1
|
Hamdi S, Míguez-González A, Cela-Dablanca R, Barreiro A, Fernández-Sanjurjo MJ, Núñez-Delgado A, Álvarez-Rodríguez E. Natural and modified clays as low-cost and ecofriendly materials to remove salinomycin from environmental compartments. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 368:122158. [PMID: 39151338 DOI: 10.1016/j.jenvman.2024.122158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 08/06/2024] [Accepted: 08/07/2024] [Indexed: 08/19/2024]
Abstract
Antibiotics in the environment represent a substantial pollution threat. Among these emerging pollutants, ionophore anticoccidials are of special concern due to their potential ecological impact, persistence in the environment, and role in promoting antimicrobial resistance. To investigate the adsorption/desorption of the ionophore antibiotic salinomycin (SAL) on/from raw and modified clay adsorbents, batch-type experiments were performed using 0.5 g of clay adsorbent mixed with 10 mL of increasing doses of SAL solutions for each sample, at room temperature, with a contact time of 24 h. All measurements were conducted in triplicate employing HPLC-UV equipment. Three different natural (raw) and modified clay samples were investigated, which were denominated as follows: AM (with 51% calcite), HJ1 (with 32% kaolinite), and HJ2 (with 32% microcline). The experiments were carried out using three pH ranges: between 3.33 and 4.49 for acid-activated clays, 8.39-9.08 for natural clays, and 9.99-10.18 for base-activated clays. The results indicated that, when low concentrations of the antibiotic were added (from 5 to 20 μmol L-1), more than 98% of SAL was strongly adsorbed by almost all clays, irrespective of the physicochemical and mineralogical composition of the clays or their pH values. When higher SAL concentrations were added (40 and 100 μmol L-1), the adsorption of the antibiotic showed pH-dependent ligand adsorption mechanisms: (i) highly decreased as the pH raised (for the raw and base-activated AM and HJ1 clays), while (ii) slightly decreased as the pH decreased (on the acid-activated clays). Among the adsorption equations tested (Freundlich, Langmuir, and Linear), the Freundlich model was identified as the most suitable for fitting the data corresponding to SAL adsorption onto the studied clays. SAL desorption from clays was consistently below 10% for all the clay samples, especially for the acid-activated clays, due to cation bridging adsorption mechanisms, when the lowest concentration of the antibiotic was added. Additionally, it should be stressed that the desorption values can increase with rising SAL concentrations, but they always remain below 20%. Overall, the clays here investigated (both raw and modified) provide a cost-effective and efficient alternative for the removal of the veterinary anticoccidial antibiotic SAL, with potential positive and practical implications in environmental remediation and antibiotic pollution management, particularly by serving as amendments for contaminated soils to enhance their adsorption capacities against SAL. Additionally, using these clays in water treatment processes could improve the efficiency of mitigating antibiotic contamination in aquatic systems.
Collapse
Affiliation(s)
- Samiha Hamdi
- Department of Biotechnology, Faculty of Science and Technology of Sidi Bouzid, University of Kairouan, 9100, Sidi Bouzid, Tunisia; Department Soil Science and Agricultural Chemistry, Engineering Polytechnic School, University of Santiago de Compostela, 27002, Lugo, Spain; Laboratory of Nutrition - Functional Foods and Health (NAFS)-LR12ES05, Faculty of Medicine, University of Monastir, Avenue Avicenne 5019, Monastir, Tunisia
| | - Ainoa Míguez-González
- Department Soil Science and Agricultural Chemistry, Engineering Polytechnic School, University of Santiago de Compostela, 27002, Lugo, Spain
| | - Raquel Cela-Dablanca
- Department Soil Science and Agricultural Chemistry, Engineering Polytechnic School, University of Santiago de Compostela, 27002, Lugo, Spain
| | - Ana Barreiro
- Department Soil Science and Agricultural Chemistry, Engineering Polytechnic School, University of Santiago de Compostela, 27002, Lugo, Spain.
| | - María J Fernández-Sanjurjo
- Department Soil Science and Agricultural Chemistry, Engineering Polytechnic School, University of Santiago de Compostela, 27002, Lugo, Spain
| | - Avelino Núñez-Delgado
- Department Soil Science and Agricultural Chemistry, Engineering Polytechnic School, University of Santiago de Compostela, 27002, Lugo, Spain
| | - Esperanza Álvarez-Rodríguez
- Department Soil Science and Agricultural Chemistry, Engineering Polytechnic School, University of Santiago de Compostela, 27002, Lugo, Spain
| |
Collapse
|
2
|
Hamdi S, Issaoui M, Hammami S, Míguez-González A, Cela-Dablanca R, Barreiro A, Núñez-Delgado A, Álvarez-Rodríguez E, Fernández-Sanjurjo MJ. Removal of the Highly Toxic Anticoccidial Monensin Using Six Different Low-Cost Bio-Adsorbents. TOXICS 2024; 12:606. [PMID: 39195708 PMCID: PMC11360468 DOI: 10.3390/toxics12080606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 08/16/2024] [Accepted: 08/18/2024] [Indexed: 08/29/2024]
Abstract
The anticoccidial monensin (MON) is a high-concern emerging pollutant. This research focused on six low-cost bio-adsorbents (alfa, cactus, and palm fibers, and acacia, eucalyptus, and zean oak barks), assessing their potential for MON removal. Batch adsorption/desorption tests were carried out, and the results were fitted to the Freundlich, Langmuir, Linear, Sips, and Temkin models. The concentrations adsorbed by the six materials were very similar when low doses of antibiotic were added, while they differed when adding MON concentrations higher than 20 µmol L-1 (adsorption ranging 256.98-1123.98 μmol kg-1). The highest adsorption corresponded to the sorbents with the most acidic pH (<5.5) and the highest organic matter and effective cation exchange capacity values (eucalyptus bark and acacia bark, reaching 92.3% and 87.8%), whereas cactus and palm fibers showed the lowest values (18.3% and 10.17%). MON desorption was below 8.5%, except for cactus and palm fibers. Temkin was the model showing the best adjustment to the experimental data, followed by the Langmuir and the Sips models. The overall results indicate that eucalyptus bark, alfa fiber, and acacia bark are efficient bio-adsorbents with potential for MON removal, retaining it when spread in environmental compartments, reducing related risks for human and environmental health.
Collapse
Affiliation(s)
- Samiha Hamdi
- Department of Biotechnology, Faculty of Science and Technology of Sidi Bouzid, University of Kairouan, Sidi Bouzid 9100, Tunisia; (S.H.); (M.I.)
- Department of Soil Science and Agricultural Chemistry, Engineering Polytechnic School, University of Santiago de Compostela, 27002 Lugo, Spain; (A.M.-G.); (R.C.-D.); (A.N.-D.); (E.Á.-R.); (M.J.F.-S.)
- Laboratory of Nutrition–Functional Foods and Health (NAFS)-LR12ES05, Faculty of Medicine, University of Monastir, Avenue Avicenne, Monastir 5019, Tunisia;
| | - Manel Issaoui
- Department of Biotechnology, Faculty of Science and Technology of Sidi Bouzid, University of Kairouan, Sidi Bouzid 9100, Tunisia; (S.H.); (M.I.)
- Laboratory of Nutrition–Functional Foods and Health (NAFS)-LR12ES05, Faculty of Medicine, University of Monastir, Avenue Avicenne, Monastir 5019, Tunisia;
| | - Sonia Hammami
- Laboratory of Nutrition–Functional Foods and Health (NAFS)-LR12ES05, Faculty of Medicine, University of Monastir, Avenue Avicenne, Monastir 5019, Tunisia;
| | - Ainoa Míguez-González
- Department of Soil Science and Agricultural Chemistry, Engineering Polytechnic School, University of Santiago de Compostela, 27002 Lugo, Spain; (A.M.-G.); (R.C.-D.); (A.N.-D.); (E.Á.-R.); (M.J.F.-S.)
| | - Raquel Cela-Dablanca
- Department of Soil Science and Agricultural Chemistry, Engineering Polytechnic School, University of Santiago de Compostela, 27002 Lugo, Spain; (A.M.-G.); (R.C.-D.); (A.N.-D.); (E.Á.-R.); (M.J.F.-S.)
| | - Ana Barreiro
- Department of Soil Science and Agricultural Chemistry, Engineering Polytechnic School, University of Santiago de Compostela, 27002 Lugo, Spain; (A.M.-G.); (R.C.-D.); (A.N.-D.); (E.Á.-R.); (M.J.F.-S.)
| | - Avelino Núñez-Delgado
- Department of Soil Science and Agricultural Chemistry, Engineering Polytechnic School, University of Santiago de Compostela, 27002 Lugo, Spain; (A.M.-G.); (R.C.-D.); (A.N.-D.); (E.Á.-R.); (M.J.F.-S.)
| | - Esperanza Álvarez-Rodríguez
- Department of Soil Science and Agricultural Chemistry, Engineering Polytechnic School, University of Santiago de Compostela, 27002 Lugo, Spain; (A.M.-G.); (R.C.-D.); (A.N.-D.); (E.Á.-R.); (M.J.F.-S.)
| | - María J. Fernández-Sanjurjo
- Department of Soil Science and Agricultural Chemistry, Engineering Polytechnic School, University of Santiago de Compostela, 27002 Lugo, Spain; (A.M.-G.); (R.C.-D.); (A.N.-D.); (E.Á.-R.); (M.J.F.-S.)
| |
Collapse
|
3
|
Hanif S, Farooq S, Kiani MZ, Zia M. Surface modified ZnO NPs by betaine and proline build up tomato plants against drought stress and increase fruit nutritional quality. CHEMOSPHERE 2024; 362:142671. [PMID: 38906183 DOI: 10.1016/j.chemosphere.2024.142671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Revised: 06/08/2024] [Accepted: 06/19/2024] [Indexed: 06/23/2024]
Abstract
Drought stress is a serious challenge for global food production. Nanofertilizers and nanocomposites cope with such environmental stresses and also increase nutritional contents of fruits. An in vitro experiment was designed to use Zinc Oxide Nanoparticles (ZnO NPs) primed with Proline and Betaine (ZnOP and ZnOBt NPs) at 50 and 100 mg/kg soil against drought stress in Tomato (Solanum lycopersicum) plants. Plant morphological, biochemical, and fruit nutritional quality were accessed. Maximum plant height was observed under the treatment of ZnOP50 (1.09 m) and ZnO 100 (1.06 m). ZnOP and ZnOBt also improved the chlorophyll content up to 86% and 87.16%, respectively. Application of ZnOP NPs also demonstrated maximum tomato yield (204 g tomato/plant) followed by ZnO NPs and ZnOBt NPs. Nanocomposites decreased phenolics and flavonoids contents in drought stressed plants demonstrating the mitigation of oxidative stress. Nanofertilizer also increased the concentration of phenolics and flavonoids in fruits that increased the nutritional contents. Furthermore a significant accumulation of betaine, proline, and lycopene in fruits on nanocomposite treatment made it nutritional and healthy. Lycopene content increased up to 2.01% and 1.23% in presence of ZnOP50 and ZnOP100, respectively. These outcomes validate that drought stress in plant can be reduced by accumulation of different phytochemicals and quenching oxidative stress. The study deems that nano zinc carrying osmoregulators can greatly reduce the negative effects of drought stress and increase nutritional quality of tomato fruits.
Collapse
Affiliation(s)
- Saad Hanif
- Department of Biotechnology, Quaid-i-Azam University Islamabad Pakistan, 45320, Pakistan
| | - Snovia Farooq
- Department of Biotechnology, Quaid-i-Azam University Islamabad Pakistan, 45320, Pakistan
| | - Misbah Zeb Kiani
- Department of Biotechnology, Quaid-i-Azam University Islamabad Pakistan, 45320, Pakistan
| | - Muhammad Zia
- Department of Biotechnology, Quaid-i-Azam University Islamabad Pakistan, 45320, Pakistan.
| |
Collapse
|
4
|
Wu W, Yue W, Bi J, Zhang L, Xu D, Peng C, Chen X, Wang S. Influence of climatic variables on maize grain yield and its components by adjusting the sowing date. FRONTIERS IN PLANT SCIENCE 2024; 15:1411009. [PMID: 38993937 PMCID: PMC11236551 DOI: 10.3389/fpls.2024.1411009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Accepted: 05/31/2024] [Indexed: 07/13/2024]
Abstract
Yield and its components are greatly affected by climate change. Adjusting the sowing date is an effective way to alleviate adverse effects and adapt to climate change. Aiming to determine the optimal sowing date of summer maize and clarify the contribution of climatic variables to grain yield and its components, a consecutive 4-year field experiment was conducted from 2016 to 2019 with four sowing dates at 10-day intervals from 5 June to 5 July. Analysis of historical meteorological data showed that more solar radiation (SR) was distributed from early June to mid-August, and the maximum temperature (Tmax) > 32°C appeared from early July to late August, which advanced and lasted longer in 1991-2020 relative to 1981-1990. Additionally, the precipitation was mainly distributed from early June to late July. The climate change in the growing season of summer maize resulted in optimal sowing dates ranging from 5 June to 15 June, with higher yields and yield stability, mainly because of the higher kernel number per ear and 1,000-grain weight. The average contribution of kernel number per ear to grain yield was 58.7%, higher than that of 1,000-grain weight (41.3%). Variance partitioning analysis showed that SR in 15 days pre-silking to 15 days post-silking (SS) and silking to harvest (SH) stages significantly contributed to grain yield by 63.1% and 86.4%. The extreme growing degree days (EDD) > 32°C, SR, precipitation, and diurnal temperature range (DTR) contributed 20.6%, 22.9%, 14.5%, and 42.0% to kernel number per ear in the SS stage, respectively. Therefore, we concluded that the early sowing dates could gain high yield and yield stability due to the higher SR in the growing season. Meanwhile, due to the decreasing trend in SR and increasing Tmax trend in this region, in the future, new maize varieties with high-temperature resistance, high light efficiency, shade tolerance, and medium-season traits need to be bred to adapt to climate change and increased grain yield.
Collapse
Affiliation(s)
- Wenming Wu
- Crop Research Institute, Anhui Academy of Agricultural Sciences, Hefei, China
| | - Wei Yue
- Agricultural Meteorological Center, Anhui Meteorological Service, Hefei, China
| | - Jianjian Bi
- Crop Research Institute, Anhui Academy of Agricultural Sciences, Hefei, China
- School of Agronomy, Anhui Agricultural University, Hefei, China
| | - Lin Zhang
- Crop Research Institute, Anhui Academy of Agricultural Sciences, Hefei, China
| | - Dafeng Xu
- Crop Research Institute, Anhui Academy of Agricultural Sciences, Hefei, China
| | - Chen Peng
- Crop Research Institute, Anhui Academy of Agricultural Sciences, Hefei, China
| | - Xiang Chen
- School of Agronomy, Anhui Agricultural University, Hefei, China
| | - Shiji Wang
- Crop Research Institute, Anhui Academy of Agricultural Sciences, Hefei, China
| |
Collapse
|
5
|
Roy R, Hossain A, Sharif MO, Das M, Sarker T. Optimizing biochar, vermicompost, and duckweed amendments to mitigate arsenic uptake and accumulation in rice (Oryza sativa L.) cultivated on arsenic-contaminated soil. BMC PLANT BIOLOGY 2024; 24:545. [PMID: 38872089 DOI: 10.1186/s12870-024-05219-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Accepted: 05/30/2024] [Indexed: 06/15/2024]
Abstract
The accumulation of arsenic (As) in rice (Oryza sativa L.) grain poses a significant health concern in Bangladesh. To address this, we investigated the efficacy of various organic amendments and phytoremediation techniques in reducing As buildup in O. sativa. We evaluated the impact of five doses of biochar (BC; BC0.1: 0.1%, BC0.28: 0.28%, BC0.55: 0.55%, BC0.82: 0.82% and BC1.0: 1.0%, w/w), vermicompost (VC; VC1.0: 1.0%, VC1.8: 1.8%, VC3.0: 3.0%, VC4.2: 4.2% and VC5.0: 5.0%, w/w), and floating duckweed (DW; DW100: 100, DW160: 160, DW250: 250, DW340: 340 and DW400: 400 g m- 2) on O. sativa cultivated in As-contaminated soil. Employing a three-factor five-level central composite design and response surface methodology (RSM), we optimized the application rates of BC-VC-DW. Our findings revealed that As contamination in the soil negatively impacted O. sativa growth. However, the addition of BC, VC, and DW significantly enhanced plant morphological parameters, SPAD value, and grain yield per pot. Notably, a combination of moderate BC-DW and high VC (BC0.55VC5DW250) increased grain yield by 44.4% compared to the control (BC0VC0DW0). As contamination increased root, straw, and grain As levels, and oxidative stress in O. sativa leaves. However, treatment BC0.82VC4.2DW340 significantly reduced grain As (G-As) by 56%, leaf hydrogen peroxide by 71%, and malondialdehyde by 50% compared to the control. Lower doses of BC-VC-DW (BC0.28VC1.8DW160) increased antioxidant enzyme activities, while moderate to high doses resulted in a decline in these activities. Bioconcentration and translocation factors below 1 indicated limited As uptake and translocation in plant tissues. Through RSM optimization, we determined that optimal doses of BC (0.76%), VC (4.62%), and DW (290.0 g m- 2) could maximize grain yield (32.96 g pot- 1, 44% higher than control) and minimize G-As content (0.189 mg kg- 1, 54% lower than control). These findings underscore effective strategies for enhancing yield and reducing As accumulation in grains from contaminated areas, thereby ensuring agricultural productivity, human health, and long-term sustainability. Overall, our study contributes to safer food production and improved public health in As-affected regions.
Collapse
Affiliation(s)
- Rana Roy
- Department of Agroforestry & Environmental Science, Sylhet Agricultural University, Sylhet, 3100, Bangladesh.
- Institute of Plant Nutrition and Soil Science, Christian-Albrechts-Universität zu Kiel, 24118, Kiel, Germany.
| | - Akram Hossain
- Department of Agroforestry & Environmental Science, Sylhet Agricultural University, Sylhet, 3100, Bangladesh
| | - Md Omar Sharif
- Department of Agroforestry & Environmental Science, Sylhet Agricultural University, Sylhet, 3100, Bangladesh
| | - Mitali Das
- Department of Agroforestry & Environmental Science, Sylhet Agricultural University, Sylhet, 3100, Bangladesh
| | - Tanwne Sarker
- Department of Sociology and Rural Development, Khulna Agricultural University, Khulna, 9100, Bangladesh
| |
Collapse
|
6
|
Shaaban A, Hemida KA, Abd El-Mageed TA, Semida WM, AbuQamar SF, El-Saadony MT, Al-Elwany OAAI, El-Tarabily KA. Incorporation of compost and biochar enhances yield and medicinal compounds in seeds of water-stressed Trigonella foenum-graecum L. plants cultivated in saline calcareous soils. BMC PLANT BIOLOGY 2024; 24:538. [PMID: 38867179 PMCID: PMC11167906 DOI: 10.1186/s12870-024-05182-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Accepted: 05/21/2024] [Indexed: 06/14/2024]
Abstract
BACKGROUND The combination of compost and biochar (CB) plays an important role in soil restoration and mitigation strategies against drought stress in plants. In the current study, the impact of CB was determined on the characteristics of saline calcareous soil and the productivity of fenugreek (Trigonella foenum-graecum L.) plants. The field trials examined CB rates (CB0, CB10 and CB20 corresponding to 0, 10, and 20 t ha‒1, respectively) under deficit irrigation [DI0%, DI20%, and DI40% receiving 100, 80, and 60% crop evapotranspiration (ETc), respectively] conditions on growth, seed yield (SY), quality, and water productivity (WP) of fenugreek grown in saline calcareous soils. RESULTS In general, DI negatively affected the morpho-physio-biochemical responses in plants cultivated in saline calcareous soils. However, amendments of CB10 or CB20 improved soil structure under DI conditions. This was evidenced by the decreased pH, electrical conductivity of soil extract (ECe), and bulk density but increased organic matter, macronutrient (N, P, and K) availability, water retention, and total porosity; thus, maintaining better water and nutritional status. These soil modifications improved chlorophyll, tissue water contents, cell membrane stability, photosystem II photochemical efficiency, photosynthetic performance, and nutritional homeostasis of drought-stressed plants. This was also supported by increased osmolytes, non-enzymatic, and enzymatic activities under DI conditions. Regardless of DI regimes, SY was significantly (P ≤ 0.05) improved by 40.0 and 102.5% when plants were treated with CB10 and CB20, respectively, as similarly observed for seed alkaloids (87.0, and 39.1%), trigonelline content (43.8, and 16.7%) and WP (40.9, and 104.5%) over unamended control plants. CONCLUSIONS Overall, the application of organic amendments of CB can be a promising sustainable solution for improving saline calcareous soil properties, mitigating the negative effects of DI stress, and enhancing crop productivity in arid and semi-arid agro-climates.
Collapse
Affiliation(s)
- Ahmed Shaaban
- Agronomy Department, Faculty of Agriculture, Fayoum University, Fayoum, 63514, Egypt
| | - Khaulood A Hemida
- Botany Department, Faculty of Science, Fayoum University, Fayoum, 63514, Egypt
| | - Taia A Abd El-Mageed
- Soil and Water Department, Faculty of Agriculture, Fayoum University, Fayoum, 63514, Egypt
| | - Wael M Semida
- Horticulture Department, Faculty of Agriculture, Fayoum University, Fayoum, 63514, Egypt
| | - Synan F AbuQamar
- Department of Biology, College of Science, United Arab Emirates University, Al Ain, 15551, United Arab Emirates.
| | - Mohamed T El-Saadony
- Department of Agricultural Microbiology, Faculty of Agriculture, Zagazig University, Zagazig, 44519, Egypt
| | - Omar A A I Al-Elwany
- Horticulture Department, Faculty of Agriculture, Fayoum University, Fayoum, 63514, Egypt
| | - Khaled A El-Tarabily
- Department of Biology, College of Science, United Arab Emirates University, Al Ain, 15551, United Arab Emirates
| |
Collapse
|
7
|
Channab BE, El Idrissi A, Ammar A, Dardari O, Marrane SE, El Gharrak A, Akil A, Essemlali Y, Zahouily M. Recent advances in nano-fertilizers: synthesis, crop yield impact, and economic analysis. NANOSCALE 2024; 16:4484-4513. [PMID: 38314867 DOI: 10.1039/d3nr05012b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2024]
Abstract
The escalating global demand for food production has predominantly relied on the extensive application of conventional fertilizers (CFs). However, the increased use of CFs has raised concerns regarding environmental risks, including soil and water contamination, especially within cereal-based cropping systems. In response, the agricultural sector has witnessed the emergence of healthier alternatives by utilizing nanotechnology and nano-fertilizers (NFs). These innovative NFs harness the remarkable properties of nanoparticles, ranging in size from 1 to 100 nm, such as nanoclays and zeolites, to enhance nutrient utilization efficiency. Unlike their conventional counterparts, NFs offer many advantages, including variable solubility, consistent and effective performance, controlled release mechanisms, enhanced targeted activity, reduced eco-toxicity, and straightforward and safe delivery and disposal methods. By facilitating rapid and complete plant absorption, NFs effectively conserve nutrients that would otherwise go to waste, mitigating potential environmental harm. Moreover, their superior formulations enable more efficient promotion of sustainable crop growth and production than conventional fertilizers. This review comprehensively examines the global utilization of NFs, emphasizing their immense potential in maintaining environmentally friendly crop output while ensuring agricultural sustainability.
Collapse
Affiliation(s)
- Badr-Eddine Channab
- Laboratory of Materials, Catalysis & Valorization of Natural Resources, URAC 24, Faculty of Science and Technology, Hassan II University, Casablanca B.P. 146, Morocco.
| | - Ayoub El Idrissi
- Laboratory of Materials, Catalysis & Valorization of Natural Resources, URAC 24, Faculty of Science and Technology, Hassan II University, Casablanca B.P. 146, Morocco.
| | - Ayyoub Ammar
- Laboratory of Virology, Oncology, Biosciences, Environment and New Energies, Faculty of Sciences and Techniques Mohammedia, University Hassan II of Casablanca, Casablanca B.P. 146, Morocco.
| | - Othmane Dardari
- Laboratory of Materials, Catalysis & Valorization of Natural Resources, URAC 24, Faculty of Science and Technology, Hassan II University, Casablanca B.P. 146, Morocco.
| | - Salah Eddine Marrane
- Laboratory of Materials, Catalysis & Valorization of Natural Resources, URAC 24, Faculty of Science and Technology, Hassan II University, Casablanca B.P. 146, Morocco.
| | - Abdelouahed El Gharrak
- Laboratory of Materials, Catalysis & Valorization of Natural Resources, URAC 24, Faculty of Science and Technology, Hassan II University, Casablanca B.P. 146, Morocco.
| | - Adil Akil
- Natural Resources Valorization Center, Moroccan Foundation for Advanced Science, Innovation and Research, Rabat, Morocco.
- Mohammed VI Polytechnic University, Ben Guerir, Morocco
| | - Youness Essemlali
- Laboratory of Materials, Catalysis & Valorization of Natural Resources, URAC 24, Faculty of Science and Technology, Hassan II University, Casablanca B.P. 146, Morocco.
- Natural Resources Valorization Center, Moroccan Foundation for Advanced Science, Innovation and Research, Rabat, Morocco.
- Mohammed VI Polytechnic University, Ben Guerir, Morocco
| | - Mohamed Zahouily
- Laboratory of Materials, Catalysis & Valorization of Natural Resources, URAC 24, Faculty of Science and Technology, Hassan II University, Casablanca B.P. 146, Morocco.
- Natural Resources Valorization Center, Moroccan Foundation for Advanced Science, Innovation and Research, Rabat, Morocco.
- Mohammed VI Polytechnic University, Ben Guerir, Morocco
| |
Collapse
|
8
|
Jacomassi LM, Pacola M, Momesso L, Viveiros J, Júnior OA, de Siqueira GF, de Campos M, Crusciol CAC. Foliar Application of Amino Acids and Nutrients as a Tool to Mitigate Water Stress and Stabilize Sugarcane Yield and Bioenergy Generation. PLANTS (BASEL, SWITZERLAND) 2024; 13:461. [PMID: 38337992 PMCID: PMC10857448 DOI: 10.3390/plants13030461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 01/09/2024] [Accepted: 01/27/2024] [Indexed: 02/12/2024]
Abstract
Extended periods of water stress negatively affect sugarcane crop production. The foliar application of supplements containing specific nutrients and/or organic molecules such as amino acids can improve sugarcane metabolism, stalk and sugar yields, and the quality of the extracted juice. The present study assessed the effectiveness of the foliar application of an abiotic stress protection complement (ASPC) composed of 18 amino acids and 5 macronutrients. The experiments were carried out in the field with two treatments and twelve replicates. The two treatments were no application of ASPC (control) and foliar application of ASPC. The foliar application of ASPC increased the activity of antioxidant enzymes. The Trolox-equivalent antioxidant capacity (DPPH) was higher in ASPC-treated plants than in control plants, reflecting higher antioxidant enzyme activity and lower malondialdehyde (MDA) levels. The level of H2O2 was 11.27 nM g-1 protein in plants treated with ASPC but 23.71 nM g-1 protein in control plants. Moreover, the application of ASPC increased stalk yield and sucrose accumulation, thus increasing the quality of the raw material. By positively stabilizing the cellular redox balance in sugarcane plants, ASPC application also increased energy generation. Therefore, applying ASPC is an effective strategy for relieving water stress while improving crop productivity.
Collapse
Affiliation(s)
- Lucas Moraes Jacomassi
- Department of Crop Science, College of Agricultural Science, São Paulo State University (UNESP), Botucatu 18610-034, SP, Brazil; (L.M.J.); (M.P.); (J.V.); (O.A.J.); (G.F.d.S.); (M.d.C.)
| | - Marcela Pacola
- Department of Crop Science, College of Agricultural Science, São Paulo State University (UNESP), Botucatu 18610-034, SP, Brazil; (L.M.J.); (M.P.); (J.V.); (O.A.J.); (G.F.d.S.); (M.d.C.)
| | - Letusa Momesso
- Department of Agriculutre, School of Agriculture, Federal University of Goiás (UFG), Goiânia 74690-900, GO, Brazil;
| | - Josiane Viveiros
- Department of Crop Science, College of Agricultural Science, São Paulo State University (UNESP), Botucatu 18610-034, SP, Brazil; (L.M.J.); (M.P.); (J.V.); (O.A.J.); (G.F.d.S.); (M.d.C.)
| | - Osvaldo Araújo Júnior
- Department of Crop Science, College of Agricultural Science, São Paulo State University (UNESP), Botucatu 18610-034, SP, Brazil; (L.M.J.); (M.P.); (J.V.); (O.A.J.); (G.F.d.S.); (M.d.C.)
| | - Gabriela Ferraz de Siqueira
- Department of Crop Science, College of Agricultural Science, São Paulo State University (UNESP), Botucatu 18610-034, SP, Brazil; (L.M.J.); (M.P.); (J.V.); (O.A.J.); (G.F.d.S.); (M.d.C.)
| | - Murilo de Campos
- Department of Crop Science, College of Agricultural Science, São Paulo State University (UNESP), Botucatu 18610-034, SP, Brazil; (L.M.J.); (M.P.); (J.V.); (O.A.J.); (G.F.d.S.); (M.d.C.)
| | - Carlos Alexandre Costa Crusciol
- Department of Crop Science, College of Agricultural Science, São Paulo State University (UNESP), Botucatu 18610-034, SP, Brazil; (L.M.J.); (M.P.); (J.V.); (O.A.J.); (G.F.d.S.); (M.d.C.)
| |
Collapse
|
9
|
Chen M, Jiao SQ, Xie L, Geng X, Qi S, Fan J, Cheng S, Shi J, Cao X. Integrated physiological, transcriptomic, and metabolomic analyses of drought stress alleviation in Ehretia macrophylla Wall. seedlings by SiO 2 NPs (silica nanoparticles). FRONTIERS IN PLANT SCIENCE 2024; 15:1260140. [PMID: 38371410 PMCID: PMC10869631 DOI: 10.3389/fpls.2024.1260140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Accepted: 01/19/2024] [Indexed: 02/20/2024]
Abstract
With environmental problems such as climate global warming, drought has become one of the major stress factors, because it severely affects the plant growth and development. Silicon dioxide nanoparticles (SiO2 NPs) are crucial for mitigating abiotic stresses suffered by plants in unfavorable environmental conditions and further promoting plant growth, such as drought. This study aimed to investigate the effect of different concentrations of SiO2 NPs on the growth of the Ehretia macrophylla Wall. seedlings under severe drought stress (water content in soil, 30-35%). The treatment was started by starting spraying different concentrations of SiO2 NPs on seedlings of Ehretia macrophyla, which were consistently under normal and severe drought conditions (soil moisture content 30-35%), respectively, at the seedling stage, followed by physiological and biochemical measurements, transcriptomics and metabolomics analyses. SiO2 NPs (100 mg·L-1) treatment reduced malondialdehyde and hydrogen peroxide content and enhanced the activity of antioxidant enzymes under drought stress. Transcriptomic analysis showed that 1451 differentially expressed genes (DEGs) in the leaves of E. macrophylla seedlings were regulated by SiO2 NPs under drought stress, and these genes mainly participate in auxin signal transduction and mitogen-activated protein kinase signaling pathways. This study also found that the metabolism of fatty acids and α-linolenic acids may play a key role in the enhancement of drought tolerance in SiO2 NP-treated E. macrophylla seedlings. Metabolomics studies indicated that the accumulation level of secondary metabolites related to drought tolerance was higher after SiO2 NPs treatment. This study revealed insights into the physiological mechanisms induced by SiO2 NPs for enhancing the drought tolerance of plants.
Collapse
Affiliation(s)
- Minghui Chen
- Pingdingshan University, Henan Province Key Laboratory of Germplasm Innovation and Utilization of Eco-economic Woody Plant, Pingdingshan, China
| | - Si-qian Jiao
- Pingdingshan University, Henan Province Key Laboratory of Germplasm Innovation and Utilization of Eco-economic Woody Plant, Pingdingshan, China
| | - Lihua Xie
- Pingdingshan University, Henan Province Key Laboratory of Germplasm Innovation and Utilization of Eco-economic Woody Plant, Pingdingshan, China
| | - Xining Geng
- Pingdingshan University, Henan Province Key Laboratory of Germplasm Innovation and Utilization of Eco-economic Woody Plant, Pingdingshan, China
| | - Shuaizheng Qi
- Pingdingshan University, Henan Province Key Laboratory of Germplasm Innovation and Utilization of Eco-economic Woody Plant, Pingdingshan, China
| | - Jianmin Fan
- Pingdingshan University, Henan Province Key Laboratory of Germplasm Innovation and Utilization of Eco-economic Woody Plant, Pingdingshan, China
| | - Shiping Cheng
- Pingdingshan University, Henan Province Key Laboratory of Germplasm Innovation and Utilization of Eco-economic Woody Plant, Pingdingshan, China
| | - Jiang Shi
- College of Agriculture, Henan University of Science and Technology, Luoyang, China
| | - Xibing Cao
- College of Forestry, Henan Agricultural University, Zhengzhou, Henan, China
| |
Collapse
|
10
|
Zhou B, Cao H, Wu Q, Mao K, Yang X, Su J, Zhang H. Agronomic and Genetic Strategies to Enhance Selenium Accumulation in Crops and Their Influence on Quality. Foods 2023; 12:4442. [PMID: 38137246 PMCID: PMC10742783 DOI: 10.3390/foods12244442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 12/07/2023] [Accepted: 12/08/2023] [Indexed: 12/24/2023] Open
Abstract
Selenium (Se) is an essential trace element that plays a crucial role in maintaining the health of humans, animals, and certain plants. It is extensively present throughout the Earth's crust and is absorbed by crops in the form of selenates and selenite, eventually entering the food chain. Se biofortification is an agricultural process that employs agronomic and genetic strategies. Its goal is to enhance the mechanisms of crop uptake and the accumulation of exogenous Se, resulting in the production of crops enriched with Se. This process ultimately contributes to promoting human health. Agronomic strategies in Se biofortification aim to enhance the availability of exogenous Se in crops. Concurrently, genetic strategies focus on improving a crop's capacity to uptake, transport, and accumulate Se. Early research primarily concentrated on optimizing Se biofortification methods, improving Se fertilizer efficiency, and enhancing Se content in crops. In recent years, there has been a growing realization that Se can effectively enhance crop growth and increase crop yield, thereby contributing to alleviating food shortages. Additionally, Se has been found to promote the accumulation of macro-nutrients, antioxidants, and beneficial mineral elements in crops. The supplementation of Se biofortified foods is gradually emerging as an effective approach for promoting human dietary health and alleviating hidden hunger. Therefore, in this paper, we provide a comprehensive summary of the Se biofortification conducted over the past decade, mainly focusing on Se accumulation in crops and its impact on crop quality. We discuss various Se biofortification strategies, with an emphasis on the impact of Se fertilizer strategies on crop Se accumulation and their underlying mechanisms. Furthermore, we highlight Se's role in enhancing crop quality and offer perspective on Se biofortification in crop improvement, guiding future mechanistic explorations and applications of Se biofortification.
Collapse
Affiliation(s)
- Bingqi Zhou
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China; (B.Z.); (H.C.); (Q.W.); (K.M.); (X.Y.); (J.S.)
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Haorui Cao
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China; (B.Z.); (H.C.); (Q.W.); (K.M.); (X.Y.); (J.S.)
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qingqing Wu
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China; (B.Z.); (H.C.); (Q.W.); (K.M.); (X.Y.); (J.S.)
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Kang Mao
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China; (B.Z.); (H.C.); (Q.W.); (K.M.); (X.Y.); (J.S.)
| | - Xuefeng Yang
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China; (B.Z.); (H.C.); (Q.W.); (K.M.); (X.Y.); (J.S.)
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Junxia Su
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China; (B.Z.); (H.C.); (Q.W.); (K.M.); (X.Y.); (J.S.)
| | - Hua Zhang
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China; (B.Z.); (H.C.); (Q.W.); (K.M.); (X.Y.); (J.S.)
| |
Collapse
|
11
|
Abd El-Mageed TA, Ihab R, Rady MM, Belal HEE, Mostafa FA, Galal TM, Masoudi LMA, Ali EF, Roulia M, Mahmoud AEM. A Novel Nutrient- and Antioxidant-Based Formulation Can Sustain Tomato Production under Full Watering and Drought Stress in Saline Soil. PLANTS (BASEL, SWITZERLAND) 2023; 12:3407. [PMID: 37836147 PMCID: PMC10574430 DOI: 10.3390/plants12193407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 09/23/2023] [Accepted: 09/26/2023] [Indexed: 10/15/2023]
Abstract
As a result of the climate changes that are getting worse nowadays, drought stress (DS) is a major obstacle during crop life stages, which ultimately reduces tomato crop yields. So, there is a need to adopt modern approaches like a novel nutrient- and antioxidant-based formulation (NABF) for boosting tomato crop productivity. NABF consists of antioxidants (i.e., citric acid, salicylic acid, ascorbic acid, glutathione, and EDTA) and nutrients making it a fruitful growth stimulator against environmental stressors. As a first report, this study was scheduled to investigate the foliar application of NABF on growth and production traits, physio-biochemical attributes, water use efficiency (WUE), and nutritional, hormonal, and antioxidative status of tomato plants cultivated under full watering (100% of ETc) and DS (80 or 60% of ETc). Stressed tomato plants treated with NABF had higher DS tolerance through improved traits of photosynthetic efficiency, leaf integrity, various nutrients (i.e., copper, zinc, manganese, calcium, potassium, phosphorus, and nitrogen), and hormonal contents. These positives were a result of lower levels of oxidative stress biomarkers as a result of enhanced osmoprotectants (soluble sugars, proline, and soluble protein), and non-enzymatic and enzymatic antioxidant activities. Growth, yield, and fruit quality traits, as well as WUE, were improved. Full watering with application of 2.5 g NABF L-1 collected 121 t tomato fruits per hectare as the best treatment. Under moderate DS (80% of ETc), NABF application increased fruit yield by 10.3%, while, under severe DS (40% of ETc), the same fruit yield was obtained compared to full irrigation without NABF. Therefore, the application of 60% ETc × NABF was explored to not only give a similar yield with higher quality compared to 100% ETc without NABF as well as increase WUE.
Collapse
Affiliation(s)
- Taia A. Abd El-Mageed
- Soil and Water Science Department, Faculty of Agriculture, Fayoum University, Fayoum 63514, Egypt;
| | - Radwa Ihab
- Botany Department, Faculty of Agriculture, Fayoum University, Fayoum 63514, Egypt; (R.I.); (H.E.E.B.)
| | - Mostafa M. Rady
- Botany Department, Faculty of Agriculture, Fayoum University, Fayoum 63514, Egypt; (R.I.); (H.E.E.B.)
| | - Hussein E. E. Belal
- Botany Department, Faculty of Agriculture, Fayoum University, Fayoum 63514, Egypt; (R.I.); (H.E.E.B.)
| | - Fatma A. Mostafa
- Plant Pathology Research Institute, Agriculture Research Center, Giza 11571, Egypt;
| | - Tarek M. Galal
- Department of Biology, College of Science, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia; (T.M.G.); (L.M.A.M.)
| | - Luluah M. Al Masoudi
- Department of Biology, College of Science, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia; (T.M.G.); (L.M.A.M.)
| | - Esmat F. Ali
- Department of Biology, College of Science, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia; (T.M.G.); (L.M.A.M.)
| | - Maria Roulia
- Inorganic Chemistry Laboratory, Department of Chemistry, National and Kapodistrian University of Athens, 157 72 Athens, Greece
| | - Amr E. M. Mahmoud
- Biochemistry Department, Faculty of Agriculture, Fayoum University, Fayoum 63514, Egypt;
| |
Collapse
|
12
|
Ratnaningsih HR, Noviana Z, Dewi TK, Loekito S, Wiyono S, Gafur A, Antonius S. IAA and ACC deaminase producing-bacteria isolated from the rhizosphere of pineapple plants grown under different abiotic and biotic stresses. Heliyon 2023; 9:e16306. [PMID: 37292365 PMCID: PMC10245151 DOI: 10.1016/j.heliyon.2023.e16306] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 04/28/2023] [Accepted: 05/12/2023] [Indexed: 06/10/2023] Open
Abstract
The roles of plant growth-promoting rhizobacteria in promoting plant growth and soil health, including alteration in plant metabolism and production of phytohormones such as indole-3-acetic acid (IAA) and the enzyme 1-aminocyclopropane-1-carboxylate (ACC) deaminase, are indisputable. This study aimed to isolate and characterize beneficial bacteria isolated from the rhizosphere of pineapple from distinct stress-inducing habitats, including water excess-, herbicide-over-treated-, and pathogen-infected areas at PT Great Giant Foods located in Lampung, Indonesia. The isolated bacteria were screened based on IAA production and ACC deaminase activities. Six selected isolates produced IAA with concentrations of up to 36.93 mgL-1. The highest value belongs to Bacillus sp. NCTB5I, followed by Brevundimonas sp. CHTB 2C (13.13 mgL-1) and Pseudomonas sp. CHTB 5B (6.65 mgL-1). All isolates were detected with ACC deaminase activities with Brevundimonas sp. CHTJ 5H consuming 88% of ACC over 24 h, the highest among all. Brevundimonas sp. CHTB 2C was detected with the highest ACC deaminase activity with the value of 13,370 nm α-ketobutyrate mg-1h-1. In another experiment, it was revealed that all selected isolates promote soybean growth. These bacteria are potential to be developed in the future as bioagents to promote plant growth, especially under stressful environmental conditions.
Collapse
Affiliation(s)
- Hanim R. Ratnaningsih
- Department of Soil Science and Land Resources, Faculty of Agriculture, IPB University, Bogor 16680, Indonesia
| | - Zahra Noviana
- Research Center for Applied Microbiology, National Research and Innovation Agency (BRIN), Cibinong 16911, Indonesia
| | - Tirta Kumala Dewi
- Research Center for Applied Microbiology, National Research and Innovation Agency (BRIN), Cibinong 16911, Indonesia
| | - Supriyono Loekito
- Research and Development Department, PT Great Giant Pineapple, Lampung Tengah 34163, Indonesia
| | - Suryo Wiyono
- Department of Plant Protection, Faculty of Agriculture, IPB University, Bogor 16680, Indonesia
| | - Abdul Gafur
- Sinarmas Forestry Corporate Research and Development, Perawang 28772, Indonesia
| | - Sarjiya Antonius
- Research Center for Applied Microbiology, National Research and Innovation Agency (BRIN), Cibinong 16911, Indonesia
| |
Collapse
|
13
|
Abulfaraj AA. Relationships between some transcription factors and concordantly expressed drought stress-related genes in bread wheat. Saudi J Biol Sci 2023; 30:103652. [PMID: 37206446 PMCID: PMC10189290 DOI: 10.1016/j.sjbs.2023.103652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 03/18/2023] [Accepted: 04/09/2023] [Indexed: 05/21/2023] Open
Abstract
The challenge of climate change makes it mandatory to improve tolerance to drought stress in bread wheat (Triticum aestivum) via biotechnological approaches. Drought stress experiment was conducted followed by RNA-Seq analysis for leaves of two wheat cultivars namely Giza 168 and Gemmiza 10 with contrasting genotypes. Expression patterns of the regulated stress-related genes and concordantly expressed TFs were detected, then, validated via qPCR for two loss-of-function mutants in Arabidopsis background harboring mutated genes analogue to those in wheat. Drought-stress related genes were searched for concordantly expressed TFs and a total of eight TFs were shown to coexpress with 14 stress-related genes. Among these genes, one TF belongs to the zinc finger protein CONSTANS family and proved via qPCR to drive expression of a gene encoding a speculative TF namely zinc transporter 3-like and two other stress related genes encoding tryptophan synthase alpha chain and asparagine synthetase. Known functions of the two TFs under drought stress complement those of the two concordantly expressed stress-related genes, thus, it is likely that they are related. This study highlights the possibility to utilize metabolic engineering approaches to decipher and incorporate existing regulatory frameworks under drought stress in future breeding programs of bread wheat.
Collapse
|
14
|
Cui X, Cao X, Xue W, Xu L, Cui Z, Zhao R, Ni SQ. Integrative effects of microbial inoculation and amendments on improved crop safety in industrial soils co-contaminated with organic and inorganic pollutants. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 873:162202. [PMID: 36775162 DOI: 10.1016/j.scitotenv.2023.162202] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 01/12/2023] [Accepted: 02/08/2023] [Indexed: 06/18/2023]
Abstract
Soils co-contaminated by organic and inorganic pollutants usually pose major ecological risks to soil ecosystems including plants. Thus, effective strategies are needed to alleviate the phytotoxicity caused by such co-contamination. In this study, microbial agents (a mixture of Bacillus subtilis, Sphingobacterium multivorum, and a commercial microbial product named OBT) and soil amendments (β-cyclodextrin, rice husk, biochar, calcium magnesium phosphate fertilizer, and organic fertilizer) were evaluated to determine their applicability in alleviating toxicity to crops (maize and soybean) posed by polycyclic aromatic hydrocarbon (PAHs) and potentially toxic metals co-contaminated soils. The results showed that peroxidase, catalase, and superoxide dismutase activity levels in maize or soybean grown in severely or mildly contaminated soils were significantly enhanced by the integrative effects of amendments and microbial agents, compared with those in single plant treatments. The removal rates of Zn, Pb, and Cd in severely contaminated soils were 49 %, 47 %, and 51 % and 46 %, 45 %, and 48 %, for soybean and maize, respectively. The total contents of Cd, Pb, Zn, and PAHs in soil decreased by day 90. Soil organic matter content, levels of nutrient elements, and enzyme activity (catalase, urease, and dehydrogenase) increased after the amendments and application of microbial agents. Moreover, the amendments and microbial agents also increased the diversity and distribution of bacterial species in the soil. These results suggest that the amendments and microbial agents were beneficial for pollutant purification, improving the soil environment and enhancing both plant resistance to pollutants and immune systems of plants.
Collapse
Affiliation(s)
- Xiaowei Cui
- School of Municipal & Environmental Engineering, Shandong Jianzhu University, Jinan 250101, PR China
| | - Xiufeng Cao
- School of Municipal & Environmental Engineering, Shandong Jianzhu University, Jinan 250101, PR China; School of Environmental Science and Engineering, Shandong University, Qingdao 266237, PR China.
| | - Wenxiu Xue
- School of Environmental Science and Engineering, Shandong University, Qingdao 266237, PR China
| | - Lei Xu
- School of Environmental Science and Engineering, Shandong University, Qingdao 266237, PR China
| | - Zhaojie Cui
- School of Environmental Science and Engineering, Shandong University, Qingdao 266237, PR China
| | - Rui Zhao
- School of Environmental Science and Engineering, Shandong University, Qingdao 266237, PR China
| | - Shou-Qing Ni
- School of Environmental Science and Engineering, Shandong University, Qingdao 266237, PR China
| |
Collapse
|
15
|
Yan B, Zhang Y, Wang Y, Rong X, Peng J, Fei J, Luo G. Biochar amendments combined with organic fertilizer improve maize productivity and mitigate nutrient loss by regulating the C-N-P stoichiometry of soil, microbiome, and enzymes. CHEMOSPHERE 2023; 324:138293. [PMID: 36870619 DOI: 10.1016/j.chemosphere.2023.138293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2022] [Revised: 03/01/2023] [Accepted: 03/02/2023] [Indexed: 06/18/2023]
Abstract
Coupled amendments of biochar and organic fertilizers may be one of the effective practice to ensure high cropland productivity and resource use efficiency, but there is little field-based evidence for this. Herein, we employed a eight-years (2014-2021) field experiment to explore the effectiveness of biochar and organic fertilizer amendments on crop productivity and nutrient runoff losses, as well as to further explored their relationships with the carbon:nitrogen:phosphorus (C:N:P) stoichiometry of soil, microbiome, and enzymes. Experiment treatments include No fertilizer (CK), chemical-only fertilizer (CF), CF + biochar (CF + B), 20% chemical N was replaced by organic fertilizer (OF), and OF + biochar (OF + B). Compared with the CF, the CF + B, OF, and OF + B treatments increased average yield by 11.5%, 13.2%, and 32%, average N use efficiency by 37.2%, 58.6%, and 81.4%, average P use efficiency by 44.8%, 55.1%, and 118.6%, average plant N uptake by 19.7%, 35.6%, and 44.3%, as well as average plant P uptake by 18.4%, 23.1%, and 44.3%, respectively (p ≤ 0.05). Compared with the CF, the CF + B, OF, and OF + B decreased average average total N losses by 65.2%, 97.4%, and 241.2%, and average total P losses by 52.9%, 77.1%, and 119.7%, respectively (p ≤ 0.05). Organic-amended treatments (CF + B, OF, and OF + B) significantly changed soil total and available C, N, and P content, soil microbial C, N, and P content, as well as the potential activities of soil C-, N-, and P-acquiring enzymes. Plant P uptake and P-acquiring enzyme activity were the main drivers of maize yield, which was influenced by the contents and stoichiometric ratios of soil available C, N, and P. These findings suggest that organic fertilizer applications combined with biochar have the potential to maintain high crop yields while reducing nutrient losses by regulating the stoichiometric balance of soil available C and nutrients.
Collapse
Affiliation(s)
- Bojing Yan
- College of Resources and Environment, Hunan Agricultural University, Hunan Provincial Key Laboratory of Farmland Pollution Control and Agricultural Resources Use, Changsha, 410128, China
| | - Yuping Zhang
- College of Resources and Environment, Hunan Agricultural University, Hunan Provincial Key Laboratory of Farmland Pollution Control and Agricultural Resources Use, Changsha, 410128, China; National Engineering Laboratory for Efficient Utilization of Soil and Fertilizer Resources, Changsha, 410128, China.
| | - Yizhe Wang
- College of Resources and Environment, Hunan Agricultural University, Hunan Provincial Key Laboratory of Farmland Pollution Control and Agricultural Resources Use, Changsha, 410128, China
| | - Xiangmin Rong
- College of Resources and Environment, Hunan Agricultural University, Hunan Provincial Key Laboratory of Farmland Pollution Control and Agricultural Resources Use, Changsha, 410128, China; National Engineering Laboratory for Efficient Utilization of Soil and Fertilizer Resources, Changsha, 410128, China
| | - Jianwei Peng
- College of Resources and Environment, Hunan Agricultural University, Hunan Provincial Key Laboratory of Farmland Pollution Control and Agricultural Resources Use, Changsha, 410128, China; National Engineering Laboratory for Efficient Utilization of Soil and Fertilizer Resources, Changsha, 410128, China
| | - Jiangchi Fei
- College of Resources and Environment, Hunan Agricultural University, Hunan Provincial Key Laboratory of Farmland Pollution Control and Agricultural Resources Use, Changsha, 410128, China; National Engineering Laboratory for Efficient Utilization of Soil and Fertilizer Resources, Changsha, 410128, China.
| | - Gongwen Luo
- College of Resources and Environment, Hunan Agricultural University, Hunan Provincial Key Laboratory of Farmland Pollution Control and Agricultural Resources Use, Changsha, 410128, China; National Engineering Laboratory for Efficient Utilization of Soil and Fertilizer Resources, Changsha, 410128, China
| |
Collapse
|
16
|
Rezaei-Chiyaneh E, Mahdavikia H, Alipour H, Dolatabadian A, Battaglia ML, Maitra S, Harrison MT. Biostimulants alleviate water deficit stress and enhance essential oil productivity: a case study with savory. Sci Rep 2023; 13:720. [PMID: 36639680 PMCID: PMC9839748 DOI: 10.1038/s41598-022-27338-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Accepted: 12/30/2022] [Indexed: 01/15/2023] Open
Abstract
Water deficit stress exposure frequently constrains plant and agri-food production globally. Biostimulants (BSs) can be considered a new tool in mitigating water deficit stress. This study aimed to understand how BSs influence water deficit stress perceived by savory plants (Satureja hortensis L.), an important herb used for nutritional and herbal purposes in the Middle East. Three BS treatments, including bio-fertilizers, humic acid and foliar application of amino acid (AA), were implemented. Each treatment was applied to savory plants using three irrigation regimes (low, moderate and severe water deficit stress FC100, FC75 and FC50, respectively). Foliar application of AA increased dry matter yield, essential oil (EO) content and EO yield by 22%, 31% and 57%, respectively. The greatest EO yields resulted from the moderate (FC75) and severe water deficit stress (FC50) treatments treated with AA. Primary EO constituents included carvacrol (39-43%), gamma-terpinene (27-37%), alpha-terpinene (4-7%) and p-cymene (2-5%). Foliar application of AA enhanced carvacrol, gamma-terpinene, alpha-terpinene and p-cymene content by 6%, 19%, 46% and 18%, respectively. Physiological characteristics were increased with increasing water shortage and application of AA. Moreover, the maximum activities of superoxide dismutase (3.17 unit mg-1 min-1), peroxidase (2.60 unit mg-1 min-1) and catalase (3.08 unit mg-1 min-1) were obtained from plants subjected to severe water deficit stress (FC50) and treated with AA. We conclude that foliar application of AA under water deficit stress conditions would improve EO quantity and quality in savory.
Collapse
Affiliation(s)
- Esmaeil Rezaei-Chiyaneh
- Department of Plant Production and Genetics, Faculty of Agriculture, Urmia University, Urmia, Iran
| | - Hassan Mahdavikia
- Department of Medicinal Plants, Shahid Bakeri Higher Education Center of Miandoab, Urmia University, Urmia, Iran.
| | - Hadi Alipour
- Department of Plant Production and Genetics, Faculty of Agriculture, Urmia University, Urmia, Iran
| | - Aria Dolatabadian
- School of Biological Sciences, The University of Western Australia, 35 Stirling Highway, Crawley, WA, 6009, Australia
| | | | - Sagar Maitra
- Centurion University of Technology and Management, Sitapur, Odisha, 761211, India
| | - Matthew Tom Harrison
- Tasmanian Institute of Agriculture, University of Tasmania, Newnham, Launceston, 7248, Australia
| |
Collapse
|
17
|
El-Saadony MT, Saad AM, Soliman SM, Salem HM, Desoky ESM, Babalghith AO, El-Tahan AM, Ibrahim OM, Ebrahim AAM, Abd El-Mageed TA, Elrys AS, Elbadawi AA, El-Tarabily KA, AbuQamar SF. Role of Nanoparticles in Enhancing Crop Tolerance to Abiotic Stress: A Comprehensive Review. FRONTIERS IN PLANT SCIENCE 2022; 13:946717. [PMID: 36407622 PMCID: PMC9670308 DOI: 10.3389/fpls.2022.946717] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Accepted: 06/22/2022] [Indexed: 06/16/2023]
Abstract
Plants are subjected to a wide range of abiotic stresses, such as heat, cold, drought, salinity, flooding, and heavy metals. Generally, abiotic stresses have adverse impacts on plant growth and development which affects agricultural productivity, causing food security problems, and resulting in economic losses. To reduce the negative effects of environmental stress on crop plants, novel technologies, such as nanotechnology, have emerged. Implementing nanotechnology in modern agriculture can also help improve the efficiency of water usage, prevent plant diseases, ensure food security, reduce environmental pollution, and enhance sustainability. In this regard, nanoparticles (NPs) can help combat nutrient deficiencies, promote stress tolerance, and improve the yield and quality of crops. This can be achieved by stimulating the activity of certain enzymes, increasing the contents (e.g., chlorophyll) and efficiency of photosynthesis, and controlling plant pathogens. The use of nanoscale agrochemicals, including nanopesticides, nanoherbicides, and nanofertilizers, has recently acquired increasing interest as potential plant-enhancing technologies. This review acknowledges the positive impacts of NPs in sustainable agriculture, and highlights their adverse effects on the environment, health, and food chain. Here, the role and scope of NPs as a practical tool to enhance yield and mitigate the detrimental effects of abiotic stresses in crops are described. The future perspective of nanoparticles in agriculture has also been discussed.
Collapse
Affiliation(s)
- Mohamed T. El-Saadony
- Department of Agricultural Microbiology, Faculty of Agriculture, Zagazig University, Zagazig, Egypt
| | - Ahmed M. Saad
- Department of Biochemistry, Faculty of Agriculture, Zagazig University, Zagazig, Egypt
| | - Soliman M. Soliman
- Department of Internal Medicine and Infectious Diseases, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt
| | - Heba M. Salem
- Department of Poultry Diseases, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt
| | - El-Sayed M. Desoky
- Botany Department, Faculty of Agriculture, Zagazig University, Zagazig, Egypt
| | - Ahmad O. Babalghith
- Department of Medical Genetics, College of Medicine, Umm Al-Qura University, Mecca, Saudi Arabia
| | - Amira M. El-Tahan
- Department of Plant Production, Arid Lands Cultivation Research Institute, The City of Scientific Research and Technological Applications, SRTA-City, Alexandria, Egypt
| | - Omar M. Ibrahim
- Department of Plant Production, Arid Lands Cultivation Research Institute, The City of Scientific Research and Technological Applications, SRTA-City, Alexandria, Egypt
| | - Alia A. M. Ebrahim
- School of Life Sciences, Jiangsu Key Laboratory for Microbes and Genomics, Nanjing Normal University, Nanjing, China
| | - Taia A. Abd El-Mageed
- Department of Soils and Water, Faculty of Agriculture, Fayoum University, Fayoum, Egypt
| | - Ahmed S. Elrys
- Department of Soil Science, Faculty of Agriculture, Zagazig University, Zagazig, Egypt
| | - Alaa A. Elbadawi
- Department of Biology, College of Science, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Khaled A. El-Tarabily
- Department of Biology, College of Science, United Arab Emirates University, Al Ain, United Arab Emirates
- Khalifa Center for Genetic Engineering and Biotechnology, United Arab Emirates University, Al Ain, United Arab Emirates
- Harry Butler Institute, Murdoch University, Murdoch, WA, Australia
| | - Synan F. AbuQamar
- Department of Biology, College of Science, United Arab Emirates University, Al Ain, United Arab Emirates
| |
Collapse
|
18
|
Hammam AA, Mohamed ES, El-Namas AE, Abd-Elmabod SK, Badr Eldin RM. Impacted Application of Water-Hyacinth-Derived Biochar and Organic Manures on Soil Properties and Barley Growth. SUSTAINABILITY 2022; 14:13096. [DOI: 10.3390/su142013096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
Abstract
The biochar application can improve the physiochemical properties of both sandy and clayey loam soils and is considered a potential adaptation tool toward climate change. Therefore, the current study is novel in combining water-hyacinth-derived biochar with organic manures as a suggested effective way of treating the soil with biochar under arid and semiarid conditions. Water hyacinth weeds were slow pyrolyzed at a temperature of 300 °C, which resulted in nonalkaline biochar with a pH value of 6.31, which is suitable for alkaline soils. A pot experiment was established to study the impact of the solo application of nonalkaline water-hyacinth-derived biochar (WHB) and its combined application with farmyard (WHB/FM) and poultry manure (WHB/PM) at a rate of 1.5 and 3%, respectively, on some chemical and physical properties of sandy and clay loam soils and some barley’s growth parameters. WHB, WHB/FM, and WHB/PM significantly affected the soil pH at different application rates (1.5 and 3%) in sandy soil. A considerable alteration in water-stable aggregates (WSA), dispersion ratio (DR), available water content (AWC), and cation ratio of soil structural stability (CROSS) index resulted from combining manures (FM and PM) with biochar better than the solo application of biochar. WHB/PM treatments had a superior effect in improving barley’s growth. Relative increases were by 37.3 and 11.0% in plant height and by 61.6 and 28.5% in the dry matter in sandy and clayey loam soils, respectively. Under the conditions of this study, we can conclude that treating the soil with WHB/PM at a rate of 1.5 and 3% is the most effective application. The current study may have a vital role in Egyptian agriculture sustainability by enhancing the soil characteristics of the old agricultural and the newly reclaimed lands.
Collapse
|
19
|
Núñez-Delgado A, Dominguez JR, Zhou Y, Race M. New trends on green energy and environmental technologies, with special focus on biomass valorization, water and waste recycling: editorial of the special issue. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2022; 316:115209. [PMID: 35533594 DOI: 10.1016/j.jenvman.2022.115209] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Accepted: 04/30/2022] [Indexed: 06/14/2023]
Abstract
In this editorial piece, the Editors of the Virtual Special Issue (VSI) "New Trends on Green Energy and Environmental Technologies, with Special Focus on Biomass Valorization, Water and Waste Recycling", present summarized data corresponding to the accepted submissions, as well as additional comments regarding the thematic of the VSI. Overall, 83 manuscripts were received, with final publication of those having the highest quality, accepted after peer-reviewing. The Editors think that the result is a set of very interesting papers that increase the knowledge on the matter, and which would be useful for researchers and the whole society.
Collapse
Affiliation(s)
- Avelino Núñez-Delgado
- Dept. Soil Sci. and Agric. Chem., Univ. Santiago de Compostela, Engineering Polytech. School, Campus Univ. S/n, 27002, Lugo, Spain.
| | - Joaquín R Dominguez
- Department of Chemical Engineering and Physical Chemistry, University of Extremadura, Spain
| | - Yaoyu Zhou
- College of Resources and Environment, Hunan Agricultural University, Changsha, 410128, Hunan Province, China
| | - Marco Race
- Department of Civil and Mechanical Engineering, University of Cassino and Southern Lazio, Via di Biasio 43, 03043, Cassino, Italy
| |
Collapse
|
20
|
Physiological and Transcriptomic Responses of Illicium difengpi to Drought Stress. SUSTAINABILITY 2022. [DOI: 10.3390/su14127479] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Illicium difengpi Kib and Kim, an endangered plant unique to karst areas in China, has evolved an extremely high tolerance to arid environments. To elucidate the molecular mechanisms of the response to drought stress in I. difengpi, physiological index determination and transcriptome sequencing experiments were conducted in biennial seedlings grown under different soil moisture conditions (70~80%, 40~50% and 10~20%). With increasing drought stress, the leaf chlorophyll content decreased, while the proline (Pro), soluble sugar (SS) and malondialdehyde (MDA) contents increased; superoxide dismutase (SOD) and peroxidase (POD) activities also increased. Transcriptome sequencing and pairwise comparisons of the treatments revealed 2489, 4451 and 753 differentially expressed genes (DEGs) in CK70~80 vs. XP40~50, CK70~80 vs. XP10~20 and XP40~50 vs. XP10~20, respectively. These DEGs were divided into seven clusters according to their expression trends, and the Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment results of different clusters indicated that genes in the hormone signal transduction and osmotic regulation pathways were greatly activated under mild drought stress. When drought stress increased, the DEGs related to membrane system and protein modification and folding were all upregulated; simultaneously, chitin catabolism- and glycolysis/gluconeogenesis-related genes were continuously upregulated throughout drought stress, while the genes involved in photosynthesis were downregulated. Here, 244 transcription factors derived from 10 families were also identified. These results lay a foundation for further research on the adaptation of I. difengpi to arid environments in karst areas and the establishment of a core regulatory relationship in its drought resistance mechanism.
Collapse
|
21
|
Elshayb OM, Nada AM, Sadek AH, Ismail SH, Shami A, Alharbi BM, Alhammad BA, Seleiman MF. The Integrative Effects of Biochar and ZnO Nanoparticles for Enhancing Rice Productivity and Water Use Efficiency under Irrigation Deficit Conditions. PLANTS (BASEL, SWITZERLAND) 2022; 11:plants11111416. [PMID: 35684189 PMCID: PMC9183004 DOI: 10.3390/plants11111416] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 05/13/2022] [Accepted: 05/23/2022] [Indexed: 05/02/2023]
Abstract
Water stress is considered one of the most environmental hazards that threaten agricultural productivity. Therefore, two field experiments were conducted to investigate the impact of biochar (6 t ha-1 as soil amendment), ZnO NPs (50 mg L-1 as foliar application), and their combination on growth, yield, and water use efficiency (WUE) of rice grown under four irrigation deficit treatments (i.e., irrigation every 3, 6, 9 and 12 d). The irrigation every 3 d was considered as the control in the current study. For this purpose, biochar was prepared through the pyrolysis of corn stalk and rice husk at 350 °C for 3 h, while sonochemical combined with the precipitation method was used to prepare zinc oxide nanoparticles (ZnO NPs) from zinc acetate. The morphological structures of the produced biochar and ZnO NPs were characterized using X-ray diffraction (XRD), N2 gas adsorption-desorption, scanning electron microscopy (SEM), and transmission electron microscopy (TEM). The results exhibited that the combination of biochar alongside ZnO NPs resulted in a positive significant effect on the physiological traits such as chlorophyll content, relative water content, plant height, and leaf area index as well as yield-associated components (i.e., number of panicles m-2, number of filled grain per panicle, 1000-grain weight), and biological and grain yield ha-1 when rice plants were irrigated every 9 days without a significant difference with those obtained from the control treatment (irrigation every 3 d). In conclusion, the combination of biochar and ZnO NPs could be recommended as an optimal approach to maximize both grain yield ha-1 and WUE of rice.
Collapse
Affiliation(s)
- Omnia M. Elshayb
- Rice Research and Training Center, Field Crops Research Institute, Agricultural Research Center, Sakha 33717, Egypt; (O.M.E.); (A.M.N.)
| | - Abdelwahed M. Nada
- Rice Research and Training Center, Field Crops Research Institute, Agricultural Research Center, Sakha 33717, Egypt; (O.M.E.); (A.M.N.)
| | - Ahmed H. Sadek
- Housing and Building National Research Center (HBRC), Sanitary and Environmental Engineering Research Institute, Giza 11511, Egypt;
- Faculty of Nanotechnology for Postgraduate Studies, Sheikh Zayed Campus, Cairo University, Giza 12588, Egypt;
| | - Sameh H. Ismail
- Faculty of Nanotechnology for Postgraduate Studies, Sheikh Zayed Campus, Cairo University, Giza 12588, Egypt;
| | - Ashwag Shami
- Department of Biology, College of Sciences, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia;
| | - Basmah M. Alharbi
- Department of Biology, Faculty of Science, University of Tabuk, Tabuk 71491, Saudi Arabia;
| | - Bushra Ahmed Alhammad
- Biology Department, College of Science and Humanity Studies, Prince Sattam Bin Abdulaziz University, Al Kharj Box 292, Riyadh 11942, Saudi Arabia;
| | - Mahmoud F. Seleiman
- Plant Production Department, College of Food and Agriculture Sciences, King Saud University, P.O. Box 2460, Riyadh 11451, Saudi Arabia
- Department of Crop Sciences, Faculty of Agriculture, Menoufia University, Shibin El-Kom 32514, Egypt
- Correspondence: ; Tel.: +96-6553-153351
| |
Collapse
|
22
|
Green Synthesis of Nanoparticles by Mushrooms: A Crucial Dimension for Sustainable Soil Management. SUSTAINABILITY 2022. [DOI: 10.3390/su14074328] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Soil is the main component in the agroecosystem besides water, microbial communities, and cultivated plants. Several problems face soil, including soil pollution, erosion, salinization, and degradation on a global level. Many approaches have been applied to overcome these issues, such as phyto-, bio-, and nanoremediation through different soil management tools. Mushrooms can play a vital role in the soil through bio-nanoremediation, especially under the biological synthesis of nanoparticles, which could be used in the bioremediation process. This review focuses on the green synthesis of nanoparticles using mushrooms and the potential of bio-nanoremediation for polluted soils. The distinguished roles of mushrooms of soil improvement are considered a crucial dimension for sustainable soil management, which may include controlling soil erosion, improving soil aggregates, increasing soil organic matter content, enhancing the bioavailability of soil nutrients, and resorting to damaged and/or polluted soils. The field of bio-nanoremediation using mushrooms still requires further investigation, particularly regarding the sustainable management of soils.
Collapse
|
23
|
Roy R, Núñez-Delgado A, Wang J, Kader MA, Sarker T, Hasan AK, Dindaroglu T. Cattle manure compost and biochar supplementation improve growth of Onobrychis viciifolia in coal-mined spoils under water stress conditions. ENVIRONMENTAL RESEARCH 2022; 205:112440. [PMID: 34843727 DOI: 10.1016/j.envres.2021.112440] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 11/17/2021] [Accepted: 11/18/2021] [Indexed: 06/13/2023]
Abstract
Surface mining is a critical anthropogenic activity that significantly alters the ecosystem, while the use of appropriate revegetation techniques can be considered an important and feasible strategy in the way to improve the ecosystem services of degraded land. In the present study, we carried out a pot experiment to investigate the effects of three different variables on morpho-physiological and biochemical parameters of Onobrychis viciifolia to assess the capability of this species to be used for restoration purposes. Specifically, the variables studied were: (a) water (W) regime, working at five values as regards field capacity (FC) (i.e., 80% FC = highest, 72% FC = high, 60% FC = moderate, 48% FC = low, and 40% FC = very-low dose); and (b) rates of cattle manure compost (CMC) and wood biochar (BC) (weight/weight ratio), working at five rates (i.e., 4.0% = highest, 3.2% = high, 2.0% = moderate, 0.8% = low, and 0% = either no-CMC or no-BC dose). In addition, soil physical-chemical properties and enzyme activities were also investigated at the end of the experimental period. It was found that morphological growth attributes such as plant height, maximum root length, and dry biomass significantly increased with W, CMC and BC applications. Compared to control, moderate-to-high W, CMC and BC doses (W80CMC2BC2) increased net photosynthesis rate (by 42%), stomatal conductance (by 50%), transpiration rate (by 29%), water use efficiency (by 10%), chlorophyll contents (by 73%), carotenoid content (by 81%), leaf relative water content (by 33%) and leaf membrane stability index (by 30%). Under low-W content, the application of CMC and BC enhanced osmotic adjustments by increasing the content of soluble sugar and the activities of superoxide dismutase, catalase, peroxidase and ascorbate peroxidase, decreasing the oxidative stress, as verified by low levels of hydrogen peroxide, superoxide anion, malondialdehyde and proline contents in leaf tissues. Moreover, application of W, CMC and BC significantly improved soil water holding capacity, available nitrogen, phosphorus and potassium, urease and catalase activities, which facilitate plant growth. These results would aid in designing an appropriate strategy for achieving a successful revegetation of O. viciifolia, providing optimum doses of W (64% field capacity), CMC (2.4%) and BC (1.7%), with the final aim of reaching ecological restoration in arid degraded lands.
Collapse
Affiliation(s)
- Rana Roy
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi, 712100, People's Republic of China; Department of Agroforestry & Environmental Science, Sylhet Agricultural University, Sylhet, 3100, Bangladesh.
| | - Avelino Núñez-Delgado
- Department of Soil Science and Agricultural Chemistry, Engineering Polytechnic School, Campus Univ., 27002, Lugo, University of Santiago de Compostela, Spain.
| | - Jinxin Wang
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi, 712100, People's Republic of China; Key Laboratory of Plant Nutrition and the Agri-Environment in Northwest China, Ministry of Agriculture, Yangling, Shaanxi, 712100, People's Republic of China.
| | - Md Abdul Kader
- School of Agriculture, Geography, Environment, Ocean and Natural Sciences, University of the South Pacific, Suva, 1168, Fiji; Department of Soil Science, Bangladesh Agricultural University, Mymensingh, 2202, Bangladesh; College of Science, Health, Education and Engineering, Murdoch University, Murdoch, WA, 6150, Australia.
| | - Tanwne Sarker
- School of Economics and Finance, Xi'an Jiaotong University, Xi'an, 710049, People's Republic of China.
| | - Ahmed Khairul Hasan
- Department of Agronomy, Bangladesh Agricultural University, Mymensingh, 2202, Bangladesh.
| | - Turgay Dindaroglu
- Department of Forest Engineering, Faculty of Forestry, Kahramanmaras Sutcu Imam University, Kahramanmaras, 46100, Turkey.
| |
Collapse
|
24
|
Kang X, Geng N, Li X, Yu J, Wang H, Pan H, Yang Q, Zhuge Y, Lou Y. Biochar Alleviates Phytotoxicity by Minimizing Bioavailability and Oxidative Stress in Foxtail Millet ( Setaria italica L.) Cultivated in Cd- and Zn-Contaminated Soil. FRONTIERS IN PLANT SCIENCE 2022; 13:782963. [PMID: 35401634 PMCID: PMC8993223 DOI: 10.3389/fpls.2022.782963] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Accepted: 03/07/2022] [Indexed: 06/14/2023]
Abstract
Soil contamination with multiple heavy metals is a global environmental issue that poses a serious threat to public health and ecological safety. Biochar passivation is an efficient and economical technology to prevent heavy metal contamination of Cd; however, its effects on compound-contaminated and weakly alkaline soil remain unclear. Further, the mechanisms mediating the immobilization effects of biochar have not been evaluated. In this study, three biochar treated at different pyrolytic temperatures [300°C (BC300), 400°C (BC400), and 500°C (BC500)] were applied to Cd-/Zn-contaminated soils, and their effects on plant growth, photosynthetic characteristics, Cd/Zn accumulation and distribution in foxtail millet were evaluated. Further, the effect of biochar application on the soil physicochemical characteristics, as well as the diversity and composition of the soil microbiota were investigated. Biochar significantly alleviated the phytotoxicity of Cd and Zn. DTPA (diethylenetriamine pentaacetic acid)-Cd and DTPA-Zn content was significantly reduced following biochar treatment via the transformation of exchangeable components to stable forms. BC500 had a lower DTPA-Cd content than BC300 and BC400 by 42.87% and 39.29%, respectively. The BC500 passivation ratio of Cd was significantly higher than that of Zn. Biochar application also promoted the growth of foxtail millet, alleviated oxidative stress, and reduced heavy metal bioaccumulation in shoots, and transport of Cd from the roots to the shoots in the foxtail millet. The plant height, stem diameter, biomass, and photosynthetic rates of the foxtail millet were the highest in BC500, whereas the Cd and Zn content in each organ and malondialdehyde and hydrogen peroxide content in the leaves were the lowest. Moreover, biochar application significantly increased the abundance of soil bacteria and fungi, as well as increasing the fungal species richness compared to no-biochar treatment. Overall, biochar was an effective agent for the remediation of heavy metal-contaminated soil. The passivation effect of biochar exerted on heavy metals in soil was affected by the biochar pyrolysis temperature, with BC500 showing the best passivation effect.
Collapse
|
25
|
Roy R, Sultana S, Wang J, Mostofa MG, Sarker T, Rahman Shah MM, Hossain MS. Revegetation of coal mine degraded arid areas: The role of a native woody species under optimum water and nutrient resources. ENVIRONMENTAL RESEARCH 2022; 204:111921. [PMID: 34454933 DOI: 10.1016/j.envres.2021.111921] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 07/09/2021] [Accepted: 08/12/2021] [Indexed: 05/27/2023]
Abstract
Ecological restoration of coal mine degraded soils across arid and semi-arid environments worldwide remains particularly challenging. We used a combination of greenhouse and field experiments to assess the potential role of a woody species, Ulmus pumila, in the restoration of degraded soils associated with coal-mining activities in the northwest China. We investigated how various combinations of water-nitrogen-phosphorus (W-N-P) resources affect multiple growth parameters in U. pumila. We found that several plant growth traits significantly improved with W-N applications, regardless of P inputs. Moderate-to-highest W-N-P doses increased net photosynthesis and transpiration rates, water use efficiency, stomatal conductance, chlorophyll and carotenoid contents under greenhouse conditions. A combination of high W together with low N-P applications led to high relative water content and net photosynthetic rates under field conditions. Increasing of N-P doses under W-shortage condition, aided U. pumila to enhance osmotic adjustments by increasing contents of proline and soluble sugar and also boost the activity of superoxide dismutase, peroxidase and catalase in leaf tissues to reduce accumulation of reactive oxygen species and malondialdehyde content in all conditions of greenhouse and field. Our study is the first to assess the optimum W-N-P resources in U. pumila and demonstrate that optimum growth performance could be obtained under W supplements corresponding to 90 mm year-1, N and P at 110 and 45 kg ha-1, respectively, under field condition. These findings can have far reaching implications for vegetation restoration of degraded areas associated with coal-mining activities across arid and semi-arid regions worldwide.
Collapse
Affiliation(s)
- Rana Roy
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi, 712100, People's Republic of China; Department of Agroforestry & Environmental Science, Sylhet Agricultural University, Sylhet, 3100, Bangladesh.
| | - Shirin Sultana
- Open School, Bangladesh Open University, Gazipur, 1705, Dhaka, Bangladesh.
| | - Jinxin Wang
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi, 712100, People's Republic of China; Key Laboratory of Plant Nutrition and the Agri-Environment in Northwest China, Ministry of Agriculture, Yangling, Shaanxi, 712100, People's Republic of China.
| | - Mohammad Golam Mostofa
- Department of Biochemistry and Molecular Biology, Bangabandhu Sheikh Mujibur Rahman Agricultural University, Gazipur, 1706, Bangladesh.
| | - Tanwne Sarker
- School of Economics and Finance, Xi'an Jiaotong University, Xi'an, 710049, People's Republic of China.
| | | | - Md Shakhawat Hossain
- College of Economics and Management, Northwest A&F University, Yangling, Shaanxi, 712100, People's Republic of China; World Vision Bangladesh, BleNGS Project, Jamalpur, 2000, Bangladesh.
| |
Collapse
|
26
|
Sun Z, Yi M, Liu X, Yixin S, Li J. Synergism Between Water Management and Phosphorus Supply Enhances the Nodulation and Root Growth and Development of Chinese Milk Vetch ( Astragalus sinicus L.). FRONTIERS IN PLANT SCIENCE 2022; 12:784251. [PMID: 35185950 PMCID: PMC8850655 DOI: 10.3389/fpls.2021.784251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Accepted: 12/20/2021] [Indexed: 06/14/2023]
Abstract
The response of root development and nodule formation of the manure crop Chinese milk vetch to different levels of soil moisture and phosphorous (P) fertilizer remains unclear. In this study, a pot experiment was performed to trace the root growth and nodule formation of Chinese milk vetch at the seedling, branching and full-flowering stages, under various soil moisture gradients [25% (W1), 50% (W2), 75% (W3), and 100% (W4) of the maximum field water-holding capacity] and P levels [0 (P0), 30 (P1), 60 (P2), and 90 (P3) kg hm-2]. The root/shoot ratio, root vitality, number of nodules, nodule weight, and nitrogenase activity were affected remarkably by soil moisture or the level of added P across the whole stage. Differences were found in the interaction effect between soil moisture and added P on the characteristic indices of the root and nodule at the different growth stages. There were obvious differences in root activity and nitrogenase activity at seedling stage, but no evident differences were found in other indices. Certain differences were also found in the indicators mentioned above at the branching stage. W1P0 and W2P0 showed the highest root/shoot ratio, W2P2 and W3P2 resulted in the highest root activity; W3P3 and W3P2 had the highest number and weight of nodules; and W3P2, W2P2, and W3P1 had higher nitrogenase activity than the other treatments at the full-flowering stage. The application of P at 60 kg hm-2 and the relative soil moisture of 75% was the best P-water combination suitable for the root development, nodule formation, and nitrogen fixation of Chinese milk vetch. This study will provide a theoretical basis for the production of this plant by managing the synergistic interaction between P fertilizer and soil moisture.
Collapse
Affiliation(s)
- Zhengguo Sun
- College of Agro-Grassland Science, Nanjing Agricultural University, Nanjing, China
| | - Mingxuan Yi
- College of Agro-Grassland Science, Nanjing Agricultural University, Nanjing, China
| | - Xinbao Liu
- College of Agro-Grassland Science, Nanjing Agricultural University, Nanjing, China
| | - Shen Yixin
- College of Agro-Grassland Science, Nanjing Agricultural University, Nanjing, China
| | - Jianlong Li
- School of Life Sciences, Nanjing University, Nanjing, China
| |
Collapse
|
27
|
Latini A, Fiorani F, Galeffi P, Cantale C, Bevivino A, Jablonowski ND. Phenotyping of Different Italian Durum Wheat Varieties in Early Growth Stage With the Addition of Pure or Digestate-Activated Biochars. FRONTIERS IN PLANT SCIENCE 2021; 12:782072. [PMID: 34987533 PMCID: PMC8721205 DOI: 10.3389/fpls.2021.782072] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Accepted: 11/23/2021] [Indexed: 06/14/2023]
Abstract
This study aims to highlight the major effects of biochar incorporation into potting soil substrate on plant growth and performance in early growth stages of five elite Italian varieties of durum wheat (Triticum durum). The biochars used were obtained from two contrasting feedstocks, namely wood chips and wheat straw, by gasification under high temperature conditions, and were applied in a greenhouse experiment either as pure or as nutrient-activated biochar obtained by incubation with digestate. The results of the experiment showed that specific genotypes as well as different treatments with biochar have significant effects on plant response when looking at shoot traits related to growth. The evaluated genotypes could be clustered in two main distinct groups presenting, respectively, significantly increasing (Duilio, Iride, and Saragolla varieties) and decreasing (Marco Aurelio and Grecale varieties) values of projected shoot system area (PSSA), fresh weight (FW), dry weight (DW), and plant water loss by evapotranspiration (ET). All these traits were correlated with Pearson correlation coefficients ranging from 0.74 to 0.98. Concerning the treatment effect, a significant alteration of the mentioned plant traits was observed when applying biochar from wheat straw, characterized by very high electrical conductivity (EC), resulting in a reduction of 34.6% PSSA, 43.2% FW, 66.9% DW, and 36.0% ET, when compared to the control. Interestingly, the application of the same biochar after nutrient spiking with digestate determined about a 15-30% relief from the abovementioned reduction induced by the application of the sole pure wheat straw biochar. Our results reinforce the current basic knowledge available on biological soil amendments as biochar and digestate.
Collapse
Affiliation(s)
- Arianna Latini
- Italian National Agency for New Technologies, Energy and Sustainable Economic Development, ENEA Casaccia Research Center, Rome, Italy
| | - Fabio Fiorani
- Institute of Bio- and Geosciences, IBG-2, Plant Sciences, Forschungszentrum Jülich GmbH, Jülich, Germany
| | - Patrizia Galeffi
- Italian National Agency for New Technologies, Energy and Sustainable Economic Development, ENEA Casaccia Research Center, Rome, Italy
| | - Cristina Cantale
- Italian National Agency for New Technologies, Energy and Sustainable Economic Development, ENEA Casaccia Research Center, Rome, Italy
| | - Annamaria Bevivino
- Italian National Agency for New Technologies, Energy and Sustainable Economic Development, ENEA Casaccia Research Center, Rome, Italy
| | - Nicolai David Jablonowski
- Institute of Bio- and Geosciences, IBG-2, Plant Sciences, Forschungszentrum Jülich GmbH, Jülich, Germany
| |
Collapse
|
28
|
Calibration and Validation of AQUACROP and APSIM Models to Optimize Wheat Yield and Water Saving in Arid Regions. LAND 2021. [DOI: 10.3390/land10121375] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
The APSIM-Wheat and AQUACROP models were calibrated for the Sakha 95 cultivar using phenological data, grain and biomass yield, and genetic parameters based on field observation. Various treatments of planting dates, irrigation, and fertilization were applied over the two successive winter growing seasons of 2019/2020 and 2020/2021. Both models simulated anthesis, maturity dates, grain yield, and aboveground biomass accurately with high performances (coefficient of determination, index of agreement greater than 0.8, and lower values of root mean square deviation) in most cases. The calibrated models were then employed to explore wheat yield and water productivity (WP) in response to irrigation and nitrogen fertilization applications. Scenario analyses indicated that water productivity and yield of wheat ranged from 1.2–2.0 kg m–3 and 6.8–8.7 t ha–1, respectively. Application of 0.8 from actual evapotranspiration and 120% from recommended nitrogen dose was the best-predicted scenario achieving the highest value of crop WP. Investigating the suitable option achieving the current wheat yield by farmers (7.4 t ha–1), models demonstrated that application of 1.4 from actual evapotranspiration with 80% of the recommended nitrogen dose was the best option to achieve this yield. At this point, predicted WP was low and recorded 1.5 kg m–3. Quantifying wheat yield in all districts of the studied area was also predicted using both models. APSIM-Wheat and AQUACROP can be used to drive the best management strategies in terms of N fertilizer and water regime for wheat under Egyptian conditions.
Collapse
|
29
|
Yin D, Li H, Wang H, Guo X, Wang Z, Lv Y, Ding G, Jin L, Lan Y. Impact of Different Biochars on Microbial Community Structure in the Rhizospheric Soil of Rice Grown in Albic Soil. Molecules 2021; 26:4783. [PMID: 34443371 PMCID: PMC8402013 DOI: 10.3390/molecules26164783] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 08/02/2021] [Accepted: 08/04/2021] [Indexed: 11/16/2022] Open
Abstract
The purpose of this study was to clarify the effects of biochar on the diversity of bacteria and fungi in the rice root zone and to reveal the changes in soil microbial community structure in the root zone after biochar application to provide a scientific basis for the improvement of albic soil. Rice and corn stalk biochar were mixed with albic soil in a pot experiment. Soil samples were collected at the rice maturity stage, soil nutrients were determined, and genomic DNA was extracted. The library was established using polymerase chain reaction (PCR) amplification. The abundance, diversity index, and community structure of the soil bacterial 16SrRNA gene V3 + V4 region and the fungal internal transcribed spacer-1 (ITS1) region were analyzed using Illumina second-generation high-throughput sequencing technology on the MiSeq platform with related bioinformatics. The results revealed that the biochar increased the soil nutrient content of albic soil. The bacteria ACE indexes of treatments of rice straw biochar (SD) and corn straw biochar (SY) were increased by 3.10% and 2.06%, respectively, and the fungi ACE and Chao indices of SD were increased by 7.86% and 14.16%, respectively, compared to conventional control treatment with no biochar (SBCK). The numbers of bacterial and fungal operational taxonomic units (OUT) in SD and SY were increased, respectively, compared to that of SBCK. The relationship between soil bacteria and fungi in the biochar-treated groups was stronger than that in the SBCK. The bacterial and fungal populations were correlated with soil nutrients, which suggested that the impacts of biochar on the soil bacteria and fungi community were indirectly driven by alternation of soil nutrient characteristics. The addition of two types of biochar altered the soil microbial community structure and the effect of rice straw biochar treatment on SD was more pronounced. This study aimed to provide a reference and basic understanding for albic soil improvement by biochar, with good application prospects.
Collapse
Affiliation(s)
- Dawei Yin
- College of Agricultural Science, Heilongjiang Bayi Agricultural University, Daqing 163319, China; (D.Y.); (H.L.); (H.W.); (X.G.); (Z.W.); (Y.L.)
| | - Hongyu Li
- College of Agricultural Science, Heilongjiang Bayi Agricultural University, Daqing 163319, China; (D.Y.); (H.L.); (H.W.); (X.G.); (Z.W.); (Y.L.)
| | - Haize Wang
- College of Agricultural Science, Heilongjiang Bayi Agricultural University, Daqing 163319, China; (D.Y.); (H.L.); (H.W.); (X.G.); (Z.W.); (Y.L.)
| | - Xiaohong Guo
- College of Agricultural Science, Heilongjiang Bayi Agricultural University, Daqing 163319, China; (D.Y.); (H.L.); (H.W.); (X.G.); (Z.W.); (Y.L.)
| | - Zhihui Wang
- College of Agricultural Science, Heilongjiang Bayi Agricultural University, Daqing 163319, China; (D.Y.); (H.L.); (H.W.); (X.G.); (Z.W.); (Y.L.)
| | - Yandong Lv
- College of Agricultural Science, Heilongjiang Bayi Agricultural University, Daqing 163319, China; (D.Y.); (H.L.); (H.W.); (X.G.); (Z.W.); (Y.L.)
| | - Guohua Ding
- College of Cultivation and Cultivation, Heilongjiang Academy of Agricultural Sciences, Harbin 150000, China;
| | - Liang Jin
- College of Plant Nutrition and Resources, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China
| | - Yu Lan
- College of Agricultural Science, Shenyang Agricultural University, Shenyang 110161, China
| |
Collapse
|
30
|
Roy R, Mahboob MG, Arena C, Kader MA, Sultana S, Hasan AK, Wang J, Sarker T, Zhang R, Barmon M. The Modulation of Water, Nitrogen, and Phosphorous Supply for Growth Optimization of the Evergreen Shrubs Ammopiptanthus mongolicus for Revegetation Purpose. FRONTIERS IN PLANT SCIENCE 2021; 12:766523. [PMID: 34975950 PMCID: PMC8719576 DOI: 10.3389/fpls.2021.766523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2021] [Accepted: 11/18/2021] [Indexed: 05/14/2023]
Abstract
Surface mining is a critical anthropogenic activity that significantly alters the ecosystem. Revegetation practices are largely utilized to compensate for these detrimental impacts of surface mining. In this study, we investigated the effects of five water (W) regimes [W40: 40%, W48: 48%, W60: 60%, W72: 72%, and W80: 80% of field capacity (FC)], five nitrogen (N) (N0: 0, N24: 24, N60: 60, N96: 96, and N120: 120 mg kg-1 soil), and five phosphorus (P) fertilizer doses (P0: 0, P36: 36, P90: 90, P144: 144, and P180: 180 mg kg-1 soil) on morpho-physiological and biochemical parameters of Ammopiptanthus mongolicus plants to assess the capability of this species to be used for restoration purposes. The results showed that under low W-N resources, A. mongolicus exhibited poor growth performance (i.e., reduced plant height, stem diameter, and dry biomass) in coal-degraded spoils, indicating that A. mongolicus exhibited successful adaptive mechanisms by reducing its biomass production to survive long in environmental stress conditions. Compared with control, moderate to high W and N-P application rates greatly enhanced the net photosynthesis rates, transpiration rates, water-use efficiency, chlorophyll (Chl) a, Chl b, total Chl, and carotenoid contents. Under low-W content, the N-P fertilization enhanced the contents of proline and soluble sugar, as well as the activities of superoxide dismutase, catalase, and peroxidase in leaf tissues, reducing the oxidative stress. Changes in plant growth and metabolism in W-shortage conditions supplied with N-P fertilization may be an adaptive strategy that is essential for its conservation and restoration in the desert ecosystem. The best growth performance was observed in plants under W supplements corresponding to 70% of FC and N and P doses of 33 and 36 mg kg-1 soil, respectively. Our results provide useful information for revegetation and ecological restoration in coal-degraded and arid-degraded lands in the world using endangered species A. mongolicus.
Collapse
Affiliation(s)
- Rana Roy
- College of Natural Resources and Environment, Northwest A&F University, Yangling, China
- Department of Agroforestry & Environmental Science, Sylhet Agricultural University, Sylhet, Bangladesh
| | - M. Golam Mahboob
- ASICT Division, Bangladesh Agricultural Research Institute, Gazipur, Bangladesh
| | - Carmen Arena
- Department of Biology, University of Naples “Federico II”, Complesso Universitario Monte S. Angelo, Naples, Italy
| | - Md. Abdul Kader
- School of Agriculture, Geography, Environment, Ocean and Natural Sciences, University of the South Pacific, Suva, Fiji
- Department of Soil Science, Bangladesh Agricultural University, Mymensingh, Bangladesh
- College of Science, Health, Education and Engineering, Murdoch University, Murdoch, WA, Australia
| | - Shirin Sultana
- Open School, Bangladesh Open University, Gazipur, Bangladesh
| | - Ahmed Khairul Hasan
- Department of Agronomy, Bangladesh Agricultural University, Mymensingh, Bangladesh
| | - Jinxin Wang
- College of Natural Resources and Environment, Northwest A&F University, Yangling, China
- Key Laboratory of Plant Nutrition and the Agri-Environment in Northwest China, Ministry of Agriculture, Yangling, China
- *Correspondence: Jinxin Wang ;
| | - Tanwne Sarker
- School of Economics and Finance, Xi'an Jiaotong University, Xi'an, China
| | - Ruiqi Zhang
- Institute of Soil and Water Conservation, Northwest A&F University, Yangling, China
| | - Milon Barmon
- Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
| |
Collapse
|