1
|
Gong B, Zhang K, Su M, Yang J, Peng C, Wang Y. Efficient nitrogen and phosphorus removal performance and microbial community in a pilot-scale anaerobic/anoxic/oxic (AOA) system with long sludge retention time: Significant roles of endogenous carbon source. ENVIRONMENTAL RESEARCH 2024; 263:120164. [PMID: 39414113 DOI: 10.1016/j.envres.2024.120164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 10/10/2024] [Accepted: 10/14/2024] [Indexed: 10/18/2024]
Abstract
Stringent wastewater discharge standards require wastewater treatment plants (WWTPs) to focus on enhancing nitrogen (N) and phosphorus (P) removal efficiency. Increasing sludge concentration by regulation of sludge retention time (SRT) would enhance wastewater treatment loads. However, phosphorus-accumulating organisms (PAOs) would be outcompeted by glycogen-accumulating organisms (GAOs) under long SRT, leading to a collapse of P removal. In this work, pilot-scale anaerobic-oxic-anoxic (AOA) and anaerobic-anoxic-oxic (AAO) systems with long SRT (30 d) were parallelly established for actual urban wastewater treatment. The results indicated that sludge reflux ratio, temperature, and C/N ratio significantly impact N and P removal performance of AOA and AAO systems with long SRT, and removal efficiency of AOA system significantly exceeded that of AAO system. AOA system with long SRT achieved the optimal performance at sludge reflux ratio of 200%, temperature of 25 °C, and C/N ratio of 8, with COD, NH4+-N, TN, and PO43--P removal ratio of 92.80 ± 2.24%, 97.38 ± 0.89%, 88.97 ± 2.47%, and 94.33 ± 3.27%, respectively. In addition, compared to AAO system, AOA system could save 23.08% of the aeration volume. This work highlighted that AOA system with long SRT included multiple coupled nitrogen and phosphorus removal pathways, such as autotrophic/heterotrophic nitrification, anoxic/oxic denitrification, endogenous denitrification, and denitrifying phosphorus removal. Among these, the synergistic effect of endogenous denitrification and denitrifying phosphorus removal driven by internal carbon sources contributed to satisfactory nitrogen and phosphorus removal efficiency in AOA system with long SRT.
Collapse
Affiliation(s)
- Benzhou Gong
- Changjiang Survey Planning Design and Research Co., Ltd, Wuhan, 430010, PR China
| | - Kui Zhang
- Changjiang Survey Planning Design and Research Co., Ltd, Wuhan, 430010, PR China
| | - Mubai Su
- College of Civil Engineering, Fuzhou University, Fuzhou, 350116, PR China
| | - Jun Yang
- College of Civil Engineering, Fuzhou University, Fuzhou, 350116, PR China
| | - Cuiyan Peng
- College of Civil Engineering, Fuzhou University, Fuzhou, 350116, PR China
| | - Yingmu Wang
- College of Civil Engineering, Fuzhou University, Fuzhou, 350116, PR China.
| |
Collapse
|
2
|
Chen Y, Qi C, Yu Y, Cao X, Zheng X, Cheng R. Evolution and health risk of indicator microorganisms in landscape water replenished by reclaimed water. J Environ Sci (China) 2024; 146:186-197. [PMID: 38969447 DOI: 10.1016/j.jes.2023.06.039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 06/29/2023] [Accepted: 06/29/2023] [Indexed: 07/07/2024]
Abstract
As an important means to solve water shortage, reclaimed water has been widely used for landscape water supply. However, with the emergence of large-scale epidemic diseases such as SARS, avian influenza and COVID-19 in recent years, people are increasingly concerned about the public health safety of reclaimed water discharged into landscape water, especially the pathogenic microorganisms in it. In this study, the water quality and microorganisms of the Old Summer Palace, a landscape water body with reclaimed water as the only replenishment water source, were tracked through long-term dynamic monitoring. And the health risks of indicator microorganisms were analyzed using Quantitative Microbial Risk Assessment (QMRA). It was found that the concentration of indicator microorganisms Enterococcus (ENT), Escherichia coli (EC) and Fecal coliform (FC) generally showed an upward trend along the direction of water flow and increased by more than 0.6 log at the end of the flow. The concentrations of indicator microorganisms were higher in summer and autumn than those in spring. And there was a positive correlation between the concentration of indicator microorganisms and COD. Further research suggested that increased concentration of indicator microorganisms also led to increased health risks, which were more than 30% higher in other areas of the park than the water inlet area and required special attention. In addition, (water) surface operation exposure pathway had much higher health risks than other pathways and people in related occupations were advised to take precautions to reduce the risks.
Collapse
Affiliation(s)
- Yitong Chen
- School of Environment & Natural Resources, Renmin University of China, Beijing 100872, China
| | - Chang Qi
- School of Environment & Natural Resources, Renmin University of China, Beijing 100872, China
| | - Yanan Yu
- The Administrative Office of the Old Summer Palace, Beijing 100084, China
| | - Xiaoxin Cao
- China Water Environment Group Co. Ltd., Beijing 101101, China
| | - Xiang Zheng
- School of Environment & Natural Resources, Renmin University of China, Beijing 100872, China.
| | - Rong Cheng
- School of Environment & Natural Resources, Renmin University of China, Beijing 100872, China.
| |
Collapse
|
3
|
Ma R, Duan J, Xue L, Yin A, Petropoulos E, Suo Q, Yang L. Treatment of nitrogen and phosphorus from sewage tailwater in paddy rice wetlands: concept and environmental benefits. ENVIRONMENTAL MONITORING AND ASSESSMENT 2024; 196:174. [PMID: 38236448 DOI: 10.1007/s10661-024-12353-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Accepted: 01/11/2024] [Indexed: 01/19/2024]
Abstract
Domestic sewage tailwater (DSTW) reuse for crop irrigation is considered a promising practice to reduce water demand, mitigate water pollution, and substitute chemical fertilization. The level of the above environmental benefits of this water reuse strategy, especially when applied to paddy wetlands, remains unclear. In this study, soil column experiments were conducted to investigate the nitrogen and phosphorus fate in paddy wetlands subjected to different tailwater irrigation and drainage strategies, specifically, (i) TW1 and TW2 for regular or enhanced irrigation-drainage without N fertilization, (ii) TW3 and TW4 for regular irrigation with base or tillering N fertilizer, (iii) conventional fertilization N210, and (iv) no-fertilization controls N0. The results showed that the total nitrogen (TN), nitrate (NO3-), and total phosphorus (TP) removal rates from the paddies irrigated by DSTW ranged between 51.92 and 59.34%, 68.1 and 83.42%, and 85.69 and 86.98% respectively. Ammonia emissions from the DSTW-irrigated treatments were reduced by 14.6~47.2% compared to those paddies subjected to conventional fertilization (N210), similarly for TN emissions, with the exception of the TW2 treatment. Overall, it is established that the paddy wetland could effectively remove residual N and P from surface water runoffs, while the partial substitution of chemical fertilization by DSTW could be confirmed. The outcome of this study demonstrates that DSTW irrigation is a promising strategy for sustainable rice production with a minimized environmental impact.
Collapse
Affiliation(s)
- Rulong Ma
- Key Laboratory of Agro-Environment in Downstream of Yangtze Plain, Ministry of Agriculture and Rural Affairs, Institute of Agricultural Resources and Environment, Jiangsu Academy of Agricultural Sciences, No. 50, Zhongling Street, Nanjing, Jiangsu Province, 210014, China
- College of Grassland, Resources and Environment, Inner Mongolia Agricultural University, Inner Mongolia Key Laboratory of Soil Quality and Nutrient Resources, Hohhot, 010018, China
| | - Jingjing Duan
- Key Laboratory of Agro-Environment in Downstream of Yangtze Plain, Ministry of Agriculture and Rural Affairs, Institute of Agricultural Resources and Environment, Jiangsu Academy of Agricultural Sciences, No. 50, Zhongling Street, Nanjing, Jiangsu Province, 210014, China.
| | - Lihong Xue
- Key Laboratory of Agro-Environment in Downstream of Yangtze Plain, Ministry of Agriculture and Rural Affairs, Institute of Agricultural Resources and Environment, Jiangsu Academy of Agricultural Sciences, No. 50, Zhongling Street, Nanjing, Jiangsu Province, 210014, China
| | - Aijing Yin
- Key Laboratory of Agro-Environment in Downstream of Yangtze Plain, Ministry of Agriculture and Rural Affairs, Institute of Agricultural Resources and Environment, Jiangsu Academy of Agricultural Sciences, No. 50, Zhongling Street, Nanjing, Jiangsu Province, 210014, China
| | - Evangelos Petropoulos
- Stantec, UK, Newcastle upon Tyne, NE1 3DY, UK
- School of Engineering, Newcastle University, Newcastle upon Tyne, NE1 7RU, UK
| | - Quanyi Suo
- College of Grassland, Resources and Environment, Inner Mongolia Agricultural University, Inner Mongolia Key Laboratory of Soil Quality and Nutrient Resources, Hohhot, 010018, China
| | - Linzhang Yang
- Key Laboratory of Agro-Environment in Downstream of Yangtze Plain, Ministry of Agriculture and Rural Affairs, Institute of Agricultural Resources and Environment, Jiangsu Academy of Agricultural Sciences, No. 50, Zhongling Street, Nanjing, Jiangsu Province, 210014, China
| |
Collapse
|
4
|
Zhang X, Li C, Yao D, Hu X, Xie H, Hu Z, Liang S, Zhang J. The environmental risk assessment of constructed wetlands filled with iron and manganese ores in typical antibiotic treatment. ENVIRONMENTAL RESEARCH 2024; 240:117567. [PMID: 37923106 DOI: 10.1016/j.envres.2023.117567] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 09/27/2023] [Accepted: 10/06/2023] [Indexed: 11/07/2023]
Abstract
Constructed wetlands (CWs) is considered as an efficient and environmentally friendly technology for advanced wastewater treatment to eliminate organic pollutants such as sulfamethoxazole (SMX) and trimethoprim (TMP). Iron (Fe) and manganese (Mn) ores have attracted more and more attention as CWs substrates in treating SMX and TMP, but the potentially negative environmental effects of wetland effluents, ore contaminants leached from the substrates and the risk of transmission of antibiotic resistance genes (ARGs) are still not clear. Three CW groups with different substrates (river sand (C-CW), Fe ore (Fe-CW), and Mn ore (Mn-CW)) were set up to evaluate the average removal rates and environmental risk in treating wastewater containing SMX and TMP. The results showed that the average removal rates of SMX and TMP by Fe-CW and Mn-CW were significantly higher than that of C-CW by 12.46%, 6.59% and 38.93%,15.39% respectively (p < 0.05), suggesting that both Fe and Mn ores facilitated the removal of antibiotics. However, the least abundance of ARGs was found in the layer of Fe ore at the middle layer (ML) in Fe-CW among all CWs, which suggested that Fe ore could reduce the risk of ARGs transmission. Although the environmental risk of Fe-CW and Mn-CW effluent was low, Fe-CW effluent inhibited the growth of Chlorella in both 48h and 72h experiments, while Mn-CW effluent showed an inhibitory effect in 48h and then promoted the growth in 72h. Meanwhile, these findings offer valuable insights for wetland health assessment and substrate selection for CWs.
Collapse
Affiliation(s)
- Xin Zhang
- Environment Research Institute, Shandong University, Qingdao, 266237, China
| | - Chaoyu Li
- Jiangsu Surveying and Design Institute of Water Resource Co., Ltd, Yangzhou, 225127, China
| | - Dongdong Yao
- Environment Research Institute, Shandong University, Qingdao, 266237, China
| | - Xiaojin Hu
- Shandong Provincial Key Laboratory of Water Pollution Control and Resource Reuse, Shandong Key Laboratory of Environment Processes and Health, School of Environmental Science and Engineering, Shandong University, Qingdao, 266237, China
| | - Huijun Xie
- Environment Research Institute, Shandong University, Qingdao, 266237, China.
| | - Zhen Hu
- Shandong Provincial Key Laboratory of Water Pollution Control and Resource Reuse, Shandong Key Laboratory of Environment Processes and Health, School of Environmental Science and Engineering, Shandong University, Qingdao, 266237, China
| | - Shuang Liang
- Shandong Provincial Key Laboratory of Water Pollution Control and Resource Reuse, Shandong Key Laboratory of Environment Processes and Health, School of Environmental Science and Engineering, Shandong University, Qingdao, 266237, China
| | - Jian Zhang
- Shandong Provincial Key Laboratory of Water Pollution Control and Resource Reuse, Shandong Key Laboratory of Environment Processes and Health, School of Environmental Science and Engineering, Shandong University, Qingdao, 266237, China; College of Safety and Environmental Engineering, Shandong University of Science and Technology, Qingdao, 266590, China
| |
Collapse
|
5
|
Wu Q, Chen Y, He Y, Cheng Q, Wu Q, Liu Z, Li Y, Yang Z, Tan Y, Yuan Y. Enhanced nitrogen and phosphorus removal by a novel ecological floating bed integrated with three-dimensional biofilm electrode system. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 348:119346. [PMID: 37866187 DOI: 10.1016/j.jenvman.2023.119346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 09/23/2023] [Accepted: 10/14/2023] [Indexed: 10/24/2023]
Abstract
The ecological floating bed (EFB) has been used extensively for the purification of eutrophication water. However, the traditional EFB (T-EFB) often exhibits a decline in nitrogen and phosphorus removal because of the limited adsorption capacity of fillers and inadequate electron donors. In the present study, a series of electrolysis-ecological floating beds (EC-EFBs) were constructed to investigate the decontamination performance of conventional pollutants. EC-EFB outperformed T-EFB in terms of nitrogen and phosphorus removal. Its removal efficiency of total nitrogen and total phosphorus was 20.51-32.95% and 45.06-96.20%, which were higher than that in T-EFB.. Moreover, the plants in EC-EFB demonstrated higher metabolic activity than those in T-EFB. Under the electrolysis condition of 0.51 mA/cm2 for 24 h, the malondialdehyde content and superoxide dismutase activity in EC-EFB were 6.08 nmol/g and 22.61 U/g, which were significantly lower compared to T-EFB (38.65 nmol/g and 26.13 U/g). And the soluble protein content of plant leaves increased from 3.31 mg/g to 5.72 mg/g in EC-EFB. Microbial analysis revealed that electrolysis could significantly change the microbial community and facilitate the proliferation of nitrogen-functional microbes, such as Thermomonas, Hydrogenophaga, Deinococcus, and Zoogloea. It is important to highlight that the hydrogen evolution reaction at the cathode area facilitated phosphorus removal in EC-EFB, thereby inhibiting phosphorus leaching. This study provides a promising and innovative technology for the purification of eutrophic water.
Collapse
Affiliation(s)
- Qingyu Wu
- School of River and Ocean Engineering, Chongqing Jiaotong University, Chongqing, 400074, China
| | - Yao Chen
- School of River and Ocean Engineering, Chongqing Jiaotong University, Chongqing, 400074, China; Engineering Laboratory of Environmental Hydraulic Engineering of Chongqing Municipal Development and Reform Commission, Chongqing Jiaotong University, Chongqing, 400074, China.
| | - Yang He
- School of River and Ocean Engineering, Chongqing Jiaotong University, Chongqing, 400074, China
| | - Qiming Cheng
- School of River and Ocean Engineering, Chongqing Jiaotong University, Chongqing, 400074, China
| | - Qiong Wu
- School of River and Ocean Engineering, Chongqing Jiaotong University, Chongqing, 400074, China
| | - Zhen Liu
- School of River and Ocean Engineering, Chongqing Jiaotong University, Chongqing, 400074, China; Engineering Laboratory of Environmental Hydraulic Engineering of Chongqing Municipal Development and Reform Commission, Chongqing Jiaotong University, Chongqing, 400074, China
| | - Yunqing Li
- School of River and Ocean Engineering, Chongqing Jiaotong University, Chongqing, 400074, China
| | - Zhenmei Yang
- Jiangjin Ecological Environment Monitoring Station, Chongqing, 402260, China
| | - Yuqing Tan
- School of River and Ocean Engineering, Chongqing Jiaotong University, Chongqing, 400074, China
| | - Ying Yuan
- School of River and Ocean Engineering, Chongqing Jiaotong University, Chongqing, 400074, China
| |
Collapse
|
6
|
Li S, Guo Y, Zhang X, Feng L, Yong X, Xu J, Liu Y, Huang X. Advanced nitrogen and phosphorus removal by the symbiosis of PAOs, DPAOs and DGAOs in a pilot-scale A 2O/A+MBR process with a low C/N ratio of influent. WATER RESEARCH 2023; 229:119459. [PMID: 36521311 DOI: 10.1016/j.watres.2022.119459] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2022] [Revised: 11/07/2022] [Accepted: 12/03/2022] [Indexed: 06/17/2023]
Abstract
Cooperating in harmony to avoid competition with dominant functional microbial symbiosis is an efficient way in advanced nitrogen and phosphorus removal in wastewater treatment processes. In this study, a niche-based coordinating strategy was implemented to cooperate in harmony with phosphorus-accumulating organisms (PAOs), denitrifying phosphorus-accumulating organisms (DPAOs) and denitrifying glycogen-accumulating organisms (DGAOs) to advance nitrogen and phosphorus removal based on an anaerobic-anoxic-oxic-anoxic-membrane bioreactor (A2O/A+MBR) under low C/N in municipal wastewater influent. The niche-based strategy was conducted based on the ORP change during the process as an indicator combined with the adjustment of recirculation and anoxic zone shifting. The results indicated that the strategy of the post-anoxic unit could enable significant enhancement of biological nitrogen and phosphorus removal (BNPR) by 9.9% and 16.3%, respectively, with low effluent concentrations of 7.0 ± 2.2 mg N/L and 0.36±0.32 mg P/L. The satisfactory performance was dominated along with the shift in the microbial community: the relative abundance of Tetrasphaera (PAO genus) increased from 0.14±0.08% to 0.32±0.12%, while the relative abundance of Decchloromonas (DGAO genus) and Candidatus Competibacter (DGAO genus) also increased. The advanced combination of anaerobic phosphorus release, anoxic denitrification, denitrifying phosphorus removal and endogenous denitrification was qualified by the modeling simulation of the biochemical kinetics mechanism of activated sludge in the A2O+MBR and A2O/A+MBR processes, which means that cooperation in the harmony of PAOs, DPAOs and DGAOs could be efficiently realized by a promising control strategy to enhance BNPR in an A2O+MBR with a post-anoxic unit. This study provides an efficient and simple novel control strategy to overcome the limitation of traditional nitrogen and phosphorus removal under an insufficient carbon source.
Collapse
Affiliation(s)
- Siqi Li
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing, 100084, China
| | - Yu Guo
- Chengdu Xingrong Environment Co., Ltd, Chengdu, 610041, China
| | - Xuan Zhang
- Chengdu Xingrong Environment Co., Ltd, Chengdu, 610041, China
| | - Liang Feng
- Chengdu Drainage Co., Ltd, Chengdu, Chengdu, 610011, China
| | - Xiaolei Yong
- Chengdu Drainage Co., Ltd, Chengdu, Chengdu, 610011, China
| | - Jing Xu
- Chengdu Drainage Co., Ltd, Chengdu, Chengdu, 610011, China
| | - Yanchen Liu
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing, 100084, China.
| | - Xia Huang
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing, 100084, China
| |
Collapse
|
7
|
Jia Z, Wang J, Liu X, Yan Z, Bai X, Zhou X, He X, Hou J. Sediment diffusion is feasible to simultaneously reduce nitrate discharge from recirculating aquaculture system and ammonium release from sediments in receiving intensive aquaculture pond. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 858:160017. [PMID: 36370792 DOI: 10.1016/j.scitotenv.2022.160017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 11/02/2022] [Accepted: 11/03/2022] [Indexed: 06/16/2023]
Abstract
Nitrogen accumulation has become one of the greatest unresolved challenges restricting the development of aquaculture worldwide. In recirculating aquaculture system (RAS), lack of organic matter (OM) and sensitive organisms makes it difficult to apply efficient denitrifying technology, thus leading to a high nitrate‑nitrogen (NO3--N) accumulation. In contrast, excess OM accumulation in intensive aquaculture pond sediments is associated with dissolved oxygen depletion and ammonium‑nitrogen (NH4+-N) accumulation in the sediments. Based on the opposing effects of OM on the nitrogen accumulation in RAS and intensive aquaculture ponds, this study assessed the feasibility of simultaneously reducing NO3--N discharge from RAS and controlling NH4+-N accumulation in intensive aquaculture ponds by in situ diffusing RAS tailwater containing NO3--N into intensive aquaculture pond sediments. The results showed that NO3--N diffusion strategy improved the native sediment denitrification capacity, thus increasing NO3--N removal efficiency from RAS tailwater and significantly decreasing the NH4+-N concentration in interstitial water and the total organic carbon content in intensive aquaculture pond sediments. High-throughput sequencing and quantitative real-time polymerase chain reaction (qPCR) results revealed that NO3--N addition significantly increased both nitrifying bacteria and denitrifying bacteria abundance. These results implied that NO3--N diffusion strategy could effectively stimulate microbial decomposition of OM, thus relieving the hypoxia limitation of sediment nitrification. Overall, this study offers a feasible method for simultaneous reduction of NO3--N from RAS tailwater and NH4+-N in intensive aquaculture ponds with low cost and high efficiency.
Collapse
Affiliation(s)
- Zhiming Jia
- College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China
| | - Jie Wang
- College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China
| | - Xueyu Liu
- College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China
| | - Zuting Yan
- State key laboratory of Freshwater Ecology and Biotechnology, Key Laboratory of Algal Biology, Institute of Hydrobiology, the Chinese Academy of Sciences, Wuhan 430072, China
| | - Xuelan Bai
- College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China
| | - Xiaodi Zhou
- College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China
| | - Xugang He
- College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China; Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, Wuhan 430070, China; Freshwater Aquaculture Collaborative Innovation Center of Hubei Province, Wuhan 430070, China.
| | - Jie Hou
- College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China; Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, Wuhan 430070, China; Freshwater Aquaculture Collaborative Innovation Center of Hubei Province, Wuhan 430070, China.
| |
Collapse
|
8
|
Wu T, Yang SS, Zhong L, Pang JW, Zhang L, Xia XF, Yang F, Xie GJ, Liu BF, Ren NQ, Ding J. Simultaneous nitrification, denitrification and phosphorus removal: What have we done so far and how do we need to do in the future? THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 856:158977. [PMID: 36155040 DOI: 10.1016/j.scitotenv.2022.158977] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 09/14/2022] [Accepted: 09/20/2022] [Indexed: 06/16/2023]
Abstract
Nitrogen and phosphorus contamination in wastewater is a serious environmental concern and poses a global threat to sustainable development. In this paper, a comprehensive review of the studies on simultaneous nitrogen and phosphorus removal (SNPR) during 1986-2022 (538 publications) was conducted using bibliometrics, which showed that simultaneous nitrification, denitrification, and phosphorus removal (SNDPR) is the most promising process. To better understand SNDPR, the dissolved oxygen, carbon to nitrogen ratio, carbon source type, sludge retention time, Cu2+ and Fe3+, pH, salinity, electron acceptor type of denitrifying phosphorus-accumulating organisms (DPAOs), temperature, and other influencing factors were analyzed. Currently, SNDPR has been successfully implemented in activated sludge systems, aerobic granular sludge systems, biofilm systems, and constructed wetlands; sequential batch mode of operation is a common means to achieve this process. SNDPR exhibits a significant potential for phosphorus recovery. Future research needs to focus on: (1) balancing the competitiveness between denitrifying glycogen-accumulating organisms (DGAOs) and DPAOs, and countermeasures to deal with the effects of adverse conditions on SNDPR performance; (2) achieving SNDPR in continuous flow operation; and (3) maximizing the recovery of P during SNDPR to achieve resource sustainability. Overall, this study provides systematic and valuable information for deeper insights into SNDPR, which can help in further research.
Collapse
Affiliation(s)
- Tong Wu
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Shan-Shan Yang
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China.
| | - Le Zhong
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Ji-Wei Pang
- China Energy Conservation and Environmental Protection Group, Beijing 100089, China
| | - Luyan Zhang
- School of Environmental Science and Engineering, Yancheng Institute of Technology, Yancheng 224051, China
| | - Xue-Fen Xia
- Institute of New Rural Development, Tongji University, No. 1239, Siping Road, Shanghai 200092, China
| | - Fan Yang
- School of Life Science and Technology, Harbin Institute of Technology, Harbin 150008, China
| | - Guo-Jun Xie
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Bing-Feng Liu
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Nan-Qi Ren
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Jie Ding
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China.
| |
Collapse
|
9
|
Wu L, Lu C, Huang N, Zhong M, Teng Y, Tian Y, Ye K, Liang L, Hu Z. Exploration of the effect of simultaneous removal of EDCs in the treatment process of different types of wastewater. WATER SCIENCE AND TECHNOLOGY : A JOURNAL OF THE INTERNATIONAL ASSOCIATION ON WATER POLLUTION RESEARCH 2023; 87:436-453. [PMID: 36706292 DOI: 10.2166/wst.2022.429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
The SPE-HPLC-MS/MS method was used to investigate the concentration distribution of nine types of estrogens in 18 locations of pollution source along the Jiuzhou River belonging to river systems in Guangdong province and Guangxi Zhuang autonomous region in China, and the estrogenic activity and potential ecological risks were evaluated by calculating the estradiol equivalency (EEQ). The results showed that the calculated estradiol equivalents (cEEQs) of wastewater treatment plants from 17 locations were all higher than 1 ng/L. To further study the removal effect of the treatment process on the estrogens, the pig breeding wastewater from P4 and the municipal wastewater from P13, as well as the black-odorous water, were sampled and surveyed during the entire process. It turned out that estrogens were effectively removed after nitrification activated sludge treatment. Meanwhile, there was a positive correlation between the removal of NH3-N, total nitrogen (TN) and total phosphorus (TP) and the removal of endocrine disrupting chemicals (EDCs). It is shown in the study the secondary treatment process has achieved a significant effect on the removal of estrogen in both the wet and dry periods and that there has been a positive correlation between the activities of total phosphorus compounds, nitrogen-based compounds and the removal of EDCs.
Collapse
Affiliation(s)
- Lieshan Wu
- School of Resources, Environment and Materials, Guangxi University, Nanning 530004, PR China
| | - Chunliu Lu
- School of Resources, Environment and Materials, Guangxi University, Nanning 530004, PR China
| | - Ning Huang
- Guangxi Zhuang Autonomous Region Ecological and Environmental Monitoring Centre, Nanning 530028, PR China E-mail:
| | - Minjie Zhong
- School of Resources, Environment and Materials, Guangxi University, Nanning 530004, PR China
| | - Yunmei Teng
- Guangxi Zhuang Autonomous Region Ecological and Environmental Monitoring Centre, Nanning 530028, PR China E-mail:
| | - Yan Tian
- Guangxi Zhuang Autonomous Region Ecological and Environmental Monitoring Centre, Nanning 530028, PR China E-mail:
| | - Kaixiao Ye
- Guangxi Zhuang Autonomous Region Ecological and Environmental Monitoring Centre, Nanning 530028, PR China E-mail:
| | - Liuling Liang
- Guangxi Zhuang Autonomous Region Ecological and Environmental Monitoring Centre, Nanning 530028, PR China E-mail:
| | - Zaoshi Hu
- Guangxi Zhuang Autonomous Region Ecological and Environmental Monitoring Centre, Nanning 530028, PR China E-mail:
| |
Collapse
|
10
|
Sun S, Zhang M, Gu X, He S, Tang L. Microbial response mechanism of plants and zero valent iron in ecological floating bed: Synchronous nitrogen, phosphorus removal and greenhouse gas emission reduction. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2022; 324:116326. [PMID: 36182841 DOI: 10.1016/j.jenvman.2022.116326] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2022] [Revised: 08/26/2022] [Accepted: 09/16/2022] [Indexed: 06/16/2023]
Abstract
Iron-based ecological floating beds (EFBs) are often used to treat the secondary effluent from wastewater treatment plant to enhance the denitrification process. However, the impact and necessity of plants on iron-based EFBs have not been systematically studied. In this research, two iron-based EFBs with and without plants (EFB-P and EFB) were performed to investigate the response of plants on nutrient removal, GHG emissions, microbial communities and functional genes. Results showed the total nitrogen and total phosphorus removal in EFB-P was 45-79% and 48-72%, respectively, while that in EFB was 31-67% and 44-57%. Meanwhile, plants could decrease CH4 emission flux (0-3.89 mg m-2 d-1) and improve CO2 absorption (4704-22321 mg m-2 d-1). Plants could increase the abundance of Nitrosospira to 1.6% which was a kind of nitrifying bacteria dominant in plant rhizosphere. Among all denitrification related genera, Simplicispira (13.08%) and Novosphingobium (6.25%) accounted for the highest proportion of plant rhizosphere and iron scrap, respectively. Anammox bacteria such as Candidatus_Brocadia was more enriched on iron scraps with the highest proportion was 1.21% in EFB-P, and 2.20% in EFB. Principal co-ordinates analysis showed that plants were the critical factor determining microbial community composition. TN removal pathways were mixotrophic denitrification and anammox in EFB-P while TP removal pathways were plant uptake and phosphorus-iron coprecipitation. In general, plants play an important directly or indirectly role in iron-based EFBs systems, which could not only improve nutrients removal, but also minimize the global warming potential and alleviate the greenhouse effect to a certain extent.
Collapse
Affiliation(s)
- Shanshan Sun
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, PR China
| | - Manping Zhang
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, PR China
| | - Xushun Gu
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, PR China
| | - Shengbing He
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, PR China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai, 20092, PR China; Shanghai Engineering Research Center of Landscape Water Environment, Shanghai, 200031, PR China.
| | - Li Tang
- Shanghai Engineering Research Center of Landscape Water Environment, Shanghai, 200031, PR China; Shanghai Landscape Architecture Design Institute, Shanghai, 200031, PR China
| |
Collapse
|
11
|
Hao S, Yuling L, Penghe Z, Yang J. Optimization of dissolution and fermentation acid production of rhamnolipid-alkali-heat synergistic pretreatment of sludge. CHEMOSPHERE 2022; 306:135607. [PMID: 35810874 DOI: 10.1016/j.chemosphere.2022.135607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Revised: 06/03/2022] [Accepted: 07/02/2022] [Indexed: 06/15/2023]
Abstract
With the development of the urban sewage treatment industry, the sludge output has increased year by year, and it has the characteristics of large output and high organic content, and has great potential for resource recovery. However, the biodegradability of sludge is poor, resulting in low added value of resource products. Therefore, it is necessary to treat sludge efficiently and improve the utilization. Based on this, the effects on sludge characteristics and acid-producing fermentation were investigated, and optimal conditions were determined by response surface method. The results showed that: The optimal conditions for experimental optimization are rhamnolipid (RL: 40 mg/gVS) alkali (Alk: 35 mg/gVS), heat: 80 °C. Response surface design optimization results are RL (28.44 mg/gVS), NaOH (35 mg/gVS), heat: 80 °C. In the process of RL-Alk-Heat pretreatment, the organic matter dissolution is Heat > Alk. Also, RL, Alk and Heat all promoted the content of fluorescent substances. From the results of the optimal combination verification test, it showed that SC (Soluble carbohydrate) and SP (Soluble protein) increase. Among them, three-factor treatment is higher than two-factor treatment than single-factor treatment.
Collapse
Affiliation(s)
- Shu Hao
- Institute of Water Resources and Hydro-electric Engineering, Xi'an University of Technology, Xi'an, 710048, China.
| | - Liu Yuling
- Institute of Water Resources and Hydro-electric Engineering, Xi'an University of Technology, Xi'an, 710048, China.
| | - Zhao Penghe
- Shaanxi Academy of Social Sciences, Xi'an, China.
| | - Jia Yang
- Institute of Water Resources and Hydro-electric Engineering, Xi'an University of Technology, Xi'an, 710048, China.
| |
Collapse
|
12
|
Li Y, Yuan H, Cao L, Liu L, Yu H, Gao J, Zhang Y. Performance enhancement and population structure of denitrifying phosphorus removal system over redox mediator at low temperature. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2022; 319:115748. [PMID: 35842988 DOI: 10.1016/j.jenvman.2022.115748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 06/21/2022] [Accepted: 07/10/2022] [Indexed: 06/15/2023]
Abstract
The development of denitrifying polyphosphate accumulating organisms (DPAOs) presents a strategy to carbon competition between denitrifying bacteria and phosphorus removing bacteria. However, low temperature inhibits the rate of enzyme-catalyzed and substrate diffusion during denitrifying phosphorus removal (DPR). Therefore, the present study assessed the addition of NQS (100 μmol/L) for enhancing the removal of TP and TN in DPR reactors operated at alternating anaerobic and anoxic phases and different influent phosphate concentrations. The results showed that the removal efficiency of TP and TN in NQS-DPR system at 10 °C were 99.9% and 42.0%, respectively, which were 2.1 and 2.0 times higher than that of DPR system. Adding NQS significantly alleviated the increase of pH under anoxic condition and decreased the ORP value of the reactor, which in turn enhanced the PHAs accumulation process. The determination of functional genes (nirK, narG and phoD) showed that Dechloromonas, Lentimicrobium, and Terrimonas were the dominant functional bacteria in NQS-DPR system at 10 °C with the relative abundance of 3.09%, 2.99% and 2.28%, respectively. This study can provide valuable information for the effects of the addition of the redox mediator on denitrifying phosphorus removal technology.
Collapse
Affiliation(s)
- Yuanling Li
- Tianjin Key Laboratory of Aquatic Science and Technology, Tianjin Chengjian University, Tianjin, 300384, China; College of Environmental Science and Engineering, Nankai University, Tianjin, 300071, China
| | - Hongying Yuan
- Tianjin Key Laboratory of Aquatic Science and Technology, Tianjin Chengjian University, Tianjin, 300384, China.
| | - Lei Cao
- Tianjin Key Laboratory of Aquatic Science and Technology, Tianjin Chengjian University, Tianjin, 300384, China; State Key Laboratory of Separation Membranes and Membrane Processes, Tiangong University, Tianjin, 300387, China.
| | - Lina Liu
- College of Environmental Science and Engineering, Nankai University, Tianjin, 300071, China
| | - Hongbing Yu
- College of Environmental Science and Engineering, Nankai University, Tianjin, 300071, China
| | - Jie Gao
- Tianjin Key Laboratory of Aquatic Science and Technology, Tianjin Chengjian University, Tianjin, 300384, China
| | - Yufeng Zhang
- Tianjin Key Laboratory of Aquatic Science and Technology, Tianjin Chengjian University, Tianjin, 300384, China
| |
Collapse
|
13
|
Han J, Qiu Q, Gao M, Qiu L, Wang Y, Sun S, Song D, Ma J. Phosphorus removal from municipal wastewater through a novel Trichosporon asahii BZ: Performance and mechanism. CHEMOSPHERE 2022; 298:134329. [PMID: 35304214 DOI: 10.1016/j.chemosphere.2022.134329] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2021] [Revised: 03/08/2022] [Accepted: 03/13/2022] [Indexed: 06/14/2023]
Abstract
A yeast BZ was screened from a laboratory-scale anaerobic/aerobic reactor and designated as Trichosporon asahii through 26S rDNA gene sequence analysis. The screened BZ abated over 70% of phosphorus in municipal sewage with 2-10 mg/L phosphorus in the appropriate conditions. The yeast BZ had strong adaptability to pH and the dissolved oxygen, but the cultivation temperature, carbon source, the ratio of C/P and the ratio of N/P had a critical influence on the phosphorus abatement performance of yeast BZ. The analysis of phosphorus concentration in the wastewater, cells, and extracellular polymeric substances (EPS) suggested that about 55%-66% of the removed phosphorus was in the yeast cells and 34%-45% in the EPS. The proposed probable metabolic mechanism of phosphorus in yeast BZ showed that EPS acted as a dynamic phosphorous transfer station, and most of phosphorus was transferred into yeast cells through EPS transfer station. These findings have crucial implications for the development of a promising stable and easy-operation biological phosphorus abatement process for municipal wastewater treatment.
Collapse
Affiliation(s)
- Junli Han
- School of Civil Engineering and Architecture, University of Jinan, Jinan, 250022, China
| | - Qi Qiu
- School of Water Conservancy and Environment, University of Jinan, Jinan, 250022, China
| | - Mingchang Gao
- School of Water Conservancy and Environment, University of Jinan, Jinan, 250022, China
| | - Liping Qiu
- School of Civil Engineering and Architecture, University of Jinan, Jinan, 250022, China.
| | - Yan Wang
- School of Civil Engineering and Architecture, University of Jinan, Jinan, 250022, China
| | - Shaofang Sun
- School of Civil Engineering and Architecture, University of Jinan, Jinan, 250022, China.
| | - Dan Song
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, 150090, China
| | - Jun Ma
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, 150090, China
| |
Collapse
|
14
|
Hou B, Peng S, Deng R, Ren B, Song Y. Biological nutrients removal performance under starvation stress: Efficacy deterioration and recovery. BIORESOURCE TECHNOLOGY 2022; 351:126977. [PMID: 35276376 DOI: 10.1016/j.biortech.2022.126977] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2022] [Revised: 02/28/2022] [Accepted: 03/05/2022] [Indexed: 06/14/2023]
Abstract
Biological nutrients removal performance affected by starvation stress was investigated via the addition of pre-anoxic stage to SBR. COD removal efficiency maintained at around 90% regardless of the starvation stress. Starvation stress presented significant impact on nitrogen and phosphorus removal, with noticeable reduction of TN removal and remarkable deterioration of TP removal as prolonging the pre-anoxic time, which was mainly attributed to the integrative effect of carbon source competition, depression of denitrification and invalid P release as well as the variation of microbial community. It was notable that starvation stress exerted distinct evolution on microbial community. The improvement in relative abundance of the certain genera relating to denitrification was the main reason for the partial recovery of nitrogen removal after eliminating stress starvation. The promotion of P uptake capacity accompanied with the relief of invalid P release and the enriched DPAOs accounted for the complete recovery of phosphorus removal.
Collapse
Affiliation(s)
- Baolin Hou
- School of Civil Engineering, Hunan University of Science and Technology, Xiangtan, 411201, China
| | - Sining Peng
- School of Civil Engineering, Hunan University of Science and Technology, Xiangtan, 411201, China
| | - Renjian Deng
- School of Civil Engineering, Hunan University of Science and Technology, Xiangtan, 411201, China.
| | - Bozhi Ren
- School of Civil Engineering, Hunan University of Science and Technology, Xiangtan, 411201, China
| | - Yujia Song
- School of Civil Engineering, Hunan University of Science and Technology, Xiangtan, 411201, China
| |
Collapse
|
15
|
Chen J, Wang J, Wang X, Lv Y, Li D, Hou J, He X. Strengthening anoxic glycogen consumption in SNEDPR-CW as a strategy to control PAO-GAO competition under carbon limited condition. CHEMOSPHERE 2022; 288:132617. [PMID: 34678339 DOI: 10.1016/j.chemosphere.2021.132617] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 10/04/2021] [Accepted: 10/18/2021] [Indexed: 06/13/2023]
Abstract
Cooperation between Phosphate and Glycogen Accumulating Organisms (PAOs and GAOs) plays a pivotal role in nutrients removal in simultaneous nitrification endogenous denitrification and phosphorous removal (SNEDPR) systems. Recent findings have expanded the application of SNEDPR from activated sludge system to constructed wetland (CW). However, how to regulate competition between PAOs and GAOs in SNEDPR-based CW is still unclear. Here we showed that, GAOs could easily gain dominance over PAOs in SNEDPR-CW under alternating anaerobic/aerobic (A/O) operational mode. Shortening aerobic hydraulic retention time (HRT) at low oxygen concentration was benefit for simultaneous nitrification endogenous denitrification (SNED) and denitrifying dephosphatation but would reduce the overall phosphorus uptake rate and lead to high phosphorus effluent concentrations. Extended aerobic HRT promoted the proliferation of aerobic GAOs over PAOs, decreasing both enhanced biological phosphorus removal (EBPR) and SNED performance. Surprisingly, by switching the operation of system to alternating anaerobic/aerobic/anoxic (A/O/A) mode, an extraordinary nutrients removal performance with mean nitrogen and phosphorus removal efficiency of 84.57% and 89.37% was achieved under carbon sources limited condition. Stoichiometric analysis demonstrated that adding anoxic stage strengthened the intracellular glycogen oxidization of GAOs for denitrification which compromised its subsequent anaerobic carbon sources uptake and PHA storage and provided sufficient carbon sources for PAOs. Microbial community analysis showed that numerical ratio of GAOs to PAOs decreased from 6.67 under A/O to 4.89 under A/O/A mode, which further indicated strengthening glycogen denitrification of GAOs should be an effective way to regulate microbial competition in order to obtain a desired nutrients removal performance in SNEDPR-CW.
Collapse
Affiliation(s)
- Jieyu Chen
- College of Fisheries, Huazhong Agricultural University, Wuhan, 430070, China
| | - Jie Wang
- College of Fisheries, Huazhong Agricultural University, Wuhan, 430070, China
| | - Xiaoning Wang
- College of Fisheries, Huazhong Agricultural University, Wuhan, 430070, China
| | - Yabing Lv
- College of Fisheries, Huazhong Agricultural University, Wuhan, 430070, China
| | - Dapeng Li
- College of Fisheries, Huazhong Agricultural University, Wuhan, 430070, China; Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, Wuhan, 430070, China; Freshwater Aquaculture Collaborative Innovation Center of Hubei Province, Wuhan, 430070, China
| | - Jie Hou
- College of Fisheries, Huazhong Agricultural University, Wuhan, 430070, China; Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, Wuhan, 430070, China; Freshwater Aquaculture Collaborative Innovation Center of Hubei Province, Wuhan, 430070, China.
| | - Xugang He
- College of Fisheries, Huazhong Agricultural University, Wuhan, 430070, China; Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, Wuhan, 430070, China; Freshwater Aquaculture Collaborative Innovation Center of Hubei Province, Wuhan, 430070, China.
| |
Collapse
|