1
|
Hu P, Sun D, Ma H, Zhang X, Wang G, Hao J. Cerium oxide /Co-Co Prussian blue analogue composite catalyst for enhanced peroxymonosulfate activation for effective removal of tetracycline hydrochloride from water. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:38399-38415. [PMID: 38805135 DOI: 10.1007/s11356-024-33758-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Accepted: 05/16/2024] [Indexed: 05/29/2024]
Abstract
In this paper, a novel CeO2/Co3[Co(CN)6]2 (CeO2/PBACo-Co) composite was prepared with co-precipitation and utilized to activate peroxymonosulfate (PMS) to eliminate tetracycline hydrochloride (TCH). Catalyst screening showed that the composite with a CeO2:PBACo-Co mass ratio of 1:5 (namely, 0.2-CeO2/PBACo-Co) had the best performance. The degradation efficiency of TCH in 0.2-CeO2/PBACo-Co/Oxone system was investigated. The experimental results illustrated that 98% of 50 mg/L TCH and 48.5% of TOC were degraded by 50 mg/L 0.2-CeO2/PBACo-Co and 400 mg/L Oxone within 120 min at 25 °C and initial pH 5.3. Recycling studies showed that the elimination rate of TCH can still achieve 85.8% after five cycles, suggesting that 0.2-CeO2/PBACo-Co composite processes good reusability. Trapping experiments and EPR tests revealed that the reaction system produced multiple active species (1O2, O2•-, SO4•-, and •OH). We proposed the catalytic mechanism of 0.2-CeO2/PBACo-Co for PMS activation, which mainly involves the promoted Co3+/Co2+ cycle by Ce3+ donated electrons. These results indicate that CeO2/PBACo-Co composite is an effective catalyst for wastewater remediation.
Collapse
Affiliation(s)
- Pei Hu
- School of Light Industry and Chemical Engineering, Dalian Polytechnic University, 1# Qing Gong Yuan, Dalian, 116034, PR China
| | - Dedong Sun
- School of Light Industry and Chemical Engineering, Dalian Polytechnic University, 1# Qing Gong Yuan, Dalian, 116034, PR China.
| | - Hongchao Ma
- School of Light Industry and Chemical Engineering, Dalian Polytechnic University, 1# Qing Gong Yuan, Dalian, 116034, PR China
| | - Xinxin Zhang
- School of Light Industry and Chemical Engineering, Dalian Polytechnic University, 1# Qing Gong Yuan, Dalian, 116034, PR China
| | - Guowen Wang
- School of Light Industry and Chemical Engineering, Dalian Polytechnic University, 1# Qing Gong Yuan, Dalian, 116034, PR China
| | - Jun Hao
- School of Light Industry and Chemical Engineering, Dalian Polytechnic University, 1# Qing Gong Yuan, Dalian, 116034, PR China
| |
Collapse
|
2
|
Mo Y, Zhang X. Insights into the mechanism of multiple Cu-doped CoFe 2O 4 nanocatalyst activated peroxymonosulfate for efficient degradation of Rhodamine B. J Environ Sci (China) 2024; 137:382-394. [PMID: 37980024 DOI: 10.1016/j.jes.2022.12.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 12/01/2022] [Accepted: 12/02/2022] [Indexed: 11/20/2023]
Abstract
The multiple metal catalyst as a promising nanomaterial has shown excellent activity in the peroxymonosulfate (PMS) activation for pollutant degradation. However, the role of special sites and in-depth understanding of the PMS activation mechanism are not fully studied. In this study, a Cu-doped CoFe2O4 nanocatalyst (0.5CCF) was synthesized by a sol-gel and calcination method, and used for PMS activation to remove Rhodamine B (RhB). The results showed that the Cu doping obviously enhanced the catalytic performance of CoFe2O4, with 99.70% of RhB removed by 0.5CCF while 74.91% in the CoFe2O4 within 15 min. Based on the X-ray photoelectron spectroscopy and electrochemical analysis, this could be ascribed to the more low valence of Co and Fe species generated on the 0.5CCF and faster electron transfers occurred in the 0.5CCF due to the Cu doping. In addition, Cu doping could provide more reaction sites for the 0.5CCF to activate PMS for RhB removal. The metal species and the surface hydroxyl were the reaction sites of PMS activation, and the surface hydroxyl played an important role in surface-bound reactive species generation. During the PMS activation, the Cu not only activated PMS to produce reactive oxygen species (ROS), but also regenerated Co2+ and Fe2+ to accelerate the PMS activation. The non-radical of 1O2 was the main ROS with a 99.35% of contribution rate, and the SO5•- self-reaction was its major source. This study provides a new insight to enhance the PMS activation performance of multiple metal catalysts by Cu doping in wastewater treatment.
Collapse
Affiliation(s)
- Yuanmin Mo
- School of Environment & Energy, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou 510006, China; The Key Laboratory of Pollution Control and Ecosystem Restoration in Industry Clusters of Ministry of Education, Guangzhou 510006, China
| | - Xiaoping Zhang
- School of Environment & Energy, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou 510006, China; The Key Laboratory of Pollution Control and Ecosystem Restoration in Industry Clusters of Ministry of Education, Guangzhou 510006, China; Guangdong Provincial Key Laboratory of Solid Wastes Pollution Control and Recycling, Guangzhou 510006, China; Guangdong Provincial Engineering and Technology Research Center for Environmental Risk Prevention and Emergency Disposal, Guangzhou 510006, China.
| |
Collapse
|
3
|
Li B, Duan X, Zhao T, Niu B, Li G, Zhao Z, Yang Z, Liu D, Zhang F, Cheng J, Hao Z. Boosting N 2O Catalytic Decomposition by the Synergistic Effect of Multiple Elements in Cobalt-Based High-Entropy Oxides. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:2153-2161. [PMID: 38244211 DOI: 10.1021/acs.est.3c09741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/22/2024]
Abstract
Nitrous oxide (N2O) has a detrimental impact on the greenhouse effect, and its efficient catalytic decomposition at low temperatures remains challenging. Herein, the cobalt-based high-entropy oxide with a spinel-type structure (Co-HEO) is successfully fabricated via a facile coprecipitation method for N2O catalytic decomposition. The obtained Co-HEO catalyst displays more remarkable catalytic performance and higher thermal stability compared with single and binary Co-based oxides, as the temperature of 90% N2O decomposition (T90) is 356 °C. A series of characterization results reveal that the synergistic effect of multiple elements enhances the reducibility and augments oxygen vacancy in the high-entropy system, thus boosting the activity of the Co-HEO catalyst. Moreover, density functional theory (DFT) calculations and the temperature-programmed surface reaction (TPSR) with isotope labeling demonstrate that N2O decomposition on the Co-HEO catalyst follows the Langmuir-Hinshelwood (L-H) mechanism with the promotion of abundant oxygen vacancies. This work provides a fundamental understanding of the synergistic catalytic effect in N2O decomposition and paves the way for the novel environmental catalytic applications of HEO.
Collapse
Affiliation(s)
- Bingzhi Li
- National Engineering Laboratory for VOCs Pollution Control Material & Technology, Research Center for Environmental Material and Pollution Control Technology, University of Chinese Academy of Sciences, Beijing 101408, P.R. China
| | - Xiaoxiao Duan
- National Engineering Laboratory for VOCs Pollution Control Material & Technology, Research Center for Environmental Material and Pollution Control Technology, University of Chinese Academy of Sciences, Beijing 101408, P.R. China
| | - Ting Zhao
- National Engineering Laboratory for VOCs Pollution Control Material & Technology, Research Center for Environmental Material and Pollution Control Technology, University of Chinese Academy of Sciences, Beijing 101408, P.R. China
| | - Ben Niu
- National Engineering Laboratory for VOCs Pollution Control Material & Technology, Research Center for Environmental Material and Pollution Control Technology, University of Chinese Academy of Sciences, Beijing 101408, P.R. China
| | - Ganggang Li
- National Engineering Laboratory for VOCs Pollution Control Material & Technology, Research Center for Environmental Material and Pollution Control Technology, University of Chinese Academy of Sciences, Beijing 101408, P.R. China
| | - Zeyu Zhao
- National Engineering Laboratory for VOCs Pollution Control Material & Technology, Research Center for Environmental Material and Pollution Control Technology, University of Chinese Academy of Sciences, Beijing 101408, P.R. China
| | - Zhenwen Yang
- National Engineering Laboratory for VOCs Pollution Control Material & Technology, Research Center for Environmental Material and Pollution Control Technology, University of Chinese Academy of Sciences, Beijing 101408, P.R. China
| | - Dongmei Liu
- National Engineering Laboratory for VOCs Pollution Control Material & Technology, Research Center for Environmental Material and Pollution Control Technology, University of Chinese Academy of Sciences, Beijing 101408, P.R. China
| | - Fenglian Zhang
- National Engineering Laboratory for VOCs Pollution Control Material & Technology, Research Center for Environmental Material and Pollution Control Technology, University of Chinese Academy of Sciences, Beijing 101408, P.R. China
| | - Jie Cheng
- National Engineering Laboratory for VOCs Pollution Control Material & Technology, Research Center for Environmental Material and Pollution Control Technology, University of Chinese Academy of Sciences, Beijing 101408, P.R. China
| | - Zhengping Hao
- National Engineering Laboratory for VOCs Pollution Control Material & Technology, Research Center for Environmental Material and Pollution Control Technology, University of Chinese Academy of Sciences, Beijing 101408, P.R. China
| |
Collapse
|
4
|
Fui H, Gao S, Ma X, Huang Y. Facile fabrication of CoAl-LDH nanosheets for efficient rhodamine B degradation via peroxymonosulfate activation. RSC Adv 2023; 13:29695-29705. [PMID: 37822664 PMCID: PMC10563443 DOI: 10.1039/d3ra04575g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2023] [Accepted: 09/27/2023] [Indexed: 10/13/2023] Open
Abstract
Layered double hydroxides (LDHs) have been extensively investigated as promising peroxymonosulfate (PMS) activators for the degradation of organic pollutants. However, bulk LDHs synthesized using conventional methods possess a closely stacked layered structure, which seriously blocks active sites and yields low intrinsic activity. In this study, we exfoliated bulk CoAl-LDHs to fabricate CoAl-LDH nanosheets by alkali-etching and Ostwald ripening via a simple hydrothermal process in a KOH solution. The exfoliated LDHs possessed the typical nanosheet structure with more exposed active sites for PMS activation, and hence, boosted the degradation of the pollutants. CoAl-1 exhibited an outstanding catalytic performance as the PMS activator for rhodamine B (RhB) degradation with the apparent rate constant of 0.1687 min-1, which was about 3.63 and 5.02 times higher than that of commercial nano-Co3O4 and bulk CoAl-LDH, respectively. The maximum RhB degradation of 93.1% was achieved at the optimal reaction conditions: catalyst dose 0.1 g L-1, PMS concentration 0.3 mM, pH 7, and temperature 298 K. Further analysis of RhB degradation mechanism illustrated that singlet oxygen (1O2) dominated RhB degradation in the CoAl-1/PMS system, while ˙OH, ˙O2-, and ˙SO4- may mainly serve as the intermediates for the generation of 1O2 and were indirectly involved in the degradation. This study provides a promising strategy for developing two-dimensional LDH nanosheets for wastewater remediation.
Collapse
Affiliation(s)
- Hui Fui
- School of Chemical and Environmental Engineering, Wuhan Polytechnic University Wuhan 430023 Hubei Province PR China
| | - Shumin Gao
- School of Chemical and Environmental Engineering, Wuhan Polytechnic University Wuhan 430023 Hubei Province PR China
| | - Xinran Ma
- School of Chemical and Environmental Engineering, Wuhan Polytechnic University Wuhan 430023 Hubei Province PR China
| | - Yiping Huang
- School of Chemical and Environmental Engineering, Wuhan Polytechnic University Wuhan 430023 Hubei Province PR China
| |
Collapse
|
5
|
Zhang Y, Rao F, Zhang X, Zhang H, Chang F, Abdukayum A, Jin Z, Hu G. Ultrasmall nitrogen-doped Cu 0·92Co 2·08O 4 nanocrystal-decorated cerium dioxide nanoparticles for fast and complete degradation of ranitidine via permonosulfate activation. CHEMOSPHERE 2023; 327:138527. [PMID: 37003436 DOI: 10.1016/j.chemosphere.2023.138527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Revised: 02/20/2023] [Accepted: 03/25/2023] [Indexed: 06/19/2023]
Abstract
A simple and efficient coagulation method was used for the rapid preparation of nitrogen-doped copper-cobalt oxide (N-Cu0.92Co2·08O4) supported on cerium dioxide (CeO2), that is, N-Cu0.92Co2·08O4@CeO2. A low concentration of N-Cu0.92Co2·08O4@CeO2 (0.15 g L-1) was shown to rapidly activate permonosulfate (PMS) (0.15 g L-1) to achieve 100% degradation of ranitidine within 10 min. A 100% degradation of ranitidine enabled by the catalyst was achieved over a wide range of pH (5.5-9.0), which could be completed within 8 min in the presence of anionic H2PO4-. Moreover, the N-Cu0.92Co2·08O4@CeO2 catalyst enabled more than 90% degradation of various typical antibiotics within 30 min, including tetracycline, sulfaixoxazole, and chloramphenicol, with degradation rates of 100%, 93.51%, and 90.01%, respectively. Even after four catalytic cycles, N-Cu0.92Co2·08O4@CeO2 could be regenerated to achieve 100% degradation of ranitidine. Electrochemical analysis demonstrated that the combination of N-Cu0.92Co2·08O4@CeO2 and PMS immediately produced a strong current density, thereby rapidly producing reactive oxygen species (ROS) with high performance for the degradation of the target pollutant. Combined ion quenching and electron paramagnetic resonance analyses indicated that the main ROS was the non-free radical 1O2. Finally, a plausible ranitidine degradation pathway was deduced based on liquid chromatography-mass spectrometry (LC-MS) analysis, wherein the toxic substance N-nitrosodimethylamine was not produced during the degradation process. In short, this study provides a new perspective for preparing ternary metal catalysts for advanced oxidation processes with practical application significance.
Collapse
Affiliation(s)
- Yunqiu Zhang
- Institute for Ecological Research and Pollution Control of Plateau Lakes, School of Ecology and Environmental Science, Yunnan University, Kunming, 650504, China
| | - Fengling Rao
- Institute for Ecological Research and Pollution Control of Plateau Lakes, School of Ecology and Environmental Science, Yunnan University, Kunming, 650504, China
| | - Xianxi Zhang
- School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng, 252000, China
| | - Hucai Zhang
- Institute for Ecological Research and Pollution Control of Plateau Lakes, School of Ecology and Environmental Science, Yunnan University, Kunming, 650504, China
| | - Fengqin Chang
- Institute for Ecological Research and Pollution Control of Plateau Lakes, School of Ecology and Environmental Science, Yunnan University, Kunming, 650504, China.
| | - Abdukader Abdukayum
- Laboratory of Xinjiang Native Medicinal and Edible Plant Resources Chemistry, College of Chemistry and Environmental Sciences, Kashi University, Kashgar, 844007, China
| | - Zhong Jin
- Laboratory of Xinjiang Native Medicinal and Edible Plant Resources Chemistry, College of Chemistry and Environmental Sciences, Kashi University, Kashgar, 844007, China
| | - Guangzhi Hu
- Institute for Ecological Research and Pollution Control of Plateau Lakes, School of Ecology and Environmental Science, Yunnan University, Kunming, 650504, China.
| |
Collapse
|
6
|
Xu Y, Tang X, Xiao Y, Tang H, Lin H, Lv Y, Zhang H. Persulfate promoted visible photocatalytic elimination of bisphenol A by g-C 3N 4-CeO 2 S-scheme heterojunction: The dominant role of photo-induced holes. CHEMOSPHERE 2023; 331:138765. [PMID: 37094721 DOI: 10.1016/j.chemosphere.2023.138765] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 03/29/2023] [Accepted: 04/21/2023] [Indexed: 05/03/2023]
Abstract
In the last few years, coupling heterogeneous photocatalysis with persulfate (PDS) activation process is an efficient approach to generate abundant reactive oxidative species towards organic contaminant removal in water, however, the key role of PDS in photocatalytic process remains ambiguous. Herein, a novel g-C3N4-CeO2 (CN-CeO2) step-scheme (S-scheme) composite was constructed to photo-degrade bisphenol A (BPA) with the presence of PDS under visible irradiation. At 2.0 mM PDS, 0.7 g/L CN-CeO2 and natural pH 6.2, 94.2% of BPA could be eliminated in 60 min under visible light (Vis) illumination. Aside from the previous view of free radical generation, it tends to assume that most of PDS molecules acted as electron sacrificial agents for capturing photo-induced e- to form sulfate ions, greatly improving the charge carrier separation and thus enhancing the oxidation capacity of nonradical hole (h+) for the removal of BPA. Good correlations are further found between the rate constant and descriptor variables (i.e., Hammett constant σ-/σ+ and half-wave potential E1/2), exhibiting selective oxidation for organic pollutants in the Vis/CN-CeO2/PDS system. The study brings more insights into mechanistic understanding of persulfate-enhanced photocatalytic process for addressing water decontamination.
Collapse
Affiliation(s)
- Yin Xu
- Department of Environmental Science and Engineering, Wuhan University, Wuhan, 430079, China; Hubei Key Laboratory of Regional Development and Environmental Response, Faculty of Resources and Environmental Science, Hubei University, Wuhan, 430062, China
| | - Xin Tang
- Department of Environmental Science and Engineering, Wuhan University, Wuhan, 430079, China
| | - Yan Xiao
- Department of Environmental Science and Engineering, Wuhan University, Wuhan, 430079, China
| | - Huiling Tang
- Department of Environmental Science and Engineering, Wuhan University, Wuhan, 430079, China
| | - Heng Lin
- Department of Environmental Science and Engineering, Wuhan University, Wuhan, 430079, China
| | - Yujuan Lv
- Shangdong Electric Power Engineering Consulting Institute Corp., LTD, Jinan, 250013, China
| | - Hui Zhang
- Department of Environmental Science and Engineering, Wuhan University, Wuhan, 430079, China.
| |
Collapse
|
7
|
CeO2/ZIF-9 composites as a heterogeneous catalyst for peroxymonosulfate activation to degrade methylene blue. RESEARCH ON CHEMICAL INTERMEDIATES 2023. [DOI: 10.1007/s11164-023-04965-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
|
8
|
Yin K, Hao L, Li G. CuO nanosheets incorporated scrap steel slag coupled with persulfate catalysts for high-efficient degradation of sulfonamide from water. ENVIRONMENTAL RESEARCH 2023; 216:114614. [PMID: 36272596 DOI: 10.1016/j.envres.2022.114614] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 10/12/2022] [Accepted: 10/16/2022] [Indexed: 06/16/2023]
Abstract
A highly efficient and magnetically recoverable persulfate (PS) catalyst was prepared for the removal of sulfonamide (SMD) from wastewater, which is difficult to be degraded by the conventional biological treatment. In this study, the scrap steel slag (SSS) was used as supporting carrier and the CuO nanosheet was incorporated on the surface of SSS. The optimal conditions were determined as follows: the dosage of CuO/SSS was 1 g L-1, the PS concentration was 4 mM and the optimal initial pH was 6.85. Under the optimal conditions, the maximum SMD removal efficiency of 80.29% was achieved within 30 min by using CuO/SSS + PS. In addition, the CuO/SSS + PS system had a wide pH range (5-9) and more than 60% removal efficiency of SMD could be obtained with the pH between 3 and 11. The mechanism based on the phase transformation of Cu(I/II), Cu(II/III) and Fe(II/III) was elucidated by using different analytical techniques, such as SEM, XRD, XPS, BET, FTIR, VSM characterization and free radical analysis. This study provided a new pathway for the SSS resource utilization and the effective degradation of SMD from the refractory wastewater by using CuO/SSS catalyst coupled with PS system.
Collapse
Affiliation(s)
- Keke Yin
- College of Marine and Environmental Sciences, Tianjin University of Science &Technology, 300457, Tianjin, China
| | - Linlin Hao
- College of Marine and Environmental Sciences, Tianjin University of Science &Technology, 300457, Tianjin, China; Key Laboratory of Marine Resource Chemistry and Food Technology (TUST), Ministry of Education, 300457, Tianjin, China
| | - Guiju Li
- College of Marine and Environmental Sciences, Tianjin University of Science &Technology, 300457, Tianjin, China; Key Laboratory of Marine Resource Chemistry and Food Technology (TUST), Ministry of Education, 300457, Tianjin, China.
| |
Collapse
|
9
|
Borchert KBL, Carrasco KH, Steinbach C, Reis B, Gerlach N, Mayer M, Schwarz S, Schwarz D. Tuning the pore structure of templated mesoporous poly(melamine-co-formaldehyde) particles toward diclofenac removal. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2022; 324:116221. [PMID: 36162316 DOI: 10.1016/j.jenvman.2022.116221] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 08/30/2022] [Accepted: 09/06/2022] [Indexed: 06/16/2023]
Abstract
The increasing demand and implementation of pharmaceutics poses severe risk to different aquatic species as detectable contaminant in almost every surface water worldwide. Diclofenac (DCF) as one of the most common used analgesics was investigated as contaminant to be removed by adsorption onto nanoporous poly(melamine-co-formaldehyde) (PMF) particles featuring a very high amount of nitrogen functionalities. To achieve a high specific surface area (up to 416 m2/g) and a tunable pore system by hard templating, four different SiO2 nanoparticles were used as template. Differences in the pore formation and achieved pore structure were elucidated. For the first time, the adsorption of DCF onto PMF was tested. In batch adsorption experiments, impactful adsorption capacities as high as 76 μmol/g were achieved and complete removal at initial concentrations of 2 mg/L DCF. Differences in the connectivity and the micropore structure were decisive for uptake in low concentrations and the achieved adsorption capacity, respectively. As the presented PMF particles can be easily synthesized with the monomers formaldehyde and melamine combined with colloidal silica as sacrificial template and water as green solvent, this material presents a viable adsorbent for the removal of DCF at a larger scale. Our study further indicates a high potential for the removal of other pharmaceuticals.
Collapse
Affiliation(s)
| | - Karina Haro Carrasco
- Leibniz-Institut für Polymerforschung Dresden e.V., Hohe Str. 6, 01069 Dresden, Germany
| | - Christine Steinbach
- Leibniz-Institut für Polymerforschung Dresden e.V., Hohe Str. 6, 01069 Dresden, Germany.
| | - Berthold Reis
- Leibniz-Institut für Polymerforschung Dresden e.V., Hohe Str. 6, 01069 Dresden, Germany.
| | - Niklas Gerlach
- Leibniz-Institut für Polymerforschung Dresden e.V., Hohe Str. 6, 01069 Dresden, Germany.
| | - Martin Mayer
- Leibniz-Institut für Polymerforschung Dresden e.V., Hohe Str. 6, 01069 Dresden, Germany.
| | - Simona Schwarz
- Leibniz-Institut für Polymerforschung Dresden e.V., Hohe Str. 6, 01069 Dresden, Germany.
| | - Dana Schwarz
- Leibniz-Institut für Polymerforschung Dresden e.V., Hohe Str. 6, 01069 Dresden, Germany.
| |
Collapse
|
10
|
Jiao J, Li Y, Song Q, Wang L, Luo T, Gao C, Liu L, Yang S. Removal of Pharmaceuticals and Personal Care Products (PPCPs) by Free Radicals in Advanced Oxidation Processes. MATERIALS (BASEL, SWITZERLAND) 2022; 15:8152. [PMID: 36431636 PMCID: PMC9695708 DOI: 10.3390/ma15228152] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 11/05/2022] [Accepted: 11/15/2022] [Indexed: 06/16/2023]
Abstract
As emerging pollutants, pharmaceutical and personal care products (PPCPs) have received extensive attention due to their high detection frequency (with concentrations ranging from ng/L to μg/L) and potential risk to aqueous environments and human health. Advanced oxidation processes (AOPs) are effective techniques for the removal of PPCPs from water environments. In AOPs, different types of free radicals (HO·, SO4·-, O2·-, etc.) are generated to decompose PPCPs into non-toxic and small-molecule compounds, finally leading to the decomposition of PPCPs. This review systematically summarizes the features of various AOPs and the removal of PPCPs by different free radicals. The operation conditions and comprehensive performance of different types of free radicals are summarized, and the reaction mechanisms are further revealed. This review will provide a quick understanding of AOPs for later researchers.
Collapse
Affiliation(s)
- Jiao Jiao
- Key Laboratory of Pollution Control Chemistry and Environmental Functional Materials for Qinghai-Tibet Plateau of the National Ethnic Affairs Commission, School of Chemistry and Environment, Southwest Minzu University, Chengdu 610041, China
| | - Yihua Li
- Key Laboratory of Pollution Control Chemistry and Environmental Functional Materials for Qinghai-Tibet Plateau of the National Ethnic Affairs Commission, School of Chemistry and Environment, Southwest Minzu University, Chengdu 610041, China
| | - Qi Song
- Key Laboratory of Pollution Control Chemistry and Environmental Functional Materials for Qinghai-Tibet Plateau of the National Ethnic Affairs Commission, School of Chemistry and Environment, Southwest Minzu University, Chengdu 610041, China
| | - Liujin Wang
- State of Environmental Protection Key Laboratory of Synergetic Control and Joint Remediation for Soil & Water Pollution, College of Ecology and Environment, Chengdu University of Technology, Chengdu 610059, China
| | - Tianlie Luo
- State of Environmental Protection Key Laboratory of Synergetic Control and Joint Remediation for Soil & Water Pollution, College of Ecology and Environment, Chengdu University of Technology, Chengdu 610059, China
| | - Changfei Gao
- School of Environmental and Material Engineering, Yantai University, Yantai 264005, China
| | - Lifen Liu
- Key Laboratory of Industrial Ecology and Environmental Engineering, Ministry of Education, School of Ocean Science and Technology, Dalian University of Technology, Panjin 124221, China
| | - Shengtao Yang
- Key Laboratory of Pollution Control Chemistry and Environmental Functional Materials for Qinghai-Tibet Plateau of the National Ethnic Affairs Commission, School of Chemistry and Environment, Southwest Minzu University, Chengdu 610041, China
| |
Collapse
|
11
|
Bu J, Wan Q, Deng Z, Liu H, Li T, Zhou C, Zhong S. Waste coal cinder catalyst enhanced electrocatalytic oxidation and persulfate advanced oxidation for the degradation of sulfadiazine. CHEMOSPHERE 2022; 303:134880. [PMID: 35584712 DOI: 10.1016/j.chemosphere.2022.134880] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 05/02/2022] [Accepted: 05/05/2022] [Indexed: 06/15/2023]
Abstract
Waste coal cinder, a kind of waste cinder discharged from coal combustion of thermal power plants, industrial and civil boilers, and other equipment, was rich in metal oxides with catalytic activity. In this work, waste coal cinder was used to enhance electrochemical coupling peroxymonosulfate (PMS) advanced oxidation degradation of sulfadiazine (SD). The surface morphology, elemental composition, and electrocatalytic activity of waste coal cinder were characterized by various characterization instruments. The results show that compared with simple electrocatalytic oxidation, electrocatalytic oxidation + waste coal cinder and electrocatalytic coupled persulfate oxidation, electrocatalytic oxidation + PMS advanced oxidation + waste coal cinder has the largest removal efficiency (99.95%) and mineralization rates (90.16%) of SD in 90 min, indicating that the introduction of waste coal cinder greatly increases the degradation efficiency. •OH and SO4-• were detected during the process of degradation. The optimal degradation process parameters were explored through different voltage, pH, plate spacing, aeration flow rate, potassium peroxymonosulfate sulfate complex salt dose, and Na2SO4 dosage. Cycling experiments show waste coal cinder has good structural stability. Through the analysis of triple quadrupole liquid chromatography-mass spectrometry (LC-MS), we put forward three possible ways of SD degradation. This research will provide a novel vision for water treatment.
Collapse
Affiliation(s)
- Jiaqi Bu
- College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, PR China
| | - Qingqing Wan
- College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, PR China
| | - Zhiwei Deng
- College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, PR China
| | - Hui Liu
- College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, PR China
| | - Tianhao Li
- College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, PR China
| | - Chengyun Zhou
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, PR China.
| | - Shian Zhong
- College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, PR China.
| |
Collapse
|
12
|
Di S, Wang J, Zhai Y, Chen P, Ning T, Shi C, Yang H, Bao Y, Gao Q, Zhu S. Efficient activation of peroxymonosulfate mediated by Co(II)-CeO 2 as a novel heterogeneous catalyst for the degradation of refractory organic contaminants: Degradation pathway, mechanism and toxicity assessment. JOURNAL OF HAZARDOUS MATERIALS 2022; 435:129013. [PMID: 35523092 DOI: 10.1016/j.jhazmat.2022.129013] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 04/05/2022] [Accepted: 04/23/2022] [Indexed: 06/14/2023]
Abstract
A series of Co(II)-CeO2 mixed metal oxides were synthesized by a facile hydrothermal-calcination procedure for activating peroxymonosulfate (PMS) and degrading toxic and difficult biodegradable organics. Co(II)-CeO2 showed excellent degradation performance toward rhodamine B (RhB), toluidine blue, methylene blue and diclofenac. RhB is a refractory organic contaminant, and ecotoxicological evaluation unraveled its harmfulness to the biosphere. RhB was selected as the model pollutant to investigate catalytic mechanisms. Parameters affecting degradation performance were profoundly investigated, including Co:Ce feed ratio, initial pH, PMS dosage, catalyst dosage, RhB concentration, coexisting ions and reaction temperature. Reaction mechanisms were proposed based on density functional theory calculations and identifications of reactive oxygen species. Improvements have been achieved in seven aspects compared to previous studies, including 100% degradation ratio in both real water samples and each reuse of the catalyst, ultrafast degradation rate, cost-effectiveness of the catalyst, toxicity-attenuation provided by the developed degradation method, high degree of mineralization for the model pollutant, negligible leaching of active sites, and the enhancement of catalytic performance by utilizing trace leached cobalt, endowing the technique with broad applicability and prospect.
Collapse
Affiliation(s)
- Siyuan Di
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan 430074, China
| | - Jiahao Wang
- Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China
| | - Yixin Zhai
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan 430074, China
| | - Pin Chen
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan 430074, China
| | - Tao Ning
- Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China
| | - Chunxiang Shi
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan 430074, China
| | - Hucheng Yang
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan 430074, China
| | - Yue Bao
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan 430074, China
| | - Qiang Gao
- Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China
| | - Shukui Zhu
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan 430074, China.
| |
Collapse
|
13
|
The MOF/LDH derived heterostructured Co3O4/MnCo2O4 composite for enhanced degradation of levofloxacin by peroxymonosulfate activation. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.121182] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
14
|
Chen Y, He J, Jiang P, Pang H, Hu X, Zhang J, Zhang W. New insight into degradation of chloramphenicol using a nanoporous Pd/Co 3O 4cathode: characterization and pathways analysis. NANOTECHNOLOGY 2022; 33:210001. [PMID: 35134791 DOI: 10.1088/1361-6528/ac530c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Accepted: 02/08/2022] [Indexed: 06/14/2023]
Abstract
The growing chloramphenicol (CAP) in wastewater brought a serious threat to the activity of activated sludge and the spread of antibiotics resistance bacteria. In this study, a highly ordered nanoporous Co3O4layer on Co foil through anodization was prepared as cathode for nitro-group reduction and electrodeposited with Pd particles for dechlorination to reduce CAP completely. After 3 h treatment, almost 100% of CAP was reduced. Co2+ions in Co3O4served as catalytic sites for electrons transfer to CAP through a redox circle Co2+-Co3+-Co2+, which triggered nitro-group reduction at first. With the presence of Pd particles, more atomic H* were generated for dechlorination, which increased 22% of reduction efficiency after 3 h treatment. Therefore, a better capacity was achieved by Pd/Co3O4cathode (K = 0.0245 min-1,Kis reaction constant) than by other cathodes such as Fe/Co3O4(K = 0.0182 min-1), Cu/Co3O4(K = 0.0164 min-1), and pure Co3O4(K = 0.0106 min-1). From the proposed reaction pathway, the ultimate product was carbonyl-reduced AM (dechlorinated aromatic amine product of CAP) without antibacterial activity, which demonstrated this cathodic technology was a feasible way for wastewater pre-treatment.
Collapse
Affiliation(s)
- Yiwen Chen
- School of Environment, Harbin Institute of Technology, Harbin 150090, People's Republic of China
| | - Junguo He
- School of Civil Engineering, Guangzhou University, Guangzhou 510006, People's Republic of China
| | - Peigen Jiang
- School of Environment, Harbin Institute of Technology, Harbin 150090, People's Republic of China
| | - Heliang Pang
- School of Environment, Harbin Institute of Technology, Harbin 150090, People's Republic of China
| | - Xuhui Hu
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, People's Republic of China
| | - Jie Zhang
- School of Environment, Harbin Institute of Technology, Harbin 150090, People's Republic of China
| | - Wenjing Zhang
- Department of Environmental Engineering, Technical University of Denmark, 2800 Kgs. Lyngby, Denmark
| |
Collapse
|
15
|
Zhu F, Zhou S, Sun M, Ma J, Zhang W, Li K, Cheng H, Komarneni S. Heterogeneous activation of persulfate by Mg doped Ni(OH) 2 for efficient degradation of phenol. CHEMOSPHERE 2022; 286:131647. [PMID: 34346329 DOI: 10.1016/j.chemosphere.2021.131647] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Revised: 07/09/2021] [Accepted: 07/21/2021] [Indexed: 06/13/2023]
Abstract
Mg doped Ni(OH)2 was synthesized and investigated as an efficient material to activate persulfate (PS) for phenol degradation. The property of the Ni(OH)2 material was enhanced by Mg doping as the removal efficiency of phenol was increased from 74.82 % in Ni(OH)2/PS system to 89.53 % in Mg-doped Ni(OH)2/PS system within 20 min. Such a high removal efficiency revealed that doping Mg into Ni(OH)2 brings about more defects (oxygen vacancies), which facilitated the formation of more active species in the degradation process. The removal efficiencies of phenol increased with the increase of the initial pH from 3 to 11. The influences of Cl-, NO3- and HCO3- on the stability of the system were also studied and the results showed that removal rates of all systems in the presence of these different inorganic anions could reached about 90 % within 20 min. Based on the electron spin resonance (ESR) experiments, 1O2, O2·-, ·OH and SO4•- were identified as the active species in Mg-doped Ni(OH)2/PS system for phenol degradation and a degradation mechanism was proposed for this system. In addition, the as-prepared material retained its activation performance even after 3 repeated cycles.
Collapse
Affiliation(s)
- Fang Zhu
- School of Environmental and Safety Engineering, Changzhou University, Jiangsu, 213164, China
| | - Siyi Zhou
- School of Environmental and Safety Engineering, Changzhou University, Jiangsu, 213164, China
| | - Mengying Sun
- School of Environmental and Safety Engineering, Changzhou University, Jiangsu, 213164, China
| | - Jianfeng Ma
- School of Environmental and Safety Engineering, Changzhou University, Jiangsu, 213164, China.
| | - Wei Zhang
- School of Environmental and Safety Engineering, Changzhou University, Jiangsu, 213164, China
| | - Kunjie Li
- School of Environmental and Safety Engineering, Changzhou University, Jiangsu, 213164, China
| | - Hao Cheng
- Guangxi Key Laboratory of Green Processing of Sugar Resources, College of Biological and Chemical Engineering, Guangxi University of Science and Technology, Guangxi, 545006, China
| | - Sridhar Komarneni
- Department of Ecosystem Science and Management and Materials Research Institute, 204 Materials Research Laboratory, The Pennsylvania State University, University Park, PA, 16802, USA.
| |
Collapse
|
16
|
Zhou R, Liu S, He F, Ren H, Han Z. Alkylpolyglycoside modified MnFe 2O 4 with abundant oxygen vacancies boosting singlet oxygen dominated peroxymonosulfate activation for organic pollutants degradation. CHEMOSPHERE 2021; 285:131433. [PMID: 34237500 DOI: 10.1016/j.chemosphere.2021.131433] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 06/18/2021] [Accepted: 07/02/2021] [Indexed: 06/13/2023]
Abstract
A novel alkylpolyglycoside (APG)-modified MnFe2O4 nanocomposite (APG@MnFe2O4) enriched with oxygen vacancies (VOs) was developed via co-precipitation and characterized as a peroxymonosulfate (PMS) activator to degrade 2,4-dichlorophenol (2,4-DCP) as the model contaminant. The APG effectively promoted the in situ formation of VOs on MnFe2O4 and subsequently enhanced the production of singlet oxygen (1O2). Furthermore, the APG@MnFe2O4 initialized an even more efficient non-radical pathway and dominated the degradation of 2,4-DCP. The constructed APG@MnFe2O4 exhibited a much higher reaction rate constant (0.0522) by ~12.73 times of that of the bare MnFe2O4 (0.0041). The degradation efficiency of 2,4-DCP in the APG@MnFe2O4/PMS system approached 93% within 90 min, a rate significantly higher than that in the MnFe2O4/PMS system (32%) given the same condition. The reasonable catalytic mechanism can be attributed to the Fe/Mn/VOs species. The APG@MnFe2O4 also exhibits universally high removal activity for various pollutants and excellent cyclic stability. Thus, the APG@MnFe2O4 is a promising PMS activator, and its utilization offers a useful strategy for developing VOs-enriched MnFe2O4 catalysts as a means of eliminating organic pollutants from wastewater.
Collapse
Affiliation(s)
- Rui Zhou
- Key Laboratory of Groundwater Resources and Environment of the Ministry of Education, Jilin Provincial Key Laboratory of Water Resource and Environment, College of New Energy and Environment, Jilin University, 2519 Jiefang Road, Changchun, 130021, China
| | - Shuai Liu
- Key Laboratory of Groundwater Resources and Environment of the Ministry of Education, Jilin Provincial Key Laboratory of Water Resource and Environment, College of New Energy and Environment, Jilin University, 2519 Jiefang Road, Changchun, 130021, China
| | - Fangru He
- Key Laboratory of Groundwater Resources and Environment of the Ministry of Education, Jilin Provincial Key Laboratory of Water Resource and Environment, College of New Energy and Environment, Jilin University, 2519 Jiefang Road, Changchun, 130021, China
| | - Hejun Ren
- Key Laboratory of Groundwater Resources and Environment of the Ministry of Education, Jilin Provincial Key Laboratory of Water Resource and Environment, College of New Energy and Environment, Jilin University, 2519 Jiefang Road, Changchun, 130021, China.
| | - Zhonghui Han
- Key Laboratory of Groundwater Resources and Environment of the Ministry of Education, Jilin Provincial Key Laboratory of Water Resource and Environment, College of New Energy and Environment, Jilin University, 2519 Jiefang Road, Changchun, 130021, China.
| |
Collapse
|
17
|
Huang J, Luo Y. Diclofenac degradation based on shape-controlled cuprous oxide nanoparticles prepared by using ionic liquid. WATER SCIENCE AND TECHNOLOGY : A JOURNAL OF THE INTERNATIONAL ASSOCIATION ON WATER POLLUTION RESEARCH 2021; 84:1930-1942. [PMID: 34695021 DOI: 10.2166/wst.2021.369] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Persulfate oxidation technology is widely used in wastewater treatment, but there are still many disadvantages, such as high energy consumption, side reaction and narrow pH applicability. Copper oxides can activate persulfate steadily with higher efficiency. In this paper, a novel preparation method of shape-controlled cuprous oxide (Cu2O) nanoparticles featured with high catalytic performance was explored. It was found that adding ionic liquid 1-butyl-3-methylimidazolium bromide ([BMIM]Br) during preparation of Cu2O can improve the degradation rate of diclofenac (DCF). Cu2O nanoparticles possess good stability in consecutive cycling tests, which was confirmed by X-ray photoelectron spectroscopy. The possible mechanism of Cu2O activating persulfate at different initial pH conditions was discussed based on electron paramagnetic resonance spin-trapping experiment. It was found that DCF was efficiently degraded in the Cu2O/peroxydisulfate (PDS) system within a broad pH range from 5 to 11. It proved via a quenching experiment that the activation process of PDS mainly occurs on the surface layer of Cu2O nanoparticles. As a result, shape-controlled Cu2O nanoparticles prepared by ionic liquid are expected to be used for in situ chemical oxidation, which is an effective oxidation processes to degrade DCF remaining in surface water and ground water.
Collapse
Affiliation(s)
- Jialei Huang
- College of Chemistry, Chemical Engineering & Biotechnology, Donghua University, Shanghai 201620, China E-mail:
| | - Yan Luo
- College of Chemistry, Chemical Engineering & Biotechnology, Donghua University, Shanghai 201620, China E-mail: ; Key Laboratory of Science & Technology of Eco-Textile, Ministry of Education, Donghua University, Shanghai 201620, China; National Manufacturing Innovation Center of Advanced Dyeing and Finishing Technology, Donghua University, Shanghai 201620, China
| |
Collapse
|
18
|
Wang W, Chen M, Wang D, Yan M, Liu Z. Different activation methods in sulfate radical-based oxidation for organic pollutants degradation: Catalytic mechanism and toxicity assessment of degradation intermediates. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 772:145522. [PMID: 33571779 DOI: 10.1016/j.scitotenv.2021.145522] [Citation(s) in RCA: 65] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Revised: 01/23/2021] [Accepted: 01/26/2021] [Indexed: 06/12/2023]
Abstract
With the continuous development of industrialization, a growing number of refractory organic pollutants are released into the environment. These contaminants could cause serious risks to the human health and wildlife, therefore their degradation and mineralization is very critical and urgent. Recently sulfate radical-based advanced oxidation technology has been widely applied to organic pollutants treatment due to its high efficiency and eco-friendly nature. This review comprehensively summarizes different methods for persulfate (PS) and peroxymonosulfate (PMS) activation including ultraviolet light, ultrasonic, electrochemical, heat, radiation and alkali. The reactive oxygen species identification and mechanisms of PS/PMS activation by different approaches are discussed. In addition, this paper summarized the toxicity of degradation intermediates through bioassays and Ecological Structure Activity Relationships (ECOSAR) program prediction and the formation of toxic bromated disinfection byproducts (Br-DBPs) and carcinogenic bromate (BrO3-) in the presence of Br-. The detoxification and mineralization of target pollutants induced by different reactive oxygen species are also analyzed. Finally, perspectives of potential future research and applications on sulfate radical-based advanced oxidation technology in the treatment of organic pollutants are proposed.
Collapse
Affiliation(s)
- Wenqi Wang
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, China; Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha 410082, China
| | - Ming Chen
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, China; Key Laboratory of Reservoir Aquatic Environment, Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing 400714, China; Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha 410082, China.
| | - Dongbo Wang
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, China; Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha 410082, China
| | - Ming Yan
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, China; Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha 410082, China
| | - Zhifeng Liu
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, China; Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha 410082, China
| |
Collapse
|
19
|
Gao Q, Cui Y, Wang S, Liu B, Liu C. Efficient activation of peroxymonosulfate by Co-doped mesoporous CeO 2 nanorods as a heterogeneous catalyst for phenol oxidation. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:27852-27863. [PMID: 33517528 DOI: 10.1007/s11356-021-12605-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Accepted: 01/18/2021] [Indexed: 06/12/2023]
Abstract
Sulfate radical-based advanced oxidation processes have received considerable attentions in the remediation of organic pollutants due to their high oxidation ability. In this study, a novel Co3O4/CeO2 catalyst was fabricated and employed as a peroxymonosulfate (PMS) activator to generate SO4•- for phenol degradation. The Co3O4/CeO2 catalyst exhibited a good catalytic performance at a wide pH range of 3.4 to 10.8, and 100% phenol (20 mg/L) was removed within 50-min reaction under optimal conditions with 0.2 g/L catalyst and 2.0 g/L PMS at room temperature. The transformation products and total organic carbon during the degradation process were also determined. The quenching experiments and electron paramagnetic resonance spectra revealed that sulfate radical (SO4•-) rather than other species such as singlet oxygen (1O2) and hydroxyl radical (•OH) was primarily responsible for phenol degradation in the Co3O4/CeO2/PMS system, and a rational mechanism was proposed. Moreover, the recycling experiments as well as low cobalt leaching concentration manifested satisfactory reusability and stability. The effects of various inorganic anions and natural organic matter in real water matrix on phenol oxidation were further evaluated. We believe that the Co3O4/CeO2 composites have promising applications of PMS activation for the degradation of organic pollutants in wastewater treatment.
Collapse
Affiliation(s)
- Qiang Gao
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum (East China), Qingdao, 266580, People's Republic of China
- School of Chemistry and Chemical Engineering, Qinghai Normal University, Xining, 810008, People's Republic of China
| | - Yuchen Cui
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum (East China), Qingdao, 266580, People's Republic of China
| | - Shuaijun Wang
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum (East China), Qingdao, 266580, People's Republic of China
| | - Bin Liu
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum (East China), Qingdao, 266580, People's Republic of China.
| | - Chenguang Liu
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum (East China), Qingdao, 266580, People's Republic of China.
| |
Collapse
|
20
|
Wu Y, Lu L, Yu Z, Wang X. Electrochemical sensor based on the Mn 3O 4/CeO 2 nanocomposite with abundant oxygen vacancies for highly sensitive detection of hydrogen peroxide released from living cells. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2021; 13:1672-1680. [PMID: 33861233 DOI: 10.1039/d1ay00085c] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Based on the strategy of increasing the number of oxygen vacancies to improve the catalytic performance, we have developed a novel electrochemical sensor based on the multivalent metal oxides cerium dioxide and manganous oxide (Mn3O4/CeO2) for reliable determination of extracellular hydrogen peroxide (H2O2) released from living cells. The Mn3O4/CeO2 nanocomposite was characterized by high-resolution transmission electron microscopy, energy-dispersive X-ray spectroscopy, X-ray diffraction, and X-ray photoelectron spectroscopy. The electrochemical performance of the Mn3O4/CeO2 nanocomposite modified glassy carbon electrode (Mn3O4/CeO2/GCE) was investigated. Owing to the abundant oxygen vacancies and strong synergistic effect between the multivalent Ce and Mn, the sensor exhibited excellent catalytic activity and selectivity for the electrochemical detection of H2O2 with a low quantitation limit of 2 nM. Moreover, Mn3O4/CeO2/GCE exhibited excellent reproducibility, repeatability, and long-term storage stability. Because of these remarkable analytical advantages, the constructed sensor was able to determine H2O2 released from living cells with satisfactory results. The results showed that the Mn3O4/CeO2 sensor is a promising candidate for a nanoenzymatic H2O2 sensor with the possibility of applications in physiology and diagnosis.
Collapse
Affiliation(s)
- Yalin Wu
- Key Laboratory of Beijing on Regional Air Pollution Control, Beijing University of Technology, Beijing, 100124, China.
| | | | | | | |
Collapse
|
21
|
Dou Y, Yan T, Zhang Z, Sun Q, Wang L, Li Y. Heterogeneous activation of peroxydisulfate by sulfur-doped g-C 3N 4 under visible-light irradiation: Implications for the degradation of spiramycin and an assessment of N-nitrosodimethylamine formation potential. JOURNAL OF HAZARDOUS MATERIALS 2021; 406:124328. [PMID: 33144012 DOI: 10.1016/j.jhazmat.2020.124328] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 09/29/2020] [Accepted: 10/16/2020] [Indexed: 06/11/2023]
Abstract
In this study, peroxydisulfate (PDS) was activated by synthesized sulfur-doped g-C3N4 (SCN) under visible-light irradiation and was adopted to enhance the removal of spiramycin, which is an important precursor of N-nitrosodimethylamine (NDMA). Specifically, 95.4% of spiramycin (≤10 mg/L) was removed in 60 min under the conditions of an initial value of pH of 7.0, an SCN dose of 1.0 g/L, and a PDS dose of 200 mg/L, and its degradation fitted well with the pseudo first-order kinetics. Electron paramagnetic resonance analysis and trapping experiments confirmed that ·O2- and h+ were the main oxidizers for the degradation of spiramycin, and ·SO4- and ·OH also participated in the removal of spiramycin. The removal of spiramycin in the PDS/SCN visible-light catalytic system occurred through three different pathways: aldehyde oxidation, cleavage of C-O bond and demethylation. Notably, 61.4% of NDMA formation potential (FP) was reduced after the reaction. The SCN catalyst was stable and its catalytic performance was excellent in the PDS/SCN system, as the spiramycin removal efficiency decreased only slightly from 95.4% to 87.3% after being reused three times. Therefore, our study not only provides an alternative method for removing spiramycin but can also can significantly reduce NDMA FP.
Collapse
Affiliation(s)
- Yicheng Dou
- State Key Laboratory of Pollution Control and Resource Reuse, Key Laboratory of Yangtze River Water Environment, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, People's Republic of China
| | - Tingting Yan
- State Key Laboratory of Pollution Control and Resource Reuse, Key Laboratory of Yangtze River Water Environment, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, People's Republic of China
| | - Zhipeng Zhang
- State Key Laboratory of Pollution Control and Resource Reuse, Key Laboratory of Yangtze River Water Environment, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, People's Republic of China
| | - Qiya Sun
- State Key Laboratory of Pollution Control and Resource Reuse, Key Laboratory of Yangtze River Water Environment, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, People's Republic of China
| | - Lin Wang
- State Key Laboratory of Pollution Control and Resource Reuse, Key Laboratory of Yangtze River Water Environment, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, People's Republic of China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, People's Republic of China.
| | - Yongmei Li
- State Key Laboratory of Pollution Control and Resource Reuse, Key Laboratory of Yangtze River Water Environment, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, People's Republic of China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, People's Republic of China
| |
Collapse
|
22
|
Niu L, Zhang G, Xian G, Ren Z, Wei T, Li Q, Zhang Y, Zou Z. Tetracycline degradation by persulfate activated with magnetic γ-Fe2O3/CeO2 catalyst: Performance, activation mechanism and degradation pathway. Sep Purif Technol 2021. [DOI: 10.1016/j.seppur.2020.118156] [Citation(s) in RCA: 55] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
|
23
|
Huang X, Zhu N, Wei X, Ding Y, Ke Y, Wu P, Liu Z. Mechanism insight into efficient peroxydisulfate activation by novel nano zero-valent iron anchored yCo 3O 4 (nZVI/yCo 3O 4) composites. JOURNAL OF HAZARDOUS MATERIALS 2020; 400:123157. [PMID: 32569984 DOI: 10.1016/j.jhazmat.2020.123157] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Revised: 05/18/2020] [Accepted: 06/07/2020] [Indexed: 06/11/2023]
Abstract
Novel nano zero-valent iron anchored bio-matrix supported Co3O4 (nZVI/yCo3O4) composites were fabricated for tetracycline (TC) efficient degradation by activating peroxydisulfate (PS). The systematical characterizations verified that the nZVI/yCo3O4 composites with magnetism have higher surface area than yCo3O4 and pure Co3O4, contributing to more accessible active sites. Various catalytic parameters (nZVI mass ratio, leached ions, initial pH, catalyst dosage, PS concentration and coexisting anions) were thoroughly investigated. In nZVI/yCo3O4/PS system, 97.6 %, 93.4 % and 77.3 % TC were degraded within 15 min at pH 3.0, 6.0 and 9.0, respectively. Based on four successive degradation runs, the excellent mineralization rate and reusability of nZVI/yCo3O4 composites were mainly benefited from the suppressed metals leaching. The PS activated mechanisms were proposed as non-radicals (1O2) dominated pattern at acidic conditions and radicals (SO4-) predominant pattern at alkaline environment, which may be highly related to the electron donating capacity of nZVI at different pH and the M(n + 1)+/Mn+ redox cycling between Fe or Co metal. The plausible degradation routes of TC were presented based on the detected intermediates. Overall, the synthesized heterogeneous nZVI/yCo3O4 composites can efficiently active PS at a wide pH range, and further broaden the application of Co-based catalysts in PS activation.
Collapse
Affiliation(s)
- Xixian Huang
- School of Environment and Energy, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou 510006, PR China
| | - Nengwu Zhu
- School of Environment and Energy, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou 510006, PR China; The Key Laboratory of Pollution Control and Ecosystem Restoration in Industry Cluster Ministry of Education, Guangzhou 510006, PR China; Guangdong Provincial Key Laboratory of Solid Wastes Pollution Control and Recycling, Guangzhou 510006, PR China.
| | - Xiaorong Wei
- School of Environment and Energy, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou 510006, PR China
| | - Yang Ding
- School of Environment and Energy, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou 510006, PR China
| | - Yixin Ke
- School of Environment and Energy, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou 510006, PR China
| | - Pingxiao Wu
- School of Environment and Energy, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou 510006, PR China
| | - Zehua Liu
- School of Environment and Energy, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou 510006, PR China
| |
Collapse
|
24
|
Qian R, Shen T, Yang Q, Andrew Lin KY, Tong S. Activation of persulfate by graphite supported CeO2 for isoniazid degradation. Sep Purif Technol 2020. [DOI: 10.1016/j.seppur.2020.117197] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
25
|
Wang J, Zhang M, Zhou R, Li J, Zhao W, Chen W, Zeng J. Application of copper tailings combined with persulfate for better removing methyl orange from wastewater. WATER SCIENCE AND TECHNOLOGY : A JOURNAL OF THE INTERNATIONAL ASSOCIATION ON WATER POLLUTION RESEARCH 2020; 82:1676-1686. [PMID: 33107861 DOI: 10.2166/wst.2020.419] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
In this paper, wasted copper tailings (CT) were used to activate persulfate (PS) to degrade azo dye methyl orange (MO). The results show that a large amount of FeS2 contained in CT can slowly release Fe2+ in the aqueous solution to activate PS to generate reactive oxygen species to degrade MO. When the dosage of CT and PS was 2 g/L and 3 mM respectively, the MO degradation efficiency of 20 mg/L in the CT/PS system was 96.52% within 60 min. At the same time, it is found that CT has a certain adsorption capacity for MO, and the intra-particle diffusion model can well describe the adsorption process of MO by CT. The effects of related reaction parameters (CT dosage, PS dosage, initial MO concentration and solution pH) on MO degradation in CT/PS system were investigated. Compared with the direct addition of an equal amount of Fe2+ as in the CT/PS system, for homogeneous activated PS to degrade MO (Fe2+/PS), the results showed that the degradation efficiency of Fe2+/PS system for MO was lower than that of CT/PS system due to excessive Fe2+ consumption of SO4 ·-. By comparing the Fe2+ and Fe3+ concentrations in the two systems, it was found that the CT/PS system could maintain a low Fe2+ concentration during the reaction process, and the Fe2+ released by CT could be used by PS to degrade MO more efficiently. The free radical scavenging experiments showed that the reactive oxygen species in the CT/PS system was mainly SO4 ·-. This study not only proposed a new CT utilization approach, but also solved the problem of reduced degradation efficiency of organic pollutants caused by excessive Fe2+ in the Fenton-like reaction.
Collapse
Affiliation(s)
- Jinpeng Wang
- College of Biological and Chemical Engineering, Anhui Polytechnic University, Wuhu 241000, China
| | - Ming Zhang
- School of Architecture and Civil Engineering, Anhui Polytechnic University, Wuhu 241000, China E-mail:
| | - Runjuan Zhou
- School of Architecture and Civil Engineering, Anhui Polytechnic University, Wuhu 241000, China E-mail:
| | - Jiyuan Li
- School of Architecture and Civil Engineering, Anhui Polytechnic University, Wuhu 241000, China E-mail:
| | - Wei Zhao
- School of Architecture and Civil Engineering, Anhui Polytechnic University, Wuhu 241000, China E-mail:
| | - Wenyuan Chen
- College of Biological and Chemical Engineering, Anhui Polytechnic University, Wuhu 241000, China
| | - Jianping Zeng
- School of Architecture and Civil Engineering, Anhui Polytechnic University, Wuhu 241000, China E-mail:
| |
Collapse
|
26
|
Niu L, Wei T, Li Q, Zhang G, Xian G, Long Z, Ren Z. Ce-based catalysts used in advanced oxidation processes for organic wastewater treatment: A review. J Environ Sci (China) 2020; 96:109-116. [PMID: 32819685 DOI: 10.1016/j.jes.2020.04.033] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Revised: 04/16/2020] [Accepted: 04/22/2020] [Indexed: 06/11/2023]
Abstract
Refractory organic pollutants in water threaten human health and environmental safety, and advanced oxidation processes (AOPs) are effective for the degradation of these pollutants. Catalysts play vital role in AOPs, and Ce-based catalysts have exhibited excellent performance. Recently, the development and application of Ce-based catalysts in various AOPs have been reported. Our study conducts the first review in this rapid growing field. This paper clarifies the variety and properties of Ce-based catalysts. Their applications in different AOP systems (catalytic ozonation, photodegradation, Fenton-like reactions, sulfate radical-based AOPs, and catalytic sonochemistry) are discussed. Different Ce-based catalysts suit different reaction systems and produce different active radicals. Finally, future research directions of Ce-based catalysts in AOP systems are suggested.
Collapse
Affiliation(s)
- Lijun Niu
- School of Energy and Environmental Engineering, Hebei University of Technology, Tianjin 300130, China; School of Environment and Natural Resource, Renmin University of China, Beijing 100872, China
| | - Ting Wei
- School of Environment and Natural Resource, Renmin University of China, Beijing 100872, China
| | - Qiangang Li
- School of Environment and Natural Resource, Renmin University of China, Beijing 100872, China
| | - Guangming Zhang
- School of Energy and Environmental Engineering, Hebei University of Technology, Tianjin 300130, China.
| | - Guang Xian
- School of Environment and Natural Resource, Renmin University of China, Beijing 100872, China
| | - Zeqing Long
- School of Environment and Natural Resource, Renmin University of China, Beijing 100872, China
| | - Zhijun Ren
- School of Energy and Environmental Engineering, Hebei University of Technology, Tianjin 300130, China
| |
Collapse
|
27
|
Controllable preparation of Ni-CeO2 nanoparticles anchored on Al-Mg oxide spheres (AMO) by hydrophobic driving mechanism for dehydrogenative homo-coupling of pyridines. J Catal 2020. [DOI: 10.1016/j.jcat.2020.07.032] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
28
|
Song Y, Huang L, Zhang X, Zhang H, Wang L, Zhang H, Liu Y. Synergistic effect of persulfate and g-C 3N 4 under simulated solar light irradiation: Implication for the degradation of sulfamethoxazole. JOURNAL OF HAZARDOUS MATERIALS 2020; 393:122379. [PMID: 32120217 DOI: 10.1016/j.jhazmat.2020.122379] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Revised: 02/21/2020] [Accepted: 02/21/2020] [Indexed: 06/10/2023]
Abstract
A method combining g-C3N4 and potassium peroxydisulfate (PDS) under simulated sunlight was put forward to effectively degrade sulfamethoxazole (SMX). The SMX removal efficiency was substantially improved compared with the processes involving only g-C3N4 or PDS. The kinetic constants for the g-C3N4, PDS and g-C3N4/PDS systems were 0.0023, 0.0239 and 0.068 min-1, respectively. The g-C3N4/PDS process reached an SMX removal rate of 98.4 % after 60 min of simulated sunlight; in addition, the proposed system showed desirable efficiency for SMX degradation in two different actual water samples as well. The reaction mechanism was illustrated by trapping experiments, which showed that g-C3N4 can promote S2O82- to transfer SO4-, S2O82- favored the generation of O2-, and O2-, SO4- and holes (h+) were the main oxidative species for the SMX degradation in the combined reaction process under simulated sunlight. Then, to further explore this mechanism, the intermediates generated during the combined reaction process were analyzed by LC/MS and possible degradation pathways were proposed. The result showed that the breaking of the SN and C-S bonds, the hydroxylation of the benzene ring and the oxidation of the amino group were identified as the main pathways in the SMX degradation process by the g-C3N4/PDS system under simulated sunlight.
Collapse
Affiliation(s)
- Yali Song
- Department of Material and Chemical Engineering, Henan Collaborative Innovation Centre of Environmental Pollution Control and Ecological Restoration, Zhengzhou University of Light Industry, Zhengzhou, 450001, PR China.
| | - Long Huang
- School of Water Conservancy Engineering, Zhengzhou University, Zhengzhou, 450001, PR China
| | - Xiaojing Zhang
- Department of Material and Chemical Engineering, Henan Collaborative Innovation Centre of Environmental Pollution Control and Ecological Restoration, Zhengzhou University of Light Industry, Zhengzhou, 450001, PR China
| | - Hongzhong Zhang
- Department of Material and Chemical Engineering, Henan Collaborative Innovation Centre of Environmental Pollution Control and Ecological Restoration, Zhengzhou University of Light Industry, Zhengzhou, 450001, PR China.
| | - Lan Wang
- Department of Material and Chemical Engineering, Henan Collaborative Innovation Centre of Environmental Pollution Control and Ecological Restoration, Zhengzhou University of Light Industry, Zhengzhou, 450001, PR China
| | - Huan Zhang
- Department of Material and Chemical Engineering, Henan Collaborative Innovation Centre of Environmental Pollution Control and Ecological Restoration, Zhengzhou University of Light Industry, Zhengzhou, 450001, PR China
| | - Yali Liu
- School of Civil Engineering, Nanjing Forestry University, Nanjing, 210037, PR China
| |
Collapse
|
29
|
Enhanced activation of peroxymonosulfate using oxygen vacancy-enriched FeCo2O4−x spinel for 2,4-dichlorophenol removal: Singlet oxygen-dominated nonradical process. Colloids Surf A Physicochem Eng Asp 2020. [DOI: 10.1016/j.colsurfa.2020.124568] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
30
|
Fang W, Chen J, Zhou X, Chen J, Ye Z, Li J. Zeolitic Imidazolate Framework-67-Derived CeO2@Co3O4 Core–Shell Microspheres with Enhanced Catalytic Activity toward Toluene Oxidation. Ind Eng Chem Res 2020. [DOI: 10.1021/acs.iecr.9b07028] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- Wei Fang
- Key Laboratory of Microbial Technology for Industrial Pollution Control, College of Environment, Zhejiang University of Technology, Hangzhou 310032, China
| | - Jinghuan Chen
- Key Laboratory of Microbial Technology for Industrial Pollution Control, College of Environment, Zhejiang University of Technology, Hangzhou 310032, China
| | - Xiangyuan Zhou
- Key Laboratory of Microbial Technology for Industrial Pollution Control, College of Environment, Zhejiang University of Technology, Hangzhou 310032, China
| | - Jianjun Chen
- National Engineering Laboratory for Multi Flue Gas Pollution Control Technology and Equipment, School of Environment, Tsinghua University, Yancheng 224001, China
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Zhiping Ye
- Key Laboratory of Microbial Technology for Industrial Pollution Control, College of Environment, Zhejiang University of Technology, Hangzhou 310032, China
| | - Junhua Li
- National Engineering Laboratory for Multi Flue Gas Pollution Control Technology and Equipment, School of Environment, Tsinghua University, Yancheng 224001, China
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| |
Collapse
|
31
|
Ma Q, Nengzi LC, Li B, Wang Z, Liu L, Cheng X. Heterogeneously catalyzed persulfate with activated carbon coated with CoFe layered double hydroxide (AC@CoFe-LDH) for the degradation of lomefloxacin. Sep Purif Technol 2020. [DOI: 10.1016/j.seppur.2019.116204] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
32
|
|
33
|
Shabanloo A, Salari M, Shabanloo N, Dehghani MH, Pittman CU, Mohan D. Heterogeneous persulfate activation by nano-sized Mn3O4 to degrade furfural from wastewater. J Mol Liq 2020. [DOI: 10.1016/j.molliq.2019.112088] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
34
|
Zhang T, Dong L, Du J, Qian C, Wang Y. CuO and CeO2 assisted Fe2O3/attapulgite catalyst for heterogeneous Fenton-like oxidation of methylene blue. RSC Adv 2020; 10:23431-23439. [PMID: 35520314 PMCID: PMC9054919 DOI: 10.1039/d0ra03754k] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2020] [Accepted: 06/12/2020] [Indexed: 12/17/2022] Open
Abstract
In this paper, CuO and CeO2 were screened as co-catalyst components for Fe2O3/attapulgite (ATP) catalyst, and three new catalysts (CuO–Fe2O3/ATP, CeO2–Fe2O3/ATP and CuO–CeO2–Fe2O3/ATP) were prepared for degradation of methylene blue (MB). The three catalysts' characteristics were determined by BET, XRD, FT-IR, SEM and XPS. MB degradation in different systems and at different pH values was also studied. Under the conditions of H2O2 concentration of 4.9 mmol L−1, catalyst dosage of 5 g L−1, pH of 5, reaction temperature of 60 °C and MB initial concentration of 100 mg L−1, the as-synthesized catalysts showed much greater reaction rate and degradation efficiency of MB than Fe2O3/ATP catalyst. In addition, the reusability of the as-prepared composites was evaluated. The intermediate products of MB degradation were identified by LC-MS and the possible degradation process of MB was put forward. A novel heterogeneous catalyst CuO–CeO2–Fe2O3/ATP was synthesized for MB degradation and the catalytic mechanism was put forward.![]()
Collapse
Affiliation(s)
- Ting Zhang
- Department of Petrochemical Engineering
- Lanzhou University of Technology
- Lanzhou
- P. R. China
| | - Lingyu Dong
- Department of Petrochemical Engineering
- Lanzhou University of Technology
- Lanzhou
- P. R. China
| | - Jianhua Du
- Global Center of Environmental Remediation
- University of Newcastle
- Australia
| | - Chunyuan Qian
- Department of Petrochemical Engineering
- Lanzhou University of Technology
- Lanzhou
- P. R. China
| | - Yi Wang
- Department of Petrochemical Engineering
- Lanzhou University of Technology
- Lanzhou
- P. R. China
| |
Collapse
|
35
|
Zhu J, Zhang G, Xian G, Zhang N, Li J. A High-Efficiency CuO/CeO 2 Catalyst for Diclofenac Degradation in Fenton-Like System. Front Chem 2019; 7:796. [PMID: 31803724 PMCID: PMC6877685 DOI: 10.3389/fchem.2019.00796] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2019] [Accepted: 11/05/2019] [Indexed: 12/16/2022] Open
Abstract
An efficient Fenton-like catalyst CuO/CeO2 was synthesized using ultrasonic impregnation and used to remove diclofenac from water. The catalyst was characterized by N2 adsorption-desorption, SEM-EDS, XRD, HRTEM, Raman, and XPS analyses. Results showed that CuO/CeO2 possessed large surface area, high porosity, and fine elements dispersion. Cu was loaded in CeO2, which increased the oxygen vacancies. The exposed crystal face of CeO2 (200) was beneficial to the catalytic activity. The diclofenac removal experiment showed that there was a synergistic effect between CuO and CeO2, which might be caused by more oxygen vacancies generation and electronic interactions between Cu and Ce species. The experimental conditions were optimized, including pH, catalyst and H2O2 dosages, and 86.62% diclofenac removal was achieved. Diclofenac oxidation by ·OH and adsorbed oxygen species was the main mechanism for its removal in this Fenton-like system.
Collapse
Affiliation(s)
- Jia Zhu
- School of Construction and Environment Engineering, Shenzhen Polytechnic, Shenzhen, China
| | - Guangming Zhang
- School of Environment & Natural Resource, Renmin University of China, Beijing, China
| | - Guang Xian
- School of Environment & Natural Resource, Renmin University of China, Beijing, China.,Department of Military Installations, Army Logistics University of PLA, Chongqing, China
| | - Nan Zhang
- School of Environment & Natural Resource, Renmin University of China, Beijing, China
| | - Jinwei Li
- School of Construction and Environment Engineering, Shenzhen Polytechnic, Shenzhen, China
| |
Collapse
|
36
|
Persulfate enhanced pollutants oxidation efficiency and power generation in photocatalytic fuel cell with anodic BiOCl/BiOI and cathodic copper cobalt oxide. J Taiwan Inst Chem Eng 2019. [DOI: 10.1016/j.jtice.2019.04.032] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
37
|
Application of Photocatalytic Falling Film Reactor to Elucidate the Degradation Pathways of Pharmaceutical Diclofenac and Ibuprofen in Aqueous Solutions. COATINGS 2019. [DOI: 10.3390/coatings9080465] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Diclofenac (DCF) and ibuprofen (IBP) are common pharmaceutical residues that have been detected in the aquatic system. Their presence in the aquatic environment has become an emerging contaminant problem, which has implications for public health. The degradation pathway and identification of transformation products of pharmaceutical residues are crucial to elucidate the environmental fate of photocatalytic decomposition of these pollutants in aqueous media. The degradation process might lead to creation of other possible emerging contaminates. In this study, the degradation of DCF and IBP in aqueous solutions was investigated. To this end, coated TiO2 on a Pilkington Active glass was used as a photocatalyst under UVA illumination, in a planar falling film reactor. Pilkington ActivTM glass was used as a photocatalyst and a falling liquid film generator. Degradation kinetics of both pharmaceuticals followed a pseudo-first-order model. The transformation products of both diclofenac and ibuprofen during the degradation process were detected and identified with gas chromatography–mass spectrometry (GC–MS) and ion chromatography. The results showed that the mineralization rate of both pharmaceuticals through photocatalysis was very low. Low chain carboxylic acids, such as formic, acetic, oxalic, malonic, and succinic acids were the main by-products. A pathway of DCF and IBP degradation was proposed.
Collapse
|
38
|
Chitosan Grafted Adsorbents for Diclofenac Pharmaceutical Compound Removal from Single-Component Aqueous Solutions and Mixtures. Polymers (Basel) 2019; 11:polym11030497. [PMID: 30960481 PMCID: PMC6474128 DOI: 10.3390/polym11030497] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2019] [Revised: 03/09/2019] [Accepted: 03/11/2019] [Indexed: 12/17/2022] Open
Abstract
The main purpose of this study was to investigate the synthesis of some cross-linked carboxyl-grafted chitosan derivatives to be used as selective adsorbents for diclofenac (DCF) pharmaceutical compounds from aqueous mixtures. Four different materials were synthesized using succinic anhydride (CsSUC), maleic anhydride (CsMAL), itaconic acid (CsITA), and trans-aconitic acid (CsTACON) as grafting agents. After synthesis, scanning electron microscopy (SEM), Fourier-transform infrared spectroscopy (FTIR), and X-ray diffraction (XRD) were performed before and after DCF adsorption. In addition, a complete adsorption evaluation was carried out for all materials studying some important parameters. The optimum pH was 4; the amino groups of DCF can be protonated at pH = 4 (–NH+), so this groups can easily attract the clear negatively carboxyl moieties (–COO−) of the chitosan adsorbents. The Qm for CsTACON was higher than those of the other materials, at all temperatures studied. By altering the temperature from 25 to 35 °C, an increase (16%) of Qm (from 84.56 to 98.34 mg g−1) was noted, while similar behavior was revealed after a further increase of temperature from 35 to 45 °C, improving by 5% (from 98.34 to 102.75 mg g−1). All isotherms were fitted to Langmuir, Freundlich, and Langmuir-Freundlich (L-F) models). In addition, a kinetic model was proposed taking into account not only the interactions but also the diffusivity of the molecule (DCF) into the polymeric network. The behavior of the prepared chitosan materials in simultaneously removing other compounds (synergetic or antagonistic) was also evaluated by experiments performed in mixtures. DCF presented the highest removal from the mixture in the order: CsTACON (92.8%) > CsITA (89.5%) > CsSUC (80.9%) > CsMAL (66.2%) compared to other pharmaceutical compounds (salicylic acid, ibuprofen and ketoprofen). Desorption was achieved by using different eluants (either water or organic). The highest desorption ability was found for acetone (100% for CsTACON, CsSUC, CsMAL and 77% for CsITA) for all materials.
Collapse
|