1
|
Zhao J, Song M, Yin D, Li R, Yu J, Ye X, Chen X. Sustainable transforming toxic sludge into amino acids via bacteria-algae consortium. ENVIRONMENTAL RESEARCH 2024; 263:120079. [PMID: 39343340 DOI: 10.1016/j.envres.2024.120079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 09/24/2024] [Accepted: 09/26/2024] [Indexed: 10/01/2024]
Abstract
The utilization of residual sludge by microalgae represents an environmentally sustainable method for resource recovery. In this study, Tetradesmus obliquus was cultured in hydrolysate derived from toxic sludge. Under symbiotic conditions with bacteria, Tetradesmus obliquus demonstrated enhanced toxin degradation capability and biomass accumulation, which exhibited a 1.39-fold increase in algal cell density, a 1.50-fold increase in Rubisco activity, and a total protein content of 341.83 ± 6.99 mg/L on the 30th day of cultivation. Metabolic utilization of substances in the hydrolysate by microalgae led to a toxicity removal rate of up to 60.43% by day 10. Phenylalanine showed the most significant increase among essential amino acids, and transcriptomic profiling identified genes (gene_16399, gene_16602) involved in phenylalanine enrichment. Macrotranscriptomics showed that bacteria upregulated the TCS system and tryptophan metabolism, supplying microalgae with more CO2 and IAA, which enhanced amino acid enrichment. This study established a non-toxic and biomass-accumulating bacterial-algal co-cultivation system.
Collapse
Affiliation(s)
- Jiamin Zhao
- National Engineering Research Center of Industrial Wastewater Detoxication and Resource Recovery, School of Resources and Environmental Engineering, East China University of Science and Technology, Shanghai, 200237, China; State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resources and Environmental Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Meijing Song
- National Engineering Research Center of Industrial Wastewater Detoxication and Resource Recovery, School of Resources and Environmental Engineering, East China University of Science and Technology, Shanghai, 200237, China; State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resources and Environmental Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Danning Yin
- National Engineering Research Center of Industrial Wastewater Detoxication and Resource Recovery, School of Resources and Environmental Engineering, East China University of Science and Technology, Shanghai, 200237, China; State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resources and Environmental Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Renjie Li
- National Engineering Research Center of Industrial Wastewater Detoxication and Resource Recovery, School of Resources and Environmental Engineering, East China University of Science and Technology, Shanghai, 200237, China; State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resources and Environmental Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Jiayu Yu
- National Engineering Research Center of Industrial Wastewater Detoxication and Resource Recovery, School of Resources and Environmental Engineering, East China University of Science and Technology, Shanghai, 200237, China; State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resources and Environmental Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Xiaoyun Ye
- National Engineering Research Center of Industrial Wastewater Detoxication and Resource Recovery, School of Resources and Environmental Engineering, East China University of Science and Technology, Shanghai, 200237, China; State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resources and Environmental Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Xiurong Chen
- National Engineering Research Center of Industrial Wastewater Detoxication and Resource Recovery, School of Resources and Environmental Engineering, East China University of Science and Technology, Shanghai, 200237, China; State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resources and Environmental Engineering, East China University of Science and Technology, Shanghai, 200237, China.
| |
Collapse
|
2
|
Arias DM, Olvera Vargas P, Vidal Sánchez AN, Olvera-Vargas H. Integrating electro-Fenton and microalgae for the sustainable management of real food processing wastewater. CHEMOSPHERE 2024; 360:142372. [PMID: 38768783 DOI: 10.1016/j.chemosphere.2024.142372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 04/24/2024] [Accepted: 05/16/2024] [Indexed: 05/22/2024]
Abstract
The present study demonstrates, for the first time, the feasibility of a two-step process consisting of Electro-Fenton (EF) followed by microalgae to treat highly loaded real food processing wastewater along with resource recovery. In the first step, EF with a carbon felt cathode and Ti/RuO2-IrO2 anode was applied at different current densities (3.16 mA cm-2, 4.74 mA cm-2 and 6.32 mA cm-2) to decrease the amount of organic matter and turbidity and enhance biodegradability. In the second step, the EF effluents were submitted to microalgal treatment for 15 days using a mixed culture dominated by Scenedesmus sp., Chlorosarcinopsis sp., and Coelastrum sp. Results showed that current density impacted the amount of COD removed by EF, achieving the highest COD removal of 77.5% at 6.32 mA cm-2 with >95% and 74.3% of TSS and PO43- removal, respectively. With respect to microalgae, the highest COD removal of 85% was obtained by the culture in the EF effluent treated at 6.32 mA cm-2. Remarkably, not only 85% of the remaining organic matter was removed by microalgae, but also the totality of inorganic N and P compounds, as well as 65% of the Fe catalyst that was left after EF. The removal of inorganic species also demonstrates the high complementarity of both processes, since EF does not have the capacity to remove such compounds, while microalgae do not grow in the raw wastewater. Furthermore, a maximum of 0.8 g L-1 of biomass was produced after cultivation, with an accumulation of 32.2% of carbohydrates and 25.9% of lipids. The implementation of the two processes represents a promising sustainable approach for the management of industrial effluents, incorporating EF in a water and nutrient recycling system to produce biomass that could be valorized into clean fuels.
Collapse
Affiliation(s)
- Dulce María Arias
- Instituto de Energías Renovables, Universidad Nacional Autónoma de México (IER-UNAM), Priv. Xochicalco S/N, Col. Centro, Temixco, Morelos, 62580, Mexico
| | - Patricia Olvera Vargas
- Instituto de Energías Renovables, Universidad Nacional Autónoma de México (IER-UNAM), Priv. Xochicalco S/N, Col. Centro, Temixco, Morelos, 62580, Mexico
| | - Andrea Noemí Vidal Sánchez
- Instituto de Energías Renovables, Universidad Nacional Autónoma de México (IER-UNAM), Priv. Xochicalco S/N, Col. Centro, Temixco, Morelos, 62580, Mexico
| | - Hugo Olvera-Vargas
- Instituto de Energías Renovables, Universidad Nacional Autónoma de México (IER-UNAM), Priv. Xochicalco S/N, Col. Centro, Temixco, Morelos, 62580, Mexico.
| |
Collapse
|
3
|
Phyu K, Zhi S, Liang J, Chang CC, Liu J, Cao Y, Wang H, Zhang K. Microalgal-bacterial consortia for the treatment of livestock wastewater: Removal of pollutants, interaction mechanisms, influencing factors, and prospects for application. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 349:123864. [PMID: 38554837 DOI: 10.1016/j.envpol.2024.123864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 03/06/2024] [Accepted: 03/23/2024] [Indexed: 04/02/2024]
Abstract
The livestock sector is responsible for a significant amount of wastewater globally. The microalgal-bacterial consortium (MBC) treatment has gained increasing attention as it is able to eliminate pollutants to yield value-added microalgal products. This review offers a critical discussion of the source of pollutants from livestock wastewater and the environmental impact of these pollutants. It also discusses the interactions between microalgae and bacteria in treatment systems and natural habitats in detail. The effects on MBC on the removal of various pollutants (conventional and emerging) are highlighted, focusing specifically on analysis of the removal mechanisms. Notably, the various influencing factors are classified into internal, external, and operating factors, and the mutual feedback relationships between them and the target (removal efficiency and biomass) have been thoroughly analysed. Finally, a wastewater recycling treatment model based on MBC is proposed for the construction of a green livestock farm, and the application value of various microalgal products has been analysed. The overall aim was to indicate that the use of MBC can provide cost-effective and eco-friendly approaches for the treatment of livestock wastewater, thereby advancing the path toward a promising microalgal-bacterial-based technology.
Collapse
Affiliation(s)
- KhinKhin Phyu
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin, 300191, PR China.
| | - Suli Zhi
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin, 300191, PR China; Key Laboratory of Low-Carbon Green Agriculture, North China, Ministry of Agriculture and Rural Affairs, Beijing 100193, PR China.
| | - Junfeng Liang
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin, 300191, PR China; Key Laboratory of Low-Carbon Green Agriculture, North China, Ministry of Agriculture and Rural Affairs, Beijing 100193, PR China.
| | - Chein-Chi Chang
- Washington D.C. Water and Sewer Authority, Ellicott City, MD, 21042, USA.
| | - Jiahua Liu
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin, 300191, PR China.
| | - Yuang Cao
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin, 300191, PR China.
| | - Han Wang
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin, 300191, PR China.
| | - Keqiang Zhang
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin, 300191, PR China; Key Laboratory of Low-Carbon Green Agriculture, North China, Ministry of Agriculture and Rural Affairs, Beijing 100193, PR China.
| |
Collapse
|
4
|
Huang L, Zhao X, Wu K, Liang C, Liu J, Yang H, Yin F, Wang C, Yang B, Zhang W. Enhancing biomass and lipid accumulation by a novel microalga for unsterilized piggery biogas slurry remediation. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:31097-31107. [PMID: 38625472 DOI: 10.1007/s11356-024-33179-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Accepted: 03/28/2024] [Indexed: 04/17/2024]
Abstract
The cost and efficiency of an algal-BS treatment system are determined by the specific microalgal species and BS pretreatment method. This study examines the growth of a novel algae Chlorella sp. YSD-2 and the removal of nutrients from the BS using different pretreatment methods, including dilution ratio and sterilization. The highest biomass production (1.84 g L-1) was achieved in the 1:2 unsterilized biogas slurry, which was 2.03 times higher than that in the sterilized group, as well as higher lipid productivity (17.29 mg L-1 d-1). Nevertheless, the sterilized biogas slurry at a 1:1 dilution ratio exhibited the most notable nutrient-removal efficiency, with COD at 71.97%, TP at 91.32%, and TN at 88.80%. Additionally, the analysis of 16S rRNA sequencing revealed a significant alteration in the indigenous bacterial composition of the biogas slurry by microalgal treatment, with Proteobacteria and Cyanobacteria emerging as the predominant phyla, and unidentified_Cyanobacteria as the primary genus. These findings suggest that Chlorella sp. YSD-2 exhibits favorable tolerance and nutrient-removal capabilities in unsterilized, high-strength biogas slurry, along with high productivity of biomass and lipids. Consequently, these results offer a theoretical foundation for the development of an efficient and economically viable treatment method for algal-BS.
Collapse
Affiliation(s)
- Li Huang
- Faculty of Energy and Environment, Yunnan Normal University, No. 768, Juxian Street, Chenggong DistrictYunnan Province, Kunming, 650500, People's Republic of China
- Faculty of Environment and Chemical Engineering, Kunming Metallurgy College, Kunming, 650000, People's Republic of China
| | - Xingling Zhao
- Faculty of Energy and Environment, Yunnan Normal University, No. 768, Juxian Street, Chenggong DistrictYunnan Province, Kunming, 650500, People's Republic of China
- Yunnan Research Center of Biogas Technology and Engineering, Kunming, 650500, People's Republic of China
| | - Kai Wu
- Faculty of Energy and Environment, Yunnan Normal University, No. 768, Juxian Street, Chenggong DistrictYunnan Province, Kunming, 650500, People's Republic of China
- Yunnan Research Center of Biogas Technology and Engineering, Kunming, 650500, People's Republic of China
| | - Chengyue Liang
- Faculty of Energy and Environment, Yunnan Normal University, No. 768, Juxian Street, Chenggong DistrictYunnan Province, Kunming, 650500, People's Republic of China
- Yunnan Research Center of Biogas Technology and Engineering, Kunming, 650500, People's Republic of China
| | - Jing Liu
- Faculty of Energy and Environment, Yunnan Normal University, No. 768, Juxian Street, Chenggong DistrictYunnan Province, Kunming, 650500, People's Republic of China
- Yunnan Research Center of Biogas Technology and Engineering, Kunming, 650500, People's Republic of China
| | - Hong Yang
- Faculty of Energy and Environment, Yunnan Normal University, No. 768, Juxian Street, Chenggong DistrictYunnan Province, Kunming, 650500, People's Republic of China
- Yunnan Research Center of Biogas Technology and Engineering, Kunming, 650500, People's Republic of China
| | - Fang Yin
- Faculty of Energy and Environment, Yunnan Normal University, No. 768, Juxian Street, Chenggong DistrictYunnan Province, Kunming, 650500, People's Republic of China
- Yunnan Research Center of Biogas Technology and Engineering, Kunming, 650500, People's Republic of China
| | - Changmei Wang
- Faculty of Energy and Environment, Yunnan Normal University, No. 768, Juxian Street, Chenggong DistrictYunnan Province, Kunming, 650500, People's Republic of China
- Yunnan Research Center of Biogas Technology and Engineering, Kunming, 650500, People's Republic of China
| | - Bin Yang
- Faculty of Energy and Environment, Yunnan Normal University, No. 768, Juxian Street, Chenggong DistrictYunnan Province, Kunming, 650500, People's Republic of China
- Yunnan Research Center of Biogas Technology and Engineering, Kunming, 650500, People's Republic of China
| | - Wudi Zhang
- Faculty of Energy and Environment, Yunnan Normal University, No. 768, Juxian Street, Chenggong DistrictYunnan Province, Kunming, 650500, People's Republic of China.
- Yunnan Research Center of Biogas Technology and Engineering, Kunming, 650500, People's Republic of China.
| |
Collapse
|
5
|
Ravi Kiran B, Singh P, Kuravi SD, Mohanty K, Venkata Mohan S. Modulating cultivation regimes of Messastrum gracile SVMIICT7 for biomass productivity integrated with resource recovery via hydrothermal liquefaction. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 356:120458. [PMID: 38479286 DOI: 10.1016/j.jenvman.2024.120458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 12/09/2023] [Accepted: 02/20/2024] [Indexed: 04/07/2024]
Abstract
The present study was designed to assess Messastrum gracile SVMIICT7 potential in treating dairy wastewater (autoclaved (ADWW) and raw (DWW)) with relation to nutrient removal, in-vivo Chl-a-based biomass, and bio-oil synthesis. Chlorophyll a fluorescence kinetics revealed improved photochemical efficiency (0.639, Fv/Fm) in M. gracile when grown with DWW. This may be owing to enhanced electron transport being mediated by an effective water-splitting complex at photosystem (PSII) of thylakoids. The increase in ABS/RC observed in DWW can be attributed to the elevated chlorophyll content and reduced light dissipation, as evident by higher values of ETo/RC and a decrease in non-photochemical quenching (NPQ). M. gracile inoculated in DWW had the highest Chl-a-biomass yield (1.8 g L-1) and biomolecules while maximum nutrient removal efficiency was observed in ADWW (83.7% TN and 60.07% TP). M. gracile exhibited substantial bio-oil yield of 29.6% and high calorific value of 37.19 MJ kg-1, predominantly composed of hydrocarbons along with nitrogen and oxygen cyclic compounds. This research offers a thorough investigation into wastewater treatment, illustrating the conversion of algal biomass into valuable energy sources and chemical intermediates within the framework of a biorefinery.
Collapse
Affiliation(s)
- Boda Ravi Kiran
- Bioengineering and Environmental Science Lab, Department of Energy and Environmental Engineering, CSIR-Indian Institute of Chemical Technology (CSIR-IICT), Hyderabad, 500 007, India
| | - Pooja Singh
- Department of Chemical Engineering, Indian Institute of Technology Guwahati, Guwahati, 781039, India
| | - Sri Divya Kuravi
- Bioengineering and Environmental Science Lab, Department of Energy and Environmental Engineering, CSIR-Indian Institute of Chemical Technology (CSIR-IICT), Hyderabad, 500 007, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Kaustubha Mohanty
- Department of Chemical Engineering, Indian Institute of Technology Guwahati, Guwahati, 781039, India
| | - S Venkata Mohan
- Bioengineering and Environmental Science Lab, Department of Energy and Environmental Engineering, CSIR-Indian Institute of Chemical Technology (CSIR-IICT), Hyderabad, 500 007, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India.
| |
Collapse
|
6
|
Han M, Xie P, Ren N, Ho SH. Cytoprotective alginate microcapsule serves as a shield for microalgal encapsulation defensing sulfamethoxazole threats and safeguarding nutrient recovery. JOURNAL OF HAZARDOUS MATERIALS 2024; 465:133454. [PMID: 38198867 DOI: 10.1016/j.jhazmat.2024.133454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 12/13/2023] [Accepted: 01/03/2024] [Indexed: 01/12/2024]
Abstract
Microalgal encapsulation technology is expected to broaden more possibilities for employing microalgae for upgrading conventional biological wastewater treatment. However, only limited and fragmented information is currently available on microalgal encapsulation and pollutant removal. It is ambiguous whether it hold potential for wastewater treatment. Particularly, it remains to be determined whether this technology can provide more possibilities in harsh sewage environments. Here, potential of encapsulated technology to recover nutrients from wastewater was examined, simultaneously compared with commonly adopted suspended system. Results indicate the encapsulated microalgal system showed outstanding advantages in nutrient recovery and defense against antibiotic threats. Moreover, by examining the cellular oxidative stress response and changes of the photosynthetic system, the encapsulated system exhibited potential cytoprotective advantages to microalgal cells for defensing antibiotic threats. Molecular dynamics simulation revealed that the differences among superficial aggregation between the nutrients' ions and molecular sulfamethoxazole on the cross-linked alginate microcapsule surface dominated the nutrient recovery and cytoprotective functions. Ultimately, the molecular nature of pollutants was found to be the most critical aspect for predicting application of this microalgal microcapsule. Cytoprotective systems created with alginate microcapsules can potentially handle more diverse threats with a single type of surface charge in their outermost layer.
Collapse
Affiliation(s)
- Meina Han
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, PR China
| | - Peng Xie
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, PR China
| | - Nanqi Ren
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, PR China
| | - Shih-Hsin Ho
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, PR China.
| |
Collapse
|
7
|
Zhou JL, Li JN, Zhou D, Wang JM, Ye YH, Zhang C, Gao F. Dialysis bag-microalgae photobioreactor: Novel strategy for enhanced bioresource production and wastewater purification. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 354:120439. [PMID: 38401502 DOI: 10.1016/j.jenvman.2024.120439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 01/25/2024] [Accepted: 02/20/2024] [Indexed: 02/26/2024]
Abstract
Cultivating microalgae in wastewater offers various advantages, but it still faces limitations such as bacteria and other impurities in wastewater affecting the growth and purity of microalgae, difficulty in microalgae harvesting, and extracellular products of microalgae affecting effluent quality. In this study, a novel dialysis bag-microalgae photobioreactor (Db-PBR) was developed to achieve wastewater purification and purer bioresource recovery by culturing microalgae in a dialysis bag. The dialysis bag in the Db-PBR effectively captured the microalgae cells and promoted their lipid accumulation, leading to higher biomass (1.53 times of the control) and lipid production (2.50 times of the control). During the stable operation stage of Db-PBR, the average soluble microbial products (SMP) content outside the dialysis bag was 25.83 mg L-1, which was significantly lower than that inside the dialysis bag (185.63 mg L-1), indicating that the dialysis bag effectively intercepted the SMP secreted by microalgae. As a result, the concentration of dissolved organic carbon (DOC) in Db-PBR effluent was significantly lower than that of traditional photobioreactor. Furthermore, benefiting from the dialysis bag in the reactor effectively intercepted the microorganisms in wastewater, significantly improving the purity of the cultured microalgae biomass, which is beneficial for the development of high-value microalgae products.
Collapse
Affiliation(s)
- Jin-Long Zhou
- School of Petrochemical Engineering & Environment, Zhejiang Ocean University, Zhoushan, 316000, China; Zhejiang Key Laboratory of Petrochemical Environmental Pollution Control, Zhoushan, 316000, China
| | - Jia-Nan Li
- School of Petrochemical Engineering & Environment, Zhejiang Ocean University, Zhoushan, 316000, China; Zhejiang Key Laboratory of Petrochemical Environmental Pollution Control, Zhoushan, 316000, China
| | - Dan Zhou
- School of Petrochemical Engineering & Environment, Zhejiang Ocean University, Zhoushan, 316000, China; Zhejiang Key Laboratory of Petrochemical Environmental Pollution Control, Zhoushan, 316000, China
| | - Jia-Ming Wang
- School of Petrochemical Engineering & Environment, Zhejiang Ocean University, Zhoushan, 316000, China; Zhejiang Key Laboratory of Petrochemical Environmental Pollution Control, Zhoushan, 316000, China
| | - Yi-Hang Ye
- School of Petrochemical Engineering & Environment, Zhejiang Ocean University, Zhoushan, 316000, China; Zhejiang Key Laboratory of Petrochemical Environmental Pollution Control, Zhoushan, 316000, China
| | - Ci Zhang
- School of Petrochemical Engineering & Environment, Zhejiang Ocean University, Zhoushan, 316000, China; Zhejiang Key Laboratory of Petrochemical Environmental Pollution Control, Zhoushan, 316000, China
| | - Feng Gao
- School of Petrochemical Engineering & Environment, Zhejiang Ocean University, Zhoushan, 316000, China; Zhejiang Key Laboratory of Petrochemical Environmental Pollution Control, Zhoushan, 316000, China.
| |
Collapse
|
8
|
Unal E, Manav-Demir N. Assessment of biochemical methane potential of dairy wastewater with different co-substrates and evaluation of different kinetic models. ENVIRONMENTAL MONITORING AND ASSESSMENT 2023; 196:21. [PMID: 38060054 DOI: 10.1007/s10661-023-12208-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Accepted: 11/30/2023] [Indexed: 12/08/2023]
Abstract
Dairy industry wastewater can be considered as an important source of pollution due to its high amounts and pollutant concentrations. Anaerobic treatment is seen as a suitable alternative over aerobic treatment which requires huge aeration systems. Biochemical methane potential (BMP) testing is a widely applied technique for estimating the performance of anaerobic digesters and still has no clear alternative. In the study, the biochemical methane potential change was investigated by mixing dairy wastewater with different co-substrates (cattle manure, chicken manure and slaughterhouse wastewater) at different rates. The highest biogas potential per gram of chemical oxygen demand added (CODadded) was determined as 574 mLbiogas in a mixture of 74% dairy wastewater + 2% chicken manure + 24% slaughterhouse wastewater inoculated with granular sludge. The highest methane potential was determined as 340 mLCH4 in the same co-substrate mixture inoculated with anaerobic sludge. In recent years, mathematical modeling offers an alternative to BMP tests and many different models are used for this purpose. In the study, six different mathematical models were used to simulate the BMP results, and the highest correlation coefficient in almost all mixtures ranged from 0.900 to 0.997 with the Modified Gompertz equation and Fitzhugh models.
Collapse
Affiliation(s)
- Elif Unal
- Environmental Engineering Department, Yildiz Technical University, Esenler, 34220, Istanbul, Türkiye
| | - Neslihan Manav-Demir
- Environmental Engineering Department, Yildiz Technical University, Esenler, 34220, Istanbul, Türkiye.
| |
Collapse
|
9
|
Kadri MS, Singhania RR, Haldar D, Patel AK, Bhatia SK, Saratale G, Parameswaran B, Chang JS. Advances in Algomics technology: Application in wastewater treatment and biofuel production. BIORESOURCE TECHNOLOGY 2023; 387:129636. [PMID: 37544548 DOI: 10.1016/j.biortech.2023.129636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 07/31/2023] [Accepted: 08/03/2023] [Indexed: 08/08/2023]
Abstract
Advanced sustainable bioremediation is gaining importance with rising global pollution. This review examines microalgae's potential for sustainable bioremediation and process enhancement using multi-omics approaches. Recently, microalgae-bacterial consortia have emerged for synergistic nutrient removal, allowing complex metabolite exchanges. Advanced bioremediation requires effective consortium design or pure culture based on the treatment stage and specific roles. The strain potential must be screened using modern omics approaches aligning wastewater composition. The review highlights crucial research gaps in microalgal bioremediation. It discusses multi-omics advantages for understanding microalgal fitness concerning wastewater composition and facilitating the design of microalgal consortia based on bioremediation skills. Metagenomics enables strain identification, thereby monitoring microbial dynamics during the treatment process. Transcriptomics and metabolomics encourage the algal cell response toward nutrients and pollutants in wastewater. Multi-omics role is also summarized for product enhancement to make algal treatment sustainable and fit for sustainable development goals and growing circular bioeconomy scenario.
Collapse
Affiliation(s)
- Mohammad Sibtain Kadri
- Department of Marine Biotechnology and Resources, National Sun Yat-Sen University, Kaohsiung City 804201, Taiwan
| | - Reeta Rani Singhania
- Institute of Aquatic Science and Technology, National Kaohsiung University of Science and Technology, Kaohsiung City 81157, Taiwan; Centre for Energy and Environmental Sustainability, Lucknow 226 029, Uttar Pradesh, India
| | - Dibyajyoti Haldar
- Department of Biotechnology, Karunya Institute of Technology and Sciences, Coimbatore 641114, India
| | - Anil Kumar Patel
- Institute of Aquatic Science and Technology, National Kaohsiung University of Science and Technology, Kaohsiung City 81157, Taiwan; Centre for Energy and Environmental Sustainability, Lucknow 226 029, Uttar Pradesh, India.
| | - Shashi Kant Bhatia
- Department of Biological Engineering, College of Engineering, Konkuk University, Seoul 805029, Republic of Korea
| | - Ganesh Saratale
- Department of Food Science and Biotechnology, Dongguk University-Seoul, Ilsandong-gu, Goyang-si 10326, Republic of Korea
| | - Binod Parameswaran
- Microbial Processes and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology (CSIR-NIIST), Trivandrum 695 019, Kerala, India
| | - Jo-Shu Chang
- Department of Chemical Engineering, National Cheng Kung University, Taiwan; Department of Chemical and Materials Engineering, Tunghai University, Taiwan; Research Center for Smart Sustainable Circular Economy, Tunghai University, Taiwan.
| |
Collapse
|
10
|
Sadvakasova AK, Bauenova MO, Kossalbayev BD, Zayadan BK, Huang Z, Wang J, Balouch H, Alharby HF, Chang JS, Allakhverdiev SI. Synthetic algocyanobacterial consortium as an alternative to chemical fertilizers. ENVIRONMENTAL RESEARCH 2023; 233:116418. [PMID: 37321341 DOI: 10.1016/j.envres.2023.116418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2023] [Revised: 05/28/2023] [Accepted: 06/12/2023] [Indexed: 06/17/2023]
Abstract
The use of unregulated pesticides and chemical fertilizers can have detrimental effects on biodiversity and human health. This problem is exacerbated by the growing demand for agricultural products. To address these global challenges and promote food and biological security, a new form of agriculture is needed that aligns with the principles of sustainable development and the circular economy. This entails developing the biotechnology market and maximizing the use of renewable and eco-friendly resources, including organic fertilizers and biofertilizers. Phototrophic microorganisms capable of oxygenic photosynthesis and assimilation of molecular nitrogen play a crucial role in soil microbiota, interacting with diverse microflora. This suggests the potential for creating artificial consortia based on them. Microbial consortia offer advantages over individual organisms as they can perform complex functions and adapt to variable conditions, making them a frontier in synthetic biology. Multifunctional consortia overcome the limitations of monocultures and produce biological products with a wide range of enzymatic activities. Biofertilizers based on such consortia present a viable alternative to chemical fertilizers, addressing the issues associated with their usage. The described capabilities of phototrophic and heterotrophic microbial consortia enable effective and environmentally safe restoration and preservation of soil properties, fertility of disturbed lands, and promotion of plant growth. Hence, the utilization of algo-cyano-bacterial consortia biomass can serve as a sustainable and practical substitute for chemical fertilizers, pesticides, and growth promoters. Furthermore, employing these bio-based organisms is a significant stride towards enhancing agricultural productivity, which is an essential requirement to meet the escalating food demands of the growing global population. Utilizing domestic and livestock wastewater, as well as CO2 flue gases, for cultivating this consortium not only helps reduce agricultural waste but also enables the creation of a novel bioproduct within a closed production cycle.
Collapse
Affiliation(s)
- Assemgul K Sadvakasova
- Faculty of Biology and Biotechnology, Al-Farabi Kazakh National University, Al-Farabi 71, Almaty, 050038, Kazakhstan
| | - Meruyert O Bauenova
- Faculty of Biology and Biotechnology, Al-Farabi Kazakh National University, Al-Farabi 71, Almaty, 050038, Kazakhstan
| | - Bekzhan D Kossalbayev
- Faculty of Biology and Biotechnology, Al-Farabi Kazakh National University, Al-Farabi 71, Almaty, 050038, Kazakhstan; Department of Chemical and Biochemical Engineering, Institute of Geology and Oil-Gas Business Institute Named After K. Turyssov, Satbayev University, Satpaev 22, Almaty, 050043, Kazakhstan
| | - Bolatkhan K Zayadan
- Faculty of Biology and Biotechnology, Al-Farabi Kazakh National University, Al-Farabi 71, Almaty, 050038, Kazakhstan
| | - Zhiyong Huang
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, No. 32, West 7th Road, Tianjin Airport Economic Area, 300308, Tianjin, China
| | - Jingjing Wang
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, No. 32, West 7th Road, Tianjin Airport Economic Area, 300308, Tianjin, China
| | - Huma Balouch
- Faculty of Biology and Biotechnology, Al-Farabi Kazakh National University, Al-Farabi 71, Almaty, 050038, Kazakhstan
| | - Hesham F Alharby
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah, 21589, Saudi Arabia
| | - Jo-Shu Chang
- Department of Chemical and Materials Engineering, Tunghai University, Taichung, 407, Taiwan; Research Center for Smart Sustainable Circular Economy, Tunghai University, Taichung, 407, Taiwan; Department of Chemical Engineering, National Cheng Kung University, Tainan, 701, Taiwan; Department of Chemical Engineering and Materials Science, Yuan Ze University, Chung-Li, 32003, Taiwan.
| | - Suleyman I Allakhverdiev
- K.A. Timiryazev Institute of Plant Physiology, Russian Academy of Sciences, Botanicheskaya Street 35, Moscow, 127276, Russia; Institute of Basic Biological Problems, FRC PSCBR RAS, Pushchino, 142290, Russia; Faculty of Engineering and Natural Sciences, Bahcesehir University, Istanbul, 34353, Turkey.
| |
Collapse
|
11
|
Mofijur M, Hasan MM, Sultana S, Kabir Z, Djavanroodi F, Ahmed SF, Jahirul MI, Badruddin IA, Khan TMY. Advancements in algal membrane bioreactors: Overcoming obstacles and harnessing potential for eliminating hazardous pollutants from wastewater. CHEMOSPHERE 2023:139291. [PMID: 37353165 DOI: 10.1016/j.chemosphere.2023.139291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 06/11/2023] [Accepted: 06/19/2023] [Indexed: 06/25/2023]
Abstract
This paper offers a comprehensive analysis of algal-based membrane bioreactors (AMBRs) and their potential for removing hazardous and toxic contaminants from wastewater. Through an identification of contaminant types and sources, as well as an explanation of AMBR operating principles, this study sheds light on the promising capabilities of AMBRs in eliminating pollutants like nitrogen, phosphorus, and organic matter, while generating valuable biomass and energy. However, challenges and limitations, such as the need for process optimization and the risk of algal-bacterial imbalance, have been identified. To overcome these obstacles, strategies like mixed cultures and bioaugmentation techniques have been proposed. Furthermore, this study explores the wider applications of AMBRs beyond wastewater treatment, including the production of value-added products and the removal of emerging contaminants. The findings underscore the significance of factors such as appropriate algal-bacterial consortia selection, hydraulic and organic loading rate optimization, and environmental factor control for the success of AMBRs. A comprehensive understanding of these challenges and opportunities can pave the way for more efficient and effective wastewater treatment processes, which are crucial for safeguarding public health and the environment.
Collapse
Affiliation(s)
- M Mofijur
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Ultimo, NSW, 2007, Australia; Mechanical Engineering Department, Prince Mohammad Bin Fahd University, Al Khobar, 31952, Saudi Arabia.
| | - M M Hasan
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Ultimo, NSW, 2007, Australia; School of Engineering and Technology, Central Queensland University, QLD, 4701, Australia
| | - Sabrina Sultana
- Department of Soil, Water and Environment, University of Dhaka, Dhaka, 1000, Bangladesh
| | - Zobaidul Kabir
- School of Environmental and Life Sciences, University of Newcastle, NSW, 2258, Australia
| | - F Djavanroodi
- Mechanical Engineering Department, Prince Mohammad Bin Fahd University, Al Khobar, 31952, Saudi Arabia
| | - Shams Forruque Ahmed
- Science and Math Program, Asian University for Women, Chattogram, 4000, Bangladesh
| | - M I Jahirul
- School of Engineering and Technology, Central Queensland University, QLD, 4701, Australia
| | - Irfan Anjum Badruddin
- Mechanical Engineering Department, College of Engineering, King Khalid University, Abha, 61421, Saudi Arabia
| | - T M Yunus Khan
- Mechanical Engineering Department, College of Engineering, King Khalid University, Abha, 61421, Saudi Arabia
| |
Collapse
|
12
|
Pacheco HGJ, Elguera NY, Ancco M, Castro AELF, Meza MEB, Almeida VC. Combined coagulation-electrocoagulation process using biocoagulant from the Opuntia ficus-indica for treatment of cheese whey wastewater. ENVIRONMENTAL MONITORING AND ASSESSMENT 2023; 195:491. [PMID: 36943586 DOI: 10.1007/s10661-023-11095-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Accepted: 03/06/2023] [Indexed: 06/18/2023]
Abstract
This work reports a combined coagulation-electrocoagulation process using a biocoagulant from the Opuntia ficus-indica for treatment of cheese whey wastewater. The process parameters as pH, biocoagulant dosage, and current density were evaluated from the chemometric tools. A Box-Behnken design was used, having as responses the removal percentages of turbidity and chemical oxygen demand (COD). The results showed that for the studied variable ranges, linear models were obtained and the pH was parameter more significant for treatment proposed. The pH showed synergic effect with the investigated parameters, while the biocoagulant dosage and density current showed antagonistic effects. The desirability function was used to optimization of process, and suggested values were pH 10.0, biocoagulant dosage of 4.4 g L-1, and current density of 31.5 mA cm-2, which showed removals of turbidity and COD of 98.9 and 83.8%, respectively.
Collapse
Affiliation(s)
- Hugo G J Pacheco
- Instituto de Investigación e Innovación en Energías Renovables y Medio Ambiente, Lima, Peru
- Universidad Católica de Santa María, Urb. San José, San Jose s/n, Yanahuara, Arequipa, Peru
| | - Naysha Y Elguera
- Instituto de Investigación e Innovación en Energías Renovables y Medio Ambiente, Lima, Peru
| | - Midwar Ancco
- Instituto de Investigación e Innovación en Energías Renovables y Medio Ambiente, Lima, Peru
| | - Antonio E L F Castro
- Instituto de Investigación e Innovación en Energías Renovables y Medio Ambiente, Lima, Peru
| | - Maria E B Meza
- Universidad Católica de Santa María, Urb. San José, San Jose s/n, Yanahuara, Arequipa, Peru
| | - Vitor C Almeida
- Department of Chemistry, State University of Maringá, 5790 Colombo Avenue, Maringá , Paraná, 87020-900, Brazil.
| |
Collapse
|
13
|
Kiani H, Azimi Y, Li Y, Mousavi M, Cara F, Mulcahy S, McDonnell H, Blanco A, Halim R. Nitrogen and phosphate removal from dairy processing side-streams by monocultures or consortium of microalgae. J Biotechnol 2023; 361:1-11. [PMID: 36410532 DOI: 10.1016/j.jbiotec.2022.11.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 10/28/2022] [Accepted: 11/17/2022] [Indexed: 11/20/2022]
Abstract
Acid-casein production generates waste streams that are rich in nitrogen (in the form of protein and nitrate) and phosphate. This makes this type of waste very difficult to treat using conventional techniques resulting in a high amount of operating cost and costly investment. In this research, the application of single culture or consortium of microalgae for uptake of nitrogen and phosphate in the wastewater of an acid-casein factory was investigated. The waste was a 1:1 mixture of nanofiltered whey permeate and dairy processing wastewater. Monocultures of Chlorella vulgaris, Tetradesmus obloquus, Nonnochlropsis ocenica and a consortium of the three microalgae were analyzed. The results showed that the consortium exhibited more efficient nitrogen and phosphate removal compared to the individual species. The consortium was able to rapidly hydrolyse exogenous protein present in the waste medium, removing 88% of protein and breaking down complex protein molecules into simpler compounds (such as nitrate) for assimilation into the biomass. In the first fourteen days of cultivation, the rate of nitrate assimilation by the consortium biomass was lower than that of nitrate formation from protein degradation, leading to a net increase in nitrate concentration in the medium. As protein source was depleted and biomass concentration increased, however, the rate of nitrate assimilation began to exceed that of nitrate formation allowing for net removal of nitrate. The microalgae consortium was shown to successfully bioremediate all nitrates by day 21. It was indicated that Chlorella and Nannochloropsis species were responsible for nitrogen removal in monocultures. Phosphate, on the other hand, was efficiently removed by Tetradesmus. The results indicated that a consortium cultivation of three species of microalgae led to effective elimination of both nitrogen and phosphate. Combined flow-cytometry and microscopy analyses revealed that Chlorella overtook Tetradesmus and Nannochloropsis to emerge as the dominant population in the consortium by the end of the cultivation cycle. It can be concluded that the application of microalgae consortium for simultaneous recovery of nitrogen and phosphate is a promising approach for treating acid-casein wastewater.
Collapse
Affiliation(s)
- Hossein Kiani
- School of Biosystems and Food Engineering, University College Dublin, Belfield, Dublin 4, Ireland; Conway Institute, University College Dublin, Belfield, Dublin 4, Ireland; Bioprocessing and Biodetection Lab, Department of Food Science and Technology, University of Tehran, Karaj, Iran
| | - Yeganeh Azimi
- Conway Institute, University College Dublin, Belfield, Dublin 4, Ireland; Bioprocessing and Biodetection Lab, Department of Food Science and Technology, University of Tehran, Karaj, Iran
| | - Yuchen Li
- School of Biosystems and Food Engineering, University College Dublin, Belfield, Dublin 4, Ireland
| | - Mohammad Mousavi
- Bioprocessing and Biodetection Lab, Department of Food Science and Technology, University of Tehran, Karaj, Iran
| | - Fanny Cara
- Conway Institute, University College Dublin, Belfield, Dublin 4, Ireland
| | - Shane Mulcahy
- Arrabawn Co-Operative Society Ltd., Nenagh, Co. Tipperary, Ireland
| | - Hugh McDonnell
- Arrabawn Co-Operative Society Ltd., Nenagh, Co. Tipperary, Ireland
| | - Alfonso Blanco
- Conway Institute, University College Dublin, Belfield, Dublin 4, Ireland
| | - Ronald Halim
- School of Biosystems and Food Engineering, University College Dublin, Belfield, Dublin 4, Ireland; Conway Institute, University College Dublin, Belfield, Dublin 4, Ireland.
| |
Collapse
|
14
|
Kumar Y, Kaur S, Kheto A, Munshi M, Sarkar A, Om Pandey H, Tarafdar A, Sindhu R, Sirohi R. Cultivation of microalgae on food waste: Recent advances and way forward. BIORESOURCE TECHNOLOGY 2022; 363:127834. [PMID: 36029984 DOI: 10.1016/j.biortech.2022.127834] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 08/18/2022] [Accepted: 08/21/2022] [Indexed: 06/15/2023]
Abstract
Microalgae are photosynthetic microbes that can synthesize compounds of therapeutic potential with wide applications in the food, bioprocessing and pharmaceutical sector. Recent research advances have therefore, focused on finding suitable economic substrates for the sustainable cultivation of microalgae. Among such substrates, food derived waste specifically from the starch, meat, dairy, brewery, oil and fruit and vegetable processing industries has gained popularity but poses numerous challenges. Pretreatment, dilution of waste water supernatants, mixing of different food waste streams, utilizing two-stage cultivation and other biorefinery approaches have been intensively explored for multifold improvement in microalgal biomass recovery from food waste. This review discusses the advances and challenges associated with cultivation of microalgae on food waste. The review suggests that there is a need to standardize different waste substrates in terms of general composition, genetically engineered microalgal strains, tackling process scalability issues, controlling wastewater toxicity and establishing a waste transportation chain.
Collapse
Affiliation(s)
- Yogesh Kumar
- Department of Food Engineering and Technology, SLIET, Longowal 148 106, Punjab, India
| | - Samandeep Kaur
- Department of Food Engineering and Technology, SLIET, Longowal 148 106, Punjab, India
| | - Ankan Kheto
- Department of Food Process Engineering, NIT, Rourkela, Odisha, India
| | - Mohona Munshi
- Division of Food Technology, Department of Chemical Engineering, VFSTR, Guntur, A.P, India
| | - Ayan Sarkar
- Department of Food Process Engineering, NIT, Rourkela, Odisha, India
| | - Hari Om Pandey
- Livestock Production and Management Section, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly 243 122, Uttar Pradesh, India
| | - Ayon Tarafdar
- Livestock Production and Management Section, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly 243 122, Uttar Pradesh, India
| | - Raveendran Sindhu
- Department of Food Technology, TKM Institute of Technology, Kollam 691 505, Kerala, India
| | - Ranjna Sirohi
- Department of Food Technology, School of Health Sciences and Technology, University of Petroleum and Energy Studies, Dehradun 248 007, Uttarakhand, India.
| |
Collapse
|
15
|
Han F, Zhou W. Nitrogen recovery from wastewater by microbial assimilation - A review. BIORESOURCE TECHNOLOGY 2022; 363:127933. [PMID: 36100188 DOI: 10.1016/j.biortech.2022.127933] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 09/03/2022] [Accepted: 09/06/2022] [Indexed: 06/15/2023]
Abstract
The increased nitrogen (N) input with low utilization rate in artificial N management has led to massive reactive N (Nr) flows, putting the Earth in a high-risk state. It is essential to recover and recycle Nr during or after Nr removal from wastewater to reduce N input while simultaneously mitigate Nr pollution in addressing the N stress. However, mechanisms for efficient Nr recovery during or after Nr removal remain unclear. Here, the occurrence of N risk and progress in wastewater treatment in recent years as well as challenges of the current technologies for N recovery from wastewater were reviewed. Through analyzing N conversion fluxes in biogeochemical N-cycling networks, microbial N assimilation through photosynthetic and heterotrophic microorganisms was highlighted as promising alternative for synergistic N removal and recovery in wastewater treatment. In addition, the prospects and gaps of Nr recovery from wastewater through microbial assimilation are discussed.
Collapse
Affiliation(s)
- Fei Han
- School of Environmental Science and Engineering, Shandong University, Qingdao, Shandong 266000, China
| | - Weizhi Zhou
- School of Civil Engineering, Shandong University, Jinan, Shandong 250002, China.
| |
Collapse
|
16
|
Nie Y, Wang Z, Wang W, Zhou Z, Kong Y, Ma J. Bio-flocculation of Microcystis aeruginosa by using fungal pellets of Aspergillus oryzae: Performance and mechanism. JOURNAL OF HAZARDOUS MATERIALS 2022; 439:129606. [PMID: 35863225 DOI: 10.1016/j.jhazmat.2022.129606] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 07/11/2022] [Accepted: 07/13/2022] [Indexed: 06/15/2023]
Abstract
Algal blooms caused by eutrophication are global phenomena that seriously threaten the sustainable use of freshwater resources. Traditional water treatment chemicals often typically lead to high levels of residue and cause damage to the morphology of algal cells. This study investigated an eco-friendly fungal bio-flocculant, Aspergillus oryzae, to remove the representative microalgae (Microcystis aeruginosa). Furthermore, it explored crucial flocculation parameters, adsorption kinetics, and thermodynamics of microalgae using A. oryzae. Accordingly, a flocculation efficiency of >95% was achieved when the fungus was cultured for six days, flocculant dosage was 11 g/L, rotation speed was 100 rpm, temperature was 25 °C, flocculation time was 5 h, and pH ranged between 4.0 and 9.0. KEGG analysis based on the genomic data, and chemical composition analysis revealed that proteins and polysaccharides were the major components of metabolites. Zeta potential analysis, scanning electron microscopy, three-dimensional fluorescence, X-ray spectroscopy, and infrared spectroscopy, electrostatic attraction revealed that electrostatic attraction promoted the destabilization and aggregation of microalgae. Additionally, hyphal surface adsorption and chemisorption from extracellular proteins and exopolysaccharides aided in the removal of microalgae. Therefore, fungi-based bio-flocculants have the potential to remove microalgae in a simple, effective, and eco-friendly manner without the complex extraction of extracellular metabolites.
Collapse
Affiliation(s)
- Yong Nie
- Engineering Research Center of Biofilm Water Purification and Utilization Technology of Ministry of Education, Anhui University of Technology, Ma'anshan, 243032, China
| | - Zimin Wang
- Engineering Research Center of Biofilm Water Purification and Utilization Technology of Ministry of Education, Anhui University of Technology, Ma'anshan, 243032, China
| | - Wei Wang
- School of Life Sciences, Anhui Agricultural University, Hefei 230036, China
| | - Zhengyu Zhou
- Engineering Research Center of Biofilm Water Purification and Utilization Technology of Ministry of Education, Anhui University of Technology, Ma'anshan, 243032, China
| | - Yanli Kong
- Engineering Research Center of Biofilm Water Purification and Utilization Technology of Ministry of Education, Anhui University of Technology, Ma'anshan, 243032, China
| | - Jiangya Ma
- Engineering Research Center of Biofilm Water Purification and Utilization Technology of Ministry of Education, Anhui University of Technology, Ma'anshan, 243032, China.
| |
Collapse
|
17
|
Kumari S, Kumar V, Kothari R, Kumar P. Experimental and optimization studies on phycoremediation of dairy wastewater and biomass production efficiency of Chlorella vulgaris isolated from Ganga River, Haridwar, India. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:74643-74654. [PMID: 35639322 DOI: 10.1007/s11356-022-21069-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Accepted: 05/20/2022] [Indexed: 06/15/2023]
Abstract
Dairy wastewaters (DWW) are rich in several pollutants, including high biochemical oxygen demand (BOD) and chemical oxygen demand (COD), and their unsafe disposal may cause damage to the environment. In this study, Chlorella vulgaris (identified as NIES:227 strain based on 28s rRNA sequencing) was isolated from the freshwater habitat of the Ganga River at Haridwar, India, and further tested for its efficacy in treating DWW. The phycoremediation experiments were conducted using three different DWW concentrations (0, 50, and 100%), operating temperatures (20, 25, and 30 °C), and light intensities (2000, 3000, and 4000 lx) using response surface methodology. Results showed that after 16 days of experiments, a significant (P < 0.05) reduction in BOD (96.65%) and COD (87.50%) along with a maximum biomass production of 1.757 g/L was achieved using 57.72% of dairy industry wastewater, 24.16 °C of reactor temperature, and 3874.51 lx of light intensity. The RSM models had coefficient of determination (R2) values above 0.9459 with a minimum difference between measured and predicted responses. Therefore, the findings of this study suggest that the isolated C. vulgaris can be effectively used to treat dairy wastewater along with significant production of algal biomass which can be further used for the generation of low-cost biofuel and other materials.
Collapse
Affiliation(s)
- Sonika Kumari
- Agro-Ecology and Pollution Research Laboratory, Department of Zoology and Environmental Science, Gurukula Kangri (Deemed to Be University), Haridwar, 249404, Uttarakhand, India
- Department of Environmental Sciences, Central University of Jammu, Rahya-Suchani, Bagla, Samba, 181143, Jammu and Kashmir, India
| | - Vinod Kumar
- Agro-Ecology and Pollution Research Laboratory, Department of Zoology and Environmental Science, Gurukula Kangri (Deemed to Be University), Haridwar, 249404, Uttarakhand, India.
| | - Richa Kothari
- Department of Environmental Sciences, Central University of Jammu, Rahya-Suchani, Bagla, Samba, 181143, Jammu and Kashmir, India
| | - Pankaj Kumar
- Agro-Ecology and Pollution Research Laboratory, Department of Zoology and Environmental Science, Gurukula Kangri (Deemed to Be University), Haridwar, 249404, Uttarakhand, India
| |
Collapse
|
18
|
Aditya L, Mahlia TMI, Nguyen LN, Vu HP, Nghiem LD. Microalgae-bacteria consortium for wastewater treatment and biomass production. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 838:155871. [PMID: 35568165 DOI: 10.1016/j.scitotenv.2022.155871] [Citation(s) in RCA: 43] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2022] [Revised: 05/07/2022] [Accepted: 05/08/2022] [Indexed: 06/15/2023]
Abstract
The diversity of microalgae and bacteria allows them to form a complementary consortium for efficient wastewater treatment and nutrient recovery. This review highlights the potential of wastewater-derived microalgal biomass as a renewable feedstock for producing animal feed, biofertilisers, biofuel, and many valuable biochemicals. Data corroborated from this review shows that microalgae and bacteria can thrive in many environments. Microalgae are especially effective at utilising nutrients from the water as they grow. This review also consolidates the current understanding of microalgae characteristics and their interactions with bacteria in a consortium system. Recent studies on the performance of only microalgae and microalgae-bacteria wastewater treatment are compared and discussed to establish a research roadmap for practical implementation of the consortium systems for various wastewaters (domestic, industrial, agro-industrial, and landfill leachate wastewater). In comparison to the pure microalgae system, the consortium system has a higher removal efficiency of up to 15% and shorter treatment time. Additionally, this review addresses a variety of possibilities for biomass application after wastewater treatment.
Collapse
Affiliation(s)
- Lisa Aditya
- Center for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, NSW 2007, Australia
| | - T M Indra Mahlia
- Center for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, NSW 2007, Australia
| | - Luong N Nguyen
- Center for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, NSW 2007, Australia
| | - Hang P Vu
- Center for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, NSW 2007, Australia
| | - Long D Nghiem
- Center for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, NSW 2007, Australia.
| |
Collapse
|
19
|
Ahmad I, Ibrahim NNB, Abdullah N, Koji I, Mohama SE, Khoo KS, Cheah WY, Ling TC, Show PL. Bioremediation strategies of palm oil mill effluent and landfill leachate using microalgae cultivation: An approach contributing towards environmental sustainability. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2022.107854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
20
|
Verma R, Suthar S, Chand N, Mutiyar PK. Phycoremediation of milk processing wastewater and lipid-rich biomass production using Chlorella vulgaris under continuous batch system. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 833:155110. [PMID: 35398125 DOI: 10.1016/j.scitotenv.2022.155110] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Revised: 03/24/2022] [Accepted: 04/04/2022] [Indexed: 06/14/2023]
Abstract
This study compiles the results of phycoremediation of milk processing wastewater (MPWW) and production of lipid-rich Chlorella vulgaris biomass using a continuous batch system operated for 12-wks. After a 4-wks interval, a new MPWW was loaded photobioreactor to provide appropriate nutrient supply to algae. Results indicated that MPWW supported the algal growth efficiently and the maximum algal growth was recorded in the ranges of 400.36 to 421.58 mg L-1 during 4-wk's of the cultivation cycle. Average reduction in total nitrogen, TN (45.82-69.18%); nitrate, NO3 (93.32-94.54%); total ammonium nitrogen, TAN (92.94-94.54%); sulphate, SO4-2 (85.13-87.34%); total phosphorus (75.09-78.78%); and biochemical oxygen demands, BOD (89.53-92.40%) was recorded during 12-wks phycoremediation of MPWW. Harvested algal biomass (dry weight basis, DW) exhibited a significant content of total sugar (45.5%) and total lipid (39.7%). The lipid profiling results indicated the presence of palmitic acid (39.9%), oleic acid (21.08%), linoleic acid (13.13%), and other C18 compounds in algal biomass, suggesting the suitability of MPWW for Chlorella vulgaris cultivations. Algal biomass exhibited a high heating value (MJ/Kg of DW) in the range of 17.3 to 25.1, comparable to other lignocellulose biomass to be used for bioenergy purposes. Results of this study indicate that MPWW could be utilized as a valuable medium for Chlorella vulgaris cultivation under a circular economy approach: wastewater treatment and bioenergy feedstock production. The effect of controlled environmental conditions on algal growth behavior and lipid composition in biomass, while using MPWW as a medium, could be investigated in future studies.
Collapse
Affiliation(s)
- Rashmi Verma
- School of Environment & Natural Resources, Doon University, Dehradun 248001, Uttarakhand, India; DST Centre for Policy Research, Indian Institute of Science (IISc), Bangalore 560012, India
| | - Surindra Suthar
- School of Environment & Natural Resources, Doon University, Dehradun 248001, Uttarakhand, India.
| | - Naveen Chand
- Environmental Engineering Research Group, National Institute of Technology Delhi, New Delhi 110040, India
| | - Pravin K Mutiyar
- National Mission for Clean Ganges, Department of Water Resources, River Development and Ganges Rejuvenation, Ministry of Jal Sakti, Government of India, New Delhi, India
| |
Collapse
|
21
|
Sirohi R, Joun J, Lee JY, Yu BS, Sim SJ. Waste mitigation and resource recovery from food industry wastewater employing microalgae-bacterial consortium. BIORESOURCE TECHNOLOGY 2022; 352:127129. [PMID: 35398537 DOI: 10.1016/j.biortech.2022.127129] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Revised: 04/03/2022] [Accepted: 04/05/2022] [Indexed: 06/14/2023]
Abstract
Wastewater generated by the food industry is rich in nitrogen and phosphorus with possible presence of heavy metals. Physical and chemical methods of treatment, although effective, are expensive and may cause secondary environmental pollution damaging aquatic and human life. Traditional biological methods are eco-friendly and cost-effective but involve standalone microorganisms that pose risk of contamination and are not as effective. This review discusses the application of novel microalgal-bacterial consortium as a solution for the resource recovery and treatment of dairy, starch and aquaculture wastewater. Use of biofilm reactors containing anaerobic and aerobic sludge has shown 80-90% and > 90% COD and nutrient removal efficiency in treatment of dairy and starch processing wastewater, respectively. The treatment of aquaculture processing wastewater can be challenging due to high sality and requires salt-tolerant bacteria-microalgae consortium. In this regard, the identification of dominant microalgae and bacteria using 16S rRNA and 18S rRNA genes is recommended.
Collapse
Affiliation(s)
- Ranjna Sirohi
- Department of Chemical and Biological Engineering, Korea University, 145, Anam-ro, Seongbuk-gu, Seoul 02841, Republic of Korea
| | - Jaemin Joun
- Department of Chemical and Biological Engineering, Korea University, 145, Anam-ro, Seongbuk-gu, Seoul 02841, Republic of Korea
| | - Ji Young Lee
- Department of Chemical and Biological Engineering, Korea University, 145, Anam-ro, Seongbuk-gu, Seoul 02841, Republic of Korea
| | - Byung Sun Yu
- Department of Chemical and Biological Engineering, Korea University, 145, Anam-ro, Seongbuk-gu, Seoul 02841, Republic of Korea
| | - Sang Jun Sim
- Department of Chemical and Biological Engineering, Korea University, 145, Anam-ro, Seongbuk-gu, Seoul 02841, Republic of Korea.
| |
Collapse
|
22
|
Dawiec-Liśniewska A, Podstawczyk D, Bastrzyk A, Czuba K, Pacyna-Iwanicka K, Okoro OV, Shavandi A. aNew trends in biotechnological applications of photosynthetic microorganisms. Biotechnol Adv 2022; 59:107988. [DOI: 10.1016/j.biotechadv.2022.107988] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Revised: 05/17/2022] [Accepted: 05/17/2022] [Indexed: 12/20/2022]
|
23
|
Singh V, Mishra V. Evaluation of the effects of input variables on the growth of two microalgae classes during wastewater treatment. WATER RESEARCH 2022; 213:118165. [PMID: 35183015 DOI: 10.1016/j.watres.2022.118165] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 02/01/2022] [Accepted: 02/04/2022] [Indexed: 06/14/2023]
Abstract
Wastewater treatment carried out by microalgae is usually affected by the type of algal strain and the combination of cultivation parameters provided during the process. Every microalga strain has a different tolerance level towards cultivation parameters, including temperature, pH, light intensity, CO2 content, initial inoculum level, pretreatment method, reactor type and nutrient concentration in wastewater. Therefore, it is vital to supply the right combination of cultivation parameters to increase the wastewater treatment efficiency and biomass productivity of different microalgae classes. In the current investigation, the decision tree was used to analyse the dataset of class Trebouxiophyceae and Chlorophyceae. Various combinations of cultivation parameters were determined to enhance their performance in wastewater treatment. Nine combinations of cultivation parameters leading to high biomass production and eleven combinations each for high nitrogen removal efficiency and high phosphorus removal efficiency for class Trebouxiophyceae were detected by decision tree models. Similarly, eleven combinations for high biomass production, nine for high nitrogen removal efficiency, and eight for high phosphorus removal efficiency were detected for class Chlorophyceae. The results obtained through decision tree analysis can provide the optimum conditions of cultivation parameters, saving time in designing new experiments for treating wastewater at a large scale.
Collapse
Affiliation(s)
- Vishal Singh
- School of Biochemical Engineering, IIT(BHU), Varanasi, India
| | - Vishal Mishra
- School of Biochemical Engineering, IIT(BHU), Varanasi, India.
| |
Collapse
|
24
|
Sendzikiene E, Makareviciene V. Application of Liquid Waste from Biogas Production for Microalgae Chlorella sp. Cultivation. Cells 2022; 11:cells11071206. [PMID: 35406770 PMCID: PMC8997393 DOI: 10.3390/cells11071206] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 03/30/2022] [Accepted: 04/01/2022] [Indexed: 12/10/2022] Open
Abstract
Microalgae biomass is a viable feedstock for a wide range of industries. Recently, there has also been interest in the ability of microalgae biomass applications for biofuel production. In the meantime, the cultivation of microalgae biomass requires high energy costs, and the application of microalgae for technical purposes is still problematic. A significant part of the cost of biomass arises from the nutrients used for cultivation. Chemical compounds included in the microalgae cultivation media can be replaced by suitable wastes containing nitrogen, phosphorus, and other elements. This could reduce the microalgae biomass cultivation price and allow cheaper biomass to be used for biofuel production. The aim of this work was to comprehensively investigate and optimize the growth process of microalgae using liquid waste (liquid waste after biogas production from sewage sludge and distillers’ grain) as a source of nitrogen and phosphorus, and technical glycerol as a carbon source. It was found that higher levels of waste in the cultivation media were found to inhibit the accumulation of microalgal biomass, with the optimum level corresponding to a nitrogen concentration of 0.08 g/L. The influence of technical glycerol from biodiesel production on the yield of microalgal biomass was investigated, and it was found that the addition of 6% glycerol allows an increase in the concentration of microalgal biomass in the cultivation media, from 18.1 to 20.6%.
Collapse
|
25
|
Jain R, Mishra S, Mohanty K. Cattle wastewater as a low-cost supplement augmenting microalgal biomass under batch and fed-batch conditions. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2022; 304:114213. [PMID: 34896802 DOI: 10.1016/j.jenvman.2021.114213] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2021] [Revised: 11/16/2021] [Accepted: 11/28/2021] [Indexed: 06/14/2023]
Abstract
The utilization of costly chemical fertilizers and large freshwater requirements make the microalgae cultivation process uneconomical and highly unsustainable. To address this challenge, the present study aimed to integrate cattle wastewater (CW) (alternate for fertilizers) with domestic sewage wastewater (DSW) (substitute for freshwater) to cultivate Chlorella thermophile. To maximize the biomass yield, in-depth nutrient consumption patterns in both batch and fed-batch cultivation conditions were analyzed. Out of the eight (1%-4.5%) different CW feed concentrations tested during the batch cultivation, 2.5% CW set gave the highest biomass yield (2.17 g L-1), which was almost double the yield obtained using Bold Basal Medium (1.24 g L-1) and DSW without any CW addition (1.22 g L-1). However, the biomass yield declined with CW> 2.5%, and the ammonium (NH4+) inhibitory effect was observed. To address the (NH4+) toxicity challenge and further enhance the biomass yield, fed-batch experiments were designed with an intermittent CW feeding based on nutrient (NH4+) consumption pattern. The fed-batch cultivation resulted in twofold increased biomass yield (4.52 g L-1) in comparison to the batch process. The nutrient consumption pattern inferred that the (NH4+) concentration greater than 600 mg L-1 during the logarithmic phase was inhibitory for Chlorella thermophila cells. On biomass characterization, a significant improvement in protein content with CW addition was observed. The FAME analysis of the derived lipid stated its competitive biofuel quality with up-gradation of C:16 and C:18 groups. Based on the obtained results, projection analysis for an integrated rural model demonstrated the technology's potential for sustainable water management with valuable resource recovery.
Collapse
Affiliation(s)
- Rahul Jain
- School of Energy Science and Engineering, Indian Institute of Technology Guwahati, Guwahati, 781039, India
| | - Sanjeev Mishra
- School of Energy Science and Engineering, Indian Institute of Technology Guwahati, Guwahati, 781039, India
| | - Kaustubha Mohanty
- School of Energy Science and Engineering, Indian Institute of Technology Guwahati, Guwahati, 781039, India; Department of Chemical Engineering, Indian Institute of Technology Guwahati, Guwahati, 781039, India.
| |
Collapse
|
26
|
Ravi Kiran B, Venkata Mohan S. Phycoremediation potential ofTetradesmus sp.SVMIICT4in treating dairy wastewaterusingFlat-Panel photobioreactor. BIORESOURCE TECHNOLOGY 2022; 345:126446. [PMID: 34861385 DOI: 10.1016/j.biortech.2021.126446] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 11/23/2021] [Accepted: 11/25/2021] [Indexed: 06/13/2023]
Abstract
Tetradesmus sp. SVMIICT4 was isolated and cultivated mixotrophically in a flat-panel photobioreactor (FP-PBR) for concurrent dairy wastewater treatment, carbon fixation, and biomass production. Integrated wastewater treatment showed good COD and nutrients removal efficiency accounting for biomass with an accumulation of carbohydrate (21.48 mg g-1) and protein (19.52 mg g-1). Chlorophyll a fluorescence transients (Fv/Fm, ETo/RC, TRo/RC, and Abs/RC) deduced through OJIP curve fittings, showed consistent improvement in photosynthetic activity throughout the cultivation period. The absorption flux per reaction centre corroborated with increased chlorophyll content (18.94 mg g-1), resulting in higher electron transport (ET/Rc) and lower non-photochemical quenching (NPQ). The fatty acid profile showed high content of unsaturated, followed by saturated fatty acids, which has multiple applications in food, feed, and fuel industries, enabling a bio-based economy.
Collapse
Affiliation(s)
- Boda Ravi Kiran
- Bioengineering and Environmental Sciences Lab, Department of Energy and Environmental Engineering (DEE), CSIR-Indian Institute of Chemical Technology (CSIR-IICT), Hyderabad 500 007, India
| | - S Venkata Mohan
- Bioengineering and Environmental Sciences Lab, Department of Energy and Environmental Engineering (DEE), CSIR-Indian Institute of Chemical Technology (CSIR-IICT), Hyderabad 500 007, India.
| |
Collapse
|
27
|
Arun S, Ramasamy S, Pakshirajan K, Pugazhenthi G. Bioelectricity production and shortcut nitrogen removal by microalgal-bacterial consortia using membrane photosynthetic microbial fuel cell. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2022; 301:113871. [PMID: 34619589 DOI: 10.1016/j.jenvman.2021.113871] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2021] [Revised: 08/26/2021] [Accepted: 09/26/2021] [Indexed: 06/13/2023]
Abstract
Membrane photosynthetic microbial fuel cell (MPMFC) utilizes O2, NO3- and NO2- as cathodic electron acceptors, enabling simultaneous treatment of nitrogen, CO2 and organic carbon in the cathode compartment. In this work, development of a novel cathodic process with in situ nitritation via microalgal photosynthesis during the light period is reported for achieving shortcut nitrogen removal (SNR) from ammonium-rich wastewater. Moreover, a tubular low-cost ceramic membrane was used to separate and recycle the microalgal-bacterial biomass to the cathode compartment during the continuous operation. The influence of NH4+ concentration and ratio of chemical oxygen demand to total nitrogen on the MPMFC performance was examined. Denitritation under dark and anoxic conditions occurred due to denitrifying bacteria (DNB) subsequent to nitritation under light and aerobic conditions by ammonia-oxidizing bacteria (AOB) in the consortia. Final concentrations of NH4+ and NO2- in the effluent of 0.10 mg NH4+-L-1 and 0.02 mg NO2--L-1, respectively, were obtained using MPMFC which resulted in a nitrogen removal efficiency of 99 ± 0.5%. The maximum electricity production achieved using the MPMFC was 56 ± 0.1 mA. This study demonstrated that combining microalgal photosynthesis, nitritation and denitritation in the cathode compartment of MPMFC is advantageous for avoiding the cost due to external aeration and organic carbon source necessary for ammonium removal as well as utilization of NO2- or NO3- as an electron acceptor.
Collapse
Affiliation(s)
- S Arun
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, 781039, Assam, India
| | - Surjith Ramasamy
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, 781039, Assam, India
| | - Kannan Pakshirajan
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, 781039, Assam, India.
| | - G Pugazhenthi
- Department of Chemical Engineering, Indian Institute of Technology Guwahati, Guwahati, 781039, Assam, India
| |
Collapse
|
28
|
Maurya R, Zhu X, Valverde-Pérez B, Ravi Kiran B, General T, Sharma S, Kumar Sharma A, Thomsen M, Venkata Mohan S, Mohanty K, Angelidaki I. Advances in microalgal research for valorization of industrial wastewater. BIORESOURCE TECHNOLOGY 2022; 343:126128. [PMID: 34655786 DOI: 10.1016/j.biortech.2021.126128] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Revised: 10/08/2021] [Accepted: 10/09/2021] [Indexed: 06/13/2023]
Abstract
This review article focuses on recent updates on remediation of industrial wastewater (IWW) through microalgae cultivation. These include how adding additional supplements of nutrient to some specific IWWs lacking adequate nutrients improving the microalgae growth and remediation simultaneously. Various pretreatments strategy recently employed for IWWs treatment other than dealing with microalgae was discussed. Various nutrient-rich IWW could be utilized directly with additional dilution, supplement of nutrients and without any pretreatment. Recent advances in various approaches and new tools used for cultivation of microalgae on IWW such as two-step cultivation, pre-acclimatization, novel microalgal-bioelectrical systems, integrated catalytic intense pulse-light process, sequencing batch reactor, use of old stabilized algal-bacterial consortium, immobilized microalgae cells, microalgal bacterial membrane photobioreactor, low-intensity magnetic field, BIO_ALGAE simulation tool, etc. are discussed. In addition, biorefinery of microalgal biomass grown on IWW and its end-use applications are reviewed.
Collapse
Affiliation(s)
- Rahulkumar Maurya
- School of Energy Science and Engineering, Indian Institute of Technology Guwahati, Guwahati 781039, India
| | - Xinyu Zhu
- Department of Chemical and Biochemical Engineering, Technical University of Denmark, 2800 Lyngby, DTU, Denmark
| | - Borja Valverde-Pérez
- Department of Environmental Engineering, Technical University of Denmark, 2800 Lyngby, DTU, Denmark
| | - Boda Ravi Kiran
- Bioengineering and Environmental Sciences (BEES) Lab, Department of Energy and Environmental Engineering, CSIR-Indian Institute of Chemical Technology (CSIR-IICT), Hyderabad 500 007, India
| | - Thiyam General
- Department of Biological Sciences, College of Basic Sciences and Humanities, G.B. Pant University of Agriculture & Technology, U.S. Nagar, Pantnagar, Uttarakhand 263 145, India
| | - Suvigya Sharma
- Department of Biological Sciences, College of Basic Sciences and Humanities, G.B. Pant University of Agriculture & Technology, U.S. Nagar, Pantnagar, Uttarakhand 263 145, India
| | - Anil Kumar Sharma
- Department of Biological Sciences, College of Basic Sciences and Humanities, G.B. Pant University of Agriculture & Technology, U.S. Nagar, Pantnagar, Uttarakhand 263 145, India
| | - Marianne Thomsen
- Aarhus University Centre for Circular Bioeconomy, Aarhus University, Postbox 358 Frederiksborgvej 399, 4000 Roskilde, Denmark
| | - S Venkata Mohan
- Bioengineering and Environmental Sciences (BEES) Lab, Department of Energy and Environmental Engineering, CSIR-Indian Institute of Chemical Technology (CSIR-IICT), Hyderabad 500 007, India
| | - Kaustubha Mohanty
- School of Energy Science and Engineering, Indian Institute of Technology Guwahati, Guwahati 781039, India; Department of Chemical Engineering, Indian Institute of Technology Guwahati, Guwahati 781039, India.
| | - Irini Angelidaki
- Department of Chemical and Biochemical Engineering, Technical University of Denmark, 2800 Lyngby, DTU, Denmark
| |
Collapse
|
29
|
Chong JWR, Khoo KS, Yew GY, Leong WH, Lim JW, Lam MK, Ho YC, Ng HS, Munawaroh HSH, Show PL. Advances in production of bioplastics by microalgae using food waste hydrolysate and wastewater: A review. BIORESOURCE TECHNOLOGY 2021; 342:125947. [PMID: 34563823 DOI: 10.1016/j.biortech.2021.125947] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 09/09/2021] [Accepted: 09/12/2021] [Indexed: 06/13/2023]
Abstract
Microalgae have emerged as an effective dual strategy for bio-valorisation of food processing wastewater and food waste hydrolysate which favours microalgae cultivation into producing value-added by products mainly lipids, carbohydrates, and proteins to the advantages of bioplastic production. Moreover, various microalgae have successfully removed high amount of organic pollutants from food processing wastewater prior discharging into the environment. Innovation of microalgae cultivating in food processing wastewater greatly reduced the cost of wastewater treatment compared to conventional approach in terms of lower carbon emissions, energy consumption, and chemical usage while producing microalgae biomass which can benefit low-cost fertilizer and bioplastic applications. The study on several microalgae species has all successfully grown on food waste hydrolysates showing high exponential growth rate and biomass production rich in proteins, lipids, carbohydrates, and fatty acids. Multiple techniques have been implemented for the extraction of food wastes to be incorporate into the bioplastic production.
Collapse
Affiliation(s)
- Jun Wei Roy Chong
- Department of Chemical and Environmental Engineering, Faculty of Science and Engineering, University of Nottingham Malaysia, Jalan Broga, 43500 Semenyih, Selangor Darul Ehsan, Malaysia
| | - Kuan Shiong Khoo
- Department of Chemical and Environmental Engineering, Faculty of Science and Engineering, University of Nottingham Malaysia, Jalan Broga, 43500 Semenyih, Selangor Darul Ehsan, Malaysia; Faculty of Applied Sciences, UCSI University, No. 1, Jalan Menara Gading, UCSI Heights, Cheras, 56000 Kuala Lumpur, Malaysia
| | - Guo Yong Yew
- Department of Chemical and Environmental Engineering, Faculty of Science and Engineering, University of Nottingham Malaysia, Jalan Broga, 43500 Semenyih, Selangor Darul Ehsan, Malaysia
| | - Wai Hong Leong
- HICoE-Centre for Biofuel and Biochemical Research, Institute of Self-Sustainable Building, Universiti Teknologi PETRONAS, Seri Iskandar, Malaysia; Fundamental and Applied Sciences Department, Universiti Teknologi PETRONAS, Seri Iskandar, Malaysia
| | - Jun Wei Lim
- HICoE-Centre for Biofuel and Biochemical Research, Institute of Self-Sustainable Building, Universiti Teknologi PETRONAS, Seri Iskandar, Malaysia; Fundamental and Applied Sciences Department, Universiti Teknologi PETRONAS, Seri Iskandar, Malaysia
| | - Man Kee Lam
- HICoE-Centre for Biofuel and Biochemical Research, Institute of Self-Sustainable Building, Universiti Teknologi PETRONAS, Seri Iskandar, Malaysia; Chemical Engineering Department, Universiti Teknologi PETRONAS, Seri Iskandar, Malaysia
| | - Yeek-Chia Ho
- Civil and Environmental Engineering Department, Universiti Teknologi PETRONAS, Seri Iskandar, Malaysia; Centre for Urban Resource Sustainability, Institute of Self-Sustainable Building, Universiti Teknologi PETRONAS, Seri Iskandar, Malaysia
| | - Hui Suan Ng
- Faculty of Applied Sciences, UCSI University, No. 1, Jalan Menara Gading, UCSI Heights, Cheras, 56000 Kuala Lumpur, Malaysia
| | - Heli Siti Halimatul Munawaroh
- Study Program of Chemistry, Department of Chemistry Education, Universitas Pendidikan Indonesia, Jalan Dr. Setiabudi 229, Bandung 40154, West Java, Indonesia
| | - Pau Loke Show
- Department of Chemical and Environmental Engineering, Faculty of Science and Engineering, University of Nottingham Malaysia, Jalan Broga, 43500 Semenyih, Selangor Darul Ehsan, Malaysia.
| |
Collapse
|
30
|
Zhang C, Li S, Ho SH. Converting nitrogen and phosphorus wastewater into bioenergy using microalgae-bacteria consortia: A critical review. BIORESOURCE TECHNOLOGY 2021; 342:126056. [PMID: 34601027 DOI: 10.1016/j.biortech.2021.126056] [Citation(s) in RCA: 67] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2021] [Revised: 09/23/2021] [Accepted: 09/27/2021] [Indexed: 06/13/2023]
Abstract
Conventional wastewater treatment using activated sludge cannot efficiently eliminate nitrogen and phosphorus, thus engendering the risk of water eutrophication and ecosystem disruption. Fortunately, a new wastewater treatment process applying microalgae-bacteria consortia has attracted considerable interests due to its excellent performance of nutrients removal. Moreover, some bacteria facilitate the harvest of microalgal biomass through bio-flocculation. Additionally, while stimulating the functional bacteria, the improved biomass and enriched components also brighten bioenergy production from the perspective of practical applications. Thus, this review first summarizes the current development of nutrients removal and mutualistic interaction using microalgae-bacteria consortia. Then, advancements in bio-flocculation are completely described and the corresponding mechanisms are thoroughly revealed. Eventually, the recent advances of bioenergy production (i.e., biodiesel, biohydrogen, bioethanol, and bioelectricity) using microalgae-bacteria consortia are comprehensively discussed. Together, this review will provide the ongoing challenges and future developmental directions for better converting nitrogen and phosphorus wastewater into bioenergy using microalgae-bacteria consortia.
Collapse
Affiliation(s)
- Chaofan Zhang
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, PR China
| | - Shengnan Li
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, PR China
| | - Shih-Hsin Ho
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, PR China.
| |
Collapse
|
31
|
Renuka N, Ratha SK, Kader F, Rawat I, Bux F. Insights into the potential impact of algae-mediated wastewater beneficiation for the circular bioeconomy: A global perspective. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2021; 297:113257. [PMID: 34303940 DOI: 10.1016/j.jenvman.2021.113257] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Revised: 06/28/2021] [Accepted: 07/08/2021] [Indexed: 06/13/2023]
Abstract
Algae-based technologies are one of the emerging solutions to societal issues such as accessibility to clean water and carbon-neutral energy and are a contender for the circular bioeconomy. In this review, recent developments in the use of different algal species for nutrient recovery and biomass production in wastewater, challenges, and future perspectives have been addressed. The ratio and bioavailability of nutrients in wastewater are vital parameters, which significantly impact nutrient recovery efficiency and algal biomass production. However, the optimum nutrient concentration and ratio may vary depending upon the microalgal species as well as cultivation conditions. The use of indigenous algae and algae-based consortia with other microorganisms has been proved promising in improving nutrient recovery efficiency and biomass production in pilot scale operations. However, environmental and cultivation conditions also play a significant role in determining the feasibility of the process. This review further focused on the assessment of the potential benefits of algal biomass production, renewable biofuel generation, and CO2 sequestration using wastewater in different countries on the basis of available data on wastewater generation and estimated nutrient contents. It was estimated that 5-10% replacement of fossil crude requirement with algal biofuels would require ~952-1903 billion m3 of water, 10-21 billion tons of nitrogen, and 2-4 billion tons of phosphorus fertilizers. In this context, coupling wastewater treatment and algal biomass production seem to be the most sustainable option with potential global benefits of polishing wastewater through nutrients recycling and carbon dioxide sequestration.
Collapse
Affiliation(s)
- Nirmal Renuka
- Institute for Water and Wastewater Technology, Durban University of Technology, P.O Box 1334, Durban, 4000, South Africa
| | - Sachitra Kumar Ratha
- Institute for Water and Wastewater Technology, Durban University of Technology, P.O Box 1334, Durban, 4000, South Africa; Phycology Laboratory, CSIR-National Botanical Research Institute, Lucknow, Uttar Pradesh, 226001, India
| | - Farzana Kader
- Institute for Water and Wastewater Technology, Durban University of Technology, P.O Box 1334, Durban, 4000, South Africa
| | - Ismail Rawat
- Institute for Water and Wastewater Technology, Durban University of Technology, P.O Box 1334, Durban, 4000, South Africa
| | - Faizal Bux
- Institute for Water and Wastewater Technology, Durban University of Technology, P.O Box 1334, Durban, 4000, South Africa.
| |
Collapse
|
32
|
Song Y, Wang X, Cui H, Ji C, Xue J, Jia X, Ma R, Li R. Enhancing growth and oil accumulation of a palmitoleic acid-rich Scenedesmus obliquus in mixotrophic cultivation with acetate and its potential for ammonium-containing wastewater purification and biodiesel production. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2021; 297:113273. [PMID: 34311253 DOI: 10.1016/j.jenvman.2021.113273] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Revised: 06/21/2021] [Accepted: 07/09/2021] [Indexed: 06/13/2023]
Abstract
A palmitoleic acid-rich Scenedesmus obliquus strain SXND-02 was isolated from ammonium-containing wastewater. Biomass and lipid production were examined for this microalgal strain in photoautotrophic, heterotrophic, and mixotrophic cultivations, respectively, in order to extend its application in wastewater purification coupled with production of valued bio-products. Among the tested conditions, the microalga had better growth and higher lipid accumulation in mixotrophy. NH4Cl inhibited the microalgal growth in photoautotrophic cultivation. However, NaAc alleviated this inhibition in both heterotrophy and mixotrophy. Using 7 g L-1 NaAc and 0.5 g L-1 NH4Cl as carbon and nitrogen sources significantly increased the algal biomass and lipid yields under mixotrophic cultivation, with the highest levels up to 1.0 g L-1 and 59.88%, respectively. Fatty acid profiling indicated that palmitoleic acid was 23% in the S. obliquus SXND-02 under mixotrophic condition, which was about 21-fold higher than that in the control S. obliquus. Furthermore, this microalgal strain was tested in the chicken farm wastewater (CFW) containing high ammonium. Compared with other treatments, the S. obliquus SXND-02 cultivated in the 1/2 CFW + NaAc medium produced larger amounts of biomass (2.18 g L-1) and lipids (50.22%), and simultaneously higher removal rates of total nitrogen (TN) (80%), total ammonium nitrogen (TAN) (68%), total phosphate (TP) (82%), biological oxygen demand (BOD) (86%) and chemical oxygen demand (COD) (89%) from wastewater. The present data indicate that this excellent microalga can be used in mixotrophic cultivation for wastewater purification coupled with commercial production of valued biomass and high-quality algal oils.
Collapse
Affiliation(s)
- Yanan Song
- College of Agriculture, Institute of Molecular Agriculture and Bioenergy, Shanxi Agricultural University, Taigu, 030801, China
| | - Xiaodan Wang
- College of Agriculture, Institute of Molecular Agriculture and Bioenergy, Shanxi Agricultural University, Taigu, 030801, China
| | - Hongli Cui
- College of Agriculture, Institute of Molecular Agriculture and Bioenergy, Shanxi Agricultural University, Taigu, 030801, China
| | - Chunli Ji
- College of Agriculture, Institute of Molecular Agriculture and Bioenergy, Shanxi Agricultural University, Taigu, 030801, China
| | - Jinai Xue
- College of Agriculture, Institute of Molecular Agriculture and Bioenergy, Shanxi Agricultural University, Taigu, 030801, China
| | - Xiaoyun Jia
- College of Agriculture, Institute of Molecular Agriculture and Bioenergy, Shanxi Agricultural University, Taigu, 030801, China.
| | - Ruiyan Ma
- College of Plant Protection, Shanxi Agricultural University, Taigu, 030801, China.
| | - Runzhi Li
- College of Agriculture, Institute of Molecular Agriculture and Bioenergy, Shanxi Agricultural University, Taigu, 030801, China.
| |
Collapse
|
33
|
Leong YK, Huang CY, Chang JS. Pollution prevention and waste phycoremediation by algal-based wastewater treatment technologies: The applications of high-rate algal ponds (HRAPs) and algal turf scrubber (ATS). JOURNAL OF ENVIRONMENTAL MANAGEMENT 2021; 296:113193. [PMID: 34237671 DOI: 10.1016/j.jenvman.2021.113193] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 06/19/2021] [Accepted: 06/29/2021] [Indexed: 06/13/2023]
Abstract
Following the escalating human population growth and rapid urbanization, the tremendous amount of urban and industrial waste released leads to a series of critical issues such as health issues, climate change, water crisis, and pollution problems. With the advantages of a favorable carbon life cycle, high photosynthetic efficiencies, and being adaptive to harsh environments, algae have attracted attention as an excellent agent for pollution prevention and waste phycoremediation. Following the concept of circular economy and biorefinery for sustainable production and waste minimization, this review discusses the role of four different algal-based wastewater treatment technologies, including high-rate algal ponds (HRAPs), HRAP-absorption column (HRAP-AC), hybrid algal biofilm-enhanced raceway pond (HABERP) and algal turf scrubber (ATS) in waste management and resource recovery. In addition to the nutrient removal mechanisms and operation parameters, recent advances and developments have been discussed for each technology, including (1) Innovative operation strategies and treatment of emerging contaminants (ECs) employing HRAPs, (2) Biogas upgrading utilizing HRAP-AC system and approaches of O2 minimization in biomethane, (3) Operation of different HABERP systems, (4) Life-cycle and cost analysis of HRAPs-based wastewater treatment system, and (5) Value-upgrading for harvested algal biomass and life-cycle cost analysis of ATS system.
Collapse
Affiliation(s)
- Yoong Kit Leong
- Department of Chemical and Materials Engineering, Tunghai University, Taichung, Taiwan
| | - Chi-Yu Huang
- Department of Environmental Science and Engineering, Tunghai University, Taichung, Taiwan; Research Center for Smart Sustainable Circular Economy, Tunghai University, Taichung, Taiwan
| | - Jo-Shu Chang
- Department of Chemical and Materials Engineering, Tunghai University, Taichung, Taiwan; Research Center for Smart Sustainable Circular Economy, Tunghai University, Taichung, Taiwan; Department of Chemical Engineering, National Cheng Kung University, Tainan, Taiwan.
| |
Collapse
|
34
|
Singh V, Mishra V. Exploring the effects of different combinations of predictor variables for the treatment of wastewater by microalgae and biomass production. Biochem Eng J 2021. [DOI: 10.1016/j.bej.2021.108129] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
35
|
Buzdin AV, Patrushev MV, Sverdlov ED. Will Plant Genome Editing Play a Decisive Role in "Quantum-Leap" Improvements in Crop Yield to Feed an Increasing Global Human Population? PLANTS (BASEL, SWITZERLAND) 2021; 10:1667. [PMID: 34451712 PMCID: PMC8398637 DOI: 10.3390/plants10081667] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 08/04/2021] [Accepted: 08/07/2021] [Indexed: 02/08/2023]
Abstract
Growing scientific evidence demonstrates unprecedented planetary-scale human impacts on the Earth's system with a predicted threat to the existence of the terrestrial biosphere due to population increase, resource depletion, and pollution. Food systems account for 21-34% of global carbon dioxide (CO2) emissions. Over the past half-century, water and land-use changes have significantly impacted ecosystems, biogeochemical cycles, biodiversity, and climate. At the same time, food production is falling behind consumption, and global grain reserves are shrinking. Some predictions suggest that crop yields must approximately double by 2050 to adequately feed an increasing global population without a large expansion of crop area. To achieve this, "quantum-leap" improvements in crop cultivar productivity are needed within very narrow planetary boundaries of permissible environmental perturbations. Strategies for such a "quantum-leap" include mutation breeding and genetic engineering of known crop genome sequences. Synthetic biology makes it possible to synthesize DNA fragments of any desired sequence, and modern bioinformatics tools may hopefully provide an efficient way to identify targets for directed modification of selected genes responsible for known important agronomic traits. CRISPR/Cas9 is a new technology for incorporating seamless directed modifications into genomes; it is being widely investigated for its potential to enhance the efficiency of crop production. We consider the optimism associated with the new genetic technologies in terms of the complexity of most agronomic traits, especially crop yield potential (Yp) limits. We also discuss the possible directions of overcoming these limits and alternative ways of providing humanity with food without transgressing planetary boundaries. In conclusion, we support the long-debated idea that new technologies are unlikely to provide a rapidly growing population with significantly increased crop yield. Instead, we suggest that delicately balanced humane measures to limit its growth and the amount of food consumed per capita are highly desirable for the foreseeable future.
Collapse
Affiliation(s)
- Anton V Buzdin
- The Laboratory of Clinical and Genomic Bioinformatics, I.M. Sechenov First Moscow State Medical University, 119991 Moscow, Russia
- Moscow Institute of Physics and Technology, Dolgoprudny, Moscow Region, 141701 Moscow, Russia
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997 Moscow, Russia
| | - Maxim V Patrushev
- Kurchatov Center for Genome Research, National Research Center Kurchatov Institute, 123182 Moscow, Russia
| | - Eugene D Sverdlov
- Kurchatov Center for Genome Research, National Research Center Kurchatov Institute, 123182 Moscow, Russia
- Institute of Molecular Genetics, National Research Center Kurchatov Institute, 123182 Moscow, Russia
| |
Collapse
|
36
|
Li C, Xue B, Wang S, Zhang X, Zhao C, Yang X, Zhao R, Dai L, Su S, Xu H, Shen Z, Qiu Z, Wang J. An Innovative Digestion Method: Ultrasound-Assisted Electrochemical Oxidation for the Onsite Extraction of Heavy Metal Elements in Dairy Farm Slurry. MATERIALS 2021; 14:ma14164562. [PMID: 34443084 PMCID: PMC8400106 DOI: 10.3390/ma14164562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Revised: 08/06/2021] [Accepted: 08/11/2021] [Indexed: 11/16/2022]
Abstract
Dairy farm slurry is an important biomass resource that can be used as a fertilizer and in energy utilization and chemical production. This study aimed to establish an innovative ultrasound-assisted electrochemical oxidation (UAEO) digestion method for the rapid and onsite analysis of the heavy metal (HM) contamination level of dairy slurry. The effects of UAEO operating parameters on digestion efficiency were tested based on Cu and Zn concentrations in a dairy slurry sample. The results showed that Cu and Zn digestion efficiency was (96.8 ± 2.6) and (98.5 ± 2.9)%, respectively, with the optimal UAEO operating parameters (digestion time: 45 min; ultrasonic power: 400 W; NaCl concentration: 10 g/L). The digestion recovery rate experiments were then operated with spiked samples to verify the digestion effect on broad-spectrum HMs. When the digestion time reached 45 min, all digestion recovery rates exceeded 90%. Meanwhile, free chlorine concentration, particle size distribution, and micromorphology were investigated to demonstrate the digestion mechanism. It was found that 414 mg/L free chorine had theoretically enough oxidative ability, and the ultrasound intervention could deal with the blocky undissolved particles attributed to its crushing capacity. The results of particle size distribution showed that the total volume and bulky particle proportion had an obvious decline. The micromorphology demonstrated that the ultrasound intervention fragmented the bulky particles, and electrochemical oxidation made irregular blocky structures form arc edge and cellular structures. The aforementioned results indicated that UAEO was a novel and efficient method. It was fast and convenient. Additionally, it ensured digestion efficiency and thus had a good application prospect.
Collapse
Affiliation(s)
- Chenyu Li
- Department of Environment and Health, Tianjin Institude of Environmental and Operational Medicine, Tianjin 300050, China; (C.L.); (B.X.); (S.W.); (X.Z.); (C.Z.); (X.Y.); (S.S.); (H.X.); (Z.S.)
| | - Bin Xue
- Department of Environment and Health, Tianjin Institude of Environmental and Operational Medicine, Tianjin 300050, China; (C.L.); (B.X.); (S.W.); (X.Z.); (C.Z.); (X.Y.); (S.S.); (H.X.); (Z.S.)
| | - Shang Wang
- Department of Environment and Health, Tianjin Institude of Environmental and Operational Medicine, Tianjin 300050, China; (C.L.); (B.X.); (S.W.); (X.Z.); (C.Z.); (X.Y.); (S.S.); (H.X.); (Z.S.)
| | - Xi Zhang
- Department of Environment and Health, Tianjin Institude of Environmental and Operational Medicine, Tianjin 300050, China; (C.L.); (B.X.); (S.W.); (X.Z.); (C.Z.); (X.Y.); (S.S.); (H.X.); (Z.S.)
| | - Chen Zhao
- Department of Environment and Health, Tianjin Institude of Environmental and Operational Medicine, Tianjin 300050, China; (C.L.); (B.X.); (S.W.); (X.Z.); (C.Z.); (X.Y.); (S.S.); (H.X.); (Z.S.)
| | - Xiaobo Yang
- Department of Environment and Health, Tianjin Institude of Environmental and Operational Medicine, Tianjin 300050, China; (C.L.); (B.X.); (S.W.); (X.Z.); (C.Z.); (X.Y.); (S.S.); (H.X.); (Z.S.)
| | - Run Zhao
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin 300191, China;
| | - Lin Dai
- Tianjin Key Laboratory of Pulp and Paper, Tianjin University of Science and Technology, Tianjin 300457, China;
| | - Shengqi Su
- Department of Environment and Health, Tianjin Institude of Environmental and Operational Medicine, Tianjin 300050, China; (C.L.); (B.X.); (S.W.); (X.Z.); (C.Z.); (X.Y.); (S.S.); (H.X.); (Z.S.)
| | - Haoqi Xu
- Department of Environment and Health, Tianjin Institude of Environmental and Operational Medicine, Tianjin 300050, China; (C.L.); (B.X.); (S.W.); (X.Z.); (C.Z.); (X.Y.); (S.S.); (H.X.); (Z.S.)
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin 300191, China;
| | - Zhiqiang Shen
- Department of Environment and Health, Tianjin Institude of Environmental and Operational Medicine, Tianjin 300050, China; (C.L.); (B.X.); (S.W.); (X.Z.); (C.Z.); (X.Y.); (S.S.); (H.X.); (Z.S.)
| | - Zhigang Qiu
- Department of Environment and Health, Tianjin Institude of Environmental and Operational Medicine, Tianjin 300050, China; (C.L.); (B.X.); (S.W.); (X.Z.); (C.Z.); (X.Y.); (S.S.); (H.X.); (Z.S.)
- Correspondence: (Z.Q.); (J.W.); Tel.: +86-22-84655052 (J.W.); Fax: +86-22-23328809 (J.W.)
| | - Jingfeng Wang
- Department of Environment and Health, Tianjin Institude of Environmental and Operational Medicine, Tianjin 300050, China; (C.L.); (B.X.); (S.W.); (X.Z.); (C.Z.); (X.Y.); (S.S.); (H.X.); (Z.S.)
- Correspondence: (Z.Q.); (J.W.); Tel.: +86-22-84655052 (J.W.); Fax: +86-22-23328809 (J.W.)
| |
Collapse
|
37
|
Insights into the technology utilized to cultivate microalgae in dairy effluents. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2021. [DOI: 10.1016/j.bcab.2021.102106] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|