1
|
Downs CA, Doust SN, Haghshenas SA, Woodley CM, Shirzad B, McDonald EM, Nazarpour A, Farhangmehr A, Zhao H, Bishop EE, Risk MJ. Potential impact of the 2023 Lahaina wildfire on the marine environment: Modeling the transport of ash-laden benzo[a]pyrene and pentachlorophenol. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 954:176346. [PMID: 39332737 DOI: 10.1016/j.scitotenv.2024.176346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 08/25/2024] [Accepted: 09/15/2024] [Indexed: 09/29/2024]
Abstract
The Lahaina urban/wildland fire event is considered the deadliest wildfire in the past century of U.S. history. This fire resulted in over 2200 building structures destroyed or damaged, approximately 4000 automobiles were incinerated and between 450 and 878 ha of grassland burned in areas adjoining the town of Lahaina, Maui County, State of Hawaii, U.S.A. One of the most abundant contaminants of both wildland and urban fires is the incomplete combustion product, benzo[a]pyrene. Pentachlorophenol from burned and unburned utility poles/residential burn sites enter into navigable waters, thus posing a serious risk to the water quality of coastal waters. The Risk Quotient Plumes for benzo[a]pyrene and pentachlorophenol, mobilized from Lahaina into coastal waters were calculated based on a hydrodynamic analysis and an integrated ecological risk assessment. This plume was simulated using rainfall events in November 2022 as a proxy for the first major rainfall event expected in Lahaina in 2024. The models indicated that the estimated levels of benzo[a]pyrene and pentachlorophenol posed a risk to near shore habitants within 2 km of Lahaina. The levels of pentachlorophenol were more widespread than benzo[a]pyrene and were predicted to pose a hazard to marine life as far away as Molokini Shoal Marine Life Conservation District and 'Āhihi-Kīna'u Natural Area Reserve. Fisheries species captured near these areas should be tested for consumption safety.
Collapse
Affiliation(s)
- C A Downs
- Haereticus Environmental Laboratory, P.O. Box 92, Clifford, VA 24533, United States of America.
| | - Shadan Nasseri Doust
- Institute of Geophysics, University of Tehran, North Kargar Ave., Tehran P.C. 1439951113, Islamic Republic of Iran
| | - S Abbas Haghshenas
- Institute of Geophysics, University of Tehran, North Kargar Ave., Tehran P.C. 1439951113, Islamic Republic of Iran; Climatheca, www.climatheca.com, Priceville, Ontario N0C 1K0, Canada
| | - Cheryl M Woodley
- U.S. National Oceanic & Atmospheric Administration, National Ocean Service, National Centers for Coastal Ocean Science, Hollings Marine Laboratory, 331 Ft. Johnson Rd., Charleston, SC 29412, United States of America
| | - Behzad Shirzad
- Institute of Geophysics, University of Tehran, North Kargar Ave., Tehran P.C. 1439951113, Islamic Republic of Iran
| | - E Murphy McDonald
- Consolidated Safety Services, Inc. contractor to U.S. National Oceanic and Atmospheric Administration, National Ocean Service, National Centers for Coastal Ocean Science, Hollings Marine Laboratory, 331 Ft. Johnson Rd., Charleston, SC 29412, United States of America
| | - Ahad Nazarpour
- Department of Geology, Islamic Azad University, Ahvaz Branch, Ahvaz, Iran
| | - Aref Farhangmehr
- Institute of Geophysics, University of Tehran, North Kargar Ave., Tehran P.C. 1439951113, Islamic Republic of Iran
| | - Hongwei Zhao
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou 570228, China.; Center for Eco-Environment Restoration of Hainan Province, School of Ecology, Hainan University, Haikou 570228, China
| | - Elizabeth E Bishop
- Friends of Hanauma Bay, P.O. Box 25761, Honolulu, HI 96825-07610, United States of America
| | - Michael J Risk
- School of Geography and Geology, McMaster University, N0G 1R0, Canada; Climatheca, www.climatheca.com, Priceville, Ontario N0C 1K0, Canada
| |
Collapse
|
2
|
Silva M, Capps S, London JK. Community-Engaged Research and the Use of Open Access ToxVal/ToxRef In Vivo Databases and New Approach Methodologies (NAM) to Address Human Health Risks From Environmental Contaminants. Birth Defects Res 2024; 116:e2395. [PMID: 39264239 PMCID: PMC11407745 DOI: 10.1002/bdr2.2395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 06/19/2024] [Accepted: 08/11/2024] [Indexed: 09/13/2024]
Abstract
BACKGROUND The paper analyzes opportunities for integrating Open access resources (Abstract Sifter, US EPA and NTP Toxicity Value and Toxicity Reference [ToxVal/ToxRefDB]) and New Approach Methodologies (NAM) integration into Community Engaged Research (CEnR). METHODS CompTox Chemicals Dashboard and Integrated Chemical Environment with in vivo ToxVal/ToxRef and NAMs (in vitro) databases are presented in three case studies to show how these resources could be used in Pilot Projects involving Community Engaged Research (CEnR) from the University of California, Davis, Environmental Health Sciences Center. RESULTS Case #1 developed a novel assay methodology for testing pesticide toxicity. Case #2 involved detection of water contaminants from wildfire ash and Case #3 involved contaminants on Tribal Lands. Abstract Sifter/ToxVal/ToxRefDB regulatory data and NAMs could be used to screen/prioritize risks from exposure to metals, PAHs and PFAS from wildfire ash leached into water and to investigate activities of environmental toxins (e.g., pesticides) on Tribal lands. Open access NAMs and computational tools can apply to detection of sensitive biological activities in potential or known adverse outcome pathways to predict points of departure (POD) for comparison with regulatory values for hazard identification. Open access Systematic Empirical Evaluation of Models or biomonitoring exposures are available for human subpopulations and can be used to determine bioactivity (POD) to exposure ratio to facilitate mitigation. CONCLUSIONS These resources help prioritize chemical toxicity and facilitate regulatory decisions and health protective policies that can aid stakeholders in deciding on needed research. Insights into exposure risks can aid environmental justice and health equity advocates.
Collapse
Affiliation(s)
- Marilyn Silva
- Co-Chair Community Stakeholders' Advisory Committee, University of California (UC Davis), Environmental Health Sciences Center (EHSC), Davis, California, USA
| | - Shosha Capps
- Co-Director Community Engagement Core, UC Davis EHSC, Davis, California, USA
| | - Jonathan K London
- Department of Human Ecology and Faculty Director Community Engagement Core, UC Davis EHSC, Sacramento, California, USA
| |
Collapse
|
3
|
Alam M, Sitter JD, Vannucci AK, Webster JP, Matiasek SJ, Alpers CN, Baalousha M. Environmentally persistent free radicals and other paramagnetic species in wildland-urban interface fire ashes. CHEMOSPHERE 2024; 363:142950. [PMID: 39069099 DOI: 10.1016/j.chemosphere.2024.142950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 07/16/2024] [Accepted: 07/24/2024] [Indexed: 07/30/2024]
Abstract
Wildland-urban interface (WUI) fires consume fuels, such as vegetation and structural materials, leaving behind ash composed primarily of pyrogenic carbon and metal oxides. However, there is currently limited understanding of the role of WUI fire ash from different sources as a source of paramagnetic species such as environmentally persistent free radicals (EPFRs) and transition metals in the environment. Electron paramagnetic resonance (EPR) was used to detect and quantify paramagnetic species, including organic persistent free radicals and transition metal spins, in fifty-three fire ash and soil samples collected following the North Complex Fire and the Sonoma-Lake-Napa Unit (LNU) Lightning Complex Fire, California, 2020. High concentrations of organic EPFRs (e.g., 1.4 × 1014 to 1.9 × 1017 spins g-1) were detected in the studied WUI fire ash along with other paramagnetic species such as iron and manganese oxides, as well as Fe3+ and Mn2+ ions. The mean concentrations of EPFRs in various ash types decreased following the order: vegetation ash (1.1 × 1017 ± 1.1 × 1017 spins g-1) > structural ash (1.6 × 1016 ± 3.7 × 1016 spins g-1) > vehicle ash (6.4 × 1015 ± 8.6 × 1015 spins g-1) > soil (3.2 × 1015 ± 3.7 × 1015 spins g-1). The mean concentrations of EPFRs decreased with increased combustion completeness indicated by ash color; black (1.1 × 1017 ± 1.1 × 1017 spins g-1) > white (2.5 × 1016 ± 4.4 × 1016 spins g-1) > gray (1.8 × 1016 ± 2.4 × 1016 spins g-1). In contrast, the relative amounts of reduced Mn2+ ions increased with increased combustion completeness. Thus, WUI fire ash is an important global source of EPFRs and reduced metal species (e.g., Mn2+). Further research is needed to underpin the formation, transformation, and environmental and human health impacts of these paramagnetic species in light of the projected increased frequency, size, and severity of WUI fires.
Collapse
Affiliation(s)
- Mahbub Alam
- Center for Environmental Nanoscience and Risk, Department of Environmental Health Sciences, Arnold School of Public Health, University of South Carolina, Columbia, SC, United States
| | - James D Sitter
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, SC, United States
| | - Aaron K Vannucci
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, SC, United States
| | - Jackson P Webster
- Department of Civil Engineering, California State University Chico, 400 W 1st St, Chico, CA, 95929, United States
| | - Sandrine J Matiasek
- Department of Earth and Environmental Sciences, California State University Chico, 400 W 1st St, Chico, CA, 95929, United States
| | - Charles N Alpers
- U.S. Geological Survey, California Water Science Center, 6000 J Street, Sacramento, CA, United States
| | - Mohammed Baalousha
- Center for Environmental Nanoscience and Risk, Department of Environmental Health Sciences, Arnold School of Public Health, University of South Carolina, Columbia, SC, United States.
| |
Collapse
|
4
|
Farruggia MJ, Brahney J, Tanentzap AJ, Brentrup JA, Brighenti LS, Chandra S, Cortés A, Fernandez RL, Fischer JM, Forrest AL, Jin Y, Larrieu K, McCullough IM, Oleksy IA, Pilla RM, Rusak JA, Scordo F, Smits AP, Symons CC, Tang M, Woodman SG, Sadro S. Wildfire smoke impacts lake ecosystems. GLOBAL CHANGE BIOLOGY 2024; 30:e17367. [PMID: 38840430 DOI: 10.1111/gcb.17367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 03/29/2024] [Accepted: 05/10/2024] [Indexed: 06/07/2024]
Abstract
Wildfire activity is increasing globally. The resulting smoke plumes can travel hundreds to thousands of kilometers, reflecting or scattering sunlight and depositing particles within ecosystems. Several key physical, chemical, and biological processes in lakes are controlled by factors affected by smoke. The spatial and temporal scales of lake exposure to smoke are extensive and under-recognized. We introduce the concept of the lake smoke-day, or the number of days any given lake is exposed to smoke in any given fire season, and quantify the total lake smoke-day exposure in North America from 2019 to 2021. Because smoke can be transported at continental to intercontinental scales, even regions that may not typically experience direct burning of landscapes by wildfire are at risk of smoke exposure. We found that 99.3% of North America was covered by smoke, affecting a total of 1,333,687 lakes ≥10 ha. An incredible 98.9% of lakes experienced at least 10 smoke-days a year, with 89.6% of lakes receiving over 30 lake smoke-days, and lakes in some regions experiencing up to 4 months of cumulative smoke-days. Herein we review the mechanisms through which smoke and ash can affect lakes by altering the amount and spectral composition of incoming solar radiation and depositing carbon, nutrients, or toxic compounds that could alter chemical conditions and impact biota. We develop a conceptual framework that synthesizes known and theoretical impacts of smoke on lakes to guide future research. Finally, we identify emerging research priorities that can help us better understand how lakes will be affected by smoke as wildfire activity increases due to climate change and other anthropogenic activities.
Collapse
Affiliation(s)
- Mary Jade Farruggia
- Department of Environmental Science and Policy, University of California Davis, Davis, California, USA
| | - Janice Brahney
- Department of Watershed Sciences and Ecology Center, Utah State University, Logan, Utah, USA
| | - Andrew J Tanentzap
- Ecosystems and Global Change Group, School of the Environment, Trent University, Peterborough, Ontario, Canada
- Ecosystems and Global Change Group, Department of Plant Sciences, University of Cambridge, Cambridge, UK
| | | | - Ludmila S Brighenti
- Universidade Do Estado de Minas Gerais (UEMG), Unidade Divinópolis, Divinópolis, Minas Gerais, Brazil
| | - Sudeep Chandra
- Department of Biology and Global Water Center, University of Nevada, Reno, Nevada, USA
| | - Alicia Cortés
- Department of Civil and Environmental Engineering, University of California Davis, Davis, California, USA
| | - Rocio L Fernandez
- National Scientific and Technical Research Council (CONICET), Buenos Aires, Argentina
| | - Janet M Fischer
- Department of Biology, Franklin and Marshall College, Lancaster, Pennsylvania, USA
| | - Alexander L Forrest
- Department of Civil and Environmental Engineering/Tahoe Environmental Research Center, University of California Davis, Davis, California, USA
| | - Yufang Jin
- Department of Land, Air and Water Resources, University of California Davis, Davis, California, USA
| | - Kenneth Larrieu
- Department of Civil and Environmental Engineering/Tahoe Environmental Research Center, University of California Davis, Davis, California, USA
| | - Ian M McCullough
- Department of Fisheries and Wildlife, Michigan State University, East Lansing, Michigan, USA
| | - Isabella A Oleksy
- Institute of Arctic and Alpine Research, University of Colorado Boulder, Boulder, Colorado, USA
| | - Rachel M Pilla
- Environmental Sciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee, USA
| | - James A Rusak
- Department of Biology, Queen's University, Kingston, Ontario, Canada
| | - Facundo Scordo
- Instituto Argentino de Oceanografía, Universidad Nacional del Sur (UNS)-CONICET, Bahía Blanca, Buenos Aires, Argentina
- Departamento de Geografía y Turismo, Universidad Nacional del Sur, Bahía Blanca, Buenos Aires, Argentina
| | - Adrianne P Smits
- Department of Environmental Science and Policy, University of California Davis, Davis, California, USA
| | - Celia C Symons
- Department of Ecology and Evolutionary Biology, University of California Irvine, Irvine, California, USA
| | - Minmeng Tang
- School of Civil and Environmental Engineering, Cornell University, Ithaca, New York, USA
| | - Samuel G Woodman
- Ecosystems and Global Change Group, Department of Plant Sciences, University of Cambridge, Cambridge, UK
| | - Steven Sadro
- Department of Environmental Science and Policy, University of California Davis, Davis, California, USA
| |
Collapse
|
5
|
Barkoski J, Van Fleet E, Liu A, Ramsey S, Kwok RK, Miller AK. Data Linkages for Wildfire Exposures and Human Health Studies: A Scoping Review. GEOHEALTH 2024; 8:e2023GH000991. [PMID: 38487553 PMCID: PMC10937504 DOI: 10.1029/2023gh000991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 01/23/2024] [Accepted: 01/25/2024] [Indexed: 03/17/2024]
Abstract
Wildfires are increasing in frequency and intensity, with significant consequences that impact human health. A scoping review was conducted to: (a) understand wildfire-related health effects, (b) identify and describe environmental exposure and health outcome data sources used to research the impacts of wildfire exposures on health, and (c) identify gaps and opportunities to leverage exposure and health data to advance research. A literature search was conducted in PubMed and a sample of 83 articles met inclusion criteria. A majority of studies focused on respiratory and cardiovascular outcomes. Hospital administrative data was the most common health data source, followed by government data sources and health surveys. Wildfire smoke, specifically fine particulate matter (PM2.5), was the most common exposure measure and was predominantly estimated from monitoring networks and satellite data. Health data were not available in real-time, and they lacked spatial and temporal coverage to study health outcomes with longer latency periods. Exposure data were often available in real-time and provided better temporal and spatial coverage but did not capture the complex mixture of hazardous wildfire smoke pollutants nor exposures associated with non-air pathways such as soil, household dust, food, and water. This scoping review of the specific health and exposure data sources used to underpin these studies provides a framework for the research community to understand: (a) the use and value of various environmental and health data sources, and (b) the opportunities for improving data collection, integration, and accessibility to help inform our understanding of wildfires and other environmental exposures.
Collapse
Affiliation(s)
- J. Barkoski
- Social & Scientific Systems, Inc.a DLH Holdings CompanyDurhamNCUSA
| | - E. Van Fleet
- Social & Scientific Systems, Inc.a DLH Holdings CompanyDurhamNCUSA
| | - A. Liu
- Department of Health and Human ServicesNational Institute of Environmental Health SciencesNational Institutes of HealthDurhamNCUSA
- Kelly Government SolutionsRockvilleMDUSA
| | - S. Ramsey
- Social & Scientific Systems, Inc.a DLH Holdings CompanyDurhamNCUSA
| | - R. K. Kwok
- Department of Health and Human ServicesNational Institute on AgingNational Institutes of HealthBaltimoreMDUSA
| | - A. K. Miller
- Department of Health and Human ServicesNational Institute of Environmental Health SciencesNational Institutes of HealthDurhamNCUSA
| |
Collapse
|
6
|
Rao L, Zheng C, Chen JB, Cai JZ, Yang ZB, Xu XX, Lv GC, Xu CL, Wang GY, Man YB, Wong MH, Cheng Z. Ecological and human health hazards of soil heavy metals after wildfire: A case study of Liangshan Yi autonomous prefecture, China. CHEMOSPHERE 2024; 352:141506. [PMID: 38395367 DOI: 10.1016/j.chemosphere.2024.141506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 02/08/2024] [Accepted: 02/19/2024] [Indexed: 02/25/2024]
Abstract
Soil samples were collected in at different depths from the conflagration area in Liangshan Yi Autonomous Region, China, to investigate the distribution characteristics and ecological and human health risks of heavy metals after a wildfire. The samples collected comprise wildfire ash (WA) above the soil surface, ash soil (AS) 0-5 cm, and plain soil (PS) 5-15 cm below the soil surface. Additionally, reference soil (RS) was collected from a nearby unburned area at the same latitude as the conflagration area. The results showed that the concentrations of zinc (Zn), copper (Cu), lead (Pb), and cadmium (Cd) in the WA and AS were significantly higher than in reference soil (RS) (p < 0.05). Concentrations of Pb in the PS were 2.52 times higher than that in RS (17.9 mg kg-1) (p < 0.05). The AS and WA had the highest Index of potential ecological risks (RI > 600). In addition, The Cd in AS and WA contributed the most to the highest Improved nemerow index (INI) and RI with a contribution of more than 80%. The concentration of heavy metals was used to establish non-carcinogenic effects and cancer risks in humans via three exposure pathways: accident ingestion of soil, dermal contact with soil, and inhalation of soil particles. Hazard index (HI) values of each sample were all less than 1, indicating the non-carcinogenic risk was within the acceptable range and would not adversely affect the local population's health. The Cancer risk (CR) values of Cr, As, Cd, and Ni were all below 1 × 10-6, indicating that heavy metal pollution from this wildfire did not pose a cancer risk to residents.
Collapse
Affiliation(s)
- Lin Rao
- College of Environment, Sichuan Agricultural University, Chengdu, China
| | - Chao Zheng
- College of Environment, Sichuan Agricultural University, Chengdu, China
| | - Jian-Bin Chen
- College of Source and Environment, Xichang University, Xichang, China
| | - Jun-Zhuo Cai
- College of Environment, Sichuan Agricultural University, Chengdu, China
| | - Zhan-Biao Yang
- College of Environment, Sichuan Agricultural University, Chengdu, China
| | - Xiao-Xun Xu
- College of Environment, Sichuan Agricultural University, Chengdu, China
| | - Guo-Chun Lv
- College of Environment, Sichuan Agricultural University, Chengdu, China
| | - Chang-Lian Xu
- College of Environment, Sichuan Agricultural University, Chengdu, China
| | - Gui-Yin Wang
- College of Environment, Sichuan Agricultural University, Chengdu, China
| | - Yu-Bon Man
- Consortium on Health, Environment, Education, and Research (CHEER), and Department of Science and Environmental Studies, The Education University of Hong Kong, Tai Po, Hong Kong, China
| | - Ming-Hung Wong
- Consortium on Health, Environment, Education, and Research (CHEER), and Department of Science and Environmental Studies, The Education University of Hong Kong, Tai Po, Hong Kong, China
| | - Zhang Cheng
- College of Environment, Sichuan Agricultural University, Chengdu, China.
| |
Collapse
|
7
|
Rao JN, Parsai T. Trends and patterns of polycyclic aromatic hydrocarbons (PAHs) in forest fire-affected soils and water mediums with implications on human health risk assessment. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 905:166682. [PMID: 37659553 DOI: 10.1016/j.scitotenv.2023.166682] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 08/12/2023] [Accepted: 08/27/2023] [Indexed: 09/04/2023]
Abstract
Forest fires are extreme natural/artificial events releasing polycyclic aromatic hydrocarbons (PAHs), which are carcinogenic. Most of the released PAHs are trapped in burnt ash, a part of which is transported and settle on different mediums like soil and water. After strong rainfall events, PAHs enter into surface water bodies through surface runoff, thereby deteriorating water quality. Changes in PAHs levels during the post-fire duration and human health risks due to PAHs released from forest fires need attention. This study aim to explain the trends and patterns of PAHs and health risks due to exposure to soil and water contaminated with PAHs. Forest fires release a higher percentage of low molecular weight PAHs (LMW PAHs) than high molecular weight PAHs (HMW PAHs). Ash and burnt soils contain a higher percentage of LMW PAHs since biomass burning releases huge amounts of LMW PAHs. Whereas, sediments contain a higher percentage of HMW PAHs since most of the LMW PAHs are already degraded. HMW PAHs were causing higher risk to humans (both cancer and non-cancer) due to their higher oxidation potential. Exposure to water contaminated by PAHs resulted in higher health risks for both BaP equivalent and a mixture of PAHs. Exposure to sediment produced the highest health risk due to a higher percentage of HMW PAHs, followed by surface water, burnt soil, ash, and unburnt soil. Cancer and non-cancer risk due to dermal exposure was more elevated than oral exposure. The mixture of PAHs in sediment produced a higher average dermal risk for children (2.21E+00 for cancer and 7.69E+03 for non-cancer risk) and oral cancer risk for adults (7.11E-03). However, exposure to BaP equivalent in sediment produced higher oral non-cancer risk (7.01E+02) for children. Thus, effective PAHs monitoring is required in both soil and surface water mediums for ensuring proper treatment in water supply systems.
Collapse
Affiliation(s)
- Jakki Narasimha Rao
- School of Civil and Environmental Engineering, Indian Institute of Technology (IIT) Mandi, Kamand, Himachal Pradesh 175005, India
| | - Tanushree Parsai
- Department of Civil Engineering, Indian Institute of Technology (IIT) Madras, Chennai, Tamil Nadu 600036, India.
| |
Collapse
|
8
|
Lopez AM, Pacheco JL, Fendorf S. Metal toxin threat in wildland fires determined by geology and fire severity. Nat Commun 2023; 14:8007. [PMID: 38086795 PMCID: PMC10716285 DOI: 10.1038/s41467-023-43101-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Accepted: 10/31/2023] [Indexed: 12/18/2023] Open
Abstract
Accentuated by climate change, catastrophic wildfires are a growing, distributed global public health risk from inhalation of smoke and dust. Underrecognized, however, are the health threats arising from fire-altered toxic metals natural to soils and plants. Here, we demonstrate that high temperatures during California wildfires catalyzed widespread transformation of chromium to its carcinogenic form in soil and ash, as hexavalent chromium, particularly in areas with metal-rich geologies (e.g., serpentinite). In wildfire ash, we observed dangerous levels (327-13,100 µg kg-1) of reactive hexavalent chromium in wind-dispersible particulates. Relatively dry post-fire weather contributed to the persistence of elevated hexavalent chromium in surficial soil layers for up to ten months post-fire. The geographic distribution of metal-rich soils and fire incidents illustrate the broad global threat of wildfire smoke- and dust-born metals to populations. Our findings provide new insights into why wildfire smoke exposure appears to be more hazardous to humans than pollution from other sources.
Collapse
Affiliation(s)
- Alandra Marie Lopez
- Earth System Science Department, Stanford University, Stanford, CA, 94305, USA
| | - Juan Lezama Pacheco
- Earth System Science Department, Stanford University, Stanford, CA, 94305, USA
| | - Scott Fendorf
- Earth System Science Department, Stanford University, Stanford, CA, 94305, USA.
| |
Collapse
|
9
|
Sánchez-García C, Santín C, Neris J, Sigmund G, Otero XL, Manley J, González-Rodríguez G, Belcher CM, Cerdà A, Marcotte AL, Murphy SF, Rhoades CC, Sheridan G, Strydom T, Robichaud PR, Doerr SH. Chemical characteristics of wildfire ash across the globe and their environmental and socio-economic implications. ENVIRONMENT INTERNATIONAL 2023; 178:108065. [PMID: 37562341 DOI: 10.1016/j.envint.2023.108065] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 05/26/2023] [Accepted: 06/24/2023] [Indexed: 08/12/2023]
Abstract
The mobilisation of potentially harmful chemical constituents in wildfire ash can be a major consequence of wildfires, posing widespread societal risks. Knowledge of wildfire ash chemical composition is crucial to anticipate and mitigate these risks. Here we present a comprehensive dataset on the chemical characteristics of a wide range of wildfire ashes (42 types and a total of 148 samples) from wildfires across the globe and examine their potential societal and environmental implications. An extensive review of studies analysing chemical composition in ash was also performed to complement and compare our ash dataset. Most ashes in our dataset had an alkaline reaction (mean pH 8.8, ranging between 6 and 11.2). Important constituents of wildfire ash were organic carbon (mean: 204 g kg-1), calcium, aluminium, and iron (mean: 47.9, 17.9 and 17.1 g kg-1). Mean nitrogen and phosphorus ranged between 1 and 25 g kg-1, and between 0.2 and 9.9 g kg-1, respectively. The largest concentrations of metals of concern for human and ecosystem health were observed for manganese (mean: 1488 mg kg-1; three ecosystems > 1000 mg kg-1), zinc (mean: 181 mg kg-1; two ecosystems > 500 mg kg-1) and lead (mean: 66.9 mg kg-1; two ecosystems > 200 mg kg-1). Burn severity and sampling timing were key factors influencing ash chemical characteristics like pH, carbon and nitrogen concentrations. The highest readily dissolvable fractions (as a % of ash dry weight) in water were observed for sodium (18 %) and magnesium (11.4 %). Although concentrations of elements of concern were very close to, or exceeded international contamination standards in some ashes, the actual effect of ash will depend on factors like ash loads and the dilution into environmental matrices such as water, soil and sediment. Our approach can serve as an initial methodological standardisation of wildfire ash sampling and chemical analysis protocols.
Collapse
Affiliation(s)
- C Sánchez-García
- Centre for Wildfire Research, Department of Geography, Swansea University, Swansea, United Kingdom
| | - C Santín
- Centre for Wildfire Research, Department of Geography, Swansea University, Swansea, United Kingdom; Research Institute of Biodiversity (IMIB; CSIC-UniOvi-PA), Mieres, Spain
| | - J Neris
- Centre for Wildfire Research, Department of Geography, Swansea University, Swansea, United Kingdom; Universidad de La Laguna, Tenerife, Spain
| | - G Sigmund
- Environmental Technology, Wageningen University & Research, Wageningen, The Netherlands; Department of Environmental Geosciences, Centre for Microbiology and Environmental Systems Science, University of Vienna, Vienna, Austria
| | - X L Otero
- CRETUS, Departamento de Edafoloxía e Química Agrícola, Universidade de Santiago de Compostela, Campus Vida, Santiago de Compostela, Spain
| | - J Manley
- Centre for Wildfire Research, Department of Geography, Swansea University, Swansea, United Kingdom
| | | | - C M Belcher
- University of Exeter, Exeter, United Kingdom
| | - A Cerdà
- Universitat de València, Valencia, Spain
| | - A L Marcotte
- Plant Ecology and Nature Conservation, Wageningen University & Research, Wageningen, The Netherlands
| | - S F Murphy
- U.S. Geological Survey, Boulder, CO, USA
| | - C C Rhoades
- U.S. Department of Agriculture Forest Service, Rocky Mountain Research Station, Fort Collins, CO, USA
| | - G Sheridan
- The University of Melbourne, Parkville, Australia
| | - T Strydom
- South African National Parks, Skukuza, South Africa
| | - P R Robichaud
- U.S. Department of Agriculture Forest Service, Rocky Mountain Research Station, Fort Collins, CO, USA
| | - S H Doerr
- Centre for Wildfire Research, Department of Geography, Swansea University, Swansea, United Kingdom.
| |
Collapse
|
10
|
Alam M, Alshehri T, Wang J, Singerling SA, Alpers CN, Baalousha M. Identification and quantification of Cr, Cu, and As incidental nanomaterials derived from CCA-treated wood in wildland-urban interface fire ashes. JOURNAL OF HAZARDOUS MATERIALS 2023; 445:130608. [PMID: 37056018 DOI: 10.1016/j.jhazmat.2022.130608] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 11/25/2022] [Accepted: 12/12/2022] [Indexed: 06/19/2023]
Abstract
In addition to the combustion of vegetation, fires at the wildland-urban interface (WUI) burn structural materials, including chromated copper arsenate (CCA)-treated wood. This study identifies, quantifies, and characterizes Cr-, Cu-, and As-bearing incidental nanomaterials (INMs) in WUI fire ashes collected from three residential structures suspected to have originated from the combustion of CCA-treated wood. The total elemental concentrations were determined by inductively coupled plasma-time of flight-mass spectrometry (ICP-TOF-MS) following acid digestion. The crystalline phases were determined using transmission electron microscopy (TEM), specifically using electron diffraction and high-resolution imaging. The multi-element single particle composition and size distribution were determined by single particle (SP)-ICP-TOF-MS coupled with agglomerative hierarchical clustering analysis. Chromium, Cu, and As are the dominant elements in the ashes and together account for 93%, 83%, and 24% of the total mass of measured elements in the ash samples. Chromium, Cu, and As phases, analyzed by TEM, most closely match CrO3, CrO2, eskolaite (Cr2O3), CuCrO2, CuCr2O4, CrAs2O6, As2O5, AsO2, claudetite (As2O3, monoclinic), or arsenolite (As2O3, cubic), although a bona fide phase identification for each particle was not always possible. These phases occur predominantly as heteroaggregates. Multi-element single particle analyses demonstrate that Cr occurs as a pure phase (i.e., Cr oxides) as well as in association with other elements (e.g., Cu and As); Cu occurs predominantly in association with Cr and As; and As occurs as As oxides and in association with Cu and Cr. Several Cr, Cu, and As clusters were identified and the molar ratios of Cr/Cu and Cr/As within these clusters are consistent with the crystalline phases identified by TEM as well as their heteroaggregates. These results indicate that WUI fires can lead to significant release of CCA constituents and their combustion-transformed by-products into the surrounding environment. This study also provides a method to identify and track CCA constituents in environmental systems based on multi-element analysis using SP-ICP-TOF-MS.
Collapse
Affiliation(s)
- Mahbub Alam
- Center for Environmental Nanoscience and Risk, Department of Environmental Health Sciences, Arnold School of Public Health, University of South Carolina, Columbia, South Carolina, United States
| | - Talal Alshehri
- Center for Environmental Nanoscience and Risk, Department of Environmental Health Sciences, Arnold School of Public Health, University of South Carolina, Columbia, South Carolina, United States; Environmental Health Department, College of Public Health, Imam Abdulrahman Bin Faisal University, Dammam 31441, Saudi Arabia
| | - Jingjing Wang
- Center for Environmental Nanoscience and Risk, Department of Environmental Health Sciences, Arnold School of Public Health, University of South Carolina, Columbia, South Carolina, United States
| | - Sheryl A Singerling
- National Center for Earth and Environmental Nanotechnology Infrastructure (NanoEarth), Institute for Critical Technology and Applied Science, Virginia Polytechnic Institute and State University, Blacksburg, Virginia, United States
| | - Charles N Alpers
- US Geological Survey, California Water Science Center, 6000 J Street, Sacramento, CA 95819, United States
| | - Mohammed Baalousha
- Center for Environmental Nanoscience and Risk, Department of Environmental Health Sciences, Arnold School of Public Health, University of South Carolina, Columbia, South Carolina, United States.
| |
Collapse
|
11
|
Alshehri T, Wang J, Singerling SA, Gigault J, Webster JP, Matiasek SJ, Alpers CN, Baalousha M. Wildland-urban interface fire ashes as a major source of incidental nanomaterials. JOURNAL OF HAZARDOUS MATERIALS 2023; 443:130311. [PMID: 36368066 DOI: 10.1016/j.jhazmat.2022.130311] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 10/18/2022] [Accepted: 10/31/2022] [Indexed: 06/16/2023]
Abstract
Although metal and metalloid concentrations in wildfire ashes have been documented, the nature and concentrations of incidental nanomaterials (INMs) in wildland-urban interface (WUI) fire ashes have received considerably less attention. In this study, the total metal and metalloid concentrations of 57 vegetation, structural, and vehicle ashes and underlying soils collected at the WUI following the 2020 fire season in northern California - North Complex Fire and LNU Lightning Complex Fire - were determined using inductively coupled plasma-time of flight-mass spectrometry after microwave-assisted acid digestion. The concentrations of Ti, Zn, Cu, Ni, Pb, Sn, Sb, Co, Bi, Cr, Ba, As, Rb, and W are generally higher in structural/vehicle-derived ashes than in vegetation-derived ashes and soils. The concentrations of Ca, Sr, Rb, and Ag increased with increased combustion completeness (e.g., black ash < gray ash < white ash), whereas those of C, N, Zn, Pb, and In decreased with increased combustion completeness. The concentration of anthropogenic Ti - determined by mass balance calculations and shifts in Ti/Nb above the natural background ratios - was highest in vehicle ash (median: 30.8 g kg-1, range: 4.5-41.0 g kg-1) followed by structural ash (median: 5.5 g kg-1, range: of 0-77.4 g kg-1). Various types of carbonaceous INM (e.g., amorphous carbon, turbostratic-like carbon, and carbon associated with zinc oxides) and metal-bearing INMs (e.g., Ti, Cu, Fe, Zn, Mn, Pb, and Cr) with sizes between few nanometers to few hundreds of nanometers were evidenced in ashes using transmission electron microscopy, including energy dispersive X-ray spectroscopy. Overall, this study demonstrates the abundance of a variety of metals and metalloids in the form of INMs in WUI fire ashes. This study also highlights the need for further research into the formation, transformation, reactivity, fate, and effects of INMs during and following fires at the WUI.
Collapse
Affiliation(s)
- Talal Alshehri
- Center for Environmental Nanoscience and Risk, Department of Environmental Health Sciences, Arnold School of Public Health, University of South Carolina, Columbia, SC 29201, United States; Environmental Health Department, College of Public Health, Imam Abdulrahman Bin Faisal University, Dammam 31441, Saudi Arabia
| | - Jingjing Wang
- Center for Environmental Nanoscience and Risk, Department of Environmental Health Sciences, Arnold School of Public Health, University of South Carolina, Columbia, SC 29201, United States
| | - Sheryl A Singerling
- National Center for Earth and Environmental Nanotechnology Infrastructure (NanoEarth, Institute for Critical Technology and Applied Science, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, United States
| | - Julien Gigault
- TAKUVIK, Université Laval/CNRS, IRL 3376, G1V 0A6 Québec, Canada
| | - Jackson P Webster
- Department of Civil Engineering, California State University Chico, 400 W 1st St, Chico, CA 95929, United States
| | - Sandrine J Matiasek
- Department of Earth and Environmental Sciences, California State University Chico, 400 W 1st St, Chico, CA 95929, United States
| | - Charles N Alpers
- US Geological Survey, California Water Science Center, 6000 J Street, Sacramento, CA 95819, United States
| | - Mohammed Baalousha
- Center for Environmental Nanoscience and Risk, Department of Environmental Health Sciences, Arnold School of Public Health, University of South Carolina, Columbia, SC 29201, United States.
| |
Collapse
|
12
|
Raoelison OD, Valenca R, Lee A, Karim S, Webster JP, Poulin BA, Mohanty SK. Wildfire impacts on surface water quality parameters: Cause of data variability and reporting needs. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 317:120713. [PMID: 36435284 DOI: 10.1016/j.envpol.2022.120713] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 11/11/2022] [Accepted: 11/19/2022] [Indexed: 06/16/2023]
Abstract
Surface runoff mobilizes the burned residues and ashes produced during wildfires and deposits them in surface waters, thereby deteriorating water quality. A lack of a consistent reporting protocol precludes a quantitative understanding of how and to what extent wildfire may affect the water quality of surface waters. This study aims to analyze reported pre- and post-fire water quality data to inform the data reporting and highlight research opportunities. A comparison of the pre-and post-fire water quality data from 44 studies reveals that wildfire could increase the concentration of many pollutants by two orders of magnitude. However, the concentration increase is sensitive to when the sample was taken after the wildfire, the wildfire burned area, discharge rate in the surface water bodies where samples were collected, and pollutant type. Increases in burned areas disproportionally increased total suspended solids (TSS) concentration, indicating TSS concentration is dependent on the source area. Increases in surface water flow up to 10 m3 s-1 increased TSS concentration but any further increase in flow rate decreased TSS concentration, potentially due to dilution. Nutrients and suspended solids concentrations increase within a year after the wildfire, whereas peaks for heavy metals occur after 1-2 years of wildfire, indicating a delay in the leaching of heavy metals compared to nutrients from wildfire-affected areas. The concentration of polycyclic aromatic hydrocarbons (PAHs) was greatest within a year post-fire but did not exceed the surface water quality limits. The analysis also revealed inconsistency in the existing sampling protocols and provides a guideline for a modified protocol along with highlighting new research opportunities. Overall, this study underlines the need for consistent reporting of post-fire water quality data along with environmental factors that could affect the data so that the post-fire water quality can be assessed or compared between studies.
Collapse
Affiliation(s)
- Onja D Raoelison
- Civil and Environmental Engineering, The University of California, Los Angeles, USA.
| | - Renan Valenca
- Civil and Environmental Engineering, The University of California, Los Angeles, USA
| | - Allison Lee
- Civil and Environmental Engineering, The University of California, Los Angeles, USA
| | - Samiha Karim
- Civil and Environmental Engineering, The University of California, Los Angeles, USA
| | - Jackson P Webster
- Department of Civil Engineering, California State University, Chico, USA
| | - Brett A Poulin
- Department of Environmental Toxicology, The University of California, Davis, USA
| | - Sanjay K Mohanty
- Civil and Environmental Engineering, The University of California, Los Angeles, USA.
| |
Collapse
|
13
|
Caumo S, Lázaro WL, Sobreira Oliveira E, Beringui K, Gioda A, Massone CG, Carreira R, de Freitas DS, Ignacio ARA, Hacon S. Human risk assessment of ash soil after 2020 wildfires in Pantanal biome (Brazil). AIR QUALITY, ATMOSPHERE & HEALTH 2022; 15:2239-2254. [PMID: 36187166 PMCID: PMC9516519 DOI: 10.1007/s11869-022-01248-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Accepted: 09/07/2022] [Indexed: 11/27/2022]
Abstract
Wildfires have increased in the last years and, when caused by intentional illegal burnings, are frequently run out of control. Wildfire has been pointed out as an important source of polycyclic aromatic hydrocarbons (PAHs) and trace elements (TEs) — such as, As, Ni, and Pb — to environmental compartments, and thus may pose a risk to human health and to the ecosystem. In 2020, the Brazilian biome, Pantanal, faced the largest losses by wildfires in the last 22 years. Ashes from the topsoil layer in Pantanal were collected after these wildfires at 20 sites divided into the sediment, forest, PF, PS, and degraded sites. Toxicity and associated risks for human health were also evaluated. The areas highly impacted by wildfires and by artisanal gold mining activities showed higher concentrations for TEs and PAHs than the protected areas. Pb varied from 8 ± 4 to 224 ± 81 mg kg−1, and total PAH concentration ranged between 880 ± 314 and 1350 ± 70 ng g−1, at sites impacted by anthropogenic activities. Moreover, health risk assessments for TE and PAH indicated a potentially great risk for children and adults, via ingestion, inhalation, and dermal pathway. The carcinogenic risks exceeded reference values, for both TE and PAH, suggesting harmful conditions, especially for vulnerable groups, such as children and the elderly.
Collapse
Affiliation(s)
- Sofia Caumo
- National School of Public Health, Oswaldo Cruz Foundation, Rio de Janeiro, RJ Brazil
- Brazilian Research Network on Global Climate Change – Rede Clima, Rio de Janeiro, Brazil
| | - Wilkinson L. Lázaro
- Research Centre, Limnology, Biodiversity and Ethnobiology of the Pantanal, University of the State of Mato Grosso, Cáceres, MT Brazil
| | - Ernandes Sobreira Oliveira
- Research Centre, Limnology, Biodiversity and Ethnobiology of the Pantanal, University of the State of Mato Grosso, Cáceres, MT Brazil
| | - Karmel Beringui
- Department of Chemistry, Pontifical Catholic University of Rio de Janeiro (PUC-Rio), Rio de Janeiro, RJ Brazil
| | - Adriana Gioda
- Department of Chemistry, Pontifical Catholic University of Rio de Janeiro (PUC-Rio), Rio de Janeiro, RJ Brazil
| | - Carlos German Massone
- Department of Chemistry, Pontifical Catholic University of Rio de Janeiro (PUC-Rio), Rio de Janeiro, RJ Brazil
| | - Renato Carreira
- Department of Chemistry, Pontifical Catholic University of Rio de Janeiro (PUC-Rio), Rio de Janeiro, RJ Brazil
| | - Djair Sergio de Freitas
- Research Centre, Limnology, Biodiversity and Ethnobiology of the Pantanal, University of the State of Mato Grosso, Cáceres, MT Brazil
| | - Aurea R. A. Ignacio
- Research Centre, Limnology, Biodiversity and Ethnobiology of the Pantanal, University of the State of Mato Grosso, Cáceres, MT Brazil
| | - Sandra Hacon
- National School of Public Health, Oswaldo Cruz Foundation, Rio de Janeiro, RJ Brazil
- Brazilian Research Network on Global Climate Change – Rede Clima, Rio de Janeiro, Brazil
- Research Centre, Limnology, Biodiversity and Ethnobiology of the Pantanal, University of the State of Mato Grosso, Cáceres, MT Brazil
| |
Collapse
|
14
|
Thomas AS, Escobedo FJ, Sloggy MR, Sánchez JJ. A burning issue: Reviewing the socio-demographic and environmental justice aspects of the wildfire literature. PLoS One 2022; 17:e0271019. [PMID: 35900980 PMCID: PMC9333234 DOI: 10.1371/journal.pone.0271019] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Accepted: 06/21/2022] [Indexed: 11/22/2022] Open
Abstract
Larger and more severe wildfires are becoming more frequent and impacting different communities and human settlements. Much of the scientific literature and media on wildfires has focused on area of ecosystems burned and numbers of structures destroyed. Equally unprecedented, but often less reported, are the increasing socioeconomic impacts different people and communities face from wildfires. Such information seems to indicate an emerging need to account for wildfire effects on peri-urban or wildland urban interface (WUI) areas, newer socio-demographic groups, and disadvantaged communities. To address this, we reviewed the socio-demographic dimensions of the wildfire literature using an environmental justice (EJ) lens. Specifically using a literature review of wildfires, human communities, social vulnerability, and homeowner mitigation, we conducted bibliometric and statistical analyses of 299 publications. The majority of publications were from the United States, followed by Canada and Australia, and most dealt with homeowner mitigation of risk, defensible space, and fuel treatments in WUI areas. Most publications studied the direct effects of wildfire related damage. Secondary impacts such as smoke, rural and urban communities, and the role of poverty and language were less studied. Based on a proposed wildfire-relevant EJ definition, the first EJ publication was in 2004, but the term was first used as a keyword in 2018. Studies in WUI communities statistically decreased the likelihood that a publication was EJ relevant. There was a significant relationship between EJ designation and inclusion of race/ethnicity and poverty variables in the study. Complexity across the various definitions of EJ suggest that it should not be used as a quantitative or binary metric; but as a lens to better understand socio-ecological impacts to diverse communities. We present a wildfire-relevant definition to potentially guide policy formulation and account for social and environmental justice issues.
Collapse
Affiliation(s)
- Alyssa S. Thomas
- United States Department of Agriculture, Forest Service, Pacific Southwest Research Station, Riverside, California, United States of America
| | - Francisco J. Escobedo
- United States Department of Agriculture, Forest Service, Pacific Southwest Research Station, Riverside, California, United States of America
- * E-mail:
| | - Matthew R. Sloggy
- United States Department of Agriculture, Forest Service, Pacific Southwest Research Station, Riverside, California, United States of America
| | - José J. Sánchez
- United States Department of Agriculture, Forest Service, Pacific Southwest Research Station, Riverside, California, United States of America
| |
Collapse
|
15
|
Elements’ Content in Stream Sediment and Wildfire Ash of Suburban Areas in West Attica (Greece). WATER 2022. [DOI: 10.3390/w14030310] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
The composition of sediments and other materials occurring in streams, geochemical processes within the drainage basin, and various land uses are among the main factors influencing stream water composition. Stream sediment and wildfire ash samples were gathered from the area studied. The applied methodology consists of aqua regia and Diethylene-Triamine-Penta-Acetic acid (DTPA) chemical extraction; Cation Exchange Capacity (CEC), pH, and soil organic matter (OM) determination; a Geographic Information System (GIS) database; factor analysis; and determination of the contamination factor (CF) for the assessment of contamination degree. This study aimed to evaluate the elements’ content in stream sediments of Kineta and Nea Peramos areas (West Attica, Greece) and investigate any relationship between elements (aqua regia and DTPA extracted) in stream sediment and ash in wildfire and flood-impacted areas. The stream sediments’ properties, the bioavailable forms of copper (Cu), iron (Fe), manganese (Mn) and zinc (Zn), and the total content of other potentially toxic elements in wildfire ash samples, are discussed. This research estimated moderate contamination for FeDTPA, MnDTPA and ZnDTPA in stream sediments of the study area. Contamination for CuDTPA and moderate contamination for ZnDTPA in the stream sediments of the Nea Peramos area was recorded. Factor analysis results suggested that the contents of FeDTPA, MnDTPA, CuDTPA and ZnDTPA in the study area’s stream sediments may affect the chemistry of stream water.
Collapse
|
16
|
Zhang Y, Pelletier R, Noernberg T, Donner MW, Grant-Weaver I, Martin JW, Shotyk W. Impact of the 2016 Fort McMurray wildfires on atmospheric deposition of polycyclic aromatic hydrocarbons and trace elements to surrounding ombrotrophic bogs. ENVIRONMENT INTERNATIONAL 2022; 158:106910. [PMID: 34607041 DOI: 10.1016/j.envint.2021.106910] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 08/30/2021] [Accepted: 09/27/2021] [Indexed: 06/13/2023]
Abstract
Fort McMurray and the Athabasca oil sands region (AOSR) experienced major wildfires in 2016, but the impact of these on regional deposition of polycyclic aromatic hydrocarbons (PAHs) and trace elements has not been reported nor compared to industrial sources of these pollutants in the region. Living moss (Sphagnum fuscum) was collected in triplicate from five ombrotrophic bogs in the AOSR after the wildfires, and analyzed for PAHs and trace elements. These post-wildfire data were compared to data from previous years at the same sites, and also to remote reference bogs in Alberta and Ontario. Elevated post-wildfire concentrations and flux of naphthalene and fluorene were observed at all five bogs in the AOSR, but no consistent trend was evident for higher molecular weight PAHs or the sum of priority PAHs (∑13PAH). Trace elements at most AOSR bogs were not elevated post-wildfire, except at one bog in the burned area (MIL), but even here the elements that were increased (1.7-5.6 × ) were likely of bitumen-origin (i.e., V, Ni, Se, Mo and Re). Significant post-wildfire correlations between PAHs and most trace elements suggested a common source, and few significant correlations were observed with retene, suggesting that wildfires were not the dominant source of most contaminants detected. Mass balance receptor models were used to apportion sources, indicating that the major sources of trace elements among five AOSR bogs post-wildfire were oil sands ore (mean 42%), haul road dust (17%), and petcoke (11%), whereas wildfire was always a minor source (3-4%). For PAHs at the most contaminated site (MIL), delayed petcoke (27%) and wildfire (25%) were the major sources, but the contribution of wildfire to PAHs at other sites was less or not discernable. Impacts of the 2016 wildfires on regional atmospheric deposition of major pollutants was less than from ongoing deposition of anthropogenic dust from oil sands activities.
Collapse
Affiliation(s)
- Yifeng Zhang
- Department of Laboratory Medicine and Pathology, University of Alberta, Edmonton, AB T6G 2G3, Canada
| | - Rick Pelletier
- Department of Renewable Resources, University of Alberta, 348B South Academic Building, Edmonton, AB T6G 2H1, Canada
| | - Tommy Noernberg
- Department of Renewable Resources, University of Alberta, 348B South Academic Building, Edmonton, AB T6G 2H1, Canada
| | - Mark W Donner
- Department of Renewable Resources, University of Alberta, 348B South Academic Building, Edmonton, AB T6G 2H1, Canada
| | - Iain Grant-Weaver
- Department of Renewable Resources, University of Alberta, 348B South Academic Building, Edmonton, AB T6G 2H1, Canada
| | - Jonathan W Martin
- Department of Laboratory Medicine and Pathology, University of Alberta, Edmonton, AB T6G 2G3, Canada; Department of Environmental Science, Stockholm University, Stockholm SE-106 91, Sweden.
| | - William Shotyk
- Department of Renewable Resources, University of Alberta, 348B South Academic Building, Edmonton, AB T6G 2H1, Canada.
| |
Collapse
|
17
|
Park BY, Boles I, Monavvari S, Patel S, Alvarez A, Phan M, Perez M, Yao R. The association between wildfire exposure in pregnancy and foetal gastroschisis: A population-based cohort study. Paediatr Perinat Epidemiol 2022; 36:45-53. [PMID: 34797578 DOI: 10.1111/ppe.12823] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Revised: 09/08/2021] [Accepted: 09/12/2021] [Indexed: 12/30/2022]
Abstract
BACKGROUND Global climate change has led to an increase in the prevalence and severity of wildfires. Pollutants released into air, soil and groundwater from wildfires may impact embryo development leading to gastroschisis. OBJECTIVE The objective of this study was to determine the association between wildfire exposure before and during pregnancy and the risk of foetal gastroschisis development. METHODS This was a retrospective cohort study using The California Office of Statewide Health Planning and Development Linked Birth File linked to The California Department of Forestry and Fire Protection data between 2007 and 2010. Pregnancies complicated by foetal gastroschisis were identified by neonatal hospital discharge ICD-9 code. Pregnancies were considered exposed to wildfire if the mother's primary residence zip code was within 15 miles to the closest edge of a wildfire. The exposure was further stratified by trimester or if exposed within 30 days prior to pregnancy. Multivariable log-binomial regression analyses were performed to estimate the association between wildfire exposure in each pregnancy epoch and foetal gastroschisis. RESULTS Between 2007 and 2010, 844,348 (40%) births were exposed to wildfire in California. Compared with births without wildfire exposure, those with first-trimester exposure were associated with higher rates of gastroschisis, 7.8 vs. 5.7 per 10,000 births (adjusted relative risk [aRR] 1.28, 95% confidence interval [CI] 1.07, 1.54). Furthermore, those with prepregnancy wildfire exposure were also found to have higher rates of gastroschisis, 12.5 vs. 5.7 per 10,000 births, (aRR 2.17, 95% CI 1.42, 3.52). In contrast, second- and third-trimester wildfire exposures were not associated with foetal gastroschisis. CONCLUSIONS Wildfire exposure within 30 days before pregnancy was associated with more than two times higher risk of foetal gastroschisis, whereas a 28% higher risk was demonstrated if exposure was in the first trimester.
Collapse
Affiliation(s)
- Bo Young Park
- Department of Public Health, California State University - Fullerton, Fullerton, CA, USA.,Department of Obstetrics and Gynecology, Loma Linda University School of Medicine, Loma Linda, CA, USA
| | - Ian Boles
- Center for Demographic Research, Fullerton, CA, USA
| | - Samira Monavvari
- Department of Obstetrics and Gynecology, Loma Linda University School of Medicine, Loma Linda, CA, USA
| | - Shivani Patel
- Department of Pediatrics, Loma Linda University School of Medicine, Loma Linda, CA, USA
| | - Arriel Alvarez
- Department of Public Health, California State University - Fullerton, Fullerton, CA, USA
| | - Mie Phan
- Department of Public Health, California State University - Fullerton, Fullerton, CA, USA
| | - Maria Perez
- St. George's University School of Medicine, St George's, Grenada
| | - Ruofan Yao
- Department of Obstetrics and Gynecology, Loma Linda University School of Medicine, Loma Linda, CA, USA
| |
Collapse
|