1
|
Zheng Y, Chen P, Wang E, Ren Y, Ran X, Li B, Dong R, Guo J. Key enzymatic activities and metabolic pathway dynamics in acidogenic fermentation of food waste: Impact of pH and organic loading rate. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2025; 373:123983. [PMID: 39742756 DOI: 10.1016/j.jenvman.2024.123983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Revised: 12/19/2024] [Accepted: 12/28/2024] [Indexed: 01/04/2025]
Abstract
Acidogenic fermentation was an effective technology to recover volatile fatty acids (VFAs) ethanol and lactic acid from food wastes (FW) as bioresources. However, the impact of process controls on key functional enzymes and metabolic pathways has been inadequately understood. In this study, the metabolite distribution, key functional enzymes and metabolic pathways were completely elucidated using 16S rRNA gene high-throughput sequencing combined with PICRUSt2. Results demonstrated pH significantly affected fermentation types by influencing key enzyme activities, while organic loading rate (OLR) primarily affected the yield without altering metabolic pathway. The maximum VFAs production was achieved at pH 6.0 and OLR of 15.0 g-VS/L/d as a result of Glycolysis and Pyruvate Metabolism were enhanced. Meanwhile, butyric acid was always dominant product, attributed to the enhanced activity of butyryl-CoA dehydrogenasedue. Furthermore, Lactobacillus enrichment and lactate dehydrogenase upregulation promoted lactate-type fermentation under without pH control (3.8), resulting in an average yield of lactic acid was 7.84 g/L. When the pH was raised from 3.8 to 5.0,downregulation of lactate dehydrogenase and upregulation of acetate kinase shifted the fermentation to acetate-type. This study provides a deeper understanding of how does process controls influence the metabolic pathways and key functional enzymes.
Collapse
Affiliation(s)
- Yonghui Zheng
- College of Engineering (Key Laboratory for Clean Renewable Energy Utilization Technology, Ministry of Agriculture), China Agricultural University, Beijing 100083, PR China
| | - Penghui Chen
- College of Engineering (Key Laboratory for Clean Renewable Energy Utilization Technology, Ministry of Agriculture), China Agricultural University, Beijing 100083, PR China
| | - Enzhen Wang
- College of Engineering (Key Laboratory for Clean Renewable Energy Utilization Technology, Ministry of Agriculture), China Agricultural University, Beijing 100083, PR China
| | - Yuying Ren
- College of Resource and Environmental Sciences, PR China Agricultural University, Beijing 100083, China
| | - Xueling Ran
- College of Engineering (Key Laboratory for Clean Renewable Energy Utilization Technology, Ministry of Agriculture), China Agricultural University, Beijing 100083, PR China
| | - Bowen Li
- College of Chemical Engineering, Huaqiao University, Xiamen 361021, PR China
| | - Renjie Dong
- College of Engineering (Key Laboratory for Clean Renewable Energy Utilization Technology, Ministry of Agriculture), China Agricultural University, Beijing 100083, PR China
| | - Jianbin Guo
- College of Engineering (Key Laboratory for Clean Renewable Energy Utilization Technology, Ministry of Agriculture), China Agricultural University, Beijing 100083, PR China.
| |
Collapse
|
2
|
Delmoitié B, Sakarika M, Rabaey K, De Wever H, Regueira A. Tailoring non-axenic lactic acid fermentation from cheese whey permeate targeting a flexible lactic acid platform. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2025; 373:123529. [PMID: 39632307 DOI: 10.1016/j.jenvman.2024.123529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 11/20/2024] [Accepted: 11/27/2024] [Indexed: 12/07/2024]
Abstract
Lactic acid (LA) is an important biobased platform chemical, with potential applications in synthetising a wide range of chemical products or serving as feedstock for various bioprocesses. Industrial LA production via pure culture fermentation is characterized by high operational costs and utilizes food-grade sugars, thereby reducing the feasibility of LA applications. In this context, our research focussed on valorising the largest dairy side stream, cheese whey permeate, through the use of mixed microbial communities. We evaluated the effect of different operational parameters (temperature, pH and hydraulic retention time) in non-axenic fermentations on productivity, yield, concentration, optical purity, and community. Our findings revealed that operating at mildly thermophilic conditions (45 °C) resulted in highly selective LA production, and significantly augmented the LA yield, and productivity, compared to higher temperatures (50-55 °C). In addition, operating at circumneutral pH conditions (6.0-6.5) led to significantly increased the LA fermentation performance compared to the conventional acid pH conditions (≤5.5). This led to an unprecedented LA productivity of 27.4 g/L/h with a LA yield of 70.0% which is 2.5 times higher compared to previous reported maximum. Additionally, varying pH levels influenced the optical purity of LA: we achieved an optical L-LA purity of 98.3% at pH 6.0-6.5, and an optical D-LA purity of 91.3% at a pH of 5.5. A short hydraulic retention time of less than 12 h was crucial for selective LA production. This process also yielded a microbial biomass composed of 90.3-98.6% Lactobacillus delbrueckii, which could be potentially valorised as probiotic or protein ingredient in food or feed products. Our work shows that by careful selection of operational conditions, the overall performance can be significantly increased compared to the state-of-the-art. These results highlight the potential of non-sterile LA fermentation and show that careful selection of simple reactor operation parameters can maximize process performance. A preliminary assessment suggests that valorising EU cheese whey permeate could increase LA and poly-LA production by 40 and 125 times, respectively. This could also lead to the production of 4,000 kton protein-rich biomass, potentially reducing CO2 emissions linked to EU food and feed production by 4.87% or 2.77% respectively.
Collapse
Affiliation(s)
- Brecht Delmoitié
- Center for Microbial Ecology and Technology (CMET), Faculty of Bioscience Engineering Ghent University, Coupure Links 653, 9000, Ghent, Belgium; Center for Advanced Process Technology for Urban Resource Recovery (CAPTURE), Frieda Saeysstraat 1, 9052, Ghent, Belgium
| | - Myrsini Sakarika
- Center for Microbial Ecology and Technology (CMET), Faculty of Bioscience Engineering Ghent University, Coupure Links 653, 9000, Ghent, Belgium; Center for Advanced Process Technology for Urban Resource Recovery (CAPTURE), Frieda Saeysstraat 1, 9052, Ghent, Belgium
| | - Korneel Rabaey
- Center for Advanced Process Technology for Urban Resource Recovery (CAPTURE), Frieda Saeysstraat 1, 9052, Ghent, Belgium; Department of Biotechnology, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, 9000, Ghent, Belgium
| | - Heleen De Wever
- Center for Advanced Process Technology for Urban Resource Recovery (CAPTURE), Frieda Saeysstraat 1, 9052, Ghent, Belgium; Flemish Institute for Technological Research, (VITO), Boeretang 200, 2400, Mol, Belgium
| | - Alberte Regueira
- Center for Microbial Ecology and Technology (CMET), Faculty of Bioscience Engineering Ghent University, Coupure Links 653, 9000, Ghent, Belgium; Center for Advanced Process Technology for Urban Resource Recovery (CAPTURE), Frieda Saeysstraat 1, 9052, Ghent, Belgium; CRETUS, Department of Chemical Engineering, Universidade de Santiago de Compostela, 15075 Santiago de Compostela, Spain.
| |
Collapse
|
3
|
Krbečková V, Plachá D. Raw biowaste conversion to high-value compounds for food, cosmetic and pharmaceutical industries. ENVIRONMENTAL RESEARCH 2024; 263:120134. [PMID: 39389193 DOI: 10.1016/j.envres.2024.120134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 09/23/2024] [Accepted: 10/08/2024] [Indexed: 10/12/2024]
Abstract
Biowaste valorisation into high-value compounds is one of the main challenges of green chemistry, as chemicals produced from biological sources are identified as key substances in the development of a low-carbon and circular bioeconomy in connection with the transition from fossil to renewable feedstocks. The review summarizes the production of high-value products such as glucose-based chemicals, phenolic compounds and volatile-fatty acids prepared from biomass waste. Biowaste pretreatment methods such as milling, filtration and extraction followed by current non-catalytic methods such as microwave or ultrasound extraction and catalytic methods for the production value-added compounds in the presence of various catalyst types in conventional, nano or enzyme form are listed with a focus on value-added chemicals applied in the food, cosmetic and pharmaceutical industries. The economic feasibility, technical aspects and concept of the biorefinery are briefly mentioned, emphasizing the necessity of life cycle assessment for each bioproduct and technological process. Finally, it provides a future perspective and makes recommendations for potential research strategies, recognizing the importance of utilizing biomass waste for the production of useful compounds as an attractive and environmentally friendly approach whose development should be encouraged. The utilization of biowaste for high-value chemicals production shows high potential, however, there are still many challenges to be resolved throughout the entire production chain, reflecting technological, economic, ecological, sociological and long-term issues.
Collapse
Affiliation(s)
- Veronika Krbečková
- Nanotechnology Centre, CEET, VŠB - Technical University of Ostrava, 17. listopadu 2172/15, 708 00, Ostrava, Poruba, Czech Republic; Laboratory of Growth Regulators, Palacký University & Institute of Experimental Botany ASCR, Šlechtitelů 27, 783 71, Olomouc, Czech Republic
| | - Daniela Plachá
- Nanotechnology Centre, CEET, VŠB - Technical University of Ostrava, 17. listopadu 2172/15, 708 00, Ostrava, Poruba, Czech Republic.
| |
Collapse
|
4
|
Song L, Cai C, Chen Z, Lin C, Lv Y, Ye X, Liu Y, Dai X, Liu M. Lactic acid production from food waste: Advances in microbial fermentation and separation technologies. BIORESOURCE TECHNOLOGY 2024; 414:131635. [PMID: 39401659 DOI: 10.1016/j.biortech.2024.131635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 10/11/2024] [Accepted: 10/11/2024] [Indexed: 10/19/2024]
Abstract
China generates over 100 million tons of food waste annually, leading to significant environmental pollution and health risks if not managed properly. Converting FW into a high-value-added platform molecule, lactic acid (LA), through fermentation offers a promising approach for both waste treatment and resource recovery. This paper presents a comprehensive review of recent advancements in LA production from FW, focusing on pure strains fermentation and open fermentation technologies, metabolic mechanisms, and problems in fermentation. It also assesses purification methods, including molecular distillation, adsorption, membrane separation, precipitation, esterification and hydrolysis, solvent extraction, and in-situ separation, analyzing their efficiency, advantages, and disadvantages. However, current research encounters several challenges, including low LA yield, low optical purity of L-(+)-LA, and difficulties in the separation and purification of LA. The integration of in-situ separation technology coupled with multiple separation methods is highlighted as a promising direction for future advancements.
Collapse
Affiliation(s)
- Liang Song
- Fujian Provincial Engineering Research Center of Rural Waste Recycling Technology, College of Environment & Safety Engineering, Fuzhou University, Fuzhou 350108, China
| | - Chenhang Cai
- Fujian Provincial Engineering Research Center of Rural Waste Recycling Technology, College of Environment & Safety Engineering, Fuzhou University, Fuzhou 350108, China
| | - Zengpeng Chen
- Fujian Provincial Engineering Research Center of Rural Waste Recycling Technology, College of Environment & Safety Engineering, Fuzhou University, Fuzhou 350108, China
| | - Chunxiang Lin
- Fujian Provincial Engineering Research Center of Rural Waste Recycling Technology, College of Environment & Safety Engineering, Fuzhou University, Fuzhou 350108, China
| | - Yuancai Lv
- Fujian Provincial Engineering Research Center of Rural Waste Recycling Technology, College of Environment & Safety Engineering, Fuzhou University, Fuzhou 350108, China
| | - Xiaoxia Ye
- Fujian Provincial Engineering Research Center of Rural Waste Recycling Technology, College of Environment & Safety Engineering, Fuzhou University, Fuzhou 350108, China
| | - Yifan Liu
- Fujian Provincial Engineering Research Center of Rural Waste Recycling Technology, College of Environment & Safety Engineering, Fuzhou University, Fuzhou 350108, China
| | - Xiaohu Dai
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Minghua Liu
- Fujian Provincial Engineering Research Center of Rural Waste Recycling Technology, College of Environment & Safety Engineering, Fuzhou University, Fuzhou 350108, China.
| |
Collapse
|
5
|
Xiao Y, Yang L, Sun C, Li H. Efficient conversion from food waste to composite carbon source through rapid fermentation and ceramic membrane filtration. CHEMOSPHERE 2024; 367:143601. [PMID: 39442570 DOI: 10.1016/j.chemosphere.2024.143601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2024] [Revised: 10/11/2024] [Accepted: 10/20/2024] [Indexed: 10/25/2024]
Abstract
Anaerobic fermentation of food waste (FW) produces a broth rich in small-molecule organic substances, which has the potential as a composite carbon source for denitrification in wastewater treatment. In this study, the idea was tested by optimizing the fermentation process at different hydraulic residence time (HRT), refining fermentation broth through ceramic membrane filtration, and comparing the performance of fermentation filtrate and other commercial carbon sources. A short HRT of 3 days was a suitable fermentation condition with 88% polysaccharide degradation. Acetic acid contributed 40% of soluble chemical oxygen demand in the fermentation broth, followed by ethanol, propanol, lactic acid, and propionic acid, and the five products accounted for 80%. Ceramic membrane filtration can recover more than 70% of dissolved organic matter and more than 60% of small molecular organic matter and simultaneously remove 99% of SS, 41% of total nitrogen, and 62% of total phosphorus. At the rapid degradation stage, the denitrification rates reached 6.68-10.39 mg NOx--N/(g VSS·h), which was on par with commercial carbon sources. The short fermentation and the rapid membrane separation were integrated to create an efficient treatment system, which provided a feasible pathway to utilize FW combining wastewater treatment.
Collapse
Affiliation(s)
- Yongzhi Xiao
- Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, China
| | - Luxin Yang
- Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, China
| | - Caiping Sun
- Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, China
| | - Huan Li
- Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, China.
| |
Collapse
|
6
|
Tang J, Hu Z, Pu Y, Wang XC, Abomohra A. Bioprocesses for lactic acid production from organic wastes toward industrialization-a critical review. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 369:122372. [PMID: 39241596 DOI: 10.1016/j.jenvman.2024.122372] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 08/11/2024] [Accepted: 08/31/2024] [Indexed: 09/09/2024]
Abstract
Lactic acid (LA) is a crucial chemical which has been widely used for industrial application. Microbial fermentation is the dominant pathway for LA production and has been regarded as the promising technology. In recent years, many studies on LA production from various organic wastes have been published, which provided alternative ways to reduce the LA production cost, and further recycle organic wastes. However, few researchers focused on industrial application of this technology due to the knowledge gap and some uncertainties. In this review, the recent advances, basic knowledge and limitations of LA fermentation from organic wastes are discussed, the challenges and suitable envisaged solutions for enhancing LA yield and productivity are provided to realize industrial application of this technology, and also some perspectives are given to further valorize the LA fermentation processes from organic wastes. This review can be a useful guidance for industrial LA production from organic wastes on a sustainable view.
Collapse
Affiliation(s)
- Jialing Tang
- Department of Environmental Engineering, School of Architecture and Civil Engineering, Chengdu University, Chengdu, 610106, China.
| | - Zongkun Hu
- Department of Environmental Engineering, School of Architecture and Civil Engineering, Chengdu University, Chengdu, 610106, China
| | - Yunhui Pu
- Department of Environmental Engineering, School of Architecture and Civil Engineering, Chengdu University, Chengdu, 610106, China; College of Architecture and Environment, Sichuan University, Chengdu, 610065, China
| | - Xiaochang C Wang
- Key Lab of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an, 710055, China; International Science & Technology Cooperation Center for Urban Alternative Water Resources Development, Xi'an, 710055, China.
| | - Abdelfatah Abomohra
- Department of Environmental Engineering, School of Architecture and Civil Engineering, Chengdu University, Chengdu, 610106, China; Aquatic Ecophysiology and Phycology, Institute of Plant Science and Microbiology, University of Hamburg, 22609, Hamburg, Germany
| |
Collapse
|
7
|
Li AH, Zhang BC, He ZW, Tang CC, Zhou AJ, Ren YX, Li Z, Wang A, Liu W. Roles of quorum-sensing molecules in methane production from anaerobic digestion aided by biochar. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 366:121867. [PMID: 39032259 DOI: 10.1016/j.jenvman.2024.121867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 06/16/2024] [Accepted: 07/12/2024] [Indexed: 07/23/2024]
Abstract
Biochar has been used to enhance methane generation from anaerobic digestion through establishing direct interspecific electron transfer between microorganisms. However, the microbial communication is still inadequate, thereby limiting further methane production improvement contributed by biochar. This study investigated the roles of quorum-sensing molecules, acylated homoserine lactone (AHL), in anaerobic digestion of waste activated sludge aided by biochar. Results showed that the co-addition of separated biochar and AHL achieved best methane production performance, with the maximal methane yield of 154.7 mL/g volatile suspended solids, which increased by 51.9%, 47.2%, 17.9%, and 39.4% respectively compared to that of control, AHL-loaded biochar, sole AHL, and sole biochar groups. The reason was that the co-addition of separated biochar and AHL promoted the stages of hydrolysis and acidification, promoting the conversion of organic matters and short-chain fatty acids, and optimizing the accumulation of acetate acid. Moreover, the methanogenesis stage also performed best among experimental groups. Correspondingly, the highest activities of electron transfer and coenzyme F420 were obtained, with increase ratios of 33.2% and 27.2% respectively compared to that of control. Furthermore, biochar did more significant effects on the evolution of microbial communities than AHL, and the direct interspecific electron transfer between fermentative bacteria and methanogens were possibly promoted.
Collapse
Affiliation(s)
- Ai-Hua Li
- Shaanxi Key Laboratory of Environmental Engineering, School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China; Key Laboratory of Northwest Water Resource, Environment and Ecology, Ministry of Education, Xi'an University of Architecture and Technology, Xi'an, 710055, China
| | - Bao-Cai Zhang
- Shaanxi Key Laboratory of Environmental Engineering, School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China; Key Laboratory of Northwest Water Resource, Environment and Ecology, Ministry of Education, Xi'an University of Architecture and Technology, Xi'an, 710055, China
| | - Zhang-Wei He
- Shaanxi Key Laboratory of Environmental Engineering, School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China; Key Laboratory of Northwest Water Resource, Environment and Ecology, Ministry of Education, Xi'an University of Architecture and Technology, Xi'an, 710055, China.
| | - Cong-Cong Tang
- Shaanxi Key Laboratory of Environmental Engineering, School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China; Key Laboratory of Northwest Water Resource, Environment and Ecology, Ministry of Education, Xi'an University of Architecture and Technology, Xi'an, 710055, China
| | - Ai-Juan Zhou
- College of Environmental Science and Engineering, Taiyuan University of Technology, Taiyuan, 030024, China
| | - Yong-Xiang Ren
- Shaanxi Key Laboratory of Environmental Engineering, School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China; Key Laboratory of Northwest Water Resource, Environment and Ecology, Ministry of Education, Xi'an University of Architecture and Technology, Xi'an, 710055, China
| | - Zhihua Li
- Shaanxi Key Laboratory of Environmental Engineering, School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China; Key Laboratory of Northwest Water Resource, Environment and Ecology, Ministry of Education, Xi'an University of Architecture and Technology, Xi'an, 710055, China
| | - Aijie Wang
- State Key Laboratory of Urban Water Resource and Environment, School of Civil and Environmental Engineering, Harbin Institute of Technology Shenzhen, Shenzhen, 518055, China
| | - Wenzong Liu
- State Key Laboratory of Urban Water Resource and Environment, School of Civil and Environmental Engineering, Harbin Institute of Technology Shenzhen, Shenzhen, 518055, China
| |
Collapse
|
8
|
Wang N, Xiao M, Zhang S, Chen X, Shi J, Fu S, Shi J, Liu L. Evaluating the potential of different bioaugmented strains to enhance methane production during thermophilic anaerobic digestion of food waste. ENVIRONMENTAL RESEARCH 2024; 245:118031. [PMID: 38157970 DOI: 10.1016/j.envres.2023.118031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 12/21/2023] [Accepted: 12/22/2023] [Indexed: 01/03/2024]
Abstract
Bioaugmentation technology for improving the performance of thermophilic anaerobic digestion (TAD) of food waste (FW) treatment is gaining more attention. In this study, four thermophilic strains (Ureibacillus suwonensis E11, Clostridium thermopalmarium HK1, Bacillus thermoamylovorans Y25 and Caldibacillus thermoamylovorans QK5) were inoculated in the TAD of FW system, and the biochemical methane potential (BMP) batch study was conducted to assess the potential of different bioaugmented strains to enhance methane production. The results showed that the cumulative methane production in groups inoculated with E11, HK1, Y25 and QK5 improved by 2.05%, 14.54%, 19.79% and 9.17%, respectively, compared with the control group with no inoculation. Moreover, microbial community composition analysis indicated that the relative abundance of the main hydrolytic bacteria and/or methanogenic archaea was increased after bioaugmentation, and the four strains successfully became representative bacterial biomarkers in each group. The four strains enhanced methane production by strengthening starch, sucrose, galactose, pyruvate and methane metabolism functions. Further, the correlation networks demonstrated that the representative bacterial genera had positive correlations with the differential metabolic functions in each bioaugmentation group. This study provides new insights into the TAD of FW with bioaugmented strains.
Collapse
Affiliation(s)
- Na Wang
- Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai, 201210, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Mengyao Xiao
- Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai, 201210, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Siying Zhang
- Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai, 201210, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xiaomiao Chen
- Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai, 201210, China
| | - Jingjing Shi
- Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai, 201210, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Shanfei Fu
- Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101, China
| | - Jiping Shi
- Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai, 201210, China.
| | - Li Liu
- Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai, 201210, China; Shanghai Engineering Research Center of Biotransformation of Organic Solid Waste, Shanghai, 200241, China.
| |
Collapse
|
9
|
Arhin SG, Cesaro A, Di Capua F, Esposito G. Acidogenic fermentation of food waste to generate electron acceptors and donors towards medium-chain carboxylic acids production. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 348:119379. [PMID: 37898048 DOI: 10.1016/j.jenvman.2023.119379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 09/06/2023] [Accepted: 10/14/2023] [Indexed: 10/30/2023]
Abstract
This study investigated the optimum pH, temperature, and food-to-microorganisms (F/M) ratio for regulating the formation of electron acceptors and donors during acidogenic fermentation to facilitate medium-chain carboxylic acids (MCCAs) production from food waste. Mesophilic fermentation at pH 6 was optimal for producing mixed volatile fatty acids (719 ± 94 mg COD/g VS) as electron acceptors. Under mesophilic conditions, the F/M ratio (g VS/g VS) could be increased to 6 to generate 22 ± 2 g COD/L of electron acceptors alongside 2 ± 0 g COD/L of caproic acid. Thermophilic fermentation at pH 6 was the best condition for producing lactic acid as an electron donor. However, operating at F/M ratios above 3 g VS/g VS under thermophilic settings significantly reduced lactic acid yield. A preliminary techno-economic evaluation revealed that converting lactic acid and butyric acid generated during acidogenic fermentation to caproic acid was the most profitable food waste valorization scenario and could generate 442-468 €/t VS/y. The results presented in this study provide insights into how to tailor acidogenic fermentation reactions to desired intermediates and will help maximize MCCAs synthesis.
Collapse
Affiliation(s)
- Samuel Gyebi Arhin
- Department of Civil, Architectural and Environmental Engineering, University of Naples Federico II, Via Claudio 21, 80125, Naples, Italy.
| | - Alessandra Cesaro
- Department of Civil, Architectural and Environmental Engineering, University of Naples Federico II, Via Claudio 21, 80125, Naples, Italy
| | - Francesco Di Capua
- School of Engineering, University of Basilicata, via dell'Ateneo Lucano 10, 85100, Potenza, Italy
| | - Giovanni Esposito
- Department of Civil, Architectural and Environmental Engineering, University of Naples Federico II, Via Claudio 21, 80125, Naples, Italy
| |
Collapse
|
10
|
Yang L, Chen L, Zhao C, Li H, Cai J, Deng Z, Liu M. Biogas slurry recirculation regulates food waste fermentation: Effects and mechanisms. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 347:119101. [PMID: 37748298 DOI: 10.1016/j.jenvman.2023.119101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 09/09/2023] [Accepted: 09/19/2023] [Indexed: 09/27/2023]
Abstract
Regularly adding biogas slurry into fermentation reactors is an effective way to enhance hydrogen or methane production. However, how this method affects the production of valuable organic acids and alcohols is still being determined. This study investigated the effects of different addition ratios on semi-continuous fermentation reactors using food waste as a substrate. The results showed that an addition ratio of 0.2 increased lactic acid production by 30% with a yield of 0.38 ± 0.01 g/g VS, while a ratio of 0.4 resulted in mixed acid fermentation dominated by n-butyric acid (0.07 ± 0.01 g/g VS) and n-caproic acid (0.06 ± 0.00 g/g VS). The introduction of Bifidobacteriaceae by biogas slurry played a crucial role in increasing lactic acid production. In contrast, exclusive medium-chain fatty acid producers enhanced the synthesis of caproic acid and heptanoic acid via the reverse β-oxidation pathway. Mechanism analyses suggested that microbial community structure and activity, substrate hydrolysis, and cell membrane transport system and structure changed to varying degrees after adding biogas slurry.
Collapse
Affiliation(s)
- Luxin Yang
- Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, China
| | - Liang Chen
- Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, China
| | - Chuyun Zhao
- Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, China
| | - Huan Li
- Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, China.
| | - Jiabai Cai
- Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, China; Department of Environmental Engineering, Graduate School of Engineering, Kyoto University, Nishikyo-ku, Katsura C-1-3, 615-8540, Kyoto, Japan
| | - Zhou Deng
- Shenzhen Lisai Environmental Technology Co. Ltm., Shenzhen, 518055, China
| | - Mengqian Liu
- Shenzhen Originwater Ecological Investment Construction Co., LTD, China
| |
Collapse
|
11
|
Tang J, Yang H, Pu Y, Hu Y, Huang J, Jin N, He X, Wang XC. Caproic acid production from food waste using indigenous microbiota: Performance and mechanisms. BIORESOURCE TECHNOLOGY 2023; 387:129687. [PMID: 37595807 DOI: 10.1016/j.biortech.2023.129687] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 08/12/2023] [Accepted: 08/14/2023] [Indexed: 08/20/2023]
Abstract
Caproic acid (CA) production from food waste (FW) is a promising way for waste recycling, while the fermentation processes need further exploration. In this study, FW acidogenic fermentation under different pH (uncontrolled, 4, 5, 6) using indigenous microbiota was investigated. Result showed that substrate hydrolysis, carbohydrate degradation and acidogenesis increased with the increase of pH. Although various microbial communities were observed in FW, lactic acid bacteria (Lactobacillus and Limosilactobacillus) were enriched at pH lower than 6, resulting in lactic acid accumulation. CA (88.24 mM) was produced at pH 6 accounting for 31.23% of the total product carbon. The enriched lactic acid bacteria were directionally replaced by chain elongators (Caproicibacter, Clostridium_sensu_stricto, unclassified_Ruminococcaceae) at pH 6, and carbohydrates in FW were firstly transformed into lactic acid, then to butyrate and CA through lactate-based chain elongation processes. This work provided a novel CA fermentation pathway and further enriched the FW valorization.
Collapse
Affiliation(s)
- Jialing Tang
- Department of Environmental Engineering, School of Architecture and Civil Engineering, Chengdu University, Chengdu 610106, China; Key Lab of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, China.
| | - Hao Yang
- Department of Environmental Engineering, School of Architecture and Civil Engineering, Chengdu University, Chengdu 610106, China
| | - Yunhui Pu
- Department of Environmental Engineering, School of Architecture and Civil Engineering, Chengdu University, Chengdu 610106, China; College of Architecture and Environment, Sichuan University, Chengdu 610065, China
| | - Yisong Hu
- Key Lab of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, China; International Science & Technology Cooperation Center for Urban Alternative Water Resources Development, Xi'an 710055, China
| | - Jin Huang
- Department of Environmental Engineering, School of Architecture and Civil Engineering, Chengdu University, Chengdu 610106, China
| | - Ni Jin
- Department of Environmental Engineering, School of Architecture and Civil Engineering, Chengdu University, Chengdu 610106, China
| | - Xinrui He
- Department of Environmental Engineering, School of Architecture and Civil Engineering, Chengdu University, Chengdu 610106, China
| | - Xiaochang C Wang
- Key Lab of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, China; International Science & Technology Cooperation Center for Urban Alternative Water Resources Development, Xi'an 710055, China
| |
Collapse
|
12
|
Liu H, Zhen F, Wu D, Wang Z, Kong X, Li Y, Xing T, Sun Y. Co-production of lactate and volatile fatty acids through repeated-batch fermentation of fruit and vegetable waste: Effect of cycle time and replacement ratio. BIORESOURCE TECHNOLOGY 2023; 387:129678. [PMID: 37579859 DOI: 10.1016/j.biortech.2023.129678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2023] [Revised: 08/10/2023] [Accepted: 08/11/2023] [Indexed: 08/16/2023]
Abstract
In this study, repeated-batch fermentation was used to convert fruit and vegetable waste to lactate and volatile fatty acids (VFAs), which are essential carbon sources for medium-chain fatty acids (MCFAs) production. The effect of cycle time and replacement ratio on acidification in long-term fermentation was investigated. The results showed that they had a significant impact on product yield, productivity, and type of products. Considering the yield, productivity, and lactate/VFAs ratio, a replacement ratio of 30% and a cycle time of 2 d may be more suitable for further production of MCFAs. Its productivity and lactate/VFAs ratio were 4.07 ± 0.24 g/(L·d) and 5 ± 0.6, respectively. The lactic acid bacteria, such as Enterococcus (63%) and Lactobacillus (33%), stabilized in the reactor, resulting in the generation of both lactate and VFAs by heterolactic fermentation. The present study demonstrated a new strategy with the potential to recover high-value products from organic waste streams.
Collapse
Affiliation(s)
- Huiliang Liu
- Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou 510640, China; Guangdong Provincial Key Laboratory of New and Renewable Energy Research and Development, Guangzhou 510640, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Feng Zhen
- Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou 510640, China; Guangdong Provincial Key Laboratory of New and Renewable Energy Research and Development, Guangzhou 510640, China
| | - Di Wu
- Chongqing Institute of Green and Intelligent Technology Chinese Academy of Sciences, Chongqing 400714, China
| | - Zhi Wang
- Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou 510640, China; Guangdong Provincial Key Laboratory of New and Renewable Energy Research and Development, Guangzhou 510640, China; University of Science and Technology of China, Hefei 230026, China
| | - Xiaoying Kong
- Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou 510640, China; Guangdong Provincial Key Laboratory of New and Renewable Energy Research and Development, Guangzhou 510640, China
| | - Ying Li
- Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou 510640, China; Guangdong Provincial Key Laboratory of New and Renewable Energy Research and Development, Guangzhou 510640, China
| | - Tao Xing
- Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou 510640, China; Guangdong Provincial Key Laboratory of New and Renewable Energy Research and Development, Guangzhou 510640, China.
| | - Yongming Sun
- Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou 510640, China; Guangdong Provincial Key Laboratory of New and Renewable Energy Research and Development, Guangzhou 510640, China
| |
Collapse
|
13
|
Wu M, Liu X, Tu W, Xia J, Zou Y, Gong X, Yu P, Huang WE, Wang H. Deep insight into oriented propionate production from food waste: Microbiological interpretation and design practice. WATER RESEARCH 2023; 243:120399. [PMID: 37499537 DOI: 10.1016/j.watres.2023.120399] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 07/21/2023] [Accepted: 07/22/2023] [Indexed: 07/29/2023]
Abstract
Using mixed microbial cultures (MMCs) for oriented volatile fatty acids (VFAs) refining in an open environment is a typical challenge due to the microbial diversiform and the process complexity. Especially for carbohydrate-rich waste (such as food waste), butyrate-type fermentation is usually dominant in a single-stage MMCs anaerobic process, while the production of odd-carbon VFAs (such as propionate) is difficult although it plays a significant role in chemicals industries. In this study, firstly, we gave a new perspective on the rationality of the oriented propionate production using MMCs with lactate as feedstock by conducting in-depth microbial informatics and reaction analysis. Secondly, we verified the feasibility of the "food waste-lactate-propionate" route to reverse the original butyrate-type fermentation situation and explore mechanisms for maintaining stability. In the first stage, a defined lactate fermentation microbiome was used to produce lactate-containing broth (80% of total chemical oxygen demand) at pH=4. In the second stage, an undomesticated undefined anaerobic microbiome was used to drive propionate production (45.26% ± 2.23% of total VFAs) under optimized conditions (C/N = 100:1-200:1 and pH=5.0). The low pH environment in the first stage enhanced the lactic acid bacteria to resist the invasion of non-functional flanking bacteria, making the community stable. In the second stage, the system maintained the propionate-type fermentation due to the absence of the ecological niche of the invasive lactic acid bacteria; The selection of propionate-producing specialists was a necessary but not sufficient condition for propionate-type fermentation. At last, this study proposed an enhanced engineering strategy framework for understanding elaborate MMCs fermentation.
Collapse
Affiliation(s)
- Menghan Wu
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Xinning Liu
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Weiming Tu
- Department of Engineering Science, University of Oxford, Oxford OX1 3PJ, United Kingdom
| | - Juntao Xia
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Yina Zou
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Xiaoqiang Gong
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Peng Yu
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Wei E Huang
- Department of Engineering Science, University of Oxford, Oxford OX1 3PJ, United Kingdom
| | - Hui Wang
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China.
| |
Collapse
|
14
|
Liu YJ, Zhang Y, Chi F, Chen C, Wan W, Feng Y, Song X, Cui Q. Integrated lactic acid production from lignocellulosic agricultural wastes under thermal conditions. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 342:118281. [PMID: 37290309 DOI: 10.1016/j.jenvman.2023.118281] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 05/24/2023] [Accepted: 05/26/2023] [Indexed: 06/10/2023]
Abstract
The production of lactic acid (LA) from agricultural wastes attracts great attention because of the sustainability and abundance of lignocellulosic feedstocks, as well as the increasing demand for biodegradable polylactic acid. In this study, we isolated a thermophilic strain Geobacillus stearothermophilus 2H-3 for use in robust production of L-(+)LA under the optimal conditions of 60 °C, pH 6.5, which were consistent with the whole-cell-based consolidated bio-saccharification (CBS) process. Sugar-rich CBS hydrolysates derived from various agricultural wastes, including corn stover, corncob residue, and wheat straw, were used as the carbon sources for 2H-3 fermentation by directly inoculating 2H-3 cells into the CBS system, without intermediate sterilization, nutrient supplementation, or adjustment of fermentation conditions. Thus, we successfully combined two whole-cell-based steps into a one-pot successive fermentation process to efficiently produce LA with high optical purity (99.5%), titer (51.36 g/L), and yield (0.74 g/gbiomass). This study provides a promising strategy for LA production from lignocellulose through CBS and 2H-3 fermentation integration.
Collapse
Affiliation(s)
- Ya-Jun Liu
- CAS Key Laboratory of Biofuels, Shandong Provincial Key Laboratory of Synthetic Biology, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, China; Shandong Energy Institute, Qingdao, China; Qingdao New Energy Shandong Laboratory, Qingdao, China; Dalian National Laboratory for Clean Energy, Qingdao, China; University of Chinese Academy of Sciences, Beijing, China
| | - Yuedong Zhang
- CAS Key Laboratory of Biofuels, Shandong Provincial Key Laboratory of Synthetic Biology, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, China; Shandong Energy Institute, Qingdao, China; Qingdao New Energy Shandong Laboratory, Qingdao, China; Dalian National Laboratory for Clean Energy, Qingdao, China; University of Chinese Academy of Sciences, Beijing, China
| | - Fang Chi
- CAS Key Laboratory of Biofuels, Shandong Provincial Key Laboratory of Synthetic Biology, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, China; Shandong Energy Institute, Qingdao, China; Qingdao New Energy Shandong Laboratory, Qingdao, China; Dalian National Laboratory for Clean Energy, Qingdao, China; University of Chinese Academy of Sciences, Beijing, China
| | - Chaoyang Chen
- CAS Key Laboratory of Biofuels, Shandong Provincial Key Laboratory of Synthetic Biology, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, China; Shandong Energy Institute, Qingdao, China; Qingdao New Energy Shandong Laboratory, Qingdao, China; Dalian National Laboratory for Clean Energy, Qingdao, China; University of Chinese Academy of Sciences, Beijing, China
| | - Weijian Wan
- CAS Key Laboratory of Biofuels, Shandong Provincial Key Laboratory of Synthetic Biology, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, China; Shandong Energy Institute, Qingdao, China; Qingdao New Energy Shandong Laboratory, Qingdao, China; Dalian National Laboratory for Clean Energy, Qingdao, China; University of Chinese Academy of Sciences, Beijing, China
| | - Yingang Feng
- CAS Key Laboratory of Biofuels, Shandong Provincial Key Laboratory of Synthetic Biology, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, China; Shandong Energy Institute, Qingdao, China; Qingdao New Energy Shandong Laboratory, Qingdao, China; Dalian National Laboratory for Clean Energy, Qingdao, China; University of Chinese Academy of Sciences, Beijing, China
| | - Xiaojin Song
- CAS Key Laboratory of Biofuels, Shandong Provincial Key Laboratory of Synthetic Biology, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, China; Shandong Energy Institute, Qingdao, China; Qingdao New Energy Shandong Laboratory, Qingdao, China; Dalian National Laboratory for Clean Energy, Qingdao, China; University of Chinese Academy of Sciences, Beijing, China
| | - Qiu Cui
- CAS Key Laboratory of Biofuels, Shandong Provincial Key Laboratory of Synthetic Biology, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, China; Shandong Energy Institute, Qingdao, China; Qingdao New Energy Shandong Laboratory, Qingdao, China; Dalian National Laboratory for Clean Energy, Qingdao, China; University of Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
15
|
Roslan E, Magdalena JA, Mohamed H, Akhiar A, Shamsuddin AH, Carrere H, Trably E. Lactic acid fermentation of food waste as storage method prior to biohydrogen production: Effect of storage temperature on biohydrogen potential and microbial communities. BIORESOURCE TECHNOLOGY 2023; 378:128985. [PMID: 37001698 DOI: 10.1016/j.biortech.2023.128985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 03/26/2023] [Accepted: 03/27/2023] [Indexed: 06/19/2023]
Abstract
This study aims to investigate the impact of utilizing lactic acid fermentation (LAF) as storage method of food waste (FW) prior to dark fermentation (DF). LAF of FW was carried out in batches at six temperatures (4 °C, 10 °C, 23 °C, 35 °C, 45 °C, and 55 °C) for 15 days followed by biological hydrogen potential (BHP) tests. Different storage temperatures resulted in different metabolites distribution, with either lactate or ethanol being dominant (159.2 ± 20.6 mM and 234.4 ± 38.2 mM respectively), but no negative impact on BHP (averaging at 94.6 ± 25.1 mL/gVS). Maximum hydrogen production rate for stored FW improved by at least 57%. Microbial analysis showed dominance of lactic acid bacteria (LAB) namely Lactobacillus sp., Lactococcus sp., Weisella sp., Streptococcus sp. and Bacillus sp. after LAF. Clostridium sp. emerged after DF, co-existing with LAB. Coupling LAF as a storage method was demonstrated as a novel strategy of FW management for DF, for a wide range of temperatures.
Collapse
Affiliation(s)
- Eqwan Roslan
- INRAE, Université de Montpellier, LBE, 102 avenue des Étangs, 11100 Narbonne, France; Department of Mechanical Engineering, College of Engineering, Universiti Tenaga Nasional, 43000 Kajang, Selangor, Malaysia.
| | - Jose Antonio Magdalena
- INRAE, Université de Montpellier, LBE, 102 avenue des Étangs, 11100 Narbonne, France; Vicerrectorado de Investigación y Transferencia de la Universidad Complutense de Madrid, 28040 Madrid, Spain
| | - Hassan Mohamed
- Institute of Sustainable Energy, Universiti Tenaga Nasional, 43000 Kajang, Selangor, Malaysia; Department of Mechanical Engineering, College of Engineering, Universiti Tenaga Nasional, 43000 Kajang, Selangor, Malaysia
| | - Afifi Akhiar
- Institute of Sustainable Energy, Universiti Tenaga Nasional, 43000 Kajang, Selangor, Malaysia; Centre of Excellence for Water Research and Environmental Sustainability Growth (WAREG), Universiti Malaysia Perlis, 02600 Arau, Perlis, Malaysia
| | - Abd Halim Shamsuddin
- Institute of Sustainable Energy, Universiti Tenaga Nasional, 43000 Kajang, Selangor, Malaysia
| | - Hélène Carrere
- INRAE, Université de Montpellier, LBE, 102 avenue des Étangs, 11100 Narbonne, France
| | - Eric Trably
- INRAE, Université de Montpellier, LBE, 102 avenue des Étangs, 11100 Narbonne, France
| |
Collapse
|
16
|
Bühlmann CH, Mickan BS, Tait S, Batstone DJ, Bahri PA. Lactic acid production from food waste at an anaerobic digestion biorefinery: effect of digestate recirculation and sucrose supplementation. Front Bioeng Biotechnol 2023; 11:1177739. [PMID: 37251566 PMCID: PMC10214416 DOI: 10.3389/fbioe.2023.1177739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Accepted: 04/27/2023] [Indexed: 05/31/2023] Open
Abstract
Low lactic acid (LA) yields from direct food waste (FW) fermentation restrict this production pathway. However, nitrogen and other nutrients within FW digestate, in combination with sucrose supplementation, may enhance LA production and improve feasibility of fermentation. Therefore, this work aimed to improve LA fermentation from FWs by supplementing nitrogen (0-400 mgN·L-1) as NH4Cl or digestate and dosing sucrose (0-150 g·L-1) as a low-cost carbohydrate. Overall, NH4Cl and digestate led to similar improvements in the rate of LA formation (0.03 ± 0.02 and 0.04 ± 0.02 h-1 for NH4Cl and digestate, respectively), but NH4Cl also improved the final concentration, though effects varied between treatments (5.2 ± 4.6 g·L-1). While digestate altered the community composition and increased diversity, sucrose minimised community diversion from LA, promoted Lactobacillus growth at all dosages, and enhanced the final LA concentration from 25 to 30 g·L-1 to 59-68 g·L-1, depending on nitrogen dosage and source. Overall, the results highlighted the value of digestate as a nutrient source and sucrose as both community controller and means to enhance the LA concentration in future LA biorefinery concepts.
Collapse
Affiliation(s)
| | - Bede S. Mickan
- School of Agriculture and Environment, The University of Western Australia, Perth, WA, Australia
- Institute of Agriculture, The University of Western Australia, Perth, WA, Australia
- Richgro Garden Products, Jandakot, WA, Australia
| | - Stephan Tait
- Centre for Agricultural Engineering, University of Southern Queensland, Toowoomba, QLD, Australia
| | - Damien J. Batstone
- Australian Centre for Water and Environmental Biotechnology, The University of Queensland, St Lucia, Brisbane, QLD, Australia
| | - Parisa A. Bahri
- Discipline of Engineering and Energy, Murdoch University, Perth, WA, Australia
| |
Collapse
|
17
|
Yang S, Luo F, Yan J, Zhang T, Xian Z, Huang W, Zhang H, Cao Y, Huang L. Biogas production of food waste with in-situ sulfide control under high organic loading in two-stage anaerobic digestion process: Strategy and response of microbial community. BIORESOURCE TECHNOLOGY 2023; 373:128712. [PMID: 36758645 DOI: 10.1016/j.biortech.2023.128712] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/24/2022] [Revised: 02/02/2023] [Accepted: 02/04/2023] [Indexed: 06/18/2023]
Abstract
A two-stage anaerobic digestion process utilizing food waste was investigated in this study, without any additive and co-digestion. Solid content, temperature and pH value were key controlling factors for hydrolysis, which results the optimized food waste hydrolysate with COD/VSfood waste of 2.67. Efficient biogas production was maintained in long-term operation (>150 d) without any additive, and methane production yields up to 699.7 mL·gVS-1·d-1 was achieved under organic loading rate (OLR) of 31.0 gVS·d-1. Methane production can be recovered (70.4 %) after temperature shock within 30 days. This study confirmed the possibility to establish two-stage food waste anaerobic digestion system under high organic load. pH, OLR, and temperature are key factors to maintain stable biogas production, while pH control was performed as a in situ sulfide control technology (75.8 % sulfide reduction). This study provides practical strategies for food waste utilization and decreasing carbon footprint.
Collapse
Affiliation(s)
- Siman Yang
- School of Environmental Science and Engineering, Guangzhou University, Guangzhou 510006, PR China
| | - Fan Luo
- School of Environmental Science and Engineering, Guangzhou University, Guangzhou 510006, PR China
| | - Jia Yan
- School of Environmental Science and Engineering, Guangzhou University, Guangzhou 510006, PR China; Key Laboratory for Water Quality Security and Protection in Pearl River Delta, Ministry of Education, Guangzhou 510006, PR China.
| | - Tianlang Zhang
- School of Environmental Science and Engineering, Guangzhou University, Guangzhou 510006, PR China
| | - Ziyan Xian
- School of Environmental Science and Engineering, Guangzhou University, Guangzhou 510006, PR China
| | - Weiyao Huang
- School of Environmental Science and Engineering, Guangzhou University, Guangzhou 510006, PR China
| | - Hongguo Zhang
- School of Environmental Science and Engineering, Guangzhou University, Guangzhou 510006, PR China; Key Laboratory for Water Quality Security and Protection in Pearl River Delta, Ministry of Education, Guangzhou 510006, PR China
| | - Yongjian Cao
- Shenzhen Leoking Environmental Group Company Limited, 518117 Shenzhen, PR China
| | - Lei Huang
- School of Environmental Science and Engineering, Guangzhou University, Guangzhou 510006, PR China
| |
Collapse
|
18
|
Lee J, Chen WH, Park YK. Recent achievements in platform chemical production from food waste. BIORESOURCE TECHNOLOGY 2022; 366:128204. [PMID: 36326551 DOI: 10.1016/j.biortech.2022.128204] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 10/19/2022] [Accepted: 10/21/2022] [Indexed: 06/16/2023]
Abstract
Food waste conversion/valorization to produce bio-based chemicals plays a key role toward achieving carbon neutrality by 2050. Food waste valorization to renewable chemicals is thus an attractive and eco-friendly approach to handling food waste. The production of platform chemicals from food waste is crucial for making highly value-added renewable chemicals. However, earlier reviews dealing with food waste valorization to produce value-added chemicals have emphasized the enhancement of methane, hydrogen, and ethanol production. Along these lines, the existing methods of food waste to produce platform chemicals (e.g., volatile fatty acids, glucose, hydroxymethylfurfural, levulinic acid, lactic acid, and succinic acid) through physical, chemical, and enzymatic pretreatments, hydrolysis, fermentation, and hydrothermal conversion are extensively reviewed. Finally, the challenges faced under these methods are discussed, along with suggestions for future research on platform chemical production from food waste.
Collapse
Affiliation(s)
- Jechan Lee
- School of Civil, Architectural Engineering, and Landscape Architecture & Department of Global Smart City, Sungkyunkwan University, Suwon 16419, South Korea
| | - Wei-Hsin Chen
- Department of Aeronautics and Astronautics, National Cheng Kung University, Tainan 701, Taiwan; Research Center for Smart Sustainable Circular Economy, Tunghai University, Taichung 407, Taiwan; Department of Mechanical Engineering, National Chin-Yi University of Technology, Taichung 411, Taiwan
| | - Young-Kwon Park
- School of Environmental Engineering, University of Seoul, 02504 Seoul, South Korea.
| |
Collapse
|
19
|
Wang L, Lei Z, Yang X, Zhang C, Liu C, Shimizu K, Zhang Z, Yuan T. Fe 3O 4 enhanced efficiency of volatile fatty acids production in anaerobic fermentation of food waste at high loading. BIORESOURCE TECHNOLOGY 2022; 364:128097. [PMID: 36229010 DOI: 10.1016/j.biortech.2022.128097] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 10/03/2022] [Accepted: 10/05/2022] [Indexed: 06/16/2023]
Abstract
High treatment capacity for food waste (FW) is required due to the huge amount generated worldwide. Conversion of FW to volatile fatty acids (VFAs) via anaerobic fermentation is a promising technology; however, inhibition of VFAs production could easily occur at high loadings. In this study, Fe3O4 was used to enhance VFAs production in anaerobic fermentation of FW at high loading, and the mechanisms involved were revealed at microbial levels. Results showed that Fe3O4 significantly enhanced VFAs yield and VFAs productivity of microbes by 160% at high loading (substrate to inoculum (S/I) ratio of 3). The enhancement effect of Fe3O4 was mainly due to the accelerated hydrolysis of particulate/soluble organics, the enriched hydrolytic and acidogenic bacteria, and the reduced relative abundance of Lactobacillus. This study provides a new approach for the high-efficient treatment of FW at high loadings, while the performance and economic benefit should be further studied for practical application.
Collapse
Affiliation(s)
- Lanting Wang
- Graduate School of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8572, Japan
| | - Zhongfang Lei
- Faculty of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8572, Japan
| | - Xiaojing Yang
- School of Environmental Science and Engineering, Sun Yat-Sen University, Guangzhou 510275, China
| | - Chi Zhang
- Graduate School of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8572, Japan
| | - Chang Liu
- Graduate School of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8572, Japan
| | - Kazuya Shimizu
- Faculty of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8572, Japan
| | - Zhenya Zhang
- Faculty of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8572, Japan
| | - Tian Yuan
- Faculty of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8572, Japan.
| |
Collapse
|
20
|
Raj T, Chandrasekhar K, Morya R, Kumar Pandey A, Jung JH, Kumar D, Singhania RR, Kim SH. Critical challenges and technological breakthroughs in food waste hydrolysis and detoxification for fuels and chemicals production. BIORESOURCE TECHNOLOGY 2022; 360:127512. [PMID: 35760245 DOI: 10.1016/j.biortech.2022.127512] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 06/20/2022] [Accepted: 06/22/2022] [Indexed: 06/15/2023]
Abstract
Organic waste has increased as the global population and economy have grown exponentially. Food waste (FW) is posing a severe environmental issue because of mismanaged disposal techniques, which frequently result in the squandering of carbohydrate-rich feedstocks. In an advanced valorization strategy, organic material in FW can be used as a viable carbon source for microbial digestion and hence for the generation of value-added compounds. In comparison to traditional feedstocks, a modest pretreatment of the FW stream utilizing chemical, biochemical, or thermochemical techniques can extract bulk of sugars for microbial digestion. Pretreatment produces a large number of toxins and inhibitors that affect bacterial fuel and chemical conversion processes. Thus, the current review scrutinizes the FW structure, pretreatment methods (e.g., physical, chemical, physicochemical, and biological), and various strategies for detoxification before microbial fermentation into renewable chemical production. Technological and commercial challenges and future perspectives for FW integrated biorefineries have also been outlined.
Collapse
Affiliation(s)
- Tirath Raj
- School of Civil and Environmental Engineering, Yonsei University, Seoul 03722, Republic of Korea
| | - K Chandrasekhar
- Department of Biotechnology, Vignan's Foundation for Science, Technology and Research, Vadlamudi-522213, Guntur, Andhra Pradesh, India
| | - Raj Morya
- School of Civil and Environmental Engineering, Yonsei University, Seoul 03722, Republic of Korea
| | - Ashutosh Kumar Pandey
- School of Civil and Environmental Engineering, Yonsei University, Seoul 03722, Republic of Korea
| | - Ju-Hyeong Jung
- Eco Lab Center, SK ecoplant Co. Ltd., Seoul 03143, Republic of Korea
| | - Deepak Kumar
- Department of Chemical Engineering, SUNY College of Environmental Science and Forestry, Syracuse, NY 13210, USA
| | - Reeta Rani Singhania
- Department of Marine Environmental Engineering, National Kaohsiung University of Science and Technology, Kaohsiung City, Taiwan
| | - Sang-Hyoun Kim
- School of Civil and Environmental Engineering, Yonsei University, Seoul 03722, Republic of Korea.
| |
Collapse
|
21
|
Lactic Acid Production from Old Oil Palm Trunk Sap in the Open Batch, Open Repeated Batch, Fed-Batch, and Repeated Fed-Batch Fermentation by Lactobacillus rhamnosus ATCC 10863. FERMENTATION-BASEL 2022. [DOI: 10.3390/fermentation8090430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The cost of fermentable sugars added as a substrate is one major problem for economic lactic acid (LA) production. Old oil palm trunks (OPT) squeezed sap, the agricultural wastes on replanting and pruning of oil palm (Elaeis guineensis), contained mainly glucose and fructose as a potential feedstock to use as a vast carbon source for LA production. To improve the LA yield and productivity, various fermentation modes were performed by Lactobacillus rhamnosus ATCC 10863 using OPT sap as a basal medium. A modified constant feed mode of fed-batch and repeated fed-batch fermentation using undiluted OPT sap feed medium can achieve a high average LA concentration of 95.94 g/L, yield of 1.04 g/g, and productivity of 6.40 g/L/h) at 11 h cultivation time. It can also provide open and open repeated batch fermentation with an average LA concentration of 91.30 g/L, yield of 0.87 g/g, and productivity of 3.88 g/L/h at 21 h fermentation time.
Collapse
|
22
|
Pau S, Tan LC, Arriaga S, Lens PNL. Lactic acid fermentation of food waste at acidic conditions in a semicontinuous system: effect of HRT and OLR changes. BIOMASS CONVERSION AND BIOREFINERY 2022; 14:10979-10994. [PMID: 38698923 PMCID: PMC11060974 DOI: 10.1007/s13399-022-03201-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/15/2022] [Revised: 07/27/2022] [Accepted: 08/08/2022] [Indexed: 05/05/2024]
Abstract
Lactic acid production through fermentation is an established technology, however, improvements are necessary to reduce the process costs and to decrease its market price. Lactic acid is used in many industrial sectors and its market has increased in the last decade for its use as the raw material for polylactic acid product. Using food waste as a cheap and renewable substrate, as well as fermentation at uncontrolled pH, helps to make the production cheaper and to simplify the downstream purification process. Lactic acid production at acidic conditions and the role of varying organic loading rate (OLR) and hydraulic retention time (HRT) were tested in two different semicontinuous batch fermentation systems. Reactor performances indicated that lactic acid fermentation was still possible at pH < 3.5 and even up to a pH of 2.95. The highest lactic acid production was recorded at 14-day HRT, 2.14 g VS/L·day OLR, and pH 3.11 with a maximum lactic acid concentration of 8.72 g/L and a relative yield of 0.82 g lactate/g carbohydrates. The fermentation microbial community was dominated by Lactobacillus strains, the organism mainly responsible for lactic acid conversion from carbohydrates. This study shows that low pH fermentation is a key parameter to improve lactic acid production from food waste in a semicontinuous system. Acidic pH favored both the selection of Lactobacillus strains and inhibited VFA producers from utilizing lactic acid as primary substrate, thus promoting the accumulation of lactic acid. Finally, production yields tend to decrease with high OLR and low HRT, while lactic acid production rates showed the opposite trend.
Collapse
Affiliation(s)
- Simone Pau
- National University of Ireland, University Road, GalwayGalway, Ireland
| | - Lea Chua Tan
- National University of Ireland, University Road, GalwayGalway, Ireland
| | - Sonia Arriaga
- National University of Ireland, University Road, GalwayGalway, Ireland
- Environmental Sciences Department, Instituto Potosino de Investigación Científica Y Tecnológica, San Luis Potosí, Mexico
| | - Piet N. L. Lens
- National University of Ireland, University Road, GalwayGalway, Ireland
| |
Collapse
|
23
|
García-Depraect O, Martínez-Mendoza LJ, Diaz I, Muñoz R. Two-stage anaerobic digestion of food waste: Enhanced bioenergy production rate by steering lactate-type fermentation during hydrolysis-acidogenesis. BIORESOURCE TECHNOLOGY 2022; 358:127358. [PMID: 35605777 DOI: 10.1016/j.biortech.2022.127358] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2022] [Revised: 05/16/2022] [Accepted: 05/18/2022] [Indexed: 06/15/2023]
Abstract
This study proposed a lactate-based two-stage anaerobic digestion (AD) process to enhance bioenergy production rate from food waste (FW) and investigated the effect of inoculum addition and culture pH on hydrolysis-acidogenesis and further methanization. A series of batch fermentations were performed with an enriched lactate-producing consortium and without inoculum addition under controlled (5.7) and uncontrolled pH (initial 6.7) conditions. The interplay between the studied factors dictated the fate of lactate, particularly if it is produced and accumulated in the fermentation broth or is consumed by butyrogenic bacteria. Only the self-fermentation of FW with uncontrolled pH resulted in lactate accumulation (0.2 g/g volatile solid (VS) fed) with limited off-gas production (0.32 NL/L) and VS losses (≈16%). Such lactate-rich broth was successfully digested through biochemical methane potential tests, resulting in a maximum bioenergy production rate of 2891 MJ/ton-VS fed per day, which was two-fold higher compared to that achieved by one-stage AD.
Collapse
Affiliation(s)
- Octavio García-Depraect
- Institute of Sustainable Processes, University of Valladolid, Dr. Mergelina, s/n, 47011 Valladolid, Spain; Department of Chemical Engineering and Environmental Technology, School of Industrial Engineering, University of Valladolid, Dr. Mergelina, s/n, 47011 Valladolid, Spain
| | - Leonardo J Martínez-Mendoza
- Institute of Sustainable Processes, University of Valladolid, Dr. Mergelina, s/n, 47011 Valladolid, Spain; Department of Chemical Engineering and Environmental Technology, School of Industrial Engineering, University of Valladolid, Dr. Mergelina, s/n, 47011 Valladolid, Spain
| | - Israel Diaz
- Institute of Sustainable Processes, University of Valladolid, Dr. Mergelina, s/n, 47011 Valladolid, Spain; Department of Chemical Engineering and Environmental Technology, School of Industrial Engineering, University of Valladolid, Dr. Mergelina, s/n, 47011 Valladolid, Spain
| | - Raúl Muñoz
- Institute of Sustainable Processes, University of Valladolid, Dr. Mergelina, s/n, 47011 Valladolid, Spain; Department of Chemical Engineering and Environmental Technology, School of Industrial Engineering, University of Valladolid, Dr. Mergelina, s/n, 47011 Valladolid, Spain.
| |
Collapse
|
24
|
Hydrogen Production by the Thermophilic Dry Anaerobic Co-Fermentation of Food Waste Utilizing Garden Waste or Kitchen Waste as Co-Substrate. SUSTAINABILITY 2022. [DOI: 10.3390/su14127367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Multicomponent collaborative anaerobic fermentation has been considered a promising technology for treating perishable organic solid wastes and producing clean energy. This study evaluated the potential of hydrogen production by thermophilic dry anaerobic co-fermentation of food waste (FW) with garden waste (GW) or kitchen waste (KW) as co-substrate. The results showed that when the ratio of FW to GW was 60:40, the maximum cumulative hydrogen production and organic matter removal rate reached 85.28 NmL g−1 VS and 63.29%, respectively. When the ratio of FW to KW was 80:20, the maximum cumulative hydrogen production and organic matter removal rate reached 81.31 NmL g−1 VS and 61.91%, respectively. These findings suggest that thermophilic dry anaerobic co-fermentation of FW using GW or KW as co-substrate has a greater potential than single-substrate fermentation to improve hydrogen production and the organic matter removal rate.
Collapse
|
25
|
Ma X, Gao M, Liu S, Li Y, Sun X, Wang Q. An innovative approach for reducing the water and alkali consumption in the lactic acid fermentation via the reuse of pretreated liquid. BIORESOURCE TECHNOLOGY 2022; 352:127108. [PMID: 35381334 DOI: 10.1016/j.biortech.2022.127108] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 03/30/2022] [Accepted: 03/31/2022] [Indexed: 06/14/2023]
Abstract
This study focuses on enhancing lactic acid (LA) production and declining water and alkali consumption by reusing the pretreated liquid (PL) of spent mushroom substance (SMS) in the co-fermentation of food waste (FW) and SMS. First, the compositions of PL are identified, and the effects of the PL inhibitors on enzymatic hydrolysis and fermentation are explored. The PL phenol concentrations exceeded 2 g/L, which affected LA fermentation. Therefore, PL phenols were removed by adjusting the pH value, and the detoxified PL (DPL) phenol concentrations were 70.3% lower than those of PL. Different PL:DPL ratios were established to reuse in the fermentation process, and the LA concentration in the 50% PL + 50% DPL group was the highest (56.7 g/L). Then, pretreated SMS was not water-washed, and a neutralizer was prepared with the PL, LA production remained unchanged. Water and NaOH consumption decreased by 84.6% and 52.0%, respectively, and no wastewater was produced.
Collapse
Affiliation(s)
- Xiaoyu Ma
- Department of Environmental Science and Engineering, School of Energy and Environmental Engineering, University of Science and Technology Beijing, 30 Xueyuan Road, Haidian District, Beijing 100083, China
| | - Ming Gao
- Department of Environmental Science and Engineering, School of Energy and Environmental Engineering, University of Science and Technology Beijing, 30 Xueyuan Road, Haidian District, Beijing 100083, China
| | - Shuo Liu
- Department of Environmental Science and Engineering, School of Energy and Environmental Engineering, University of Science and Technology Beijing, 30 Xueyuan Road, Haidian District, Beijing 100083, China
| | - Yuan Li
- Department of Environmental Science and Engineering, School of Energy and Environmental Engineering, University of Science and Technology Beijing, 30 Xueyuan Road, Haidian District, Beijing 100083, China
| | - Xiaohong Sun
- Beijing Agro-Biotechnology Research Center, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China
| | - Qunhui Wang
- Department of Environmental Science and Engineering, School of Energy and Environmental Engineering, University of Science and Technology Beijing, 30 Xueyuan Road, Haidian District, Beijing 100083, China; Beijing Key Laboratory on Resource-oriented Treatment of Industrial Pollutants, University of Science and Technology Beijing, 30 Xueyuan Road, Haidian District, Beijing 100083, China.
| |
Collapse
|