1
|
Wang M, Song G, Zheng Z, Mi X, Song Z. Exploring the impact of fulvic acid and humic acid on heavy metal availability to alfalfa in molybdenum contaminated soil. Sci Rep 2024; 14:32037. [PMID: 39738773 DOI: 10.1038/s41598-024-83813-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2024] [Accepted: 12/17/2024] [Indexed: 01/02/2025] Open
Abstract
Humic substances, such as Fulvic acid (FA) and humic acid (HA), are widely used for the remediation of heavy metal-contaminated soils due to their ability to enhance metal mobility and facilitate plant uptake. In this study, we conducted a pot experiment with alfalfa to investigate the effects of FA and HA amendments on the mobility of molybdenum (Mo) in the soil, its uptake by alfalfa plants, and subsequent changes in the microbial community. The results demonstrated that both FA and HA influence Mo accumulation in the soil and plants. Specifically, HA treatment increased Mo concentrations in alfalfa shoots and roots by 1.08-1.19 times and 1.19-2.43 times, respectively, compared to the control. In contrast, FA enhanced Mo concentrations in alfalfa roots (1.05-1.58 times) but reduced Mo levels in the shoots (0.78-0.85 times). Furthermore, the addition of FA and HA altered the chemical speciation of Mo in the soil, promoting the conversion of reducible and oxidizable fraction to more exchangeable and residual fraction. As a result, the proportion of non-residual Mo fractions (exchangeable, reducible, and oxidizable) decreased from 87.48% to 80.30-87.35%, while residual fractions increased from 12.52% to 12.65-19.70%. Additionally, the structure of the soil bacterial community was primarily influenced by changes in soil properties such as cation exchange capacity, available phosphorus, and ammonium nitrogen levels. This finding highlight the potential of FA and HA to enhance Mo availability, uptake, and translocation in alfalfa, suggesting that their application could be an effective strategy for phytoremediation of Mo-contaminated soils, particularly when alfalfa is used as a hyperaccumulator.
Collapse
Affiliation(s)
- Mengmeng Wang
- North China University of Water Resources and Electric Power, Zhengzhou, 450046, PR China
| | - Gangfu Song
- North China University of Water Resources and Electric Power, Zhengzhou, 450046, PR China.
| | - Zhihong Zheng
- North China University of Water Resources and Electric Power, Zhengzhou, 450046, PR China
| | - Xiao Mi
- North China University of Water Resources and Electric Power, Zhengzhou, 450046, PR China.
| | - Zhixin Song
- North China University of Water Resources and Electric Power, Zhengzhou, 450046, PR China
| |
Collapse
|
2
|
Du S, Zhang M, Zhang S, Wen X, Wang Y, Wu D. Evaluation of the quality of products from multiple industrial-scale composting treatment facilities for kitchen waste and exploration of influencing factors. ENVIRONMENTAL RESEARCH 2024; 262:119899. [PMID: 39222732 DOI: 10.1016/j.envres.2024.119899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 08/29/2024] [Accepted: 08/30/2024] [Indexed: 09/04/2024]
Abstract
The aerobic composting process is extensively utilized to manage kitchen waste. Nonetheless, the variability in the quality of compost derived from engineering practices which significantly hinders its broader industrial application. This work investigated the final products of kitchen waste compost at multiple industrial-scale treatment facilities utilizing three distinct aerobic composting processes in a bid to explore key factors affecting compost quality. The quality evaluation was based on technical parameters like seed germination index (GI), and limiting factors such as heavy metal content. The results showed that most of the compost products failed to meet the established standards, with GI being the primary limiting indicator. Furthermore, maturity assessments suggested that compost with low GI exhibited reduced humification could not be recommended for agricultural use. The investigation delved into the primary determinants of GI, focusing on risk factors such as the oil and salt of kitchen waste, and the microbial community of the humification driving forces. The results indicated that products with low GI had higher oil and salt content and a relatively simple microbial community. A thorough analysis suggested that excessive levels oil and salt were potential influencing factors on GI, as they stimulated the activity of acid-producing bacteria like Lactobacillus, suppressed the activity of humification-promoting bacteria such as Actinomarinales, and influenced the decomposition and humification processes of organic matter and total nitrogen, thereby affecting product quality. The findings provide valuable insights for improving kitchen waste compost products for agricultural applications.
Collapse
Affiliation(s)
- Shuwen Du
- College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Mingjie Zhang
- College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Shuchi Zhang
- College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Xin Wen
- College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Yida Wang
- Hangzhou Changhong Environmental Protection Technology Co, Ltd., Hangzhou, 310030, China
| | - Donglei Wu
- College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, China.
| |
Collapse
|
3
|
Siqueira JS, de Carvalho LAL, Santos CHB, Frezarin ET, Pinheiro DG, Nicodemo D, Desoignies N, Rigobelo EC. Influence of Growth Support on the Diversity, Composition, and Functionality of Microbial Communities Associated with Tillandsia recurvata. MICROBIAL ECOLOGY 2024; 87:129. [PMID: 39414684 PMCID: PMC11485485 DOI: 10.1007/s00248-024-02448-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Accepted: 10/10/2024] [Indexed: 10/18/2024]
Abstract
Tillandsia recurvata is an epiphytic plant commonly found in tropical regions and colonizes tree trunks, fences, and power wires. This plant plays an important role in interacting with trees, sharing microorganisms, and performing specific functions in the process of tree colonization. The objective of this study was to evaluate and compare the microbiomes of T. recurvata collected from two different locations (trees and fences) and two plant tissues (leaves and roots). The hypothesis of this study was that the microbiome of T. recurvata is composed of microorganisms that would provide nutritional support to compensate for the lack of nutrients in a particular growth support. The results showed significant differences in microbial diversity between trees and fences, with trees exhibiting higher richness and more complex microbial networks. Proteobacteria was the most prevalent bacterial phylum, with Actinobacteria and Sphingomonas also playing key roles in nitrogen fixation and plant growth. Fungal communities were similar across locations, with Ascomycota and Basidiomycota being predominant, but Paraconiothyrium and Nigrospora showed significant differences in abundance between trees and fences. Functional analysis indicated similar metabolic profiles across leaf and root samples, with key functions for T. recurvata including carbohydrate and amino acid metabolism, stress control, and biofertilization.
Collapse
Affiliation(s)
- Josiane Soares Siqueira
- Agricultural and Livestock Microbiology Postgraduate Program, School of Agricultural and Veterinarian Sciences, São Paulo State University (UNESP), Jaboticabal, São Paulo, 14884-900, Brazil
| | - Lucas Amoroso Lopes de Carvalho
- Agricultural and Livestock Microbiology Postgraduate Program, School of Agricultural and Veterinarian Sciences, São Paulo State University (UNESP), Jaboticabal, São Paulo, 14884-900, Brazil
| | - Carlos Henrique Barbosa Santos
- School of Agricultural and Veterinarian Sciences, São Paulo State University (UNESP), Jaboticabal, São Paulo, 14884-900, Brazil
| | - Edvan Teciano Frezarin
- Agricultural and Livestock Microbiology Postgraduate Program, School of Agricultural and Veterinarian Sciences, São Paulo State University (UNESP), Jaboticabal, São Paulo, 14884-900, Brazil
| | - Daniel Guariz Pinheiro
- Agricultural and Livestock Microbiology Postgraduate Program, School of Agricultural and Veterinarian Sciences, São Paulo State University (UNESP), Jaboticabal, São Paulo, 14884-900, Brazil
| | - Daniel Nicodemo
- Department of Animal Science, School of Agricultural and Veterinarian Sciences, São Paulo State University (UNESP), Jaboticabal, São Paulo, 14884-900, Brazil
| | - Nicolas Desoignies
- Phytopathology, Microbial and Molecular Farming Lab, Center D' Etudes Et Recherche, Appliquée-Haute Ecole Provinciale du Hainaut Condorcet, Ath, Belgium
| | - Everlon Cid Rigobelo
- Agricultural and Livestock Microbiology Postgraduate Program, School of Agricultural and Veterinarian Sciences, São Paulo State University (UNESP), Jaboticabal, São Paulo, 14884-900, Brazil.
| |
Collapse
|
4
|
Wang M, Song G, Zheng Z, Song Z, Mi X. Phytoremediation of molybdenum (Mo)-contaminated soil using plant and humic substance. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 284:117011. [PMID: 39241608 DOI: 10.1016/j.ecoenv.2024.117011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Revised: 08/20/2024] [Accepted: 09/03/2024] [Indexed: 09/09/2024]
Abstract
The severity of soil molybdenum (Mo) pollution is increasing, and effective management of contaminated soil is essential for the sustainable development of soil. To investigate this, a pot experiment was carried out to assess the impact of different rates of humic acid (HA) and fulvic acid (FA) on the mobility of Mo in soil solution and its uptake by alfalfa, wheat and green bristlegrass. The concentration of Mo in Plants and soil was determined using an Atomic Absorption Spectrophotometer. The findings revealed that the application of HA led to an increase in Mo accumulation in the shoot and root of green bristlegrass and wheat, ranging from 10.56 % to 28.73 % and 62.15-115.79 % (shoot), and 17.52-46.53 % and 6.29-81.25 % (root), respectively. Nonetheless, the use of HA resulted in a slight inhibition of plant Mo uptake, leading to reduced Mo accumulation in alfalfa roots compared to the control treatment (from 3284.49 mg/kg to 2140.78-2813.54 mg/kg). On the other hand, the application of FA decreased Mo accumulation in the wheat shoot (from 909.92 mg/kg to 338.54-837.45 mg/kg). Furthermore, the bioavailability of green bristlegrass (with HA) and wheat (with FA) decreased, and the percentage of residual fraction of Mo increased (from 0.39 % to 0.78-0.96 %, from 3.95 % to 3.97∼ 4.34 %). This study aims to elucidate the ternary interaction among Mo, humic substances, and plants (alfalfa, wheat, and green bristlegrass), to enhance both the activation and hyperaccumulation of Mo simultaneously.
Collapse
Affiliation(s)
- Mengmeng Wang
- North China University of Water Resources and Electric Power, Zhengzhou 450046, PR China
| | - Gangfu Song
- North China University of Water Resources and Electric Power, Zhengzhou 450046, PR China.
| | - Zhihong Zheng
- North China University of Water Resources and Electric Power, Zhengzhou 450046, PR China
| | - Zhixin Song
- North China University of Water Resources and Electric Power, Zhengzhou 450046, PR China
| | - Xiao Mi
- North China University of Water Resources and Electric Power, Zhengzhou 450046, PR China.
| |
Collapse
|
5
|
Zhao B, Xu Z, Li S, Yang Z, Ling W, Wu Z, Gao J, Wang Y. Reduction of the exchangeable cadmium content in soil by appropriately increasing the maturity degree of organic fertilizers. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 365:121599. [PMID: 38968895 DOI: 10.1016/j.jenvman.2024.121599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 06/02/2024] [Accepted: 06/23/2024] [Indexed: 07/07/2024]
Abstract
To enhance the remediation effect of heavy metal pollution, organic fertilizers with different maturity levels were added to cadmium-contaminated soil. The remediation effect was determined by evaluating the form transformation and bioavailability of cadmium in heavy metal-contaminated soil. -Results showed that when the maturity was 50%, although the soil humus (HS) content increased, it didn't contribute to reducing the bioavailability of soil Cd. Appropriately increasing the maturity (GI ≥ 80%), the HS increased by 113.95%∼157.96%, and reduced significantly the bioavailability of soil Cd, among the exchangeable Cd decreased by 16.04%∼33.51% (P < 0.01). The structural equation modeling (SEM) revealed that HS content is a critical factor influencing the transformation of Cd forms and the reduction of exchangeable Cd accumulation; the HS and residual Cd content were positively correlated with the maturity (P < 0.01), while exchangeable Cd content was negatively correlated with maturity (P < 0.01), and the correlation increased with increasing maturity. In summary, appropriately increasing the maturity (GI ≥ 80%) can increase significantly HS, promote the transformation of exchangeable Cd into residual Cd, and ultimately enhance the effectiveness of organic fertilizers in the remediation of soil Cd pollution. These results provide a new insight into the remediation of Cd-contaminated soil through organic fertilizer as soil amendment in Cd-contaminated soil.
Collapse
Affiliation(s)
- Bing Zhao
- College of Resources and Environmental Science, Yunnan Agricultural University, Kunming, 650201, Yunnan, China
| | - Zhi Xu
- College of Resources and Environmental Science, Yunnan Agricultural University, Kunming, 650201, Yunnan, China; Organic Recycling Institute (Suzhou) of China Agricultural University, Suzhou, 215128, Jiangsu, China
| | - Shaoming Li
- College of Resources and Environmental Science, Yunnan Agricultural University, Kunming, 650201, Yunnan, China
| | - Zhixin Yang
- College of Resources and Environmental Science, Yunnan Agricultural University, Kunming, 650201, Yunnan, China
| | - Wen Ling
- College of Resources and Environmental Science, Yunnan Agricultural University, Kunming, 650201, Yunnan, China
| | - Zhicheng Wu
- College of Resources and Environmental Science, Yunnan Agricultural University, Kunming, 650201, Yunnan, China
| | - Jiangfei Gao
- College of Resources and Environmental Science, Yunnan Agricultural University, Kunming, 650201, Yunnan, China
| | - Yuyun Wang
- College of Resources and Environmental Science, Yunnan Agricultural University, Kunming, 650201, Yunnan, China.
| |
Collapse
|
6
|
Wang W, Xue J, Zhang L, He M, You J. Extraction of heavy metals from copper tailings by ryegrass (Lolium perenne L.) with the assistance of degradable chelating agents. Sci Rep 2024; 14:7663. [PMID: 38561404 PMCID: PMC10984975 DOI: 10.1038/s41598-024-58486-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Accepted: 03/29/2024] [Indexed: 04/04/2024] Open
Abstract
Heavy metal contamination is an urgent ecological governance problem in mining areas. In order to seek for a green and environmentally friendly reagent with better plant restoration effect to solve the problem of low efficiency in plant restoration in heavy metal pollution soil. In this study, we evaluated the effects of three biodegradable chelating agents, namely citric acid (CA), fulvic acid (FA) and polyaspartic acid (PASP), on the physicochemical properties of copper tailings, growth of ryegrass (Lolium perenne L.) and heavy metal accumulation therein. The results showed that the chelating agent application improved the physicochemical properties of copper tailings, increased the biomass of ryegrass and enriched more Cu and Cd in copper tailings. In the control group, the main existing forms of Cu and Cd were oxidizable state, followed by residual, weak acid soluble and reducible states. After the CA, FA or PASP application, Cu and Cd were converted from the residual and oxidizable states to the reducible and weak acid soluble states, whose bioavailability in copper tailings were thus enhanced. Besides, the chelating agent incorporation improved the Cu and Cd extraction efficiencies of ryegrass from copper tailings, as manifested by increased root and stem contents of Cu and Cd by 30.29-103.42%, 11.43-74.29%, 2.98-110.98% and 11.11-111.11%, respectively, in comparison with the control group. In the presence of multiple heavy metals, CA, FA or PASP showed selectivity regarding the ryegrass extraction of heavy metals from copper tailings. PCA analysis revealed that the CA-4 and PASP-7 treatment had great remediation potentials against Cu and Cd in copper tailings, respectively, as manifested by increases in Cu and Cd contents in ryegrass by 90.98% and 74.29% compared to the CK group.
Collapse
Affiliation(s)
- Weiwei Wang
- School of Chemical and Environmental Engineering, China University of Mining and Technology-Beijing, Beijing, 100083, China
| | - Jinchun Xue
- School of Energy and Mechanical Engineering, Jiangxi University of Science and Technology, Nanchang, 330013, Jiangxi, China.
| | - Liping Zhang
- School of Chemical and Environmental Engineering, China University of Mining and Technology-Beijing, Beijing, 100083, China
| | - Min He
- School of Software Engineering, Jiangxi University of Science and Technology, Nanchang, 330013, China.
| | - Jiajia You
- School of Energy and Mechanical Engineering, Jiangxi University of Science and Technology, Nanchang, 330013, Jiangxi, China
| |
Collapse
|
7
|
Teng Y, Yang Y, Wang Z, Guan W, Liu Y, Yu H, Zou L. The cadmium tolerance enhancement through regulating glutathione conferred by vacuolar compartmentalization in Aspergillus sydowii. CHEMOSPHERE 2024; 352:141500. [PMID: 38373444 DOI: 10.1016/j.chemosphere.2024.141500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2023] [Revised: 12/20/2023] [Accepted: 02/16/2024] [Indexed: 02/21/2024]
Abstract
Aspergillus was found to be a vital hyperaccumulation species for heavy metal removal with admirable tolerance capacity. But the potential tolerance mechanism has not been completely studied. This study quantified the amounts of total cadmium (Cd), Cd2+, glutathione (GSH), and reactive oxygen species (ROS) in the protoplasts and vacuoles of mycelium. We modulated GSH synthesis using buthionine sulfoximine (BSO) and 2-oxothiazolidine-4-carboxylic acid (OTC) to investigate the subcellular regulatory mechanisms of GSH in the accumulation of Cd. The results confirmed that GSH plays a crucial role in vacuolar compartmentalization under Cd stress. GSH and GSSG as a redox buffer to keep the cellular redox state in balance and GSH as a metal chelating agent to reduce toxicity. When regulating the decreased GSH content with BSO, and increased GSH content with OTC, the system of Cd-GSH-ROS can change accordingly, this also supported that vacuolar compartmentalization is a detoxification strategy that can modulate the transport and storage of substances inside and outside the vacuole reasonably. Interestingly, GSH tended to be distributed in the cytoplasm, the battleground of redox takes place in the cytoplasm but not in the vacuole. These finding potentially has implications for the understanding of tolerance behavior and detoxification mechanisms of cells. In the future bioremediation of Cd in soil, the efficiency of soil remediation can be improved by developing organisms with high GSH production capacity.
Collapse
Affiliation(s)
- Yue Teng
- School of Environmental and Civil Engineering, Jiangsu Key Laboratory of Anaerobic Biotechnology, Jiangnan University, Wuxi 214122, China; Jiangsu Collaborative Innovation Center of Technology and Material of Water Treatment, Suzhou 215009, China.
| | - Yan Yang
- School of Environmental and Civil Engineering, Jiangsu Key Laboratory of Anaerobic Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Zhenjun Wang
- School of Environmental and Civil Engineering, Jiangsu Key Laboratory of Anaerobic Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Wenjie Guan
- School of Environmental and Civil Engineering, Jiangsu Key Laboratory of Anaerobic Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Yutong Liu
- School of Environmental and Civil Engineering, Jiangsu Key Laboratory of Anaerobic Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Hongyan Yu
- School of Environmental and Civil Engineering, Jiangsu Key Laboratory of Anaerobic Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Luyi Zou
- School of Environmental and Civil Engineering, Jiangsu Key Laboratory of Anaerobic Biotechnology, Jiangnan University, Wuxi 214122, China
| |
Collapse
|
8
|
Ofori-Agyemang F, Waterlot C, Manu J, Laloge R, Francin R, Papazoglou EG, Alexopoulou E, Sahraoui ALH, Tisserant B, Mench M, Burges A, Oustrière N. Plant testing with hemp and miscanthus to assess phytomanagement options including biostimulants and mycorrhizae on a metal-contaminated soil to provide biomass for sustainable biofuel production. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 912:169527. [PMID: 38135075 DOI: 10.1016/j.scitotenv.2023.169527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 12/06/2023] [Accepted: 12/18/2023] [Indexed: 12/24/2023]
Abstract
The need of biofuels from biomass, including sustainable aviation fuel, without using agricultural land dedicated to food crops, is in constant demand. Strategies to intensify biomass production using mycorrhizal fungi, biostimulants and their combinations could be solutions for improving the cultivation of lignocellulosic plants but still lack well-established validation on metal-contaminated soils. This study aimed to assess the yield of Miscanthus x giganteus J.M. Greef & Deuter and Cannabis sativa L. grown on a metal-contaminated agricultural soil (11 mg Cd, 536 mg Pb and 955 mg Zn kg-1) amended with biostimulants and/or arbuscular mycorrhizal fungi, and the shoot Cd, Pb and Zn uptake. A pot trial was carried out with soil collected from a field near a former Pb/Zn smelter in France and six treatments: control (C), protein hydrolysate (a mixture of peptides and amino acids, PH), humic/fulvic acids (HFA), arbuscular mycorrhizae fungi (AMF), PH combined with AMF (PHxAMF), and HFA combined with AMF (HFAxAMF). Metal concentrations in the soil pore water (SPW), pH and electrical conductivity were measured over time. Miscanthus and hemp shoots were harvested on day 90. Both PH and PHxAMF treatments increased SPW Cd, Pb, and Zn concentrations (e.g. by 26, 1.9, and 22.9 times for miscanthus and 9.7, 4.7, and 19.3 times for hemp in the PH and PHxAMF treatments as compared to the control one, respectively). This led to phytotoxicity and reduced shoot yield for miscanthus. Conversely, HFA and HFAxAMF treatments decreased SPW Cd and Zn concentrations, increasing shoot yields for hemp and miscanthus. Shoot Cd, Pb, and Zn uptakes peaked for PH and PHxAMF hemp plants (in μg plant-1, Cd: 310-334, Pb: 34-38, and Zn: 232-309 for PHxAMF and PH, respectively), while lowest values occurred for PH miscanthus plants mainly due to low shoot yield. Overall, this study suggested that humic/fulvic acids can be an effective biostimulant for increasing shoot biomass production in a metal-contaminated soil. These results warrant further investigations of the HFAxAMF in field trials.
Collapse
Affiliation(s)
- Felix Ofori-Agyemang
- Univ. Lille, IMT Nord-Europe, Univ. Artois, JUNIA, ULR 4515 - LGCgE, Laboratoire de Génie Civil et géo-Environnement, F-59000 Lille, France.
| | - Christophe Waterlot
- Univ. Lille, IMT Nord-Europe, Univ. Artois, JUNIA, ULR 4515 - LGCgE, Laboratoire de Génie Civil et géo-Environnement, F-59000 Lille, France.
| | - James Manu
- Univ. Lille, IMT Nord-Europe, Univ. Artois, JUNIA, ULR 4515 - LGCgE, Laboratoire de Génie Civil et géo-Environnement, F-59000 Lille, France.
| | - Roman Laloge
- Univ. Lille, IMT Nord-Europe, Univ. Artois, JUNIA, ULR 4515 - LGCgE, Laboratoire de Génie Civil et géo-Environnement, F-59000 Lille, France.
| | - Romain Francin
- Univ. Lille, IMT Nord-Europe, Univ. Artois, JUNIA, ULR 4515 - LGCgE, Laboratoire de Génie Civil et géo-Environnement, F-59000 Lille, France.
| | - Eleni G Papazoglou
- Department of Crop Science, Agricultural University of Athens, 11855 Athens, Greece.
| | - Efthymia Alexopoulou
- Center for Renewable Energy Sources and Saving, Biomass Department, Pikermi Attikis, Greece.
| | - Anissa Lounès-Hadj Sahraoui
- Unité de Chimie Environnementale et Interactions sur le Vivant (UCEIV-UR 4492), Université Littoral Côte d'Opale, SFR Condorcet FR CNRS 3417, CS 80699, 62228 Calais, France.
| | - Benoît Tisserant
- Unité de Chimie Environnementale et Interactions sur le Vivant (UCEIV-UR 4492), Université Littoral Côte d'Opale, SFR Condorcet FR CNRS 3417, CS 80699, 62228 Calais, France.
| | - Michel Mench
- Univ. Bordeaux, INRAE, BIOGECO, 33615 Pessac cedex, France.
| | - Aritz Burges
- Univ. Lille, IMT Nord-Europe, Univ. Artois, JUNIA, ULR 4515 - LGCgE, Laboratoire de Génie Civil et géo-Environnement, F-59000 Lille, France.
| | - Nadège Oustrière
- Univ. Lille, IMT Nord-Europe, Univ. Artois, JUNIA, ULR 4515 - LGCgE, Laboratoire de Génie Civil et géo-Environnement, F-59000 Lille, France.
| |
Collapse
|
9
|
Proshad R, Li J, Sun G, Zheng X, Yue H, Chen G, Zhang S, Li Z, Zhao Z. Field application of hydroxyapatite and humic acid for remediation of metal-contaminated alkaline soil. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:13155-13174. [PMID: 38243026 DOI: 10.1007/s11356-024-32015-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Accepted: 01/10/2024] [Indexed: 01/21/2024]
Abstract
The quality of soil is essential for ensuring the safety and quality of agricultural products. However, soils contaminated with toxic metals pose a significant threat to agricultural production and human health. Therefore, remediation of contaminated soils is an urgent task, and humic acid (HA) with hydroxyapatite (HAP) materials was applied for this study in contaminated alkaline soils to remediate Cd, Pb, Cu, and Zn. Physiochemical properties, improved BCR sequential extraction, microbial community composition in soils with superoxide dismutase (SOD), peroxidase (POD), and chlorophyll content in plants were determined. Among the studied treatments, application of HAP-HA (2:1) (T7) had the most significant impact on reducing the active forms of toxic metals from soil such as Cd, Pb, Cu, and Zn decreased by 18.59%, 9.12%, 11.83%, and 3.33%, respectively, but HAP and HA had a minor impact on metal accumulation in Juncao. HAP (T2) had a beneficial impact on reducing the TCleaf/root of Cd, Cu, and Zn, whereas HAP-HA (T5) showed the best performance for reducing Cd and Cu in EFleaf/soil. HAP-HA (T5 and T7) showed higher biomass (57.3%) and chlorophyll (17.9%), whereas HAP (T4) showed better performance in POD (25.8%) than T0 in Juncao. The bacterial diversity in soil was increased after applying amendments of various treatments and enhancing metal remediation. The combined application of HAP and HA effectively reduced active toxic metals in alkaline soil. HAP-HA mixtures notably improved soil health, plant growth, and microbial diversity, advocating for their use in remediating contaminated soils.
Collapse
Affiliation(s)
- Ram Proshad
- Key Laboratory of Mountain Environment Evolvement and Regulation, Institute of Mountain Hazards and Environment, Chinese Academy of Sciences, Chengdu, 610041, People's Republic of China
- University of Chinese Academy of Sciences, Beijing, 100049, People's Republic of China
| | - Jie Li
- CCTEG Chongqing Engineering (Group) Co., LTD., Chongqing, 400000, People's Republic of China
| | - Guohuai Sun
- College of Earth and Environmental Sciences, Lanzhou University, Lanzhou, 730000, People's Republic of China
| | - Xu Zheng
- College of Earth and Environmental Sciences, Lanzhou University, Lanzhou, 730000, People's Republic of China
| | - Haoyu Yue
- College of Earth and Environmental Sciences, Lanzhou University, Lanzhou, 730000, People's Republic of China
| | - Geng Chen
- College of Earth and Environmental Sciences, Lanzhou University, Lanzhou, 730000, People's Republic of China
| | - Shuangting Zhang
- College of Earth and Environmental Sciences, Lanzhou University, Lanzhou, 730000, People's Republic of China
| | - Ziyi Li
- College of Earth and Environmental Sciences, Lanzhou University, Lanzhou, 730000, People's Republic of China
| | - Zhuanjun Zhao
- Key Laboratory of Mountain Environment Evolvement and Regulation, Institute of Mountain Hazards and Environment, Chinese Academy of Sciences, Chengdu, 610041, People's Republic of China.
| |
Collapse
|
10
|
Zia-Ur-Rehman M, Bani Mfarrej MF, Usman M, Azhar M, Rizwan M, Alharby HF, Bamagoos AA, Alshamrani R, Ahmad Z. Exogenous application of low and high molecular weight organic acids differentially affected the uptake of cadmium in wheat-rice cropping system in alkaline calcareous soil. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 329:121682. [PMID: 37094734 DOI: 10.1016/j.envpol.2023.121682] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 04/06/2023] [Accepted: 04/19/2023] [Indexed: 05/03/2023]
Abstract
Anthropogenic cadmium (Cd) in arable soils is becoming a global concern due to its harmful effects on crop yield and quality. The current study examined the role of exogenously applied low molecular weight organic acids (LMWOAs) including oxalic acid (OxA), tartaric acid (TA) and high molecular weight organic acids (HMWOAs) like citric acid (CA) and humic acid (HA) for the bioavailability of Cd in wheat-rice cropping system. Maximum increase in root dry-weight, shoot dry-weight, and grain/paddy yields was recorded with HA for both crops. The HA significantly decreased AB-DTPA Cd in contaminated soils which remained 41% for wheat and 48% for rice compared with their respective controls. The minimum concentration of Cd in roots, shoots and grain/paddy was observed in HA treatment in both crops. The organic acids significantly increased the growth parameters, photosynthetic activity, and relative leaf moisture contents for both wheat and rice crops compared to that with the contaminated control. Application of OxA and TA increased the bioavailability of Cd in soils and plant tissues while CA and HA decreased the bioavailability of Cd in soils and plants. The highest decrease in Cd uptake, bioaccumulation, translocation factor, immobilization, translocation, harvest, and health risk indices were observed with HA while maximum increase was recorded with OxA for both wheat and rice. The results concluded that use of HMWOAs is effective in soil Cd immobilization being maximum with HA. While LMWOAs can be used for the phytoextraction of Cd in contaminated soils having maximum potential with OxA.
Collapse
Affiliation(s)
- Muhammad Zia-Ur-Rehman
- Institute of Soil and Environmental Sciences, University of Agriculture, Faisalabad, 38000, Punjab, Pakistan
| | - Manar Fawzi Bani Mfarrej
- Department of Life and Environmental Sciences, College of Natural and Health Sciences, Zayed University, Abu Dhabi, 144534, United Arab Emirates
| | - Muhammad Usman
- Institute of Soil and Environmental Sciences, University of Agriculture, Faisalabad, 38000, Punjab, Pakistan
| | - Muhammad Azhar
- Institute of Soil and Environmental Sciences, University of Agriculture, Faisalabad, 38000, Punjab, Pakistan; Engro Fertilizers Limited 19-a, 4th Floor, Ali Block, New Garden Town, Lahore, 54000, Punjab, Pakistan
| | - Muhammad Rizwan
- Department of Environmental Sciences, Government College University, Faisalabad, 38000, Punjab, Pakistan.
| | - Hesham F Alharby
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah, 21589, Saudi Arabia; Plant Biology Research Group, Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah, 21589, Saudi Arabia
| | - Atif A Bamagoos
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah, 21589, Saudi Arabia
| | - Rahma Alshamrani
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah, 21589, Saudi Arabia
| | - Zahoor Ahmad
- University of Central Punjab, Constituent College, Yazman Road, Bahawalpur, 63100, Pakistan
| |
Collapse
|
11
|
Kou B, He Y, Wang Y, Qu C, Tang J, Wu Y, Tan W, Yuan Y, Yu T. The relationships between heavy metals and bacterial communities in a coal gangue site. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 322:121136. [PMID: 36736561 DOI: 10.1016/j.envpol.2023.121136] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 01/18/2023] [Accepted: 01/21/2023] [Indexed: 06/18/2023]
Abstract
Coal is the main source of energy for China's economic development, but coal gangue dumps are a major source of heavy metal pollution. Bacterial communities have a major effect on the bioremediation of heavy metals in coal gangue dumps. The effects of different concentrations of heavy metals on the composition of bacterial communities in coal gangue sites remain unclear. Soil bacterial communities from four gangue sites that vary in natural heavy metal concentrations were investigated using high-throughput sequencing in this study. Correlations among bacterial communities, heavy metal concentrations, physicochemical properties of the soil, and the composition of dissolved organic matter of soil in coal gangue dumps were also analyzed. Our results indicated that Actinobacteriota, Proteobacteria, Chloroflexi, Acidobacteriota, and Gemmatimonadota were the bacterial taxa most resistant to heavy metal stress at gangue sites. Heavy metal contamination may be the main cause of changes in bacterial communities. Heavy metal pollution can foster mutually beneficial symbioses between microbial species. Microbial-derived organic matter was the main source of soil organic matter in unvegetated mining areas, and this could affect the toxicity and transport of heavy metals in soil. Polar functional groups such as hydroxyl and ester groups (A226-400) play an important role in the reaction of cadmium (Cd) and lead (Pb), and organic matter with low molecular weight (SR) tends to bind more to mercury (Hg). In addition to heavy metals, the content of nitrogen (N), phosphorus (P), and total organic carbon (TOC) also affected the composition of the bacterial communities; TOC had the strongest effect, followed by N, SOM, and P. Our findings have implications for the microbial remediation of heavy metal-contaminated soils in coal gangue sites and sustainable development.
Collapse
Affiliation(s)
- Bing Kou
- State Environmental Protection Key Laboratory of Simulation and Control of Groundwater Pollution, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China; College of Chemistry and Chemical Engineering, Xi'an Shiyou University, Xi'an, 710065, China
| | - Yue He
- Beijing Guozhong Biotechnology Co., LTD, Beijing, 102211, China
| | - Yang Wang
- State Environmental Protection Key Laboratory of Simulation and Control of Groundwater Pollution, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| | - Chengtun Qu
- College of Chemistry and Chemical Engineering, Xi'an Shiyou University, Xi'an, 710065, China
| | - Jun Tang
- State Environmental Protection Key Laboratory of Simulation and Control of Groundwater Pollution, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| | - Yuman Wu
- State Environmental Protection Key Laboratory of Simulation and Control of Groundwater Pollution, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China; College of Chemistry and Chemical Engineering, Xi'an Shiyou University, Xi'an, 710065, China
| | - Wenbing Tan
- State Environmental Protection Key Laboratory of Simulation and Control of Groundwater Pollution, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| | - Ying Yuan
- State Environmental Protection Key Laboratory of Simulation and Control of Groundwater Pollution, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China.
| | - Tingqiao Yu
- International Education College, Beijing Vocational College of Agriculture, Beijing, 102442, China
| |
Collapse
|
12
|
Ye P, Fang L, Song D, Zhang M, Li R, Awasthi MK, Zhang Z, Xiao R, Chen X. Insights into carbon loss reduction during aerobic composting of organic solid waste: A meta-analysis and comprehensive literature review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 862:160787. [PMID: 36502991 DOI: 10.1016/j.scitotenv.2022.160787] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 12/04/2022] [Accepted: 12/05/2022] [Indexed: 06/17/2023]
Abstract
Carbon neutrality is now receiving global concerns for the sustainable development of human societies, of which how to reduce greenhouse gases (GHGs) emissions and enhance carbon conservation and sequestration becomes increasingly critical. Therefore, this study conducted a meta-analysis and literature review to assess carbon loss and to explore the main factors that impact carbon loss during organic solid waste (OSW) composting. The results indicated that over 40 % of carbon was lost through composting, mainly as CO2-C and merely as CH4-C. Experimental scale, feedstock varieties, composting systems, etc., all impacted the carbon loss, and there was generally higher carbon loss under optimal conditions (i.e., C/N ratio (15-25), pH (6.5-7.5), moisture content (65-75 %)). Most mitigation strategies in conventional composting (CC) systems (e.g., additive supplementary, feedstock adjustment, and optimized aeration, etc.) barely mediated the TC and CO2-C loss but dramatically reduced the emission of CH4-C through composting. Among them, feedstock adjustment by elevating the feedstock C/N ratio effectively reduced the TC loss, and chemical additives facilitated the conservation of both carbon and nitrogen. By comparison, there was generally higher carbon loss in the novel composting systems (e.g. hyperthermophilic and electric field enhanced composting, etc.). However, the impacts of different mitigation strategies and novel composting systems on carbon loss reduction through composting were probably underestimated for the inappropriate evaluation methods (composting period-dependent instead of maturity originated). Therefore, further studies are needed to explore carbon transformation through composting, to establish methods and standards for carbon loss evaluation, and to develop novel techniques and systems for enhanced carbon conservation through composting. Overall, the results of this study could provide a reference for carbon-friendly composting for future OSW management under the background of global carbon neutrality.
Collapse
Affiliation(s)
- Pingping Ye
- Interdisciplinary Research Center for Agriculture Green Development in Yangtze River Basin, College of Resources and Environment, Southwest University, Chongqing 400715, China
| | - Linfa Fang
- Interdisciplinary Research Center for Agriculture Green Development in Yangtze River Basin, College of Resources and Environment, Southwest University, Chongqing 400715, China; Key Laboratory of Low-carbon Green Agriculture in Southwestern China, Ministry of Agriculture and Rural Affairs, Chongqing 400715, China
| | - Dan Song
- Chongqing Academy of Ecology and Environmental Sciences, Chongqing 401147, China
| | - Muyuan Zhang
- Chongqing Academy of Ecology and Environmental Sciences, Chongqing 401147, China
| | - Ronghua Li
- College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, China
| | - Mukesh Kumar Awasthi
- College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, China
| | - Zengqiang Zhang
- College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, China
| | - Ran Xiao
- Interdisciplinary Research Center for Agriculture Green Development in Yangtze River Basin, College of Resources and Environment, Southwest University, Chongqing 400715, China; Key Laboratory of Low-carbon Green Agriculture in Southwestern China, Ministry of Agriculture and Rural Affairs, Chongqing 400715, China.
| | - Xinping Chen
- Interdisciplinary Research Center for Agriculture Green Development in Yangtze River Basin, College of Resources and Environment, Southwest University, Chongqing 400715, China; Key Laboratory of Low-carbon Green Agriculture in Southwestern China, Ministry of Agriculture and Rural Affairs, Chongqing 400715, China
| |
Collapse
|
13
|
Song C, Sun S, Wang J, Gao Y, Yu G, Li Y, Liu Z, Zhang W, Zhou L. Applying fulvic acid for sediment metals remediation: Mechanism, factors, and prospect. Front Microbiol 2023; 13:1084097. [PMID: 36699598 PMCID: PMC9868176 DOI: 10.3389/fmicb.2022.1084097] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Accepted: 12/19/2022] [Indexed: 01/11/2023] Open
Abstract
Fulvic acid (FA) has been shown to play a decisive role in controlling the environmental geochemical behavior of metals. As a green and natural microbial metabolite, FA is widely used in environmental remediation because of its good adsorption complexation and redox ability. This paper introduces the reaction mechanism and properties of FA with metals, and reviews the progress of research on the remediation of metal pollutant by FA through physicochemical remediation and bioremediation. FA can control the biotoxicity and migration ability of some metals, such as Pb, Cr, Hg, Cd, and As, through adsorption complexation and redox reactions. The concentration, molecular weight, and source are the main factors that determine the remediation ability of FA. In addition, the ambient pH, temperature, metal ion concentrations, and competing components in sediment environments have significant effects on the extent and rate of a reaction between metals and FA during the remediation process. Finally, we summarize the challenges that this promising environmental remediation tool may face. The research directions of FA in the field of metals ecological remediation are also prospected. This review can provide new ideas and directions for the research of remediation of metals contaminants in sediments.
Collapse
Affiliation(s)
- Chuxuan Song
- School of Hydraulic and Environmental Engineering, Changsha University of Science and Technology, Changsha, China
| | - Shiquan Sun
- School of Hydraulic and Environmental Engineering, Changsha University of Science and Technology, Changsha, China.,Key Laboratory of Dongting Lake Aquatic Eco-Environmental Control and Restoration of Hunan Province, Changsha, China
| | - Jinting Wang
- School of Hydraulic and Environmental Engineering, Changsha University of Science and Technology, Changsha, China
| | - Yang Gao
- School of Hydraulic and Environmental Engineering, Changsha University of Science and Technology, Changsha, China
| | - Guanlong Yu
- School of Hydraulic and Environmental Engineering, Changsha University of Science and Technology, Changsha, China
| | - Yifu Li
- School of Hydraulic and Environmental Engineering, Changsha University of Science and Technology, Changsha, China
| | - Zhengqian Liu
- School of Environmental Science and Engineering, Huazhong University of Science and Technology, Wuhan, China
| | - Wei Zhang
- School of Hydraulic and Environmental Engineering, Changsha University of Science and Technology, Changsha, China
| | - Lean Zhou
- School of Hydraulic and Environmental Engineering, Changsha University of Science and Technology, Changsha, China
| |
Collapse
|
14
|
Ondrasek G, Romić D, Tanaskovik V, Savić R, Rathod S, Horvatinec J, Rengel Z. Humates mitigate Cd uptake in the absence of NaCl salinity, but combined application of humates and NaCl enhances Cd mobility & phyto-accumulation. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 847:157649. [PMID: 35907525 DOI: 10.1016/j.scitotenv.2022.157649] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 07/21/2022] [Accepted: 07/22/2022] [Indexed: 06/15/2023]
Abstract
Cadmium is among the critical pollutants easily taken up from contaminated media by plants, which can be exploited in the phytoremediation of Cd-contaminated resources, but is also an obstacle in producing food with low Cd content. Crucial variables governing Cd biogeochemistry are complex humates (HA) and chlorides, but the underlying interactions are poorly understood. The aim was to determine the impacts of HA (0-60 mg/L) and NaCl (0-30 mM) on Cd biochemistry in contaminated (2.0 μM Cd) rhizosphere solution and Cd accumulation in various tissues of strawberry (Fragaria x ananassa). The results show that salinity (vs. non-saline NaCl0 control) suppressed vegetative and yield parameters, but increased dry matter and Na, Cl and Cd concentration/accumulation in most of the analysed tissues. The HA application in the NaCl0 treatment decreased tissue Cd content; however, at the highest application rates of NaCl and HA, there were increases in the tissue Cd concentration (by 70 %, 100 % and 120 % in crowns, leaves and fruits, respectively) and accumulation (by 110 %, 126 % and 148 % in roots, fruits and leaves, respectively) in comparison to the control (NaCl0HA0). Tissue Cd concentration/accumulation decreased in the order: roots>crowns>leaves>fruits; the same accumulation pattern was noted for Na and Cl, suggesting that Cd-Cl complexes may represent a major form of Cd taken up. Chemical speciation calculations revealed that the proportions of various Cd forms varied multi-fold across the treatments; in the control (without NaCl and HA), Cd2+ dominated (86 %), followed by CdHPO4 (6.5 %), CdSO4 (6.2 %) and CdNO3+. In other treatments the proportion of Cd2+ decreased with a corresponding increase of Cd-Cl (from 0.02 % in control to 57 % in Cd + NaCl30 treatment) and Cd-HA (from 0 % in control to 44 % in Cd + HA60 treatment), which was associated with higher Cd phytoaccumulation. The results represent a theoretical basis for phytoremediation studies and for producing low-Cd food in relatively complex matrices (contaminated soils, reused effluents); in the absence of salinity, amelioration with humates has a great potential to mitigate Cd contamination.
Collapse
Affiliation(s)
- Gabrijel Ondrasek
- Faculty of Agriculture, The University of Zagreb, Svetosimunska c. 25, 10000 Zagreb, Croatia; UWA School of Agriculture and Environment, The University of Western Australia, 35 Stirling Highway, Perth, WA 6009, Australia.
| | - Davor Romić
- Faculty of Agriculture, The University of Zagreb, Svetosimunska c. 25, 10000 Zagreb, Croatia
| | - Vjekoslav Tanaskovik
- Faculty of Agricultural Sciences and Food, University of Ss. Cyril and Methodius in Skopje, 1000 Skopje, Macedonia
| | - Radovan Savić
- Faculty of Agriculture, University of Novi Sad, Department of Water Management, 21102 Novi Sad, Serbia
| | | | - Jelena Horvatinec
- Faculty of Agriculture, The University of Zagreb, Svetosimunska c. 25, 10000 Zagreb, Croatia
| | - Zed Rengel
- UWA School of Agriculture and Environment, The University of Western Australia, 35 Stirling Highway, Perth, WA 6009, Australia; Institute for Adriatic Crops and Karst Reclamation, Put Duilova 11, 21000 Split, Croatia
| |
Collapse
|
15
|
Influence of DOM and its subfractions on the mobilization of heavy metals in rhizosphere soil solution. Sci Rep 2022; 12:14082. [PMID: 35982100 PMCID: PMC9388525 DOI: 10.1038/s41598-022-18419-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Accepted: 08/10/2022] [Indexed: 11/08/2022] Open
Abstract
Long-term industrial pollution, wastewater irrigation, and fertilizer application are known factors that can contribute to the contamination of heavy metals (HMs) in agricultural soil. In addition, dissolved organic matter (DOM) plays key roles in the migration and fate of HMs in soil. This study investigated the effects of amending exogenous DOM extracted from chicken manure (DOMc), humus soil (DOMs), rice husk (DOMr), and its sub-fractions on the mobilization and bio-uptake of Cd, Zn, and Pb. The results suggested that the exogenous DOM facilitate the dissolution of HMs in rhizosphere soil, and the maximum solubility of Zn, Cd, and Pb were 1264.5, 121.3, and 215.7 μg L-1, respectively. Moreover, the proportion of Zn-DOM and Cd-DOM increased as the DOM concentration increased, and the highest proportions were 97.5% and 86.9%. However, the proportion of Pb-DOM was stable at > 99% in all treatments. In addition, the proportion of hydrophilic acid (Hy) and Pb/Cd in the rhizosphere soil solution were 17.5% and 8.3%, respectively. This finding suggested that the Hy-metals complex has a vital influence on the mobilization of metals, besides its complexation with fulvic acid and humic acid. Furthermore, the elevated DOM addition contributed to an increment of HMs uptake by Sedum alfredii, in the following order, DOMc > DOMs > DOMr. This study can provide valuable insights to enhance the development of phytoremediation technologies and farmland manipulation. Since the risk that exogenous DOM would increase the uptake of HMs by crops, it is also needed to evaluate this case from an agricultural management perspective.
Collapse
|
16
|
Zhao K, Yang Y, Peng H, Zhang L, Zhou Y, Zhang J, Du C, Liu J, Lin X, Wang N, Huang H, Luo L. Silicon fertilizers, humic acid and their impact on physicochemical properties, availability and distribution of heavy metals in soil and soil aggregates. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 822:153483. [PMID: 35093361 DOI: 10.1016/j.scitotenv.2022.153483] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 12/29/2021] [Accepted: 01/24/2022] [Indexed: 06/14/2023]
Abstract
It has been confirmed that silicon (Si) fertilizer and humic acid (HA) could effectively decrease the heavy metals in soil. Nonetheless, the impact of these additives on soil aggregate characteristics was ignored. Therefore, the effects of Si fertilizer, HA, and their combinations on the physicochemical characteristics, availability of heavy metals (Cu, Cd, Pb, Zn), and fraction changes in soils and soil aggregates were investigated in this research. The results showed that Si fertilizer and HA significantly modified soil properties such as soil pH, electrical conductivity total organic carbon, water-soluble organic carbon, and nitrate‑nitrogen. HA and Si-HA (SHA) supplementation significantly decreased the availability of Cu, Cd, Pd, and Zn. Besides, there was no significant difference in physicochemical properties between soil and soil aggregates. The availability of Cu, Cd, Pd, and Zn in soil aggregates could be significantly inhibited by the addition of HA and SHA, and the content in microaggregates was greater than that in macroaggregates. After the addition of the three additives, the main fractions of heavy metals in different particle sizes were changed and eventually transformed to the residue state. These results indicated that Si fertilizer, HA, and SHA were influential in physicochemical properties and metal availability in soil aggregates. Therefore, it is of great scientific significance to study the impact of heavy metal pollution on the ecological environment in different aggregates, which will provide reference data for future sustainable management of heavy-metal polluted soils.
Collapse
Affiliation(s)
- Keqi Zhao
- Hunan International Scientific and Technological Cooperation Center for Agricultural Pollution Remediation and Wetland Protection, College of Resources and Environment, Hunan Agricultural University, Changsha, Hunan 410028, China
| | - Yuan Yang
- Hunan International Scientific and Technological Cooperation Center for Agricultural Pollution Remediation and Wetland Protection, College of Resources and Environment, Hunan Agricultural University, Changsha, Hunan 410028, China
| | - Hua Peng
- Hunan Institue of Agro-Environment and Ecology, Hunan Academy of Agricultural Sciences, Changsha 410125, China.
| | - Lihua Zhang
- Hunan International Scientific and Technological Cooperation Center for Agricultural Pollution Remediation and Wetland Protection, College of Resources and Environment, Hunan Agricultural University, Changsha, Hunan 410028, China
| | - Yaoyu Zhou
- Hunan International Scientific and Technological Cooperation Center for Agricultural Pollution Remediation and Wetland Protection, College of Resources and Environment, Hunan Agricultural University, Changsha, Hunan 410028, China
| | - Jiachao Zhang
- Hunan International Scientific and Technological Cooperation Center for Agricultural Pollution Remediation and Wetland Protection, College of Resources and Environment, Hunan Agricultural University, Changsha, Hunan 410028, China.
| | - Chunyan Du
- School of Hydraulic Engineering, Engineering and Technical Center of Hunan Provincial Environmental Protection for River-Lake Dredging Pollution Control, Changsha University of Science & Technology, Changsha 410114, China
| | - Junwu Liu
- Hunan Kaidi Engineering Technology Co., LTD, Changsha 410000, Hunan, China
| | - Xu Lin
- Hunan International Scientific and Technological Cooperation Center for Agricultural Pollution Remediation and Wetland Protection, College of Resources and Environment, Hunan Agricultural University, Changsha, Hunan 410028, China
| | - Nanyi Wang
- Hunan International Scientific and Technological Cooperation Center for Agricultural Pollution Remediation and Wetland Protection, College of Resources and Environment, Hunan Agricultural University, Changsha, Hunan 410028, China
| | - Hongli Huang
- Hunan International Scientific and Technological Cooperation Center for Agricultural Pollution Remediation and Wetland Protection, College of Resources and Environment, Hunan Agricultural University, Changsha, Hunan 410028, China
| | - Lin Luo
- Hunan International Scientific and Technological Cooperation Center for Agricultural Pollution Remediation and Wetland Protection, College of Resources and Environment, Hunan Agricultural University, Changsha, Hunan 410028, China
| |
Collapse
|