1
|
Xu M, Zhi Y, Kong Z, Ma H, Shao Z, Chen L, Chen H, Yuan Y, Liu F, Xu Y, Ni Q, Hu S, Chai H. Enhancing nitrogen and phosphorus removal in plant-biochar-pyrite stormwater bioretention systems: Impact of temperature and high-frequency heavy rainfall. ENVIRONMENTAL RESEARCH 2024; 262:119926. [PMID: 39276826 DOI: 10.1016/j.envres.2024.119926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 08/21/2024] [Accepted: 09/02/2024] [Indexed: 09/17/2024]
Abstract
Global climate change and rapid urbanization have resulted in more frequent and intense rainfall events in urban areas, raising concerns about the effectiveness of stormwater bioretention systems. In this study, we optimized the design by constructing a multi-layer filler structure, including plant layer, biochar layer, and pyrite layer, and evaluated its performance in nitrogen (N) and phosphorus (P) removal under different temperatures (5-18 °C and 24-43 °C), rainfall intensity (47.06 mm rainfall depth), and frequency (1-5 days rainfall intervals) conditions. The findings indicate that over 775 days, the plant system consistently removed 62.3% of total nitrogen (TN) and 97.0% of total phosphorus (TP) from 103 intense rainfall events. Temperature fluctuations had minimal impact on nitrate nitrogen (NO3--N) and TP removal, with differences in removal rates of only 1.0% and 0.6%, respectively, among plant groups. Across the multi-layer structure, plant roots mitigated the impact of temperature differences on NO3--N removal, while high-frequency rainfall fluctuated the stability of NO3--N removal. Dense plant roots reinforced N and P removal by facilitating denitrification in the vadose zone (biochar) and strengthening denitrification processes. Biochar and pyrite contributed to stable microenvironments and diverse ecological functions, enhancing NO3--N and PO43- removal. In summary, the synergistic effects of the multi-layer filler structure improved and stabilized N and P removal, providing valuable insights for addressing runoff pollution in bioretention systems amidst rapid urbanization and climate change challenges.
Collapse
Affiliation(s)
- Mei Xu
- Key Laboratory of the Three Gorges Reservoir Region, Ministry of Education, College of Environment and Ecology, Chongqing University, Chongqing, 400045, China
| | - Yue Zhi
- Key Laboratory of the Three Gorges Reservoir Region, Ministry of Education, College of Environment and Ecology, Chongqing University, Chongqing, 400045, China
| | - Zheng Kong
- Australian Centre for Water and Environmental Biotechnology, The University of Queensland, St Lucia, QLD, 4072, Australia
| | - Haiyuan Ma
- Key Laboratory of the Three Gorges Reservoir Region, Ministry of Education, College of Environment and Ecology, Chongqing University, Chongqing, 400045, China
| | - Zhiyu Shao
- Key Laboratory of the Three Gorges Reservoir Region, Ministry of Education, College of Environment and Ecology, Chongqing University, Chongqing, 400045, China
| | - Lei Chen
- Key Laboratory of the Three Gorges Reservoir Region, Ministry of Education, College of Environment and Ecology, Chongqing University, Chongqing, 400045, China
| | - Hong Chen
- Key Laboratory of the Three Gorges Reservoir Region, Ministry of Education, College of Environment and Ecology, Chongqing University, Chongqing, 400045, China
| | - Yunsong Yuan
- Key Laboratory of the Three Gorges Reservoir Region, Ministry of Education, College of Environment and Ecology, Chongqing University, Chongqing, 400045, China
| | - Fujian Liu
- China Construction Installation Group Co. LTD, Nanjing, 210023, China
| | - Yanhong Xu
- China Construction Installation Group Co. LTD, Nanjing, 210023, China
| | - Qichang Ni
- China Construction Installation Group Co. LTD, Nanjing, 210023, China
| | - Shihu Hu
- Australian Centre for Water and Environmental Biotechnology, The University of Queensland, St Lucia, QLD, 4072, Australia
| | - Hongxiang Chai
- Key Laboratory of the Three Gorges Reservoir Region, Ministry of Education, College of Environment and Ecology, Chongqing University, Chongqing, 400045, China.
| |
Collapse
|
2
|
Duan X, Li J, Li Y, Xu Y, Chai H, Chao S. Removal, accumulation, and micro-ecosystem impacts of typical POPs in bioretention systems with different media: A runoff infiltration study. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 946:174278. [PMID: 38925397 DOI: 10.1016/j.scitotenv.2024.174278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 05/31/2024] [Accepted: 06/23/2024] [Indexed: 06/28/2024]
Abstract
Bioretention systems prove effective in purifying common persistent organic pollutants (POPs) found in urban rainfall runoff. However, the response process of the microecosystem in the media becomes unclear when POPs accumulate in bioretention systems. In this study, we constructed bioretention systems and conducted simulated rainfall tests to elucidate the evolution of micro-ecosystems within the media under typical POPs pollution. The results showed all POPs in runoff were effectively removed by surface adsorption in different media, with load reduction rates of >85 % for PCBs and OCPs and > 80 % for PAHs. Bioretention soil media (BSM) + water treatment residuals (WTR) media exhibited greater stability in response to POPs contamination compared to BSM and pure soil (PS) media. POPs contamination significantly impacted the microecology of the media, reducing the number of microbial species by >52.6 % and reducing diversity by >27.6 % at the peak of their accumulation. Enzyme activities were significantly inhibited, with reductions ranging from 44.42 % to 60.33 %. Meanwhile, in terms of ecological functions, the metabolism of exogenous carbon sources significantly increased (p < 0.05), while nitrogen and sulfur cycling processes were suppressed. Microbial diversity and enzyme activities showed some recovery during the dissipation of POPs but did not reach the level observed before the experiment. Dominant bacterial species and abundance changed significantly during the experiment. Proteobacteria were suppressed, but remained the dominant phylum (all relative abundances >41 %). Bacteroidota, Firmicutes, and Actinobacteria adapted well to the contamination. Pseudomonas, a typical POPs-degrading bacterium, displayed a positive correlation between its relative abundance and POPs levels (mean > 10 %). Additionally, POPs and media properties, including TN and pH, are crucial factors that collectively shape the microbial community. This study provides new insights into the impacts of POPs contamination on the microbial community of the media, which can improve media design and operation efficiency.
Collapse
Affiliation(s)
- Xiaolong Duan
- State Key Laboratory of Eco-Hydraulics in the Northwest Arid Region of China, Xi'an University of Technology, Xi'an 710048, China
| | - Jiake Li
- State Key Laboratory of Eco-Hydraulics in the Northwest Arid Region of China, Xi'an University of Technology, Xi'an 710048, China.
| | - Yajiao Li
- School of Architecture and Civil Engineering, Xi'an University of Science and Technology, Xi'an 710054, China
| | - Yefeng Xu
- State Key Laboratory of Eco-Hydraulics in the Northwest Arid Region of China, Xi'an University of Technology, Xi'an 710048, China
| | - Hongxiang Chai
- Key Laboratory of Eco-environments in Three Gorges Reservoir Region (Ministry of Education), College of Environment and Ecology, Chongqing University, Chongqing 400045, China
| | - Senhao Chao
- State Key Laboratory of Eco-Hydraulics in the Northwest Arid Region of China, Xi'an University of Technology, Xi'an 710048, China
| |
Collapse
|
3
|
Chen F, Zhang Q, Zheng G, Shen X, Xue Z, Zhang M, Li R, Wang Y. Enhancing bioretention efficiency for pollutant mitigation in stormwater runoff: Exploring ecosystem cycling dynamics amidst temporal variability. BIORESOURCE TECHNOLOGY 2024; 402:130827. [PMID: 38734258 DOI: 10.1016/j.biortech.2024.130827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Revised: 05/08/2024] [Accepted: 05/08/2024] [Indexed: 05/13/2024]
Abstract
In this study, three distinct bioretention setups incorporating fillers, plants, and earthworms were established to evaluate the operational efficiency under an ecosystem concept across varying time scales. The results revealed that under short-term operating conditions, extending the drying period led to a notable increase in the removal of NO3--N, total phosphorus (TP), and chemical oxygen demand (COD) by 5 %-7%, 4 %-12 %, and 5 %-10 %, respectively. Conversely, under long-time operating conditions, the introduction of plants resulted in a significant boost in COD removal by 10 %-20 %, while the inclusion of earthworms improved NH4+-N and NO3--N removal, especially TP removal by 9 %-16 %. Microbial community analysis further indicated the favorable impact of the bioretention system on biological nitrogen and phosphorus metabolism, particularly with the incorporation of plants and earthworms. This study provides a reference for the operational performance of bioretention systems on different time scales.
Collapse
Affiliation(s)
- Feiwu Chen
- College of Hydraulic Engineering, Tianjin Agricultural University, Tianjin 300384, China
| | - Qian Zhang
- College of Hydraulic Engineering, Tianjin Agricultural University, Tianjin 300384, China.
| | - Guangtai Zheng
- Department of Chemical and Biomolecular Engineering, National University of Singapore, Singapore 117576, Singapore
| | - Xiaojun Shen
- College of Hydraulic Engineering, Tianjin Agricultural University, Tianjin 300384, China
| | - Zhu Xue
- College of Hydraulic Engineering, Tianjin Agricultural University, Tianjin 300384, China
| | - Mucheng Zhang
- College of Hydraulic Engineering, Tianjin Agricultural University, Tianjin 300384, China
| | - Ruoxin Li
- School of Environmental and Municipal Engineering, Tianjin Chengjian University, Tianjin 300384, China
| | - Yuan Wang
- College of Hydraulic Engineering, Tianjin Agricultural University, Tianjin 300384, China
| |
Collapse
|
4
|
Caplan JS, Salisbury AB, McKenzie ER, Behbahani A, Eisenman SW. Spatial, temporal, and biological factors influencing plant responses to deicing salt in roadside bioinfiltration basins. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 359:120761. [PMID: 38703641 DOI: 10.1016/j.jenvman.2024.120761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 03/13/2024] [Accepted: 03/23/2024] [Indexed: 05/06/2024]
Abstract
Plants are arguably the most visible components of stormwater bioretention basins and play key roles in stabilizing soils and removing water through transpiration. In regions with cold winters, bioretention basins along roadways can receive considerable quantities of deicing salt, much of which migrates out of the systems prior to the onset of plant growth but the rest remains in the soil. The resulting effects on plants presumably vary with time (due to annual weather patterns), space (because stormwater exposure is location-dependent), and biology (because plant taxa differ in their salt tolerance). The goal of this study was to investigate the magnitude of deicing salt's effects on bioretention plants and how it varies with spatial, temporal, and biological factors. The study took place in a set of five bioretention basins in Philadelphia, USA that receive runoff from a major highway. Over a five-year period, the electrical conductivity (EC) of influent stormwater frequently exceeded 1 mS cm-1 in winter, and occasionally surpassed that of seawater (∼50 mS cm-1). In both of the years when soil EC was measured as well, it remained elevated through all spring months, especially near basin inlets and centers. Mortality of nine plant taxa ranged widely after three years (0-90%), with rankings largely corresponding to salt tolerances. Moreover, leaf areas and/or crown volumes were strongly reduced in proportion to stormwater exposure in seven of these taxa. In the three taxa evaluated for tissue concentrations of 14 potentially toxic elements (Hemerocallis 'Happy Returns', Iris 'Caesar's Brother', and Cornus sericea 'Cardinal'), only sodium consistently exceeded the toxicity limit for salt intolerant plants (500 mg kg-1). However, exceedance of the sodium toxicity limit was associated with plants' topographic positions, with median concentrations greatest in the bottom of basins and least on basin rims. This study demonstrates that deicing salts can have detrimental effects on plants in bioretention basins, with the strongest effects likely to occur in years with the greatest snowfall (and therefore deicing salt use), in portions of basins with greatest stormwater exposure (typically around inlets and centers), and in plants with minimal salinity tolerance. Our results therefore underscore the value of installing salt-tolerant taxa in basins likely to experience any frequency of deicing salt exposure.
Collapse
Affiliation(s)
- Joshua S Caplan
- Department of Architecture & Environmental Design, Temple University, 580 Meetinghouse Road, Ambler 19002, PA, USA.
| | - Allyson B Salisbury
- Department of Architecture & Environmental Design, Temple University, 580 Meetinghouse Road, Ambler 19002, PA, USA.
| | - Erica R McKenzie
- Department of Civil & Environmental Engineering, Temple University, 1947 N. 12th Street, Philadelphia 19122, PA, USA.
| | - Ali Behbahani
- Department of Civil & Environmental Engineering, Temple University, 1947 N. 12th Street, Philadelphia 19122, PA, USA.
| | - Sasha W Eisenman
- Department of Architecture & Environmental Design, Temple University, 580 Meetinghouse Road, Ambler 19002, PA, USA.
| |
Collapse
|
5
|
Zuo X, Zhang S, Chen S. The role of water matrix on antibiotic resistance genes transmission in substrate layer from stormwater bioretention cells. WATER RESEARCH 2024; 251:121103. [PMID: 38183842 DOI: 10.1016/j.watres.2024.121103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 01/01/2024] [Accepted: 01/02/2024] [Indexed: 01/08/2024]
Abstract
Recently, extensive attention has been paid to antibiotic resistance genes (ARGs) transmission. However, little available literature could be found about ARGs transmission in stormwater bioretention cells, especially the role of water matrix on ARGs transmission. Batch experiments were conducted to investigate target ARGs (blaTEM, tetR and aphA) transmission behaviors in substrate layer from stormwater bioretention cells under different water matrices, including nutrient elements (e.g., carbon, nitrogen and phosphorus), water environmental conditions (dissolved oxygen (DO), pH and salinity, etc.) and pollution factors (like heavy metals, antibiotics and disinfectants), showing that ARGs conjugation frequency increased sharply with the enhancement of water matrices (expect DO and pH), while there were obvious increasing tendencies for all ARGs transformation frequencies under only the pollution factor. The correlation between dominant bacteria and ARGs transmission implied that conjugation and transformation of ARGs were mainly determined by Firmicutes, Bacteroidota, Latescibacterota, Chloroflexi and Cyanobacteria at the phylum level, and by Sphingomonas, Ensifer, IMCC26256, Rubellimicrobium, Saccharimonadales, Vicinamibacteraceae, Nocardioides, JG30-KF-CM66 at the genus level. The mentioned dominant bacteria were responsible for intracellular reactive oxygen species (ROS) and cell membrane permeability (CMP) in the substrate layer, where the amplification of intracellular ROS variation were the largest with 144 and 147 % under the condition of TP and salinity, respectively, and the one of CMP variation were the highest more than 165 % under various pollution factors. Furthermore, both increasing DO and reducing salinity could be potential approaches for the inhibition of ARGs transmission in bioretention cells taking into account the simultaneous removal of conventional pollutants.
Collapse
Affiliation(s)
- XiaoJun Zuo
- Jiangsu Engineering Lab of Water and Soil Eco-remediation, School of Environment, Nanjing Normal University, Nanjing 210023, China.
| | - SongHu Zhang
- School of Environmental Science and Engineering, Nanjing University of Information Science & Technology, Nanjing 210044, China
| | - ShaoJie Chen
- School of Environmental Science and Engineering, Nanjing University of Information Science & Technology, Nanjing 210044, China
| |
Collapse
|
6
|
Al-Amin A, Ryan RJ, McKenzie ER. Effects of dissolved organic carbon on potentially toxic element desorption in stormwater bioretention systems. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 912:168651. [PMID: 38008319 DOI: 10.1016/j.scitotenv.2023.168651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 10/17/2023] [Accepted: 11/15/2023] [Indexed: 11/28/2023]
Abstract
Stormwater runoff contains dissolved organic carbon (DOC) and potentially toxic elements (PTEs). Interactions between DOC and PTEs can impact PTE speciation and mobility, but are not fully understood. Soil samples were collected from a vegetated bioretention bed to investigate the effects of DOC (0, 15, and 50 mg-C/L) on the desorption of 10 PTEs captured by the soil media: Mn, Fe, Co, Cu, Zn, As, Cd, Sn, Sb, and Pb. In the absence of DOC, the desorbed PTE concentration from bioretention media into the aqueous phase ranking was as follows: Fe > Mn ∼ Zn > Cu > Pb > Sb > As > Co > Sn ∼ Cd. Increased DOC concentrations resulted in a reduction of the soil-water distribution coefficient (Kd) values. The greatest shift in Kd was observed for Cu and lowest for Sb. The PTE sorption capacities were lower for surficial soil samples (lower Kd) compared to the deep soil samples. Overall, the desorbed PTE (average midchannel 55.7 μg/g) fraction accounted for <1.1 % of the total extracted PTEs (5364 μg/g), and while this is a small percentage of the total, this is the fraction that is mobile. The extracted PTE fractions revealed that DOC reduced the organic matter-bound and carbonate-bound fractions. The PTE desorption trends suggest that reducing DOC in stormwater runoff could be an effective measure to mitigate the release of PTEs into the environment.
Collapse
Affiliation(s)
- Abdullah Al-Amin
- Temple University, Department of Civil and Environmental Engineering, 1947 North 12 Street, Philadelphia, PA 19122, United States
| | - Robert J Ryan
- Temple University, Department of Civil and Environmental Engineering, 1947 North 12 Street, Philadelphia, PA 19122, United States
| | - Erica R McKenzie
- Temple University, Department of Civil and Environmental Engineering, 1947 North 12 Street, Philadelphia, PA 19122, United States.
| |
Collapse
|
7
|
Zhang Z, Zhang Y, Li J, Sun Y, Liu Z. Pollutant accumulation and microbial community evolution in rain gardens with different drainage types at field scale. Sci Rep 2024; 14:2. [PMID: 38228664 PMCID: PMC10792081 DOI: 10.1038/s41598-023-48255-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Accepted: 11/24/2023] [Indexed: 01/18/2024] Open
Abstract
Rain gardens play a key role in urban non-point source pollution control. The drainage type affects the infiltration processes of runoff pollutants. The soil properties and microbial community structures were studied to reveal the stability of the ecosystem in rain gardens with different drainage types under long-term operation. The results showed that the soil water content and total organic carbon in the drained rain gardens were always higher than that of the infiltrated ones. With the increase in running time, the contents of heavy metals in rain gardens showed significant accumulation phenomena, especially the contents of Zn and Pb in drained rain gardens were higher than that in infiltrated ones. The accumulation of pollutants resulted in lower microbial diversity in drained rain gardens than in infiltrated rain gardens, but the microbial community structures were the same in all rain gardens. The effects of drainage type on microbial community evolution were not significant, only the accumulation of heavy metals led to changes in the abundance of dominant microorganisms. There were differences in the soil environment of rain gardens with different drainage types. The long-term operation of rain gardens led to fluctuations in the soil ecosystem, while the internal micro-ecosystems of the drained rain gardens were in unstable states.
Collapse
Affiliation(s)
- Zhaoxin Zhang
- Institute of Land Engineering and Technology, Shaanxi Provincial Land Engineering Construction Group Co., Ltd., Xi'an, 710075, China
- Key Laboratory of Degraded and Unused Land Consolidation Engineering, Ministry of Natural Resources, Xi'an, 710075, China
- State Key Laboratory of Eco-Hydraulics in Northwest Arid Region of China, Xi'an University of Technology, Xi'an, 710048, China
| | - Yang Zhang
- Shaanxi Key Laboratory of Land Consolidation, Chang' an University, Xi'an, 710064, China.
| | - Jiake Li
- State Key Laboratory of Eco-Hydraulics in Northwest Arid Region of China, Xi'an University of Technology, Xi'an, 710048, China.
| | - Yingying Sun
- Institute of Land Engineering and Technology, Shaanxi Provincial Land Engineering Construction Group Co., Ltd., Xi'an, 710075, China
- Key Laboratory of Degraded and Unused Land Consolidation Engineering, Ministry of Natural Resources, Xi'an, 710075, China
| | - Zhe Liu
- Institute of Land Engineering and Technology, Shaanxi Provincial Land Engineering Construction Group Co., Ltd., Xi'an, 710075, China
- Key Laboratory of Degraded and Unused Land Consolidation Engineering, Ministry of Natural Resources, Xi'an, 710075, China
| |
Collapse
|
8
|
Yang Y, Kong Z, Ma H, Shao Z, Wang X, Shen Y, Chai H. Insights into the transport and bio-degradation of dissolved inorganic nitrogen in the biochar-pyrite amended stormwater biofilter using dynamic modeling. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 347:119152. [PMID: 37774660 DOI: 10.1016/j.jenvman.2023.119152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 09/04/2023] [Accepted: 09/23/2023] [Indexed: 10/01/2023]
Abstract
The stormwater biofilter is a prevailing green infrastructure for urban stormwater management, but it is less effective in dissolved nitrogen removal, especially for nitrate. The mechanism that governs the nitrate leaching and performance stability of stormwater biofilters is poorly understood. In this study, a water quality model was developed to predict the ammonium and nitrate dynamics in a biochar-pyrite amended stormwater biofilter. The transport of dissolved nitrogen species was described by advection-dispersion models. The kinetics of adsorption and pyrite-based autotrophic denitrification are included in the model and simulated with a steady-state saturated flow. The model was calibrated and validated using eleven storm events. The modeling results reveal that the contribution of pyrite-based autotrophic denitrification to nitrate leaching alleviation improves with the increased drying duration. The nitrate removal efficiency was affected by a series of design parameters. Pyrite filling rate has a minor effect on nitrate removal promotion. Service area ratio and submerged zone depth are the key parameters to prevent nitrate leaching, as they influence the emergence and discharge time of nitrate breakthrough. The high inflow volume (high service area ratio) and small submerged zone can lead to earlier and increased discharge of peak nitrate otherwise the peak nitrate could be retained in the submerged zone and denitrified during the drying period. The developed mechanistic model provides a useful tool to evaluate the treatment ability of stormwater biofilters under varying conditions and offers a guideline for biofilter design optimization.
Collapse
Affiliation(s)
- Yan Yang
- National Research Base of Intelligent Manufacturing Service, Chongqing Technology and Business University, Chongqing, 400067, China; Key Laboratory of Eco-environments in Three Gorges Reservoir Region (Ministry of Education), College of Environment and Ecology, Chongqing University, Chongqing, 400045, China
| | - Zheng Kong
- Key Laboratory of Eco-environments in Three Gorges Reservoir Region (Ministry of Education), College of Environment and Ecology, Chongqing University, Chongqing, 400045, China; Australian Centre for Water and Environmental Biotechnology (ACWEB, Formerly AWMC), The University of Queensland, Brisbane, QLD, 4072, Australia
| | - Haiyuan Ma
- Key Laboratory of Eco-environments in Three Gorges Reservoir Region (Ministry of Education), College of Environment and Ecology, Chongqing University, Chongqing, 400045, China
| | - Zhiyu Shao
- Key Laboratory of Eco-environments in Three Gorges Reservoir Region (Ministry of Education), College of Environment and Ecology, Chongqing University, Chongqing, 400045, China
| | - Xinyue Wang
- Key Laboratory of Eco-environments in Three Gorges Reservoir Region (Ministry of Education), College of Environment and Ecology, Chongqing University, Chongqing, 400045, China
| | - Yu Shen
- National Research Base of Intelligent Manufacturing Service, Chongqing Technology and Business University, Chongqing, 400067, China; Chongqing South-to-Thais Environmental Protection Technology Research Institute Co., Ltd., Chongqing, 400060, China
| | - Hongxiang Chai
- Key Laboratory of Eco-environments in Three Gorges Reservoir Region (Ministry of Education), College of Environment and Ecology, Chongqing University, Chongqing, 400045, China.
| |
Collapse
|
9
|
Maqbool A, Shahid A, Jahan Z, Bilal Khan Niazi M, Ali Inam M, Tawfeek AM, M Kamel E, Saeed Akhtar M. Development of ZnO-GO-NiO membrane for removal of lead and cadmium heavy metal ions from wastewater. CHEMOSPHERE 2023; 338:139622. [PMID: 37487982 DOI: 10.1016/j.chemosphere.2023.139622] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 07/19/2023] [Accepted: 07/21/2023] [Indexed: 07/26/2023]
Abstract
The presence of heavy metal (HM) ions, such as lead, cadmium, and chromium in industrial wastewater discharge are major contaminants that pose a risk to human health. These HMs should separate from the wastewater to ensure the reuse of the discharged water in the process and mitigate their environmental impacts. The distinctive mechanical properties of 2D graphene oxide (GO), and the antifouling characteristics of metal oxides (ZnO/NiO) nanoparticles combined to produce composites supporting special features for wastewater treatment. This study employed solution casting and phase inversion methods to synthesize PSF-based GO, ZnO-GO, and ZnO-GO-NiO mixed matrix membranes and the effects of variation in composition on the removal of lead (Pb2+) and cadmium (Cd2+) ion was examined. Several characterization techniques including X-ray diffraction analysis, scanning electron microscopy, energy dispersive X-ray, and Fourier transform infrared spectroscopy were applied to analyze the synthesized NPs and MMMs. The composite membranes were also analyzed in terms of their porosity, permeability, hydrophilicity, surface roughness, zeta potential, thermal stability, mechanical strength, and flux regeneration at various transmembrane pressures (2-3 kgcm-2), and pH value (5.5). The highest adsorption capacities were measured to be 308.16 mg g-1 and 354.80 mg g-1 for Pb (II) and Cd (II), respectively, for membrane (M4_A) having 0.3 wt% of ZnO-GO-NiO nanocomposite, at 200 mg L-1 of feed concentration and 1.60 mL min-1 of permeate flux. The Pb (II) and Cd (II) adsorption breakthrough curves were created, and the results of the experiment were compared with the data of the Thomas model.
Collapse
Affiliation(s)
- Arslan Maqbool
- Department of Chemical Engineering, School of Chemical and Materials Engineering, National University of Sciences and Technology, Islamabad, 44000, Pakistan
| | - Ameen Shahid
- Department of Chemical Engineering, School of Chemical and Materials Engineering, National University of Sciences and Technology, Islamabad, 44000, Pakistan.
| | - Zaib Jahan
- Department of Chemical Engineering, School of Chemical and Materials Engineering, National University of Sciences and Technology, Islamabad, 44000, Pakistan.
| | - Muhammad Bilal Khan Niazi
- Department of Chemical Engineering, School of Chemical and Materials Engineering, National University of Sciences and Technology, Islamabad, 44000, Pakistan
| | - Muhammad Ali Inam
- Institute of Environmental Sciences & Engineering (IESE), School of Civil and Environmental Engineering (SCEE), National University of Sciences and Technology (NUST), Islamabad, Pakistan
| | - Ahmed M Tawfeek
- Chemistry Department, College of Science, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Emadeldin M Kamel
- Chemistry Department, Faculty of Science, Beni-Suef University, Beni-Suef, 62514, Egypt
| | - Muhammad Saeed Akhtar
- School of Chemical Engineering, Yeungnam University, Gyeongsan, 712-749, Republic of Korea.
| |
Collapse
|
10
|
Shi W, Zhang Z, Xiong J, Zhou J, Liang L, Liu Y. Influence of double-layer filling structure on nitrogen removal and internal microbial distribution in bioretention cells. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 339:117901. [PMID: 37043914 DOI: 10.1016/j.jenvman.2023.117901] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 04/05/2023] [Accepted: 04/07/2023] [Indexed: 05/03/2023]
Abstract
The nitrogen removal effect of traditional bioretention cells on runoff rainwater is not stable. The nitrogen removal effect of bioretention cells can be improved by setting up a layered filling structure, but the effect of changes in filling structure on the nitrogen removal process and microbial community characteristics is still unclear. Two types of porosity fillers were set up in the experiment, and a homogeneous bioretention cell and three bioretention cells with layered fillers were constructed by changing the depth range of the upper and lower layers to analyze the influence of the pore variation of different depth fillers on the nitrogen removal process and microbial community characteristics. The experimental results showed that, compared with the homogeneous filing structure, the layered filling structure can strengthen the adsorption of NH4+-N and the conversion of NO3--N, so as to increase the removal rates of NH4+-N and NO3--N by 20.71-81.56% and 9.25%-78.19%, respectively. Although the low porosity filler structure will reduce the nitrification activity and urease activity by 48.63%-66.68% and 8.00%-20.64% respectively, it can increase the denitrification activity by 19.14%-31.92%, thus significantly reducing the nitrate content in the filler. The low porosity filler structure can affect the growth and reproduction of various phylum bacteria such as Proteobacteria, Chloroflexi, Acidobacteria, and genus bacteria such as Nitrospira, Ellin6067, Rhizobacter, Pseudomonas, which can improve the diversity and richness of microorganisms.
Collapse
Affiliation(s)
- Weipeng Shi
- Key Lab of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an, 710055, China; School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Yan Ta Road. No.13, Xi'an, 710055, China
| | - Zinuo Zhang
- Key Lab of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an, 710055, China; School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Yan Ta Road. No.13, Xi'an, 710055, China
| | - Jiaqing Xiong
- Key Lab of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an, 710055, China; School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Yan Ta Road. No.13, Xi'an, 710055, China.
| | - Jiajia Zhou
- Key Lab of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an, 710055, China; School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Yan Ta Road. No.13, Xi'an, 710055, China
| | - Lipeng Liang
- Key Lab of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an, 710055, China; School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Yan Ta Road. No.13, Xi'an, 710055, China
| | - Yanzheng Liu
- Key Lab of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an, 710055, China; Xi'an University of Architecture and Technology and University of South Australia, An De College, Xi'an, 710055, China
| |
Collapse
|
11
|
Yuan C, Davis AP, Kaya D, Kjellerup BV. Distribution and biodegradation potential of polycyclic aromatic hydrocarbons (PAHs) accumulated in media of a stormwater bioretention. CHEMOSPHERE 2023:139188. [PMID: 37302503 DOI: 10.1016/j.chemosphere.2023.139188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2023] [Revised: 06/07/2023] [Accepted: 06/09/2023] [Indexed: 06/13/2023]
Abstract
Polycyclic aromatic hydrocarbons (PAHs) are a group of organic compounds that can be captured and accumulate in the bioretention cell media, which may lead to secondary pollution and ecological risks. This research aimed to understand the spatial distribution of 16 priority PAHs in bioretention media, identify their sources, evaluate their ecological impact, and assess the potential for their aerobic biodegradation. The highest total PAH concentration (25.5 ± 1.7 μg/g) was observed 1.83 m from the inlet and 10-15 cm deep. The individual PAHs with the highest concentrations were benzo [g,h,i]perylene in February (1.8 ± 0.8 μg/g) and pyrene in June (1.8 ± 0.8 μg/g). Data indicated that primary sources of PAHs were fossil fuel combustion and petroleum. The ecological impact and toxicity of the media were assessed by probable effect concentrations (PECs) and benzo [a]pyrene total toxicity equivalent (BaP-TEQ). The results showed that the concentrations of pyrene and chrysene exceeded the PECs, and the average BaP-TEQ was 1.64 μg/g, primarily caused by benzo [a]pyrene. The functional gene (C12O) of PAH-ring cleaving dioxygenases (PAH-RCD) was present in the surface media, which indicated that aerobic biodegradation of PAHs was possible. Overall, this study revealed the PAHs accumulated most at medium distance and depth, where biodegradation may be limited. Thus, the accumulation of PAHs below the surface of the bioretention cell may need to be considered during long-term operation and maintenance.
Collapse
Affiliation(s)
- Chen Yuan
- Department of Civil and Environmental Engineering, University of Maryland, College Park, MD, 20742, USA
| | - Allen P Davis
- Department of Civil and Environmental Engineering, University of Maryland, College Park, MD, 20742, USA
| | - Devrim Kaya
- Department of Civil and Environmental Engineering, University of Maryland, College Park, MD, 20742, USA
| | - Birthe V Kjellerup
- Department of Civil and Environmental Engineering, University of Maryland, College Park, MD, 20742, USA.
| |
Collapse
|
12
|
Liu Y, Shen C, Li Z. Bibliometric analysis of global research on bioretention from 2007 to 2021. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023:10.1007/s11356-023-27616-8. [PMID: 37204577 DOI: 10.1007/s11356-023-27616-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Accepted: 05/09/2023] [Indexed: 05/20/2023]
Abstract
Bioretention is a typical low impact development (LID) practice that helps reduce peak urban stormwater runoff and runoff pollutant concentrations (e.g., heavy metals, suspended solids, organic pollutants), which has become an important part of urban stormwater management over the past 15 years. To understand the research hotspots and frontiers in the field of bioretention facility research and provide a reference for research into bioretention facilities, we conduct a statistical analysis of global bioretention literature published during 2007-2021 using the Web of Science core database and the data visualization and analysis software VOSviewer and HistCite. The number of published articles related to bioretention facilities shows a rising trend over the study period, with research from China contributing greatly to global research on bioretention facilities. However, the influence of articles needs to be increased. Recent studies mainly focus on the hydrologic effect and water purification effect of bioretention facilities and on the removal of nitrogen and phosphorus nutrients from runoff rainwater. Further studies should focus on the interaction of fillers, microorganisms, and plants in bioretention facilities and its impact on the migration, transformation, and concentrations of nitrogen and phosphorus; the purification effect and mechanism of specific emerging contaminants in runoff; the selection and configuration optimization of filler materials and plant species; and the optimization of the design parameters of the model for bioretention systems.
Collapse
Affiliation(s)
- Yang Liu
- Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| | - Chen Shen
- Chinese Research Academy of Environmental Sciences, Beijing, 100012, China.
| | - Zhonghong Li
- School Environment and Energy Engineering, Beijing University of Civil Engineering and Architecture, Beijing, 100044, China
| |
Collapse
|
13
|
Gul T, Aslam MM, Khan AS, Iqbal T, Ullah F, Eldesoky GE, Aljuwayid AM, Akhtar MS. Phytotoxic responses of wheat to an imidazolium based ionic liquid in absence and presence of biochar. CHEMOSPHERE 2023; 322:138080. [PMID: 36781001 DOI: 10.1016/j.chemosphere.2023.138080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Revised: 01/21/2023] [Accepted: 02/05/2023] [Indexed: 06/18/2023]
Abstract
Research on ionic liquids (ILs) and biochars (BCs) is a novel site of scientific interest. An experiment was designed to assess the effect of 1-propanenitrile imidazolium trifluoro methane sulfonate ([C2NIM][CF3SO3]) ionic liquid (IL) and IL-BC combination on the wheat plant. Three working standards of the IL; 50, 250, 500 and 1000 mg/L, prepared in deionized water, were tested in the absence and presence of BC on wheat seedling. Results indicated significant decrease in seed germination (%), length, fresh weight, chlorophyll a, b and carotenoid contents of wheat seedlings at 250, 500 and 1000 mg/L of the IL. An admirable increase in phenolic and 2,2-diphenyl-1-picrylhydrazyl (DPPH) contents of wheat seedlings was noted at 250, 500 and 1000 mg/L of the IL. The application of BC significantly ameliorated the negative effects of IL on the selected parameters of wheat. It is inferred that the undesirable effects of the IL on wheat growth can be positively restored by addition of BC.
Collapse
Affiliation(s)
- Taza Gul
- Department of Botany, University of Science and Technology Bannu, Pakistan
| | | | - Amir Sada Khan
- Department of Chemistry, University of Science and Technology Bannu, Pakistan
| | - Tahir Iqbal
- Department of Botany, University of Science and Technology Bannu, Pakistan
| | - Faizan Ullah
- Department of Botany, University of Science and Technology Bannu, Pakistan
| | - Gaber E Eldesoky
- Department of Chemistry, College of Science, King Saud University, P. O. Box 2455, Riyadh, 11451, Saudi Arabia
| | - Ahmed Muteb Aljuwayid
- Department of Chemistry, College of Science, King Saud University, P. O. Box 2455, Riyadh, 11451, Saudi Arabia
| | - Muhammad Saeed Akhtar
- School of Chemical Engineering, Yeungnam University, Gyeongsan, 712-749, South Korea.
| |
Collapse
|
14
|
Haq F, Kiran M, Chinnam S, Farid A, Khan RU, Ullah G, Aljuwayid AM, Habila MA, Mubashir M. Synthesis of bioinspired sorbent and their exploitation for methylene blue remediation. CHEMOSPHERE 2023; 321:138000. [PMID: 36724851 DOI: 10.1016/j.chemosphere.2023.138000] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Revised: 01/08/2023] [Accepted: 01/27/2023] [Indexed: 06/18/2023]
Abstract
In this research article, novel starch phosphate grafted polyvinyl imidazole (StP-g-PIMDZs) was synthesized. Firstly, a phosphate group was attached to starch polymer via a phosphorylation reaction. Next, 1-vinyl imidazole (VIMDZ) was grafted on the backbone of starch phosphate (StP) through a free radical polymerization reaction. The synthesis of these modified starches was confirmed by 1H NMR, 31P NMR and FT-IR techniques. The grafting of vinyl imidazole onto StP diminished the crystallinity. Due to the insertion of the aromatic imidazole ring, the StP-g-PIMDZs demonstrated greater thermal stability. The StP and StP-g-PIMDZs were used as sorbents for the adsorption of methylene blue dye (MBD) from the model solution. The maximum removal percentage for starch, StP, StP-g-PIMDZ 1, StP-g-PIMDZ 2 and StP-g-PIMDZ 3 was found to be 60.6%, 66.7%, 74.2%, 85.3 and 95.4%, respectively. The Pseudo second order kinetic model and Langmuir adsorption isotherm were best suited to the experimental data with R2 = 0.999 and 0.99, respectively. Additionally, the thermodynamic parameters showed that the adsorption process was feasible, spontaneous, endothermic and favored chemi-sorption mechanism.
Collapse
Affiliation(s)
- Fazal Haq
- Institute of Chemical Sciences, Gomal University, D.I.Khan, 29050, Pakistan
| | - Mehwish Kiran
- Faculty of Agriculture, Gomal University, D.I.Khan, 29050, Pakistan
| | - Sampath Chinnam
- Department of Chemistry, M.S. Ramaiah Institute of Technology (Affiliated to Visvesvaraya Technological University, Belgaum), Bengaluru, Karnataka, 560054, India
| | - Arshad Farid
- Gomal Center of Biochemistry and Biotechnology, Gomal University, D.I.Khan, 29050, Pakistan.
| | - Rizwan Ullah Khan
- Institute of Chemical Sciences, Gomal University, D.I.Khan, 29050, Pakistan
| | - Ghazanfar Ullah
- Faculty of Agriculture, Gomal University, D.I.Khan, 29050, Pakistan; Department of Materials Engineering, KU Leuven, Kasteelpark Arenberg 44, Leuven, 3001, Belgium
| | - Ahmed Muteb Aljuwayid
- Department of Chemistry, College of Science, King Saud University, P. O. Box 2455, Riyadh, 11451, Saudi Arabia
| | - Mohamed A Habila
- Department of Chemistry, College of Science, King Saud University, P. O. Box 2455, Riyadh, 11451, Saudi Arabia
| | - Muhammad Mubashir
- Department of Petroleum Engineering, School of Engineering, Asia Pacific University of Technology and Innovation, 57000, Kuala Lumpur, Malaysia.
| |
Collapse
|
15
|
Ullah S, Ali Z, Khan AS, Nasrullah A, Javed F, Adalat B, Sher N, Ahmed M, Alshgari RA, Saleh Mushab MS, Majeed S. Hydrophobic ammonium based ionic liquids for efficient extraction of textile dyes from aqueous media: Extraction study and antibacterial evaluation. CHEMOSPHERE 2023; 321:138008. [PMID: 36731664 DOI: 10.1016/j.chemosphere.2023.138008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 01/11/2023] [Accepted: 01/27/2023] [Indexed: 06/18/2023]
Abstract
Alizarin red S (ARS) extraction from aqueous medium was carried out using hydrophobic ionic liquids (ILs) containing trioctylammonium cation paired with 4-tert-butylbenzoate ([TOA][Butbenz] (IL1), 4-phenylbutanoate ([TOA][PheBut] (IL2), 3-4-dimethylbenzoate ([TOA][DMbenz] (IL3), naphthoate, ([TOA][Naph]) (IL4), salicylate ([TOA][Sali]) (IL5) and nonanedioate ([TOA]2[Nona]) (IL6). The findings demonstrated that all of the tested ILs were efficient for extracting ARS, however, [TOA]2[Nona] was more effective than others. For the extraction of ARS from the aqueous phase, the effects of various parameters including the initial pH of the dye solution, contact time, ILs to dye volume ratio (VIL:VW), dye concentration, temperature, and salt effect were investigated. The spontaneity of the liquid-liquid extraction of ARS from the aqueous phase to the IL phase was confirmed by thermodynamic parameters. More than 90% of the ARS was extracted from the aqueous phase to the IL phase throughout all experiments. Interaction of selected IL with dyes were confirmed using FTIR analysis. The standard bacterial strains of Escherichia coli (E. coli) ATCC BAA-2471 (gram negative) and Methicillin-resistant Staphylococcus (MRSA) ATCC 43300 (gram positive) were used for evaluating antibacterial activity. The lower dose (250 ppm), the ILs1, 2, 3, 4, 5, and 6 inhibited 0.40, 1.50, 6.50, 1.50, 2.50, and 0.50 mm growth of E. coli, and 4.0, 2.0, 16.50, 0.40, 5.0, and 3.50 mm growth of MRSA, respectively. The experimental findings confirmed that the present ILs can be utilized as an effective solvent for ARS and other dyes extraction from aqueous media.
Collapse
Affiliation(s)
- Saadat Ullah
- Department of Chemistry, Hazara University, Mansehra, Khyber Pakhtunkhwa, Pakistan
| | - Zarshad Ali
- Department of Chemistry, Hazara University, Mansehra, Khyber Pakhtunkhwa, Pakistan
| | - Amir Sada Khan
- Department of Chemistry, University of Science and Technology Bannu 28100, Khyber Pakhtunkhwa, Pakistan.
| | - Asma Nasrullah
- Department of Chemistry, Shaheed Benazir Bhutto Women University, Peshawar, 25000, Khyber Pakhtunkhwa, Pakistan
| | - Fatima Javed
- Department of Chemistry, Shaheed Benazir Bhutto Women University, Peshawar, 25000, Khyber Pakhtunkhwa, Pakistan
| | - Bushra Adalat
- Department of Chemistry, Hazara University, Mansehra, Khyber Pakhtunkhwa, Pakistan
| | - Naila Sher
- Department of Biotechnology, University of Science and Technology Bannu-28100, Khyber Pakhtunkhwa, Pakistan
| | - Mushtaq Ahmed
- Department of Biotechnology, University of Science and Technology Bannu-28100, Khyber Pakhtunkhwa, Pakistan; Department of Materials Engineering, KU Leuven, Kasteelpark Arenberg 44, Leuven 3001, Belgium
| | - Razan A Alshgari
- Chemistry Department, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | | | - Saadat Majeed
- Institute of Chemical Sciences, Bahauddin Zakariya University, Multan 60800, Pakistan
| |
Collapse
|
16
|
Aqeel M, Ran J, Hu W, Irshad MK, Dong L, Akram MA, Eldesoky GE, Aljuwayid AM, Chuah LF, Deng J. Plant-soil-microbe interactions in maintaining ecosystem stability and coordinated turnover under changing environmental conditions. CHEMOSPHERE 2023; 318:137924. [PMID: 36682633 DOI: 10.1016/j.chemosphere.2023.137924] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 01/07/2023] [Accepted: 01/18/2023] [Indexed: 06/17/2023]
Abstract
Ecosystem functions directly depend upon biophysical as well as biogeochemical reactions occurring at the soil-microbe-plant interface. Environment is considered as a major driver of any ecosystem and for the distributions of living organisms. Any changes in climate may potentially alter the composition of communities i.e., plants, soil microbes and the interactions between them. Since the impacts of global climate change are not short-term, it is indispensable to appraise its effects on different life forms including soil-microbe-plant interactions. This article highlights the crucial role that microbial communities play in interacting with plants under environmental disturbances, especially thermal and water stress. We reviewed that in response to the environmental changes, actions and reactions of plants and microbes vary markedly within an ecosystem. Changes in environment and climate like warming, CO2 elevation, and moisture deficiency impact plant and microbial performance, their diversity and ultimately community structure. Plant and soil feedbacks also affect interacting species and modify community composition. The interactive relationship between plants and soil microbes is critically important for structuring terrestrial ecosystems. The anticipated climate change is aggravating the living conditions for soil microbes and plants. The environmental insecurity and complications are not short-term and limited to any particular type of organism. We have appraised effects of climate change on the soil inhabiting microbes and plants in a broader prospect. This article highlights the unique qualities of tripartite interaction between plant-soil-microbe under climate change.
Collapse
Affiliation(s)
- Muhammad Aqeel
- State Key Laboratory of Grassland Agro-Ecosystem, College of Ecology, Lanzhou University, Lanzhou, 730000, Gansu, PR China
| | - Jinzhi Ran
- State Key Laboratory of Grassland Agro-Ecosystem, College of Ecology, Lanzhou University, Lanzhou, 730000, Gansu, PR China
| | - Weigang Hu
- State Key Laboratory of Grassland Agro-Ecosystem, College of Ecology, Lanzhou University, Lanzhou, 730000, Gansu, PR China
| | - Muhammad Kashif Irshad
- Department of Environmental Sciences, Government College University Faisalabad, (38000), Pakistan
| | - Longwei Dong
- State Key Laboratory of Grassland Agro-Ecosystem, College of Ecology, Lanzhou University, Lanzhou, 730000, Gansu, PR China
| | - Muhammad Adnan Akram
- State Key Laboratory of Grassland Agro-Ecosystem, College of Ecology, Lanzhou University, Lanzhou, 730000, Gansu, PR China; Department of Materials Engineering, KU Leuven, Kasteelpark Arenberg 44, Leuven 3001, Belgium
| | - Gaber E Eldesoky
- Department of Chemistry, College of Science, King Saud University, P. O. Box 2455, Riyadh, 11451, Saudi Arabia
| | - Ahmed Muteb Aljuwayid
- Department of Chemistry, College of Science, King Saud University, P. O. Box 2455, Riyadh, 11451, Saudi Arabia
| | - Lai Fatt Chuah
- Faculty of Maritime Studies, Universiti Malaysia Terengganu, Terengganu, Malaysia.
| | - Jianming Deng
- State Key Laboratory of Grassland Agro-Ecosystem, College of Ecology, Lanzhou University, Lanzhou, 730000, Gansu, PR China.
| |
Collapse
|
17
|
Mehmood T, Mustafa B, Mackenzie K, Ali W, Sabir RI, Anum W, Gaurav GK, Riaz U, Liu X, Peng L. Recent developments in microplastic contaminated water treatment: Progress and prospects of carbon-based two-dimensional materials for membranes separation. CHEMOSPHERE 2023; 316:137704. [PMID: 36592840 DOI: 10.1016/j.chemosphere.2022.137704] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Revised: 12/23/2022] [Accepted: 12/29/2022] [Indexed: 06/17/2023]
Abstract
Micro (nano)plastics pollution is a noxious menace not only for mankind but also for marine life, as removing microplastics (MPs) is challenging due to their physiochemical properties, composition, and response toward salinity and pH. This review provides a detailed assessment of the MPs pollution in different water types, environmental implications, and corresponding treatment strategies. With the advancement in nanotechnology, mitigation strategies for aqueous pollution are seen, especially due to the fabrication of nanosheets/membranes mostly utilized as a filtration process. Two-dimensional (2D) materials are increasingly used for membranes due to their diverse structure, affinity, cost-effectiveness, and, most importantly, removal efficiency. The popular 2D materials used for membrane-based organic and inorganic pollutants from water mainly include graphene and MXenes however their effectiveness for MPs removal is still in its infancy. Albeit, the available literature asserts a 70- 99% success rate in micro/nano plastics removal achieved through membranes fabricated via graphene oxide (GO), reduced graphene oxide (rGO) and MXene membranes. This review examined existing membrane separation strategies for MPs removal, focusing on the structural properties of 2D materials, composite, and how they adsorb pollutants and underlying physicochemical mechanisms. Since MPs and other contaminants commonly coexist in the natural environment, a brief examination of the response of 2D membranes to MPs removal was also conducted. In addition, the influencing factors regulate MPs removal performance of membranes by impacting their two main operating routes (filtration and adsorption). Finally, significant limitations, research gaps, and future prospects of 2D material-based membranes for effectively removing MPs are also proposed. The conclusion is that the success of 2D material is strongly linked to the types, size of MPs, and characteristics of aqueous media. Future perspectives talk about the problems that need to be solved to get 2D material-based membranes out of the lab and onto the market.
Collapse
Affiliation(s)
- Tariq Mehmood
- College of Ecology and Environment, Hainan University, Haikou, Hainan Province, 570228, China; Helmholtz Centre for Environmental Research - UFZ, Department of Environmental Engineering, Permoserstr. 15, D-04318 Leipzig, Germany.
| | - Beenish Mustafa
- National Laboratory of Solid State Microstructures, School of Physics, Nanjing University, Nanjing 210093, China
| | - Katrin Mackenzie
- Helmholtz Centre for Environmental Research - UFZ, Department of Environmental Engineering, Permoserstr. 15, D-04318 Leipzig, Germany
| | - Wahid Ali
- Department of Chemical Engineering Technology, College of Applied Industrial Technology (CAIT), Jazan University, Kingdom of Saudi Arabia
| | - Raja Irfan Sabir
- Faculty of Management Sciences, University of Central Punjab, Lahore; Pakistan
| | - Wajiha Anum
- Regional Agricultural Research Institute, Bahawalpur, Pakistan
| | - Gajendra Kumar Gaurav
- Sustainable Process Integration Laboratory, SPIL, NETME Centre, Faculty of Mechanical Engineering, Brno University of Technology, VUT Brno, Technická 2896/2, 616 69, Brno, Czech Republic; School of Physics and Electronic Information, Yan'an University, Yan'an, 716000, China
| | - Umair Riaz
- Department of Soil and Environmental Sciences, Muhammad Nawaz Shareef University of Agriculture, Multan, 60000, Pakistan
| | - Xinghui Liu
- School of Physics and Electronic Information, Yan'an University, Yan'an, 716000, China; Department of Materials Science and Engineering, City University of Hong Kong, Kowloon, Hong Kong, 999077 China
| | - Licheng Peng
- College of Ecology and Environment, Hainan University, Haikou, Hainan Province, 570228, China; Key Laboratory of Agro-Forestry Environmental Processes and Ecological Regulation of Hainan Province, Hainan University, Haikou, Hainan Province, 570228, China.
| |
Collapse
|
18
|
Dhawi F. The Role of Plant Growth-Promoting Microorganisms (PGPMs) and Their Feasibility in Hydroponics and Vertical Farming. Metabolites 2023; 13:metabo13020247. [PMID: 36837866 PMCID: PMC9964210 DOI: 10.3390/metabo13020247] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Revised: 02/06/2023] [Accepted: 02/08/2023] [Indexed: 02/11/2023] Open
Abstract
There are many reasons for the increase in hydroponics/soil-free systems in agriculture, and these systems have now advanced to the form of vertical farming. The sustainable use of space, the reduction in water use compared to soil-based agriculture, the lack of pesticides, the ability to control nutrient inputs, and the implementation of user-friendly technology for environmental control and harvesting are all factors that have made the global market for vertical farming predicted to reach more than USD 10.02 billion by 2027. By comparison, soil-based agriculture consumes 20 times more water, and some agricultural practices promote soil deterioration and cause environmental pollution. Plant growth-promoting microorganisms (PGPMs) have been used extensively in traditional agriculture to enhance plant growth, environmental stress tolerance, and the efficacy of phytoremediation in soil-based farming. Due to the controlled atmosphere in hydroponics and vertical farms, there is strong potential to maximize the use of PGPMs. Here, we review the leveraging of plant growth-promoting microorganism mechanisms in hydroponics and vertical farming. We recommend a synchronized PGPM treatment using a biostimulant extract added to the hydroponic medium while also pre-treating seeds or seedlings with a microbial suspension for aquaponic and aeroponic systems.
Collapse
Affiliation(s)
- Faten Dhawi
- Agricultural Biotechnology Department, College of Agricultural and Food Sciences, King Faisal University, Al-Ahsa 31982, Saudi Arabia
| |
Collapse
|
19
|
Xu Y, Li H, Zhang X, Bai X, Wu L, Tan C, Zhang Z. Removal, migration, and distribution of naphthalene in bioretention facilities: the influences of particulate matter. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:46940-46949. [PMID: 36735139 DOI: 10.1007/s11356-023-25330-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Accepted: 01/10/2023] [Indexed: 02/04/2023]
Abstract
Particulate matter (PM), as an important carrier of carrying and transporting runoff pollutants, can significantly affect the behavior and removal efficiency of pollutants in bioretention facilities. In order to control the pollution caused by naphthalene in bioretention facilities, the removal efficiency and migration characteristics of naphthalene were systematically investigated under the influences of PM. The results showed that the removal efficiency of naphthalene was 74 ~ 97% in bioretention facilities under the influences of PM. With the higher concentration, the lower rainfall return period, and the longer antecedent drying period, the removal efficiency of naphthalene in each medium layer were higher. Furthermore, the PM could increase the naphthalene adsorption capacity onto medium in the first 10 cm depth, which showed more than 80% removal efficiency and lower mobility of naphthalene. The removal efficiency of naphthalene was significantly higher (90 ~ 97%), when the particle size and concentration of PM were 0 ~ 45 μm and 500 mg/L, respectively. This study investigated the important role of PM for naphthalene removal in bioretention facilities, and provided effective guidelines for runoff pollution control, design of stormwater facilities, and assessment risk of naphthalene.
Collapse
Affiliation(s)
- Yan Xu
- Beijing Engineering Research Center of Sustainable Urban Sewage System Construction and Risk Control, Engineering and Architecture, Beijing University of Civil, 1 Zhanlanguan Road, Xicheng District, Beijing, 100044, China.,Beijing Advanced Innovation Center for Future Urban Design, Beijing, 100044, China
| | - Haiyan Li
- Beijing Engineering Research Center of Sustainable Urban Sewage System Construction and Risk Control, Engineering and Architecture, Beijing University of Civil, 1 Zhanlanguan Road, Xicheng District, Beijing, 100044, China. .,Beijing Advanced Innovation Center for Future Urban Design, Beijing, 100044, China.
| | - Xiaoran Zhang
- Beijing Engineering Research Center of Sustainable Urban Sewage System Construction and Risk Control, Engineering and Architecture, Beijing University of Civil, 1 Zhanlanguan Road, Xicheng District, Beijing, 100044, China.,Beijing Advanced Innovation Center for Future Urban Design, Beijing, 100044, China
| | - Xiaojuan Bai
- Beijing Engineering Research Center of Sustainable Urban Sewage System Construction and Risk Control, Engineering and Architecture, Beijing University of Civil, 1 Zhanlanguan Road, Xicheng District, Beijing, 100044, China.,Beijing Advanced Innovation Center for Future Urban Design, Beijing, 100044, China
| | - Liyuan Wu
- Beijing Engineering Research Center of Sustainable Urban Sewage System Construction and Risk Control, Engineering and Architecture, Beijing University of Civil, 1 Zhanlanguan Road, Xicheng District, Beijing, 100044, China.,Beijing Advanced Innovation Center for Future Urban Design, Beijing, 100044, China
| | - Chaohong Tan
- Beijing Engineering Research Center of Sustainable Urban Sewage System Construction and Risk Control, Engineering and Architecture, Beijing University of Civil, 1 Zhanlanguan Road, Xicheng District, Beijing, 100044, China.,Beijing Advanced Innovation Center for Future Urban Design, Beijing, 100044, China
| | - Ziyang Zhang
- Beijing Engineering Research Center of Sustainable Urban Sewage System Construction and Risk Control, Engineering and Architecture, Beijing University of Civil, 1 Zhanlanguan Road, Xicheng District, Beijing, 100044, China. .,Beijing Advanced Innovation Center for Future Urban Design, Beijing, 100044, China.
| |
Collapse
|
20
|
Das TK, Kabir A, Zhao W, Stenstrom MK, Dittrich TM, Mohanty SK. A review of compaction effect on subsurface processes in soil: Implications on stormwater treatment in roadside compacted soil. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 858:160121. [PMID: 36370790 DOI: 10.1016/j.scitotenv.2022.160121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 10/28/2022] [Accepted: 11/07/2022] [Indexed: 06/16/2023]
Abstract
Sustainable cities require spacious infrastructures such as roadways to serve multiple functions, including transportation and water treatment. This can be achieved by installing stormwater control measures (SCM) such as biofilters and swales on the roadside compacted soil, but compacted soil limits infiltration and other functions of SCM. Understanding the effect of compaction on subsurface processes could help design SCM that could alleviate the negative impacts of compaction. Therefore, we synthesize reported data on compaction effects on subsurface processes, including infiltration rate, plant health, root microbiome, and biochemical processes. The results show that compaction could reduce runoff infiltration rate, but adding sand to roadside soil could alleviate the negative impact of compaction. Compaction could decrease the oxygen diffusion rate in the root zone, thereby affecting plant root activities, vegetation establishment, and microbial functions in SCM. The impacts of compaction on carbon mineralization rate and root biomass vary widely based on soil type, aeration status, plant species, and inherent soil compaction level. As these processes are critical in maintaining the long-term functions of SCM, the analysis would help develop strategies to alleviate the negative impacts of compaction and turn road infrastructure into a water solution in sustainable cities.
Collapse
Affiliation(s)
- Tonoy K Das
- Department of Civil and Environmental Engineering, University of California at Los Angeles, CA, USA.
| | - Alija Kabir
- Department of Civil and Environmental Engineering, University of California at Los Angeles, CA, USA
| | - Weiyang Zhao
- Department of Civil and Environmental Engineering, University of California at Los Angeles, CA, USA
| | - Michael K Stenstrom
- Department of Civil and Environmental Engineering, University of California at Los Angeles, CA, USA
| | - Timothy M Dittrich
- Department of Civil and Environmental Engineering, Wayne State University, Detroit, USA
| | - Sanjay K Mohanty
- Department of Civil and Environmental Engineering, University of California at Los Angeles, CA, USA.
| |
Collapse
|
21
|
Mustafa B, Mehmood T, Wang Z, Chofreh AG, Shen A, Yang B, Yuan J, Wu C, Liu Y, Lu W, Hu W, Wang L, Yu G. Next-generation graphene oxide additives composite membranes for emerging organic micropollutants removal: Separation, adsorption and degradation. CHEMOSPHERE 2022; 308:136333. [PMID: 36087726 DOI: 10.1016/j.chemosphere.2022.136333] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2022] [Revised: 08/19/2022] [Accepted: 09/01/2022] [Indexed: 06/15/2023]
Abstract
In the past two decades, membrane technology has attracted considerable interest as a viable and promising method for water purification. Emerging organic micropollutants (EOMPs) in wastewater have trace, persistent, highly variable quantities and types, develop hazardous intermediates and are diffusible. These primary issues affect EOMPs polluted wastewater on an industrial scale differently than in a lab, challenging membranes-based EOMP removal. Graphene oxide (GO) promises state-of-the-art membrane synthesis technologies and use in EOMPs removal systems due to its superior physicochemical, mechanical, and electrical qualities and high oxygen content. This critical review highlights the recent advancements in the synthesis of next-generation GO membranes with diverse membrane substrates such as ceramic, polyethersulfone (PES), and polyvinylidene fluoride (PVDF). The EOMPs removal efficiencies of GO membranes in filtration, adsorption (incorporated with metal, nanomaterial in biodegradable polymer and biomimetic membranes), and degradation (in catalytic, photo-Fenton, photocatalytic and electrocatalytic membranes) and corresponding removal mechanisms of different EOMPs are also depicted. GO-assisted water treatment strategies were further assessed by various influencing factors, including applied water flow mode and membrane properties (e.g., permeability, hydrophily, mechanical stability, and fouling). GO additive membranes showed better permeability, hydrophilicity, high water flux, and fouling resistance than pristine membranes. Likewise, degradation combined with filtration is two times more effective than alone, while crossflow mode improves the photocatalytic degradation performance of the system. GO integration in polymer membranes enhances their stability, facilitates photocatalytic processes, and gravity-driven GO membranes enable filtration of pollutants at low pressure, making membrane filtration more inexpensive. However, simultaneous removal of multiple contaminants with contrasting characteristics and variable efficiencies in different systems demands further optimization in GO-mediated membranes. This review concludes with identifying future critical research directions to promote research for determining the GO-assisted OMPs removal membrane technology nexus and maximizing this technique for industrial application.
Collapse
Affiliation(s)
- Beenish Mustafa
- National Laboratory of Solid State Microstructures, School of Physics, Nanjing University, Nanjing, 210093, China
| | - Tariq Mehmood
- College of Ecology and Environment, Hainan University, Haikou, Hainan Province, 570228, China; Helmholtz Centre for Environmental Research - UFZ, Department of Environmental Engineering, Permoserstr. 15, D-04318 Leipzig, Germany
| | - Zhiyuan Wang
- National Laboratory of Solid State Microstructures, School of Physics, Nanjing University, Nanjing, 210093, China
| | - Abdoulmohammad Gholamzadeh Chofreh
- Sustainable Process Integration Laboratory, SPIL, NETME Centre, Faculty of Mechanical Engineering, Brno University of Technology, VUT Brno, Technická 2896/2, 616 00, Brno, Czech Republic
| | - Andy Shen
- Hubei Jiufengshan Laboratory, Wuhan, 430206, China
| | - Bing Yang
- Hubei Jiufengshan Laboratory, Wuhan, 430206, China
| | - Jun Yuan
- Hubei Jiufengshan Laboratory, Wuhan, 430206, China
| | - Chang Wu
- Hubei Jiufengshan Laboratory, Wuhan, 430206, China
| | | | - Wengang Lu
- National Laboratory of Solid State Microstructures, School of Physics, Nanjing University, Nanjing, 210093, China
| | - Weiwei Hu
- Jiangsu Industrial Technology Research Institute, Nanjing, 210093, China
| | - Lei Wang
- National Laboratory of Solid State Microstructures, School of Physics, Nanjing University, Nanjing, 210093, China; Collaborative Innovation Centre of Advanced Microsctructures, Nanjing University, Nanjing, 210093, China.
| | - Geliang Yu
- National Laboratory of Solid State Microstructures, School of Physics, Nanjing University, Nanjing, 210093, China; Collaborative Innovation Centre of Advanced Microsctructures, Nanjing University, Nanjing, 210093, China.
| |
Collapse
|
22
|
Khan NA, Morabet RE, Khan RA, Alsubih M, Gaurav GK, Klemeš JJ, Thakur AK. Modelling and parameter optimisation for performance evaluation of sequencing batch reactor for treating hospital wastewater. BIOMASS CONVERSION AND BIOREFINERY 2022:1-16. [PMID: 36337935 PMCID: PMC9628615 DOI: 10.1007/s13399-022-03406-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 09/29/2022] [Accepted: 10/11/2022] [Indexed: 06/16/2023]
Abstract
Hospital wastewater treatment is gaining attention in recent studies due to its complex nature. The performance of the sequencing batch reactor coupled with tube-settler was investigated for hospital wastewater treatment. The performance was evaluated regarding removing organic matter and nutrients (nitrate and phosphate). The phosphate was removed in the sequencing batch reactor and its associated tube-settler with a 60% removal efficiency margin. Nitrification was observed in sequencing batch reactor and tube-settler, but denitrification could not be achieved. The nitrification-denitrification process was not completed during the process. The current work's main aim was to understand and optimise the operational parameters involved in the performance of the sequencing batch reactor. The operational parameters were optimised using Design expert software, and Response Surface Methodology involved a four-factor and five-level central composite design. The percentage removal of chemical oxygen demand, nitrate, and phosphate was selected to be observed during this study. Graphical abstract Supplementary Information The online version contains supplementary material available at 10.1007/s13399-022-03406-z.
Collapse
Affiliation(s)
- Nadeem A. Khan
- Department of Civil Engineering, Mewat Engineering College, 122107 Nuh, Haryana, India
| | - Rachida El Morabet
- Department of Geography, LADES, FLSH-M, Hassan II University of Casablanca, 47963 Mohammedia, Morocco
| | - Roohul Abad Khan
- Department of Civil Engineering, King Khalid University, Abha, 11564 Saudi Arabia
| | - Majed Alsubih
- Department of Civil Engineering, King Khalid University, Abha, 11564 Saudi Arabia
| | - Gajendra Kumar Gaurav
- Sustainable Process Integration Laboratory – SPIL, NETME Centre, Faculty of Mechanical Engineering, Brno University of Technology - VUT Brno, Technická 2896/2, 616 69 Brno, Czech Republic
| | - Jiří Jaromír Klemeš
- Sustainable Process Integration Laboratory – SPIL, NETME Centre, Faculty of Mechanical Engineering, Brno University of Technology - VUT Brno, Technická 2896/2, 616 69 Brno, Czech Republic
| | - Amit K. Thakur
- Energy Cluster, Department of Chemical Engineering, University of Petroleum and Energy Studies, Dehradun, 248007 Uttarakhand India
| |
Collapse
|
23
|
Chen Y, Wu Q, Tang Y, Liu Z, Ye L, Chen R, Yuan S. Application of biochar as an innovative soil ameliorant in bioretention system for stormwater treatment: A review of performance and its influencing factors. WATER SCIENCE AND TECHNOLOGY : A JOURNAL OF THE INTERNATIONAL ASSOCIATION ON WATER POLLUTION RESEARCH 2022; 86:1232-1252. [PMID: 36358058 DOI: 10.2166/wst.2022.245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
As an emerging environment functional material, biochar has become a research hotspot in environmental fields because of its excellent ecological and environmental benefits. Recently, biochar has been used as an innovative soil ameliorant in bioretention systems (BRS) to effectively enhance pollutant removal efficiency for BRS. This paper summarizes and evaluates the performance and involved mechanisms of biochar amendment in BRS with respect to the removal of nutrients (TN (34-47.55%) and PO43--P (47-99.8%)), heavy metals (25-100%), pathogenic microorganisms (Escherichia coli (30-98%)), and organic contaminants (77.2-100%). For biochar adsorption, the pseudo-second-order and Langmuir models are the most suitable kinetic and isothermal adsorption models, respectively. Furthermore, we analyzed and elucidated some factors that influence the pollutant removal performance of biochar-amended BRS, such as the types of biochar, the preparation process and physicochemical properties of biochar, the aging of biochar, the chemical modification of biochar, and the hydraulic loading, inflow concentration and drying-rewetting alternation of biochar-amended BRS. The high potential for recycling spent biochar in BRS as a soil ameliorant is proposed. Collectively, biochar can be used as an improved medium in BRS. This review provides a foundation for biochar selection in biochar-amended BRS. Future research and practical applications of biochar-amended BRS should focus on the long-term stability of treatment performances under field conditions, chemical modification with co-impregnated nanomaterials in biochar surface, and the durability, aging, and possible negative effects of biochar.
Collapse
Affiliation(s)
- Yao Chen
- School of River and Ocean Engineering, Chongqing Jiaotong University, Chongqing 400074, China E-mail: ; Engineering Laboratory of Environmental Hydraulic Engineering of Chongqing Municipal Development and Reform Commission, Chongqing Jiaotong University, Chongqing 400074, China
| | - Qiong Wu
- School of River and Ocean Engineering, Chongqing Jiaotong University, Chongqing 400074, China E-mail:
| | - Yinghui Tang
- School of River and Ocean Engineering, Chongqing Jiaotong University, Chongqing 400074, China E-mail:
| | - Zhen Liu
- School of River and Ocean Engineering, Chongqing Jiaotong University, Chongqing 400074, China E-mail: ; Engineering Laboratory of Environmental Hydraulic Engineering of Chongqing Municipal Development and Reform Commission, Chongqing Jiaotong University, Chongqing 400074, China
| | - Lilan Ye
- School of River and Ocean Engineering, Chongqing Jiaotong University, Chongqing 400074, China E-mail:
| | - Renyu Chen
- School of River and Ocean Engineering, Chongqing Jiaotong University, Chongqing 400074, China E-mail:
| | - Shaochun Yuan
- School of River and Ocean Engineering, Chongqing Jiaotong University, Chongqing 400074, China E-mail: ; Engineering Laboratory of Environmental Hydraulic Engineering of Chongqing Municipal Development and Reform Commission, Chongqing Jiaotong University, Chongqing 400074, China
| |
Collapse
|
24
|
Kasprzyk M, Szpakowski W, Poznańska E, Boogaard FC, Bobkowska K, Gajewska M. Technical solutions and benefits of introducing rain gardens - Gdańsk case study. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 835:155487. [PMID: 35483461 DOI: 10.1016/j.scitotenv.2022.155487] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2022] [Revised: 04/12/2022] [Accepted: 04/20/2022] [Indexed: 06/14/2023]
Abstract
Nowadays, Nature-Based Solutions (NBSs) are developing as innovative multifunctional tools to maximize urban ecosystem services such as storm water preservation, reduction of runoff and flood protection, groundwater pollution prevention, biodiversity enhancement, and microclimate control. Gdańsk is one of the first Polish cities to widely introduce rain gardens (one example of an NBS) in different areas such as parks, city center, main crossroads, and car parks. They involve different technical innovations individually tailored to local architecture, including historic buildings and spaces. Gdańskie Wody, which is responsible for storm water management in the city, adopted a pioneering strategy and started the construction of the first rain garden in 2018. Currently, there are a dozen rain gardens in the city, and this organisation's policy stipulates the construction of NBSs in new housing estates without building rainwater drainage. Various types of rain gardens can be created depending on location characteristics such as geo-hydrology, as well as local conditions and needs. Furthermore, each of them might be equipped with specific technical solutions to improve the rain garden's function - for example, an oil separator or setter can be included to absorb the initial, most polluted runoff. During winter, the large amount of sodium chloride usually used to grit the roads may pose the greatest threat to biodiversity and plants. These installations have been included in a large rain garden in Gdańsk, located in the central reservation of the main streets in the city center. This work presents various technical considerations and their impact on ecosystem functions, and the urban circularity challenges provided by rain gardens operating in different technologies and surroundings. The precipitation quantity and the following infiltration rate were estimated by installing pressure transducers. Furthermore, mitigation of the urban heat island was analysed based on remote sensing images.
Collapse
Affiliation(s)
- Magda Kasprzyk
- Department of Environmental Engineering Technology, Faculty of Civil and Environmental Engineering, Gdańsk University of Technology, Narutowicza St. 11/12, 80-233 Gdańsk, Poland; EcoTech Center, Narutowicza St. 11/12, 80-233 Gdańsk, Poland.
| | - Wojciech Szpakowski
- Gdańskie Wody, prof. Witolda Andruszkiewicza St. 5, 80-601 Gdańsk, Poland; Department of Geotechnical and Hydraulic Engineering, Faculty of Civil and Environmental Engineering, Gdańsk University of Technology, Narutowicza st. 11/12, 80-233 Gdańsk, Poland
| | - Eliza Poznańska
- Gdańskie Wody, prof. Witolda Andruszkiewicza St. 5, 80-601 Gdańsk, Poland
| | - Floris C Boogaard
- Department Research Centre for Built Environment NoorderRuimte, Hanze University of Applied Sciences Groningen, Zernikeplein 7, P.O. Box 30030, Groningen, the Netherlands; Deltares, Daltonlaan 600, 3584 BK Utrecht Postbus, 85467 3508 AL Utrecht, the Netherlands
| | - Katarzyna Bobkowska
- EcoTech Center, Narutowicza St. 11/12, 80-233 Gdańsk, Poland; Department of Geodesy, Faculty of Civil and Environmental Engineering, Gdańsk University of Technology, Narutowicza St. 11/12, 80-233 Gdańsk, Poland
| | - Magdalena Gajewska
- Department of Environmental Engineering Technology, Faculty of Civil and Environmental Engineering, Gdańsk University of Technology, Narutowicza St. 11/12, 80-233 Gdańsk, Poland; EcoTech Center, Narutowicza St. 11/12, 80-233 Gdańsk, Poland
| |
Collapse
|
25
|
Oraon A, Ram M, Kumar Gupta A, Dutta S, Kumar Saxena V, Kumar Gaurav G. An efficient waste garlic skins biochar nanocomposite: An advanced cleaner approach for secondary waste utilisation. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.119997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
|
26
|
Feng W, Liu Y, Gao L. Stormwater treatment for reuse: Current practice and future development - A review. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2022; 301:113830. [PMID: 34600425 DOI: 10.1016/j.jenvman.2021.113830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 08/18/2021] [Accepted: 09/22/2021] [Indexed: 06/13/2023]
Abstract
Stormwater harvesting is an effective measure to mitigate flooding risk and pollutant migration in our urban environment with the continuously increasing impermeable faction. Treatment of harvested stormwater also provides the fit-for-purpose water sources as an alternative to potable water supply ensuring the reliability and sustainability of the water management in the living complex. In order to provide the water management decision-maker with a broad range of related technology database and to facilitate the implementation of stormwater harvesting in the future, a comprehensive review was undertaken to understand the corresponding treatment performance, the applicable circumstances of current stormwater treatment and harvesting technologies. Technologies with promising potential for stormwater treatment were also reviewed to investigate the feasibility of being used in an integrated process. The raw stormwater quality and the required quality for different levels of stormwater reuses (irrigation, recreational, and potable) were reviewed and compared. The required level of treatment is defined for different 'fit-for-purpose' uses of harvested stormwater. Stormwater biofilter and constructed wetland as the two most advanced and widely used stormwater harvesting and treatment technologies, their main functionality, treatment performance and adequate scale of the application were reviewed based on published peer-reviewed articles and case studies. Excessive microbial effluent that exists in stormwater treated using these two technologies has restricted the stormwater reuse in most cases. Water disinfection technologies developed for wastewater and surface water treatment but with high potential to be used for stormwater treatment have been reviewed. Their feasibility and limitation for stormwater treatment are presented with respect to different levels of fit-for-purpose reuses. Implications for future implementation of stormwater treatment are made on proposing treatment trains that are suitable for different fit-for-purpose stormwater reuses.
Collapse
Affiliation(s)
- Wenjun Feng
- Department of Chemical Engineering, Monash University, Clayton, VIC, 3800, Australia
| | - Yue Liu
- Department of Chemical Engineering, Monash University, Clayton, VIC, 3800, Australia
| | - Li Gao
- Institute of Sustainability and Innovation, Victoria University, PO Box 14428, Melbourne, Victoria, 8001, Australia; South East Water Corporation, Seaford, VIC, 3198 Australia.
| |
Collapse
|
27
|
Zhang Z, Li J, Li Y, Wang D, Zhang J, Zhao L. Assessment on the cumulative effect of pollutants and the evolution of micro-ecosystems in bioretention systems with different media. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 228:112957. [PMID: 34775342 DOI: 10.1016/j.ecoenv.2021.112957] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 10/27/2021] [Accepted: 10/30/2021] [Indexed: 06/13/2023]
Abstract
Bioretention system is one of the most used green stormwater infrastructures (GSI), and its media is a key factor in reducing runoff water volume and purifying water quality. Many studies have investigated media improvement to enhance the pollutant removal capacity. However, the long-term cumulative effect and microbial effect of pollutants in the modified-media bioretention system is less known. This study investigated the cumulative effect of pollutants and their influence on microbial characteristics in conventional and modified media bioretention system. The addition of modifiers increased the background content of pollutants in the media, and the accumulation of pollutants in planting soil (PS) and bioretention soil mixing + water treatment residuals (BSM+WTR) was relatively higher after the simulated rainfall experiment. The accumulation of pollutants led to a decrease in dehydrogenase activity, and an increase in urease and invertase activities. Ten dominant bacterial species at the phylum level were found in all bioretention systems. The relative abundances of the bacteria with good viability under low nutritional conditions decreased, while the species which could live in the pollutant-rich environment increased. The accumulation of pollutants in the bioretention system led to the extinction of some functional microorganisms. The better the effects of modified media on pollutant removal showed, the more obvious effect on the media micro-ecosystem was. To ensure the long-term efficient and stable operation of the modified-media bioretention system, we recommend balancing the pollutant removal efficiency and cumulative effect in modified-media bioretention systems.
Collapse
Affiliation(s)
- Zhaoxin Zhang
- State Key Laboratory of Eco-hydraulics in Northwest Arid Region of China, Xi'an University of Technology, Xi'an 710048, China; Shaanxi Provincial Land Engineering Construction Group Co., Ltd., Xi'an 710075, China
| | - Jiake Li
- State Key Laboratory of Eco-hydraulics in Northwest Arid Region of China, Xi'an University of Technology, Xi'an 710048, China.
| | - Yajiao Li
- School of Architecture and Civil Engineering, Xi'an University of Science and Technology, Xi'an 710054, China
| | - Dongqi Wang
- State Key Laboratory of Eco-hydraulics in Northwest Arid Region of China, Xi'an University of Technology, Xi'an 710048, China
| | - Jingyu Zhang
- School of Architecture and Civil Engineering, Xi'an University of Science and Technology, Xi'an 710054, China
| | - Lingzhi Zhao
- School of Architecture and Civil Engineering, Xi'an University of Science and Technology, Xi'an 710054, China
| |
Collapse
|