| | - Peiyue Li
- School of Water and Environment, Chang'an University, No. 126 Yanta Road, Xi'an, 710054, Shaanxi, China; Key Laboratory of Subsurface Hydrology and Ecological Effects in Arid Region of the Ministry of Education, Chang'an University, No. 126 Yanta Road, Xi'an, 710054, Shaanxi, China; School of Water Resources and Environment, Hebei GEO University, Shijiazhuang, 050031, Hebei, China.
| | - Xiaodong He
- School of Water and Environment, Chang'an University, No. 126 Yanta Road, Xi'an, 710054, Shaanxi, China; Key Laboratory of Subsurface Hydrology and Ecological Effects in Arid Region of the Ministry of Education, Chang'an University, No. 126 Yanta Road, Xi'an, 710054, Shaanxi, China
| |
Collapse
|
17
|
Wang R, Zhao X, Wang T, Guo Z, Hu Z, Zhang J, Wu S, Wu H. Can we use mine waste as substrate in constructed wetlands to intensify nutrient removal? A critical assessment of key removal mechanisms and long-term environmental risks. WATER RESEARCH 2022; 210:118009. [PMID: 34974341 DOI: 10.1016/j.watres.2021.118009] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 11/26/2021] [Accepted: 12/23/2021] [Indexed: 06/14/2023]
Abstract
The utilization of natural ores and/or mine waste as substrate in constructed wetlands (CWs) to enhance nutrient removal performance has been gaining high popularity recently. However, the knowledge regarding the long-term feasibility and key removal mechanisms, particularly the potential negative environmental effects of contaminants leached from mine waste is far insufficient. This study, for the first time, performed a critical assessment by using different CWs with three mine waste (coal gangue, iron ore and manganese ore) as substrates in a 385-day experiment treating wastewater with varying nutrient loadings. The results showed that the addition of mine waste in CWs increased removal of total phosphorus (TP) by 17-34%, and total nitrogen (TN) by 11-51%. The higher removal of TP is mainly attributed to the strong binding mechanism of phosphate with the oxides and hydroxides of Mn, Fe and/or Al, which are leached out of mine waste. Moreover, integration of mine waste in CWs also significantly stimulated biofilm establishment and enriched the relative abundance of key functional genes related to the nitrogen cycle, supporting the observed high-rate nitrogen removal. However, leaching of heavy metals (Fe, Mn, Cu and Cr) from the beded mine waste in the experimented CWs was monitored, which further influenced cytoplasmic enzymes and created oxidative stress damage to plants, resulting in a decline of nutrient uptake by plants.
Collapse
Affiliation(s)
- Ruigang Wang
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science & Engineering, Shandong University, Qingdao 266237, PR China; College of Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, PR China
| | - Xin Zhao
- College of Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, PR China
| | - Tiecheng Wang
- College of Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, PR China
| | - Zizhang Guo
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science & Engineering, Shandong University, Qingdao 266237, PR China
| | - Zhen Hu
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science & Engineering, Shandong University, Qingdao 266237, PR China
| | - Jian Zhang
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science & Engineering, Shandong University, Qingdao 266237, PR China
| | - Shubiao Wu
- Department of Agroecology, Aarhus University, Blichers Allé 20, 8830 Tjele, Denmark.
| | - Haiming Wu
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science & Engineering, Shandong University, Qingdao 266237, PR China.
| |
Collapse
|
18
|
Rápó E, Tonk S. Factors Affecting Synthetic Dye Adsorption; Desorption Studies: A Review of Results from the Last Five Years (2017-2021). Molecules 2021; 26:5419. [PMID: 34500848 PMCID: PMC8433845 DOI: 10.3390/molecules26175419] [Citation(s) in RCA: 59] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 09/01/2021] [Accepted: 09/02/2021] [Indexed: 12/07/2022] Open
Abstract
The primary, most obvious parameter indicating water quality is the color of the water. Not only can it be aesthetically disturbing, but it can also be an indicator of contamination. Clean, high-quality water is a valuable, essential asset. Of the available technologies for removing dyes, adsorption is the most used method due to its ease of use, cost-effectiveness, and high efficiency. The adsorption process is influenced by several parameters, which are the basis of all laboratories researching the optimum conditions. The main objective of this review is to provide up-to-date information on the most studied influencing factors. The effects of initial dye concentration, pH, adsorbent dosage, particle size and temperature are illustrated through examples from the last five years (2017-2021) of research. Moreover, general trends are drawn based on these findings. The removal time ranged from 5 min to 36 h (E = 100% was achieved within 5-60 min). In addition, nearly 80% efficiency can be achieved with just 0.05 g of adsorbent. It is important to reduce adsorbent particle size (with Φ decrease E = 8-99%). Among the dyes analyzed in this paper, Methylene Blue, Congo Red, Malachite Green, Crystal Violet were the most frequently studied. Our conclusions are based on previously published literature.
Collapse
Affiliation(s)
- Eszter Rápó
- Environmental Science Department, Sapientia Hungarian University of Transylvania, Calea Turzii No. 4, 400193 Cluj-Napoca, Romania
- Department of Genetics, Microbiology and Biotechnology, Hungarian University of Agriculture and Life Sciences, Páter Károly No. 1, H-2100 Gödöllő, Hungary
| | - Szende Tonk
- Environmental Science Department, Sapientia Hungarian University of Transylvania, Calea Turzii No. 4, 400193 Cluj-Napoca, Romania
| |
Collapse
|
19
|
Mohammadikish M, Javid F. Cobalt-benzene-1,4-dicarboxylic acid coordination polymer for efficient removal of anionic and cationic dyes. J COORD CHEM 2021. [DOI: 10.1080/00958972.2021.1967335] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
- Maryam Mohammadikish
- Faculty of Chemistry, Kharazmi University, Tehran, Iran
- Research Institute of Green Chemistry, Kharazmi University, Tehran, Iran
| | - Farideh Javid
- Faculty of Chemistry, Kharazmi University, Tehran, Iran
| |
Collapse
|
20
|
Chemical Modification of Combusted Coal Gangue for U(VI) Adsorption: Towards a Waste Control by Waste Strategy. SUSTAINABILITY 2021. [DOI: 10.3390/su13158421] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Uranium mining waste causes serious radiation-related health and environmental problems. This has encouraged efforts toward U(VI) removal with low cost and high efficiency. Typical uranium adsorbents, such as polymers, geopolymers, zeolites, and MOFs, and their associated high costs limit their practical applications. In this regard, this work found that the natural combusted coal gangue (CCG) could be a potential precursor of cheap sorbents to eliminate U(VI). The removal efficiency was modulated by chemical activation under acid and alkaline conditions, obtaining HCG (CCG activated with HCl) and KCG (CCG activated with KOH), respectively. The detailed structural analysis uncovered that those natural mineral substances, including quartz and kaolinite, were the main components in CCG and HCG. One of the key findings was that kalsilite formed in KCG under a mild synthetic condition can conspicuous enhance the affinity towards U(VI). The best equilibrium adsorption capacity with KCG was observed to be 140 mg/g under pH 6 within 120 min, following a pseudo-second-order kinetic model. To understand the improved adsorption performance, an adsorption mechanism was proposed by evaluating the pH of uranyl solutions, adsorbent dosage, as well as contact time. Combining with the structural analysis, this revealed that the uranyl adsorption process was mainly governed by chemisorption. This study gave rise to a utilization approach for CCG to obtain cost-effective adsorbents and paved a novel way towards eliminating uranium by a waste control by waste strategy.
Collapse
|
21
|
Zhao H, Huang X, Liu F, Hu X, Zhao X, Wang L, Gao P, Li J, Ji P. Potential of a novel modified gangue amendment to reduce cadmium uptake in lettuce (Lactuca sativa L.). JOURNAL OF HAZARDOUS MATERIALS 2021; 410:124543. [PMID: 33223317 DOI: 10.1016/j.jhazmat.2020.124543] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Revised: 10/28/2020] [Accepted: 11/09/2020] [Indexed: 06/11/2023]
Abstract
In this study, the modified gangue (GE) was prepared by calcination at lower temperatures using potassium hydroxide (KOH) as the activating agent. The field emission scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDS), Fourier transform infrared spectroscopy (FTIR), and X-ray fluorescence (XRF) methods were employed to analyze the physicochemical characteristics of GE before and after the modification. Besides, the GE and commercial zeolite (ZE) were compared in the remediation of Cd-contaminated soil in field experiments. The results showed that both the GE and ZE had positive effects on the stabilization of Cd, decreasing the available Cd by 21.2-33.9% and 22.1-28.2%, respectively, while no significant difference was observed between the two amendments, indicating that the modification of GE was successful. Moreover, the application of GE decreased the Cd mobilization and uptake in lettuce shoot and root by 54.9-61.5% and 9.3-13.2%, respectively, and at the same time, the bio-available Cd decreased by 20.9-34.5%. Moreover, with the addition of GE, activities of urease and alkaline phosphatase increased in soil, while the peroxidase and superoxide dismutase activities were notably reduced in plants. Therefore, GE could be used as an effective amendment for the alleviation of Cd accumulation and toxicity, and thereby improve food safety.
Collapse
Affiliation(s)
- Hanghang Zhao
- College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, China; Key Laboratory of Original Agro-environmental Pollution Prevention and Control, Ministry of Agriculture/Tianjin Key Laboratory of Agro-environment and Safe-product, Tianjin 300191, China
| | - Xunrong Huang
- College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, China
| | - Fuhao Liu
- College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, China
| | - Xiongfei Hu
- College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, China
| | - Xin Zhao
- College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, China
| | - Lu Wang
- College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, China
| | - Pengcheng Gao
- College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, China; Scientific Laboratory of Heyang Agricultural Environment and Farmland Cultivation, Ministry of Agriculture and Rural Affairs, Weinan 714000, Shaanxi, China
| | - Jingtian Li
- College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, China; The First Geological and Mineral Survey Institute of Henan Bureau of Geology and Mineral Exploration and Development, Applied Engineering Technology Research Center of Ecology and Exploration Geochemistry, Luoyang 471003, Henan, China
| | - Puhui Ji
- College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, China; Key Laboratory of Pollution Ecology and Environmental Engineering, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016, Liaoning, China.
| |
Collapse
|
22
|
Marchewka J, Jeleń P, Rutkowska I, Bezkosty P, Sitarz M. Chemical Structure and Microstructure Characterization of Ladder-Like Silsesquioxanes Derived Porous Silicon Oxycarbide Materials. MATERIALS 2021; 14:ma14061340. [PMID: 33802120 PMCID: PMC8002036 DOI: 10.3390/ma14061340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 02/15/2021] [Accepted: 03/08/2021] [Indexed: 11/16/2022]
Abstract
The aim of this work was to synthesize porous ceramic materials from the SiOC system by the sol-gel method and the subsequent pyrolysis. The usage of two types of precursors (siloxanes) was determined by Si/C ratio in starting materials. It allows us to control the size of the pores and specific surface area, which are crucial for the potential applications of the final product after thermal processing. Methyltrimethoxysilane and dimethyldiethoxysilane were mixed in three different molar ratios: 4:1, 2:1, and 1:1 to emphasize Si/C ratio impact on silicon oxycarbide glasses properties. Structure and microstructure were examined both for xerogels and obtained silicon oxycarbide materials. Brunauer-Emmett-Teller (BET) analysis was performed to confirm that obtained materials are porous and Si/C ratio in siloxanes precursors affects porosity and specific surface area. This kind of porous ceramics could be potentially applied as gas sensors in high temperatures, catalyst supports, filters, adsorbents, or advanced drug delivery systems.
Collapse
|
23
|
Rani R, Tasmeem S, Malik A, Garg VK, Singh L, Dhull SB. Optimization of Swiss blue dye removal by cotton boll activated carbon: response surface methodological approach. TOXIN REV 2021. [DOI: 10.1080/15569543.2021.1873386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Affiliation(s)
- Rekha Rani
- Department of Energy and Environmental Sciences, Chaudhary Devi Lal University, Sirsa, India
| | - Summaiya Tasmeem
- Department of Energy and Environmental Sciences, Chaudhary Devi Lal University, Sirsa, India
| | - Anju Malik
- Department of Energy and Environmental Sciences, Chaudhary Devi Lal University, Sirsa, India
| | - Vinod Kumar Garg
- Centre for Environmental Sciences and Technology, Central University of Punjab, Bathinda, India
| | - Lakhvinder Singh
- Department of Energy and Environmental Sciences, Chaudhary Devi Lal University, Sirsa, India
| | - Sanju Bala Dhull
- Department of Food Science and Technology, Chaudhary Devi Lal University, Sirsa, India
| |
Collapse
|
24
|
Song Y, Wang Q, Yang W, Chen Q, Zhou Y, Zhou L. Chitosan-nickel oxide composite as an efficient adsorbent for removal of Congo red from aqueous solution. J DISPER SCI TECHNOL 2021. [DOI: 10.1080/01932691.2021.1878901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Affiliation(s)
- Yu Song
- Chemical Synthesis and Pollution Control Key Laboratory of Sichuan Province, China West Normal University, Nanchong, China
| | - Qing Wang
- Chemical Synthesis and Pollution Control Key Laboratory of Sichuan Province, China West Normal University, Nanchong, China
| | - Wenjuan Yang
- Chemical Synthesis and Pollution Control Key Laboratory of Sichuan Province, China West Normal University, Nanchong, China
| | - Qilin Chen
- Chemical Synthesis and Pollution Control Key Laboratory of Sichuan Province, China West Normal University, Nanchong, China
| | - Yafen Zhou
- Chemical Synthesis and Pollution Control Key Laboratory of Sichuan Province, China West Normal University, Nanchong, China
| | - Limei Zhou
- Chemical Synthesis and Pollution Control Key Laboratory of Sichuan Province, China West Normal University, Nanchong, China
| |
Collapse
|
25
|
Zhang X, Tian Y, Liu J, Wang Y, Zhang Z, Li H. Evaluation of modified permeable pavement systems with coal gangue to remove typical runoff pollutants under simulated rainfall. WATER SCIENCE AND TECHNOLOGY : A JOURNAL OF THE INTERNATIONAL ASSOCIATION ON WATER POLLUTION RESEARCH 2021; 83:381-395. [PMID: 33504702 DOI: 10.2166/wst.2020.574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Coal gangue (CG) as mineral waste was properly treated and applied as the filter media in permeable pavement systems due to its good sorption ability and mechanical strength. Batch experiments show the maximum adsorption capacity of calcined CG to phosphorus could reach 2.63 mg/g. To evaluate the removal effect of typical runoff pollutants including chemical oxygen demand (COD), total nitrogen (TN), total phosphorus (TP) and ammonia (NH4+-N), the gravel and sand in a traditional pavement system were replaced by CG respectively. The leaching behavior of the four pollutants in CG modified systems is limited and comparable with traditional system, indicating pretreated CG as filler would not cause environmental risk. CG-based pavement systems improved the removal efficiency of the four pollutants especially for TP. The removal mechanisms including interception, adsorption and microorganism degradation. The removal rates of COD, NH4+-N and TN by CG modified and traditional systems decreased with rainfall duration, while it is not obviously changed with rainfall recurrence period and drying period. Overall, the permeable pavement with CG layers that replaced both sand and gravel layers show best removal efficiency of all pollutants investigated especially for TP (>95%). This study provides a new way for CG utilization and gives the reference for the process design of permeable pavement.
Collapse
Affiliation(s)
- Xiaoran Zhang
- Key Laboratory of Urban Stormwater System and Water Environment, Ministry of Education, Beijing University of Civil Engineering and Architecture, Beijing 102616, China E-mail: ; Nanjing Water Purification Environment Institute Co., Ltd, Nanjing 211500, China
| | - Yiran Tian
- Key Laboratory of Urban Stormwater System and Water Environment, Ministry of Education, Beijing University of Civil Engineering and Architecture, Beijing 102616, China E-mail: ; Beijing Engineering Research Center of Sustainable Urban Sewage System Construction and Risk Control, Beijing University of Civil Engineering and Architecture, Beijing 100044, China
| | - Junfeng Liu
- Department of Water Conservancy and Civil Engineering, Beijing Vocational College of Agriculture, Beijing 102442, China
| | - Yinrui Wang
- Key Laboratory of Urban Stormwater System and Water Environment, Ministry of Education, Beijing University of Civil Engineering and Architecture, Beijing 102616, China E-mail: ; Beijing Engineering Research Center of Sustainable Urban Sewage System Construction and Risk Control, Beijing University of Civil Engineering and Architecture, Beijing 100044, China
| | - Ziyang Zhang
- Nanjing Water Purification Environment Institute Co., Ltd, Nanjing 211500, China; Beijing Engineering Research Center of Sustainable Urban Sewage System Construction and Risk Control, Beijing University of Civil Engineering and Architecture, Beijing 100044, China
| | - Haiyan Li
- Key Laboratory of Urban Stormwater System and Water Environment, Ministry of Education, Beijing University of Civil Engineering and Architecture, Beijing 102616, China E-mail: ; Beijing Engineering Research Center of Sustainable Urban Sewage System Construction and Risk Control, Beijing University of Civil Engineering and Architecture, Beijing 100044, China
| |
Collapse
|
26
|
Comparative Study of Cationic Dye Adsorption Using Industrial Latex Sludge with Sulfonate and Pyrolysis Treatment. SUSTAINABILITY 2020. [DOI: 10.3390/su122310048] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Industrial latex sludge as raw material was made into sulfonated latex sludge (SLS) and latex sludge active carbon (LSC) adsorbents by sulfonate and pyrolysis treatment to remove textile dye cationic blue X-GRRL from aqueous solution. The adsorption properties of SLS and LSC for X-GRRL were studied and compared by investigating the experimental parameters such as adsorbents dosage, pH, contact time and initial concentration. The kinetics of adsorption on SLS and LSC followed the pseudo-second-order kinetic model well. The adsorption isotherm and thermodynamic studies were further used to evaluate and compare the adsorption process of X-GRRL on SLS and LSC. The maximum adsorption capacities were 1219.6 mg/g for SLS and 476.2 mg/g for LSC according to the Langmuir model, respectively. These findings not only provide a sustainable strategy to turn industrial solid waste latex sludge into useful material for environment remediation, but also develop an efficient adsorbent for the treatment of dye wastewater.
Collapse
|
27
|
Yu YH, Su JF, Shih Y, Wang J, Wang PY, Huang CP. Hazardous wastes treatment technologies. WATER ENVIRONMENT RESEARCH : A RESEARCH PUBLICATION OF THE WATER ENVIRONMENT FEDERATION 2020; 92:1833-1860. [PMID: 32866315 DOI: 10.1002/wer.1447] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2020] [Revised: 08/24/2020] [Accepted: 08/26/2020] [Indexed: 06/11/2023]
Abstract
A review of the literature published in 2019 on topics related to hazardous waste management in water, soils, sediments, and air. The review covered treatment technologies applying physical, chemical, and biological principles for the remediation of contaminated water, soils, sediments, and air. PRACTICAL POINTS: This report provides a review of technologies for the management of waters, wastewaters, air, sediments, and soils contaminated by various hazardous chemicals including inorganic (e.g., oxyanions, salts, and heavy metals), organic (e.g., halogenated, pharmaceuticals and personal care products, pesticides, and persistent organic chemicals) in three scientific areas of physical, chemical, and biological methods. Physical methods for the management of hazardous wastes including general adsorption, sand filtration, coagulation/flocculation, electrodialysis, electrokinetics, electro-sorption ( capacitive deionization, CDI), membrane (RO, NF, MF), photocatalysis, photoelectrochemical oxidation, sonochemical, non-thermal plasma, supercritical fluid, electrochemical oxidation, and electrochemical reduction processes were reviewed. Chemical methods including ozone-based, hydrogen peroxide-based, potassium permanganate processes, and Fenton and Fenton-like process were reviewed. Biological methods such as aerobic, anoxic, anaerobic, bioreactors, constructed wetlands, soil bioremediation and biofilter processes for the management of hazardous wastes, in mode of consortium and pure culture were reviewed. Case histories were reviewed in four areas including contaminated sediments, contaminated soils, mixed industrial solid wastes and radioactive wastes.
Collapse
Affiliation(s)
- Yu Han Yu
- Department of Civil and Environmental Engineering, University of Delaware, Newark, Delaware, USA
| | - Jenn Fang Su
- Department of Chemical and Materials Engineering, Tamkang University, New Taipei City, Taiwan
| | - Yujen Shih
- Graduate Institute of Environmental Essngineering, National Sun yat-sen University, Kaohsiung, Taiwan
| | - Jianmin Wang
- Department of Civil Architectural and Environmental Engineering, Missouri University of Science & Technology, Rolla, Missouri
| | - Po Yen Wang
- Department of Civil Engineering, Widener University, Chester, Pennsylvania, USA
| | - Chin Pao Huang
- Department of Civil and Environmental Engineering, University of Delaware, Newark, Delaware, USA
| |
Collapse
|
28
|
Preparation of nano-sized Mg-doped copper silicate materials using coal gangue as the raw material and its characterization for CO2 adsorption. KOREAN J CHEM ENG 2020. [DOI: 10.1007/s11814-020-0593-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
29
|
Study of the Digestate as an Innovative and Low-Cost Adsorbent for the Removal of Dyes in Wastewater. Processes (Basel) 2020. [DOI: 10.3390/pr8070852] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Digestate, as an urban solid waste, was considered as an innovative adsorbent for colorant polluted wastewater. Batch adsorption experiments were carried out using digestate as an adsorbent material to remove various dyes belonging to different categories. The removal rate and adsorption capacity of dyes were evaluated and the dose of digestate, contact time, and initial dye concentration were studied. The maximum removal rate was approximately 96% for Methylene Blue. The equilibrium time for the Methylene Blue was 4 h, while for other dyes, a longer contact time was required to reach the equilibrium. The suspicion of colloidal matter release into the solution from solid fraction of the digestate led to the investigation of the consequence of a washing step of the digestate adsorbent upstream the adsorption experiment. Washed and not washed adsorbents were tested and the differences between them in terms of dye removal were compared. Moreover, experimental data were fitted by pseudo-first order, pseudo-second order, and intra-partial diffusion kinetic models as well as Langmuir, Freundlich, and Sips isotherm models. The results from fitted models showed that the adsorption of various dyes onto the digestate was mostly well fitted by the Langmuir isotherm and pseudo-second-order kinetic model.
Collapse
|
30
|
Ding C, Zhang Y, Zhang N, Wang X, Wei Q, Zhang Y. Impact of titanate coupling agent on properties of high density polyethylene composite filled with coal gangue. SURF INTERFACE ANAL 2020. [DOI: 10.1002/sia.6805] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Chong Ding
- Beijing Key Laboratory of Materials Utilization of Nonmetallic Minerals and Solid Wastes, National Circular Economy Engineering Laboratory, National Laboratory of Mineral Materials, School of Materials Science and Technology China University of Geosciences (Beijing) Beijing China
| | - Yihe Zhang
- Beijing Key Laboratory of Materials Utilization of Nonmetallic Minerals and Solid Wastes, National Circular Economy Engineering Laboratory, National Laboratory of Mineral Materials, School of Materials Science and Technology China University of Geosciences (Beijing) Beijing China
| | - Na Zhang
- Beijing Key Laboratory of Materials Utilization of Nonmetallic Minerals and Solid Wastes, National Circular Economy Engineering Laboratory, National Laboratory of Mineral Materials, School of Materials Science and Technology China University of Geosciences (Beijing) Beijing China
| | - Xinke Wang
- School of Earth Sciences and Resources China University of Geosciences (Beijing) Beijing China
| | - Qi Wei
- Beijing Key Laboratory of Materials Utilization of Nonmetallic Minerals and Solid Wastes, National Circular Economy Engineering Laboratory, National Laboratory of Mineral Materials, School of Materials Science and Technology China University of Geosciences (Beijing) Beijing China
| | - Youpeng Zhang
- Beijing Key Laboratory of Materials Utilization of Nonmetallic Minerals and Solid Wastes, National Circular Economy Engineering Laboratory, National Laboratory of Mineral Materials, School of Materials Science and Technology China University of Geosciences (Beijing) Beijing China
| |
Collapse
|
31
|
Fraga TJM, da Silva LFF, de Lima Ferreira LEM, da Silva MP, Marques Fraga DMDS, de Araújo CMB, Carvalho MN, de Lima Cavalcanti JVF, Ghislandi MG, da Motta Sobrinho MA. Amino-Fe 3O 4-functionalized multi-layered graphene oxide as an ecofriendly and highly effective nanoscavenger of the reactive drimaren red. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:9718-9732. [PMID: 31925689 DOI: 10.1007/s11356-019-07539-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Accepted: 12/25/2019] [Indexed: 06/10/2023]
Abstract
Amino-functionalized multilayer graphene oxide (Am-nGO) has been synthesized and applied to remove the reactive drimaren red (DR) from aqueous solutions. Infrared spectroscopy evidenced amine and amide presence by peaks at 1579 cm-1 and a band between 3300 and 3500 cm-1. Raman spectroscopy showed an increment in ID/IG ratio after amino-Fe3O4-functionalization of nGO from 1.05 to 1.20, referent to an increase in sp3 domain disorder. The isoelectric point of Am-nGO was pH 8.1. From kinetic study, the equilibrium was achieved within 90 min; moreover, pseudo-n-order model satisfactorily fitted to the experimental data. Kinetic constant (kn) was 0.71 mg1-n g1-n min-1 and modeled equilibrium sorption capacity (qe) 219.17 mg g-1. Equilibrium experiments showed monolayer adsorption capacity (qm) of 219.75 mg g-1, and BET model best fitted to the equilibrium data, indicating that the adsorption process happened with multiple layers formation. From sorption thermodynamics, the standard free energy of Gibbs and enthalpy were respectively - 31.91 kJ mol-1 (at 298 K) and 66.43 kJ mol-1. Such data evidence the spontaneous and chemical behavior of DR adsorption as a consequence of strong electron donor-receptor interactions between the dye and the nanosorbent. By phytotoxicity assessment, Am-nGO showed inexpressive inhibitory potential to American lettuce seeds in comparison with its precursor nGO and graphite nanoplatelets.
Collapse
Affiliation(s)
- Tiago José Marques Fraga
- Departamento de Engenharia Química, Universidade Federal de Pernambuco (UFPE), Recife, 50670-901, Brazil.
| | - Luiz Filipe Félix da Silva
- Departamento de Engenharia Química, Universidade Federal de Pernambuco (UFPE), Recife, 50670-901, Brazil
| | - Letticia Emely Maria de Lima Ferreira
- Departamento de Engenharia Química, Universidade Federal de Pernambuco (UFPE), Recife, 50670-901, Brazil
- Centro de Biociências, Universidade Federal de Pernambuco (UFPE), Recife, 50670-901, Brazil
| | - Maryne Patrícia da Silva
- Departamento de Engenharia Química, Universidade Federal de Pernambuco (UFPE), Recife, 50670-901, Brazil
| | | | | | | | | | - Marcos Gomes Ghislandi
- Departamento de Engenharia Química, Universidade Federal de Pernambuco (UFPE), Recife, 50670-901, Brazil
- Campus das Engenharias-UACSA, Universidade Federal Rural de Pernambuco (UFRPE), 300 Cento e sessenta e Três Av, Cabo de Santo Agostinho, 54518-430, Brazil
| | | |
Collapse
|
32
|
Natural and Chemically Modified Post-Mining Clays—Structural and Surface Properties and Preliminary Tests on Copper Sorption. MINERALS 2019. [DOI: 10.3390/min9110704] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The structural and surface properties of natural and modified Pliocene clays from lignite mining are investigated in the paper. Chemical modifications are made using hydrofluoric acid (HF), sulfuric acid (H2SO4), hydrochloric acid (HCl), nitric acid (HNO3), sodium hydroxide (NaOH), and hydrogen peroxide (H2O2), at a concentration of 1 mol/dm3. Scanning electron microscopy is used to detect the morphology of the samples. Nitrogen adsorption isotherms were recorded to determine the specific surface area (SSA), mesoporosity, microporosity, and fractal dimensions. The raw clay has an SSA of 66 m2/g. The most promising changes in the structural properties are caused by modifications with HF or H2SO4 (e.g., the SSA increased by about 60%). In addition, the raw and modified clays are used in preliminary tests with Cu(II) sorption, which were performed in batch static method at initial Cu(II) concentrations of 25, 50, 80, 100, 200, 300, and 500 mg/dm3 in 1% aqueous suspensions of the clayey material. The maximum sorption of Cu(II) on the raw material was 15 mg/g. The structural changes after the modifications roughly reflect the capabilities of the adsorbents for Cu(II) adsorption. The modifications with HF and H2SO4 bring a similar improvement in Cu(II) adsorption, which is around 20–25% greater than for the raw material. The structural properties of investigated clays and their adsorptive capabilities indicate they could be used as low-cost adsorbents (e.g., for industrial water pretreatment).
Collapse
|
33
|
Xu Q, Peng J, Zhang W, Wang X, Lou T. Electrospun cellulose acetate/P(DMDAAC‐AM) nanofibrous membranes for dye adsorption. J Appl Polym Sci 2019. [DOI: 10.1002/app.48565] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Affiliation(s)
- Qing Xu
- College of Chemistry and Chemical EngineeringQingdao University Qingdao 266071 China
| | - Jing Peng
- College of Chemistry and Chemical EngineeringQingdao University Qingdao 266071 China
| | - Weixing Zhang
- College of Chemistry and Chemical EngineeringQingdao University Qingdao 266071 China
| | - Xuejun Wang
- College of Chemistry and Chemical EngineeringQingdao University Qingdao 266071 China
| | - Tao Lou
- College of Chemistry and Chemical EngineeringQingdao University Qingdao 266071 China
| |
Collapse
|
34
|
Ravindiran G, Ganapathy GP, Josephraj J, Alagumalai A. A Critical Insight into Biomass Derived Biosorbent for Bioremediation of Dyes. ChemistrySelect 2019. [DOI: 10.1002/slct.201902127] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Gokulan Ravindiran
- Department of Civil EngineeringGMR Institute of Technology, Rajam 532 127 Andhra Pradesh India
| | - Ganesh Prabhu Ganapathy
- Department of Civil EngineeringGMR Institute of Technology, Rajam 532 127 Andhra Pradesh India
| | - Jegan Josephraj
- Department of Civil EngineeringUniversity college of Engineering RamanathapuramAnna University, Ramanathapuram 623 513 India
| | - Avinash Alagumalai
- Department of Mechanical EngineeringGMR Institute of Technology, Rajam 532 127 Andhra Pradesh India
| |
Collapse
|
35
|
Toutounchi S, Shariati S, Mahanpoor K. Synthesis of nano-sized magnetite mesoporous carbon for removal of Reactive Yellow dye from aqueous solutions. Appl Organomet Chem 2019. [DOI: 10.1002/aoc.5046] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Affiliation(s)
- Sanaz Toutounchi
- Department of Chemistry, Arak Branch; Islamic Azad University; Arak Iran
| | - Shahab Shariati
- Department of Chemistry, Rasht Branch; Islamic Azad University; Rasht Iran
| | - Kazem Mahanpoor
- Department of Chemistry, Arak Branch; Islamic Azad University; Arak Iran
| |
Collapse
|
36
|
Wang H, Lai X, Zhao W, Chen Y, Yang X, Meng X, Li Y. Efficient removal of crystal violet dye using EDTA/graphene oxide functionalized corncob: a novel low cost adsorbent. RSC Adv 2019; 9:21996-22003. [PMID: 35518863 PMCID: PMC9066744 DOI: 10.1039/c9ra04003j] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2019] [Accepted: 07/11/2019] [Indexed: 11/21/2022] Open
Abstract
In this study, EDTA functionalized corncob (EDTA-corncob) and EDTA/graphene oxide functionalized corncob (EDTA-GO/corncob) were prepared using disodium ethylenediamine tetraacetic acid and the graphene oxide immersion method. EDTA-corncob and EDTA-GO/corncob were characterized by SEM and FTIR spectroscopy. On this basis, the adsorption properties of EDTA-corncob and EDTA-GO/corncob were studied with crystal violet as the adsorbate. The optimum adsorption conditions were determined by the effect of samples on the adsorption properties of crystal violet at different times, temperatures and pH, and the reusability of the samples was studied. The results showed that adsorption capacity of crystal violet on EDTA-GO/corncob was higher compared with natural corncob and EDTA-corncob. The most suitable pH value of the solution is about 6.0, the adsorption equilibrium time is 200 min. EDTA-GO/corncob can be reused eight times. This study indicated that EDTA-GO/corncob is a reusable adsorbent for rapid, low-cost, and efficient removal of dye from waste water. In this study, crystal violet dyes were adsorbed by EDTA functionalized corncob (EDTA-corncob) and EDTA/graphene oxide functionalized corncob (EDTA-GO/corncob), which were prepared using disodium ethylenediamine tetraacetic acid and the graphene oxide immersion method.![]()
Collapse
Affiliation(s)
- Huan Wang
- College of Chemistry and Chemical Engineering
- Xianyang Normal University
- Xianyang 712000
- China
| | - Xin Lai
- College of Chemistry and Chemical Engineering
- Xianyang Normal University
- Xianyang 712000
- China
| | - Wei Zhao
- College of Chemistry and Chemical Engineering
- Xianyang Normal University
- Xianyang 712000
- China
| | - Youning Chen
- College of Chemistry and Chemical Engineering
- Xianyang Normal University
- Xianyang 712000
- China
| | - Xiaoling Yang
- College of Chemistry and Chemical Engineering
- Xianyang Normal University
- Xianyang 712000
- China
| | - Xiaohua Meng
- College of Chemistry and Chemical Engineering
- Xianyang Normal University
- Xianyang 712000
- China
| | - Yuhong Li
- College of Chemistry and Chemical Engineering
- Xianyang Normal University
- Xianyang 712000
- China
| |
Collapse
|