1
|
Zhang Y, Yu Y, Liu J, Guo Y, Yu H, Liu M. The Driving Mechanism of Phytoplankton Resource Utilization Efficiency Variation on the Occurrence Risk of Cyanobacterial Blooms. Microorganisms 2024; 12:1685. [PMID: 39203527 PMCID: PMC11356996 DOI: 10.3390/microorganisms12081685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2024] [Revised: 08/09/2024] [Accepted: 08/14/2024] [Indexed: 09/03/2024] Open
Abstract
Algae are highly sensitive to environmental factors, especially nutrient fluctuations; excessive nutrients can lead to the proliferation of specific algae species, resulting in dominance. In this study, we aimed to reevaluate changes in algal dominance from the perspective of resource utilization efficiency (RUE). We established 80 monitoring sites across different water systems, collecting water and phytoplankton samples. Using canonical correspondence analysis (CCA) and a generalized additive model (GAM), we analyzed the correlation between phytoplankton RUE and nutrient concentrations, quantifying the corresponding relationship between algal dominance and RUE. Our results indicate a significant negative correlation between the RUE of total phosphorus (TP) and total nitrogen (TN) concentration, but a positive correlation with N:P. The RUE of TN was negatively correlated with TN concentration and N:P. We constructed GAMs with interaction terms and confirmed a nonlinear relationship between algal dominance and RUE. When the RUE of TN was low, a positive correlation was observed, while a negative correlation was observed otherwise. These findings reveal the ecological adaptability of algal communities and provide valuable insights for predicting the risk of algal bloom outbreaks.
Collapse
Affiliation(s)
- Yongxin Zhang
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin 150040, China; (Y.Z.)
| | - Yang Yu
- China Geological Survey Harbin Natural Resources Comprehensive Survey Center, Harbin 150081, China;
| | - Jiamin Liu
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin 150040, China; (Y.Z.)
| | - Yao Guo
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin 150040, China; (Y.Z.)
| | - Hongxian Yu
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin 150040, China; (Y.Z.)
| | - Manhong Liu
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin 150040, China; (Y.Z.)
| |
Collapse
|
2
|
Saad S, Abdelghany AM, Abou-ElWafa GS, Aldesuquy HS, Eltanahy E. Bioactivity of selenium nanoparticles biosynthesized by crude phycocyanin extract of Leptolyngbya sp. SSI24 cultivated on recycled filter cake wastes from sugar-industry. Microb Cell Fact 2024; 23:211. [PMID: 39061030 PMCID: PMC11282635 DOI: 10.1186/s12934-024-02482-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Accepted: 07/09/2024] [Indexed: 07/28/2024] Open
Abstract
BACKGROUND Beet filter cake (BFC) is a food-grade solid waste produced by the sugar industry, constituting a permanent source of pollution. Cyanobacteria are considered a sustainable resource for various bioactive compounds such as phycocyanin pigment with valuable applications. This study aimed to use beet filter cake extract (BFCE) as an alternative medium for the economic cultivation of cyanobacterium Leptolyngbya sp. SSI24 PP723083, then biorefined the bioactive component such as phycocyanin pigment that could be used in the production of selenium nanoparticles. RESULTS The results of the batch experiment displayed that the highest protein content was in BG11medium (47.9%); however, the maximum carbohydrate and lipid content were in 25% BFCE (15.25 and 10.23%, respectively). In addition, 75% BFCE medium stimulated the phycocyanin content (25.29 mg/g) with an insignificant variation compared to BG11 (22.8 mg/g). Moreover, crude phycocyanin extract from Leptolyngbya sp SSI24 cultivated on BG11 and 75% BFCE successfully produced spherical-shaped selenium nanoparticles (Se-NPs) with mean sizes of 95 and 96 nm in both extracts, respectively. Moreover, XRD results demonstrated that the biosynthesized Se-NPs have a crystalline nature. In addition, the Zeta potential of the biosynthesized Se-NPs equals - 17 mV and - 15.03 mV in the control and 75% BFCE treatment, respectively, indicating their stability. The biosynthesized Se-NPs exhibited higher effectiveness against Gram-positive bacteria than Gram-negative bacteria. Moreover, the biosynthesized Se-NPs from BG11 had higher antioxidant activity with IC50 of 60 ± 0.7 compared to 75% BFCE medium. Further, Se-NPs biosynthesized from phycocyanin extracted from Leptolyngbya sp cultivated on 75% BFCE exhibited strong anticancer activity with IC50 of 17.31 ± 0.63 µg/ml against the human breast cancer cell line. CONCLUSIONS The BFCE-supplemented medium can be used for the cultivation of cyanobacterial strain for the phycocyanin accumulation that is used for the green synthesis of selenium nanoparticles that have biological applications.
Collapse
Affiliation(s)
- Sara Saad
- Botany Department, Faculty of Science, Mansoura University, Mansoura, 35516, Egypt
| | - Amr Mohamed Abdelghany
- Spectroscopy Department, Physics Research Institute, National Research Center, Giza, 12311, Egypt
| | | | | | - Eladl Eltanahy
- Botany Department, Faculty of Science, Mansoura University, Mansoura, 35516, Egypt.
| |
Collapse
|
3
|
Li Q, Yu H, Yuan P, Liu R, Jing Z, Wei Y, Tu S, Gao H, Song Y. Mitigated N 2O emissions from submerged-plant-covered aquatic ecosystems on the Changjiang River Delta. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 928:172592. [PMID: 38642768 DOI: 10.1016/j.scitotenv.2024.172592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 04/14/2024] [Accepted: 04/17/2024] [Indexed: 04/22/2024]
Abstract
Submerged plants affect nitrogen cycling in aquatic ecosystems. However, whether and how submerged plants change nitrous oxide (N2O) production mechanism and emissions flux remains controversial. Current research primarily focuses on the feedback from N2O release to variation of substrate level and microbial communities. It is deficient in connecting the relative contribution of individual N2O production processes (i.e., the N2O partition). Here, we attempted to offer a comprehensive understanding of the N2O mitigation mechanism in aquatic ecosystems on the Changjiang River Delta according to stable isotopic techniques, metagenome-assembly genome analysis, and statistical analysis. We found that the submerged plant reduced 45 % of N2O emissions by slowing down the dissolved inorganic nitrogen conversion velocity to N2O in sediment (Vf-[DIN]sed). It was attributed to changing the N2O partition and suppressing the potential capacity of net N2O production (i.e., nor/nosZ). The dominated production processes showed a shift with increasing excess N2O. Meanwhile, distinct shift thresholds of planted and unplanted habitats reflected different mechanisms of stimulated N2O production. The hotspot zone of N2O production corresponded to high nor/nosZ and unsaturated oxygen (O2) in unplanted habitat. In contrast, planted habitat hotspot has lower nor/nosZ and supersaturated O2. O2 from photosynthesis critically impacted the activities of N2O producers and consumers. In summary, the presence of submerged plants is beneficial to mitigate N2O emissions from aquatic ecosystems.
Collapse
Affiliation(s)
- Qingqian Li
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Science, Beijing 100012, China; State Environmental Protection Key Laboratory of Estuarine and Coastal Environment, Chinese Research Academy of Environmental Science, Beijing 100012, China
| | - Huibin Yu
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Science, Beijing 100012, China
| | - Peng Yuan
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Science, Beijing 100012, China
| | - Ruixia Liu
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Science, Beijing 100012, China
| | - Zhangmu Jing
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Science, Beijing 100012, China; State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Yanjie Wei
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Science, Beijing 100012, China; College of Municipal and Environmental Engineering, Shenyang Jianzhu University, 110168, China
| | - Shengqiang Tu
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Science, Beijing 100012, China
| | - Hongjie Gao
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Science, Beijing 100012, China; State Environmental Protection Key Laboratory of Estuarine and Coastal Environment, Chinese Research Academy of Environmental Science, Beijing 100012, China.
| | - Yonghui Song
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Science, Beijing 100012, China
| |
Collapse
|
4
|
Li W, Dai T, Liu J, Zhong J, Wu K, Gao G, Chen Y, Fan H. Ferric- and calcium-loaded red soil assist colonization of submerged macrophyte for the in-situ remediation of eutrophic shallow lake: From mesocosm experiment to field enclosure application. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 924:171730. [PMID: 38492603 DOI: 10.1016/j.scitotenv.2024.171730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Revised: 03/01/2024] [Accepted: 03/13/2024] [Indexed: 03/18/2024]
Abstract
Eutrophication and its resulting harmful algal blooms greatly reduce the ecosystem services of natural waters. The use of modified clay materials to assist the phytoremediation of eutrophic water is a promising technique. In this study, ferric chloride and calcium hydroxide were respectively loaded on red soil for algal flocculation and phosphorus inactivation. A two-by-two factorial mesocosm experiment with and without the application of ferric- and calcium- loaded red soil (FA), and with and without planting the submerged macrophyte Vallisneria natans was conducted for the in-situ repair of eutrophic water and sediment. Furthermore, field enclosure application was carried out to verify the feasibility of the technology. At the end of the mesocosm experiment, the total phosphorus, total nitrogen, and ammonia nitrogen concentrations in water were reduced by 81.8 %, 63.3 %, and 62.0 %, respectively, and orthophosphate phosphorus concentration in the sediment-water interface decreased by 90.2 % in the FA + V. natans group compared with those in the control group. The concentration and proportion of chlorophyll-a in cyanobacteria decreased by 89.8 % and 71.2 %, respectively, in the FA + V. natans group. The content of active phosphorus in V. natans decreased and that of inert phosphorus increased in the FA + V. natans group, compared with those in the V. natans alone group, thus may reducing the risk of phosphorus release after decomposing of V. natans. The sediment bacterial diversity index did not change significantly among treatments. Field enclosure application have also been successful, with chlorophyll-a concentration in the water of treated enclosure decreased from above 200 μg/L to below 10 μg/L, and phosphorus concentration in the water decreased from >0.6 mg/L to <0.02 mg/L. These results demonstrated that the FA in combination with submerged macrophyte planting had great potential for the in-situ remediation of eutrophic water, especially those with severe algal blooms.
Collapse
Affiliation(s)
- Wei Li
- Jiangxi Key Laboratory for Intelligent Monitoring and Integrated Restoration of Watershed Ecosystem, Nanchang Institute of Technology, Nanchang, PR China
| | - Taotao Dai
- Jiangxi Provincial Eco-hydraulic Technology Innovation Center of Poyang Lake Basin, Jiangxi Academy of Water Science and Engineering, Nanchang, PR China
| | - Jinfu Liu
- Jiangxi Key Laboratory for Intelligent Monitoring and Integrated Restoration of Watershed Ecosystem, Nanchang Institute of Technology, Nanchang, PR China
| | - Jiayou Zhong
- Jiangxi Provincial Eco-hydraulic Technology Innovation Center of Poyang Lake Basin, Jiangxi Academy of Water Science and Engineering, Nanchang, PR China.
| | - Kun Wu
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an, PR China.
| | - Guiqing Gao
- Jiangxi Key Laboratory for Intelligent Monitoring and Integrated Restoration of Watershed Ecosystem, Nanchang Institute of Technology, Nanchang, PR China
| | - Yuwei Chen
- Jiangxi Key Laboratory for Intelligent Monitoring and Integrated Restoration of Watershed Ecosystem, Nanchang Institute of Technology, Nanchang, PR China
| | - Houbao Fan
- Jiangxi Key Laboratory for Intelligent Monitoring and Integrated Restoration of Watershed Ecosystem, Nanchang Institute of Technology, Nanchang, PR China
| |
Collapse
|
5
|
Peng X, Zhang X, Li Z, Zhang S, Zhang X, Zhang H, Lin Q, Li X, Zhang L, Ge F, Wu Z, Liu B. Unraveling the ecological mechanisms of Aluminum on microbial community succession in epiphytic biofilms on Vallisneria natans leaves: Novel insights from microbial interactions. JOURNAL OF HAZARDOUS MATERIALS 2024; 469:133932. [PMID: 38484659 DOI: 10.1016/j.jhazmat.2024.133932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 02/26/2024] [Accepted: 02/28/2024] [Indexed: 04/07/2024]
Abstract
The extensive use of aluminum (Al) poses an escalating ecological risk to aquatic ecosystems. The epiphytic biofilm on submerged plant leaves plays a crucial role in the regulation nutrient cycling and energy flow within aquatic environments. Here, we conducted a mesocosm experiment aimed at elucidating the impact of different Al concentrations (0, 0.6, 1.2, 2.0 mg/L) on microbial communities in epiphytic biofilms on Vallisneria natans. At 1.2 mg/L, the highest biofilms thickness (101.94 µm) was observed. Al treatment at 2.0 mg/L significantly reduced bacterial diversity, while micro-eukaryotic diversity increased. Pseudomonadota and Bacteroidota decreased, whereas Cyanobacteriota increased at 1.2 mg/L and 2.0 mg/L. At 1.2 and 2.0 mg/L. Furthermore, Al at concentrations of 1.2 and 2.0 mg/L enhanced the bacterial network complexity, while micro-eukaryotic networks showed reduced complexity. An increase in positive correlations among microbial co-occurrence patterns from 49.51% (CK) to 57.05% (2.0 mg/L) was indicative of augmented microbial cooperation under Al stress. The shift in keystone taxa with increasing Al concentration pointed to alterations in the functional dynamics of microbial communities. Additionally, Al treatments induced antioxidant responses in V. natans, elevating leaf reactive oxygen species (ROS) content. This study highlights the critical need to control appropriate concentration Al concentrations to preserve microbial diversity, sustain ecological functions, and enhance lake remediation in aquatic ecosystems.
Collapse
Affiliation(s)
- Xue Peng
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Xiaowen Zhang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhuxi Li
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; School of Environmental Studies, China University of Geosciences, Wuhan 430074, China
| | - Shuxian Zhang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xinyi Zhang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Haokun Zhang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qingwei Lin
- College of Life Sciences, Henan Normal University, Xinxiang 453007, China
| | - Xia Li
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; School of Environmental Studies, China University of Geosciences, Wuhan 430074, China
| | - Lu Zhang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Fangjie Ge
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Zhenbin Wu
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; School of Environmental Studies, China University of Geosciences, Wuhan 430074, China
| | - Biyun Liu
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China.
| |
Collapse
|
6
|
Liu X, Sun T, Yang W, Li X, Ding J, Fu X. Meta-analysis to identify inhibition mechanisms for the effects of submerged plants on algae. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 355:120480. [PMID: 38430885 DOI: 10.1016/j.jenvman.2024.120480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 02/07/2024] [Accepted: 02/20/2024] [Indexed: 03/05/2024]
Abstract
Submerged plants inhibit algae through shading effects, nutrient competition, allelopathy, and combinations of these mechanisms. However, it is unclear which mechanism is dominant, and how the inhibition intensity results from the traits of the plant and algae. In this study, we performed meta-analysis to quantitatively identify the dominant mechanisms, evaluate the relationship between inhibition intensity and the species and functional traits of the submerged plants or algae, and reveal the influences of external environmental factors. We found that allelopathy caused stronger inhibition than the shading effect and nutrient competition and dominated the combined mechanisms. Although the leaf shapes of the submerged plants influenced light availability, this did not change the degree of algae suppression. Algal species, properties (toxic or nontoxic) and external environmental factors (e.g., lab/mesocosm experiments, co-/filtrate/extract culture, presence or absence of interspecific competition) potentially influenced inhibition strength. Cyanobacteria and Bacillariophyta were more strongly inhibited than Chlorophyta, and toxic Cyanobacteria more than non-toxic Cyanobacteria. Algae inhibition by submerged plants was species-dependent. Ceratophyllum, Vallisneria, and Potamogeton strongly inhibited Microcystis, and can potentially prevent or mitigate harmful algal blooms of this species. However, the most common submerged plant species inhibited mixed algae communities to some extent. The results from lab experiments and mesocosm experiments both confirmed the inhibition of algae by submerged plants, but more evidence from mesocosm experiments is needed to elucidate the inhibition mechanism in complex ecosystems. Submerged plants in co-cultures inhibited algae more strongly than in extract and filtrate cultures. Complex interspecific competition may strengthen or weaken algae inhibition, but the response of this inhibition to complex biological mechanisms needs to be further explored. Our meta-analysis provides insights into which mechanisms contributed most to the inhibition effect and a scientific basis for selecting suitable submerged plant species and controlling external conditions to prevent algal blooms in future ecological restoration of lakes.
Collapse
Affiliation(s)
- Xinyu Liu
- School of Environment, State Key Laboratory of Water Environment Simulation, Beijing Normal University, Beijing 100875, China
| | - Tao Sun
- School of Environment, State Key Laboratory of Water Environment Simulation, Beijing Normal University, Beijing 100875, China; Yellow River Estuary Wetland Ecosystem Observation and Research Station, Ministry of Education, Dongying, China
| | - Wei Yang
- School of Environment, State Key Laboratory of Water Environment Simulation, Beijing Normal University, Beijing 100875, China; Yellow River Estuary Wetland Ecosystem Observation and Research Station, Ministry of Education, Dongying, China.
| | - Xiaoxiao Li
- Guangdong Provincial Key Laboratory of Water Quality Improvement and Ecological Restoration for Watersheds, School of Ecology, Environment and Resources, Guangdong University of Technology, Guangzhou, China
| | - Jiewei Ding
- School of Environment, State Key Laboratory of Water Environment Simulation, Beijing Normal University, Beijing 100875, China
| | - Xianting Fu
- School of Environment, State Key Laboratory of Water Environment Simulation, Beijing Normal University, Beijing 100875, China
| |
Collapse
|
7
|
Zhang J, Liu K, Li Y, Deng H, Huang D, Zhang J. Characterization and seasonal variation in biofilms attached to leaves of submerged plant. World J Microbiol Biotechnol 2023; 40:19. [PMID: 37993701 DOI: 10.1007/s11274-023-03832-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Accepted: 11/08/2023] [Indexed: 11/24/2023]
Abstract
The microorganisms and functional predictions of leaf biofilms on submerged plants (Vallisneria natans (Val)) and in water samples (surface water (S) and bottom water (B)) in different seasons were evaluated in this study. S and B groups had 3249 identical operational taxonomic units (OTUs) (50.03%), while the Val group only had 1201 (18.49%) unique OTUs. There was significant overlap between microbial communities of S and B groups in the same season, while Val group showed the greater diversity. The dominant microbial clades were Proteobacteria (18.2-47.3%), Cyanobacteria (3.74-39.3%), Actinobacteria (1.64-29.3%), Bacteroidetes (1.31-21.7%), and Firmicutes (1.10-15.72%). Furthermore, there was a significant relationship between total organic carbon and the distribution of microbial taxa (p = 0.047), and TN may have altered the status of Cyanobacteria by affecting its biological nitrogen fixation capacity and reproductive capacity. The correlation network analysis results showed that the whole system consisted of 249 positive correlations and 111 negative correlations, indicating strong interactions between microbial communities. Functional predictions indicated that microbial functions were related to seasonal variation. These findings would guide the use of submerged plants to improve the diversity and stability of wetland microbial communities.
Collapse
Affiliation(s)
- Jiawei Zhang
- Department of Environmental Science and Engineering, Fudan Unersity, Shanghai, 200433, P.R. China
- Shanghai Shifang Ecology and Landscape Co., Ltd, Shanghai, 200233, P.R. China
| | - Kexuan Liu
- Department of Environmental Science and Engineering, Fudan Unersity, Shanghai, 200433, P.R. China
| | - Yaguang Li
- Department of Environmental Science and Engineering, Fudan Unersity, Shanghai, 200433, P.R. China
- Shanghai Shifang Ecology and Landscape Co., Ltd, Shanghai, 200233, P.R. China
| | - Hong Deng
- School of Ecological and Environmental Science, Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, Institute of Eco-Chongming, East China Normal University, Shanghai, 200241, P.R. China
| | - Deying Huang
- Department of Chemistry, Fudan University, Shanghai, 200433, P.R. China.
| | - Jibiao Zhang
- Department of Environmental Science and Engineering, Fudan Unersity, Shanghai, 200433, P.R. China.
- Shanghai Shifang Ecology and Landscape Co., Ltd, Shanghai, 200233, P.R. China.
| |
Collapse
|
8
|
Yang C, Shen X, Wu J, Shi X, Cui Z, Tao Y, Lu H, Li J, Huang Q. Driving forces and recovery potential of the macrophyte decline in East Taihu Lake. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 342:118154. [PMID: 37207462 DOI: 10.1016/j.jenvman.2023.118154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/25/2022] [Revised: 05/04/2023] [Accepted: 05/10/2023] [Indexed: 05/21/2023]
Abstract
Macrophytes are of key importance to the structure and ecological services of shallow lakes and are sensitive to anthropogenic and natural perturbations. Ongoing eutrophication and hydrological regime change affect macrophytes through changes in water transparency and water level, which lead to a dramatic decrease in bottom light availability. Here an integrated dataset (2005-2021) of multiple environmental factors is used to demonstrate the driving forces and recovery potential of the macrophyte decline in East Taihu Lake by using a critical indicator, which is the ratio of the Secchi disk depth to the water depth (SD/WD). The macrophyte distribution area showed a remarkable decrease from 136.1 ± 9.7 km2 (2005-2014) to 66.1 ± 6.5 km2 (2015-2021). The macrophyte coverage in the lake and in the buffer zone decreased by 51.4% and 82.8%, respectively. The structural equation model and correlation analysis showed that the distribution and coverage of macrophytes decreased with the decrease in the SD/WD over time. Moreover, an extensive hydrological regime change, which caused a sharp decrease in SD and an increase in the water level, is likely to be the driving force that brought about the decline of macrophytes in this lake. The proposed recovery potential model shows that the SD/WD has been low in recent years (2015-2021), and that this SD/WD cannot ensure the growth of submerged macrophytes and is unlikely to ensure the growth of floating-leaved macrophytes, especially in the buffer zone. The approach developed in the present study provides a basis for the assessment of macrophyte recovery potential and the management of ecosystems in shallow lakes that suffer from macrophyte loss.
Collapse
Affiliation(s)
- Changtao Yang
- Key Laboratory of Yangtze River Water Environment of the Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, China; Research Center for Aquatic Ecology of East Taihu Lake, Suzhou, 215200, China
| | - Xiaobing Shen
- Research Center for Aquatic Ecology of East Taihu Lake, Suzhou, 215200, China; Bureau of Water Resource of Wujiang District, Suzhou, 215228, China
| | - Jianbin Wu
- Research Center for Aquatic Ecology of East Taihu Lake, Suzhou, 215200, China; Bureau of Water Resource of Wujiang District, Suzhou, 215228, China
| | - Xinyi Shi
- Key Laboratory of Yangtze River Water Environment of the Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, China; Research Center for Aquatic Ecology of East Taihu Lake, Suzhou, 215200, China
| | - Zhijie Cui
- Key Laboratory of Yangtze River Water Environment of the Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, China
| | - Yuwei Tao
- Research Center for Aquatic Ecology of East Taihu Lake, Suzhou, 215200, China; Bureau of Water Resource of Wujiang District, Suzhou, 215228, China
| | - Haiming Lu
- Nanjing Hydraulic Research Institute, Nanjing, 210029, China
| | - Jianhua Li
- Key Laboratory of Yangtze River Water Environment of the Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, China
| | - Qinghui Huang
- Key Laboratory of Yangtze River Water Environment of the Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, China.
| |
Collapse
|
9
|
Lv C, Tian Y, Huang L, Shan H, Chou Q, Zhang W, Su H, Li K, Zhang X, Ni L, Cao T, Jeppesen E. Buffering capacity of submerged macrophytes against nutrient pulses increase with its coverage in shallow lakes. CHEMOSPHERE 2023; 332:138899. [PMID: 37169089 DOI: 10.1016/j.chemosphere.2023.138899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 04/09/2023] [Accepted: 05/07/2023] [Indexed: 05/13/2023]
Abstract
Submerged macrophytes can improve water quality and buffer the effects of external nutrient loading, which helps to maintain a clear-water state in shallow lakes. We constructed 12 large enclosures with contrasting coverages (treatments) of submerged macrophytes (SMC) to elucidate their buffering capacity and resilience to nutrient pulses. We found that aquatic ecosystems with high SMC had higher buffering capacity and resilience, vice versa, i. e, the enclosures with high SMC quickly buffered the nutrient pulse and rebounded to clear-water state after a short stay in turbid-water state dominated by algae, while the treatments with low SMC could not fully buffer the pulse and rebound to clear-water state, and they slowly entered the transitional state after staying in turbid-water state. This means that the enclosures with high SMC had a better water quality than those with low SMC, i.e., the levels of nutrients and Chl-a were lower in the treatments with high plant coverage. In addition, plant coverage had a significantly positive buffering effect against nitrogen and phosphorus pulses, i.e., the nutrient concentrations in the treatments with high SMC took shorter time to return to the pre-pulse level. Overall, our results evidenced that the higher that the SMCs is, the better is the water quality and buffering capacity against nutrient pulses, i.e. the more stable is the clear-water state. However, low SMC may not be able to resist the impact of such strong nutrient pulse. Our results provide reference and guidance for water pollution control and water ecological restoration.
Collapse
Affiliation(s)
- Chaochao Lv
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China; University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Yuqing Tian
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China; University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Liangliang Huang
- The Guangxi Key Laboratory of Theory and Technology for Environmental Pollution Control, Guilin University of Technology, Guilin, 541004, China.
| | - Hang Shan
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China; University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Qingchuan Chou
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China.
| | - Wei Zhang
- Centre for Research on Environmental Ecology and Fish Nutrient of the Ministry of Agriculture, Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources of the Ministry of Education, Shanghai Ocean University, Shanghai, 201306, China.
| | - Haojie Su
- Institute for Ecological and Pollution Control of Plateau Lakes, School of Ecology and Environmental Science, Yunnan University, Kunming, 650091, China.
| | - Kuanyi Li
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing, 210008, China.
| | - Xiaolin Zhang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China.
| | - Leyi Ni
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China.
| | - Te Cao
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China.
| | - Erik Jeppesen
- Institute for Ecological and Pollution Control of Plateau Lakes, School of Ecology and Environmental Science, Yunnan University, Kunming, 650091, China; Aarhus University, Department of Ecoscience, Aarhus, 8000, Denmark; Sino-Danish Centre for Education and Research, University of Chinese Academy of Sciences, Beijing, 100049, China; Department of Biological Sciences and Centre for Ecosystem Research and Implementation, Middle East Technical University, Ankara, 06800, Turkey.
| |
Collapse
|
10
|
Li B, Xu D, Feng L, Liu Y, Zhang L. Ecotoxic side-effects of allelochemicals on submerged plant and its associated microfloras effectively relieved by sustained-release microspheres. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 871:161888. [PMID: 36731566 DOI: 10.1016/j.scitotenv.2023.161888] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Revised: 01/09/2023] [Accepted: 01/25/2023] [Indexed: 06/18/2023]
Abstract
Harmful algae bloom caused by water eutrophication is a burning question worldwide. Allelochemicals sustained-release microspheres (ACs-SMs) exhibited remarkable inhibition effect on algae, however, few studies have focused on the ecotoxic side-effects of ACs-SMs on submerged plant and its associated microfloras. Herein the effects of different exposure situations including single high-concentration ACs (15 mg/L, SH-ACs), repeated low-concentration ACs (3 × 5 mg/L, RL-ACs) and ACs-SMs containing 15 mg/L ACs on morphological indexes, chlorophyll content, lipid peroxidation, enzymatic activity, and chlorophyll fluorescence indexes of submerged plant Vallisneria natans and the richness and diversity of its associated microfloras (epibiotic microbes and sediment microbes) were studied. The results showed that pure ACs (RL-ACs and SH-ACs groups) had negative effects on plant height, mean leaf number and area of V. natans, but promoted the increase of mean leaf length. In addition, pure ACs caused lipid peroxidation, activated the antioxidant defense system, decreased chlorophyll content, and damaged photosynthetic system in leaves. Interestingly, ACs-SMs not only had barely negative effects on above indexes of V. natans, but had certain positive effects at the later experiment stage (days 50-60). Pure ACs and ACs-SMs all reduced the richness and diversity of microfloras in each group, and promoted the increase of relative abundance of dominant bacteria Pseudomonas, leading to a simpler community structure. Significantly, V. natans leaves diminished the effects of pure ACs and ACs-SMs on epibiotic microbes, and the plant rhizosphere was beneficial to the increase of dominant bacteria that promoted plant growth. Thus, sustained-release microspherification technology can effectively relieve the ecotoxic side-effects of pure ACs on submerged plant and its associated microfloras. This study fills the gap on the ecological safety knowledge of ACs-SMs and provides primary data for evaluating the feasibility and commercialization prospects of ACs-SMs as algae inhibitor in aquatic ecosystem.
Collapse
Affiliation(s)
- Benhang Li
- Beijing Key Lab for Source Control Technology of Water Pollution, Engineering Research Center for Water Pollution Source Control and Eco-remediation, Beijing Forestry University, Beijing 100083, China
| | - Dandan Xu
- Beijing Key Lab for Source Control Technology of Water Pollution, Engineering Research Center for Water Pollution Source Control and Eco-remediation, Beijing Forestry University, Beijing 100083, China
| | - Li Feng
- Beijing Key Lab for Source Control Technology of Water Pollution, Engineering Research Center for Water Pollution Source Control and Eco-remediation, Beijing Forestry University, Beijing 100083, China
| | - Yongze Liu
- Beijing Key Lab for Source Control Technology of Water Pollution, Engineering Research Center for Water Pollution Source Control and Eco-remediation, Beijing Forestry University, Beijing 100083, China
| | - Liqiu Zhang
- Beijing Key Lab for Source Control Technology of Water Pollution, Engineering Research Center for Water Pollution Source Control and Eco-remediation, Beijing Forestry University, Beijing 100083, China.
| |
Collapse
|
11
|
Gu P, Wang Y, Wu H, Chen L, Zhang Z, Yang K, Zhang Z, Ren X, Miao H, Zheng Z. Efficient control of cyanobacterial blooms with calcium peroxide: Threshold and mechanism. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 882:163591. [PMID: 37087006 DOI: 10.1016/j.scitotenv.2023.163591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 04/10/2023] [Accepted: 04/15/2023] [Indexed: 05/03/2023]
Abstract
This study explored the feasibility and mechanism of cyanobacterial blooms control by calcium peroxide (CaO2). The obtained results demonstrated a strong inhibitory effect of CaO2 on cyanobacterial growth. The removal chlorophyll-a rate reached 31.4 %, while optimal/maximal quantum yield of PSII (Fv/Fm) decreased to 50 % after CaO2 treatment at a concentration of 100 mg L-1 for 96 h. Two main mechanisms were involved in the treatment of cyanobacterial bloom with CaO2, namely oxidative damage and cyanobacterial colony formation. It was found that CaO2 released reactive oxygen species (ROS), namely hydroxyl radicals (·OH), singlet oxygen (1O2), and superoxide radicals (·O2-), inhibiting the activity of antioxidant enzymes in cyanobacterial cells and resulting in intracellular oxidation imbalance. Cyanobacteria can resist oxidative damage by releasing extracellular polymeric substances (EPS). These EPS can combine with CaO2-derived Ca, forming large cyanobacterial aggregates and, consequently, accelerating cell sedimentation. In addition, CaO2 caused programmed cell death (PCD) of cyanobacteria and irreversible damage to the ultrastructure characteristic of the cyanobacterial cells. The apoptotic rate was greatly improved at 100 mg L-1 CaO2. On the other hand, the results obtained using qRT-PCR analysis confirmed the contribution of CaO2 to the down-regulation of photosynthesis-related genes (rbcL and psaB), the up-regulation of microcystins (mcyA and mcyD), the up-regulation of the oxidation system: peroxiredoxin (prx) through oxidative mechanisms. The present study proposes a novel treatment method for water-containing cyanobacterial blooms using CaO2.
Collapse
Affiliation(s)
- Peng Gu
- School of Environment and Civil Engineering, Jiangnan University, Wuxi 214122, PR China; Taihu Water Environment Research Center, Changzhou 213169, PR China
| | - Yuting Wang
- School of Environment and Civil Engineering, Jiangnan University, Wuxi 214122, PR China
| | - Hanqi Wu
- Department of Environmental Science and Engineering, Fudan University, Shanghai 200433, PR China; Taihu Water Environment Research Center, Changzhou 213169, PR China
| | - Liqi Chen
- School of Environment and Civil Engineering, Jiangnan University, Wuxi 214122, PR China
| | - Zhaochang Zhang
- School of Environment and Civil Engineering, Jiangnan University, Wuxi 214122, PR China
| | - Kunlun Yang
- School of Environment and Civil Engineering, Jiangnan University, Wuxi 214122, PR China
| | - Zengshuai Zhang
- School of Environment and Civil Engineering, Jiangnan University, Wuxi 214122, PR China
| | - Xueli Ren
- School of Environment and Civil Engineering, Jiangnan University, Wuxi 214122, PR China
| | - Hengfeng Miao
- School of Environment and Civil Engineering, Jiangnan University, Wuxi 214122, PR China; Jiangsu Collaborative Innovation Center of Technology and Material of Water Treatment, Suzhou University of Science and Technology, Suzhou 215009, PR China.
| | - Zheng Zheng
- Department of Environmental Science and Engineering, Fudan University, Shanghai 200433, PR China; Taihu Water Environment Research Center, Changzhou 213169, PR China
| |
Collapse
|
12
|
Du X, Song D, Wang H, Yang J, Liu H, Huo T. The combined effects of filter-feeding bivalves ( Cristaria plicata) and submerged macrophytes ( Hydrilla verticillate) on phytoplankton assemblages in nutrient-enriched freshwater mesocosms. FRONTIERS IN PLANT SCIENCE 2023; 14:1069593. [PMID: 36755697 PMCID: PMC9899906 DOI: 10.3389/fpls.2023.1069593] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Accepted: 01/02/2023] [Indexed: 06/18/2023]
Abstract
Freshwater ecosystems are threatened by eutrophication, which causes persistent and harmful algal blooms. Filter-feeding bivalve mollusks and submerged macrophytes (SMs) alleviate the eutrophication effects by inhibiting phytoplankton biomass blooms. However, very little is known about whether and how the combined manipulation of filter-feeding bivalves and SMs control eutrophication and influence phytoplankton assemblages. Here, we performed a nutrient-enriched freshwater mesocosm experiment to assess the combined effects of the filter-feeding bivalve Cristaria plicata, a cockscomb pearl mussel, and the macrophyte Hydrilla verticillate on the biomass and composition of phytoplankton assemblages. We found that addition of C. plicata and H. verticillate decreased the water nutrient concentrations and suppressed overall phytoplankton biomass. Further, distinct differences in taxa between restoration and control treatments were observed and noticeably competitive exclusion of cyanobacteria in the restoration treatments occurred. An antagonistic interaction between filter-feeding bivalves and SMs was only detected for total cyanobacteria biomass demonstrating that a larger magnitude of SM restoration may override the effect of filter-feeding bivalves. Our results suggest that manipulation, through the addition of bivalves as grazers, associated with the restoration of SMs, is an efficient approach for reducing cyanobacterial blooms and alleviating eutrophication.
Collapse
Affiliation(s)
- Xue Du
- Key Laboratory of Aquatic Organism Protection and Ecological Restoration in Cold Waters, Heilongjiang River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Harbin, China
- Heilongjiang River Basin Fisheries Ecology Observation and Research Station of Heilongjiang Province, Harbin, China
| | - Dan Song
- Key Laboratory of Aquatic Organism Protection and Ecological Restoration in Cold Waters, Heilongjiang River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Harbin, China
- Heilongjiang River Basin Fisheries Ecology Observation and Research Station of Heilongjiang Province, Harbin, China
| | - Huibo Wang
- Key Laboratory of Aquatic Organism Protection and Ecological Restoration in Cold Waters, Heilongjiang River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Harbin, China
- Heilongjiang River Basin Fisheries Ecology Observation and Research Station of Heilongjiang Province, Harbin, China
| | - Jingshuang Yang
- Jilin Chagan Lake National Nature Reserve Administration, Songyuan, China
| | - Hui Liu
- Key Laboratory of Aquatic Organism Protection and Ecological Restoration in Cold Waters, Heilongjiang River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Harbin, China
- Heilongjiang River Basin Fisheries Ecology Observation and Research Station of Heilongjiang Province, Harbin, China
| | - Tangbin Huo
- Key Laboratory of Aquatic Organism Protection and Ecological Restoration in Cold Waters, Heilongjiang River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Harbin, China
- Heilongjiang River Basin Fisheries Ecology Observation and Research Station of Heilongjiang Province, Harbin, China
| |
Collapse
|
13
|
Application of Synthesized Vanadium-Titanium Oxide Nanocomposite to Eliminate Rhodamine-B Dye from Aqueous Medium. MOLECULES (BASEL, SWITZERLAND) 2022; 28:molecules28010176. [PMID: 36615371 PMCID: PMC9821815 DOI: 10.3390/molecules28010176] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 12/18/2022] [Accepted: 12/20/2022] [Indexed: 12/28/2022]
Abstract
In this study, a V@TiO2 nanocomposite is examined for its ability to eliminate carcinogenic Rhodamine (Rh-B) dye from an aqueous medium. A simple ultrasonic method was used to produce the nanosorbent. In addition, V@TiO2 was characterized using various techniques, including XRD, HRTEM, XPS, and FTIR. Batch mode studies were used to study the removal of Rh-B dye. In the presence of pH 9, the V@TiO2 nanocomposite was able to remove Rh-B dye to its maximum extent. A correlation regression of 0.95 indicated that the Langmuir model was a better fit for dye adsorption. Moreover, the maximum adsorption capacity of the V@TiO2 nanocomposite was determined to be 158.8 mg/g. According to the thermodynamic parameters, dye adsorption followed a pseudo-first-order model. Based on the results of the study, a V@TiO2 nanocomposite can be reused for dye removal using ethanol.
Collapse
|