1
|
Wang N, Xu Y, Peng L, Liang C, Song S, Quintana M. Biotic and abiotic removal of acetaminophen during sidestream partial nitritation processes: Underlying mechanisms and transformation pathways. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 958:177836. [PMID: 39644630 DOI: 10.1016/j.scitotenv.2024.177836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Revised: 11/25/2024] [Accepted: 11/27/2024] [Indexed: 12/09/2024]
Abstract
Pharmaceutical residues in sidestream wastewater pose the hazardous threats to ecosystem and human health. In this work, the biotic and abiotic degradation of acetaminophen were investigated during the sidestream partial nitritation process. Results demonstrated that the abiotic removal efficiency of acetaminophen was positively correlated with nitrite concentration, whereas the biotransformation of acetaminophen was mainly dependent on metabolic types and free nitrous acid (FNA) concentrations. 91.6 % of acetaminophen, acting as the sole carbon and/or energy source to support the growth of ammonia-oxidizing bacteria (AOB) and heterotrophs, was removed by adsorption (6.2 %) and biotransformation (consisting of 49.4 % AOB-induced metabolism and 36.0 % heterotrophs-induced metabolism) when lacking nitrite and FNA. Increasing FNA from 0.03 mg N L-1 to 0.15 mg L-1 led to decrease in acetaminophen removal (from 78.8 % to 60.1 %) and ammonia oxidation, ascribed to the inhibitory effect of FNA on AOB activity. Nitro substitution occurred under AOB-induced cometabolism, while hydroxylation was conducted by heterotrophs. N-deacetylation, ring cleavage, hydroxylation, nitro-reduction, and deamination at lower FNA levels (0.03 mg N L-1) contributed to the formation of small molecular products, supporting the feasibility of sidestream partial nitritation in the effective elimination of acetaminophen. This work provides strategies for optimizing anti-inflammatory drugs removal via the regulation of FNA in the sidestream wastewater treatment process.
Collapse
Affiliation(s)
- Ning Wang
- Key Laboratory of Green Utilization of Critical Non-metallic Mineral Resources, Ministry of Education, Wuhan University of Technology, Wuhan 430070, China; Hubei Key Laboratory of Mineral Resources Processing and Environment, Wuhan University of Technology, Luoshi Road 122, Wuhan, Hubei 430070, China; School of Resources and Environmental Engineering, Wuhan University of Technology, Luoshi Road 122, Wuhan, Hubei 430070, China; Doctorado Institucional de Ingeniería y Ciencia de Materiales, Universidad Autónoma de San Luís Potosí, Av, Sierra Leona 530, San Luis Potosí 78210, Mexico
| | - Yifeng Xu
- Key Laboratory of Green Utilization of Critical Non-metallic Mineral Resources, Ministry of Education, Wuhan University of Technology, Wuhan 430070, China; Hubei Key Laboratory of Mineral Resources Processing and Environment, Wuhan University of Technology, Luoshi Road 122, Wuhan, Hubei 430070, China; School of Resources and Environmental Engineering, Wuhan University of Technology, Luoshi Road 122, Wuhan, Hubei 430070, China.
| | - Lai Peng
- Key Laboratory of Green Utilization of Critical Non-metallic Mineral Resources, Ministry of Education, Wuhan University of Technology, Wuhan 430070, China; Shenzhen Research Institute of Wuhan University of Technology, Shenzhen 518000, Guangdong, China
| | - Chuanzhou Liang
- Key Laboratory of Green Utilization of Critical Non-metallic Mineral Resources, Ministry of Education, Wuhan University of Technology, Wuhan 430070, China; Hubei Key Laboratory of Mineral Resources Processing and Environment, Wuhan University of Technology, Luoshi Road 122, Wuhan, Hubei 430070, China; School of Resources and Environmental Engineering, Wuhan University of Technology, Luoshi Road 122, Wuhan, Hubei 430070, China
| | - Shaoxian Song
- Instituto de Metalurgia, Universidad Autónoma de San Luís Potosí, Av. Sierra Leona 550, San Luis Potosí 78210, Mexico
| | - Mildred Quintana
- Facultad de Ciencias, Universidad Autónoma de San Luís Potosí, Av. Parque Chapultepec 1570, San Luis Potosi 78210, Mexico
| |
Collapse
|
2
|
Ren H, Wang R, Ying L, Iyobosa E, Chen G, Zang D, Tong M, Li E, Nerenberg R. Removal of sulfamethoxazole in an algal-bacterial membrane aerated biofilm reactor: Microbial responses and antibiotic resistance genes. WATER RESEARCH 2024; 268:122595. [PMID: 39423786 DOI: 10.1016/j.watres.2024.122595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2024] [Revised: 09/18/2024] [Accepted: 10/06/2024] [Indexed: 10/21/2024]
Abstract
Antibiotics are frequently detected in wastewater, but often are poorly removed in conventional wastewater treatment processes. Combining microalgal and nitrifying bacterial processes may provide synergistic removal of antibiotics and ammonium. In this research, we studied the removal of the antibiotic sulfamethoxazole (SMX) in two different reactors: a conventional nitrifying bacterial membrane aerated biofilm reactor (bMABR) and algal-bacterial membrane aerated biofilm reactor (abMABR) systems. We investigated the synergistic removal of antibiotics and ammonium, antioxidant activity, microbial communities, antibiotic resistance genes (ARGs), mobile genetic elements (MGEs), and their potential hosts. Our findings show that the abMABR maintained a high sulfamethoxazole (SMX) removal efficiency, with a minimum of 44.6 % and a maximum of 75.8 %, despite SMX inhibition, it maintained a consistent 25.0 % ammonium removal efficiency compared to the bMABR. Through a production of extracellular polymeric substances (EPS) with increased proteins/polysaccharides (PN/PS), the abMABR possibly allowed the microalgae-bacteria consortium to protect the bacteria from SMX inactivation. The activity of antioxidant enzymes caused by SMX was reduced by 62.1-98.5 % in the abMABR compared to the bMABR. Metagenomic analysis revealed that the relative abundance of Methylophilus, Pseudoxanthomonas, and Acidovorax in the abMABR exhibited a significant positive correlation with SMX exposure and reduced nitrate concentrations and SMX removal. Sulfonamide ARGs (sul1 and sul2) appeared to be primarily responsible for defense against SMX stress, and Hyphomicrobium and Nitrosomonas were the key carriers of ARGs. This study demonstrated that the abMABR system has great potential for removing SMX and reducing the environmental risks of ARGs.
Collapse
Affiliation(s)
- Haijing Ren
- Institute of Biofilm Technology, Key Laboratory of Yangtze Aquatic Environment (MOE), College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Rongchang Wang
- Institute of Biofilm Technology, Key Laboratory of Yangtze Aquatic Environment (MOE), College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China.
| | - Luyao Ying
- Institute of Biofilm Technology, Key Laboratory of Yangtze Aquatic Environment (MOE), College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Eheneden Iyobosa
- Institute of Biofilm Technology, Key Laboratory of Yangtze Aquatic Environment (MOE), College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Gaoxiang Chen
- Institute of Biofilm Technology, Key Laboratory of Yangtze Aquatic Environment (MOE), College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Di Zang
- The Key Laboratory of Embedded System and Service Computing, Ministry of Education, Department of Computer Science and Technology, College of Electronic and Information Engineering, Tongji University, Shanghai 200092, China
| | - Min Tong
- R&D Center of Baowu Group Environmental Resources Technology Co., Ltd, Shanghai 201999, China; R&D Center of Baowu Water Technology Co., Ltd, Shanghai 201999, China
| | - Enchao Li
- R&D Center of Baowu Group Environmental Resources Technology Co., Ltd, Shanghai 201999, China; R&D Center of Baowu Water Technology Co., Ltd, Shanghai 201999, China
| | - Robert Nerenberg
- Department of Civil and Environmental Engineering and Earth Sciences, University of Notre Dame, 156 Fitzpatrick Hall, Notre Dame, IN 46556, USA
| |
Collapse
|
3
|
Tang Z, Liu H, Wang Y, Wang Q, Zhang L, An F, Chen Y. Impacts of cefalexin on nitrite accumulation, antibiotic degradation, and microbial community structure in nitrification systems. JOURNAL OF HAZARDOUS MATERIALS 2024; 478:135430. [PMID: 39178773 DOI: 10.1016/j.jhazmat.2024.135430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 07/30/2024] [Accepted: 08/03/2024] [Indexed: 08/26/2024]
Abstract
The intensive use of various antibiotics for clinical and agricultural purposes has resulted in their widespread use in wastewater treatment plants. However, little research has been conducted on the effects of antibiotics on nitrite accumulation, antibiotic degradation pathways, or the microbial community structure in nitrification systems. In this study, a laboratory-scale sequencing batch reactor was used to treat wastewater containing cefalexin (CFX) at different doses (5, 10, 15, and 20 mg/L). The results showed that the nitrification performance was gradually inhibited with increasing CFX concentration. Ammonia-oxidizing bacteria (AOB) are more tolerant to CFX than nitrite-oxidizing bacteria (NOB). Under 15 mg/L of CFX, NOB were completely suppressed, whereas AOB were partially inhibited, as evidenced by an ammonium removal efficiency of 60 % and a 90 % of nitrite accumulation ratio. The partial nitritation was achieved. CFX can be degraded into 2-hydroxy-3phenylpyrazine and cyclohexane through bacterial co-metabolism, and CFX degradation gradually diminishes with decreasing nitrification performance. The abundance of Nitrospira gradually decreased with increasing CFX concentration. Ferruginibacter, Hydrogenophaga, Thauera, and Pseudoxanthomonas were detected at relative abundances of 13.2 %, 0.4 %, 0.9 %, and 1.3 %, respectively, indicating their potential roles in antibiotic degradation. These findings provide insight into the interactions between antibiotics and microbial communities, which are beneficial for a better understanding of antibiotic degradation in nitrification systems.
Collapse
Affiliation(s)
- Zhiqiang Tang
- School of Environmental and Municipal Engineering, Lanzhou Jiaotong University, Lanzhou 730070, China; Technical Center of Sewage Treatment Industry in Gansu, Lanzhou 730070, China
| | - Hong Liu
- School of Environmental and Municipal Engineering, Lanzhou Jiaotong University, Lanzhou 730070, China; Technical Center of Sewage Treatment Industry in Gansu, Lanzhou 730070, China
| | - Yunxia Wang
- School of Environmental and Municipal Engineering, Lanzhou Jiaotong University, Lanzhou 730070, China; Technical Center of Sewage Treatment Industry in Gansu, Lanzhou 730070, China
| | - Qi Wang
- School of Environmental and Municipal Engineering, Lanzhou Jiaotong University, Lanzhou 730070, China; Technical Center of Sewage Treatment Industry in Gansu, Lanzhou 730070, China
| | - Li Zhang
- School of Environmental and Municipal Engineering, Lanzhou Jiaotong University, Lanzhou 730070, China; Technical Center of Sewage Treatment Industry in Gansu, Lanzhou 730070, China
| | - Fangjiao An
- School of Civil Engineering, Lanzhou University of Technology, Lanzhou 730050, China
| | - Yongzhi Chen
- School of Environmental and Municipal Engineering, Lanzhou Jiaotong University, Lanzhou 730070, China; Technical Center of Sewage Treatment Industry in Gansu, Lanzhou 730070, China.
| |
Collapse
|
4
|
Jin H, Song Z, Mao Y, Zhang Y, Yan Q, Wang Z, Kang H, Yan X, Pan J. Acceleration of Fenton-like Reaction by Bimetal-Mediated Sludge Biochar for Tetracycline Removal. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:20616-20628. [PMID: 39282865 DOI: 10.1021/acs.langmuir.4c02530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/02/2024]
Abstract
The production of sludge biochar (SBC) from residual sludge offers a solution to the challenges associated with sludge disposal and facilitates the reutilization of resources. In the present research, a bimetallic-modified sludge biochar, designated as FeCu-SBC, was synthesized by varying the doping ratios of FeSO4 and CuSO4. This material was intended for the effective degradation of tetracycline (TC) in aqueous environments via the activation of peroxydisulfate. The FeCu2-SBC (90% degradation rate) composite, synthesized through the incorporation of Fe and Cu in a 1:2 ratio with SBC, exhibited a degradation rate of TC, which was 2.7 times higher than that of SBC (32.85% degradation rate) and 1.8 times higher than that of FeCu (50% degradation rate). Research examining the mechanisms involved revealed that FeCu underwent degradation solely through the radical (•OH) pathway, whereas FeCu2-SBC was subject to degradation through both radical (SO4•-) and nonradical (1O2) pathways. This phenomenon was attributed to the distinct π-π, C═O, and defect structures in FeCu2-SBC compared to FeCu, which facilitated the activation process leading to the production of reactive species. This investigation presented a cost-effective approach for producing bimetallic-modified sludge biochar, offering perspectives on determining the crucial elements influencing the streamlined TC degradation pathway.
Collapse
Affiliation(s)
- Hanyu Jin
- Henan Key Laboratory of Water Pollution Control and Rehabilitation Technology, Henan University of Urban Construction, Pingdingshan 467000, China
- School of Civil and Surveying Engineering, Jiangxi University of Science and Technology, Ganzhou 341000, China
| | - Zhongxian Song
- Henan Key Laboratory of Water Pollution Control and Rehabilitation Technology, Henan University of Urban Construction, Pingdingshan 467000, China
| | - Yanli Mao
- Henan Key Laboratory of Water Pollution Control and Rehabilitation Technology, Henan University of Urban Construction, Pingdingshan 467000, China
| | - Yunlei Zhang
- Henan Key Laboratory of Water Pollution Control and Rehabilitation Technology, Henan University of Urban Construction, Pingdingshan 467000, China
- Institute of Green Chemistry and Chemical Technology, School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Qun Yan
- School of Civil and Surveying Engineering, Jiangxi University of Science and Technology, Ganzhou 341000, China
| | - Zhaodong Wang
- Henan Key Laboratory of Water Pollution Control and Rehabilitation Technology, Henan University of Urban Construction, Pingdingshan 467000, China
| | - Haiyan Kang
- Henan Key Laboratory of Water Pollution Control and Rehabilitation Technology, Henan University of Urban Construction, Pingdingshan 467000, China
| | - Xu Yan
- Henan Key Laboratory of Water Pollution Control and Rehabilitation Technology, Henan University of Urban Construction, Pingdingshan 467000, China
| | - Jianming Pan
- Institute of Green Chemistry and Chemical Technology, School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, China
| |
Collapse
|
5
|
Song L, Wang B, Li J, Wang T, Li W, Xu X, Feng T, Yang H, Hou L. A self-cleaning photocatalytic membrane loaded with Bi 2O 2CO 3/In(OH) 3 S-scheme heterojunction composites for removing tetracycline from aqueous solutions. J Colloid Interface Sci 2024; 671:664-679. [PMID: 38820850 DOI: 10.1016/j.jcis.2024.05.201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 04/22/2024] [Accepted: 05/26/2024] [Indexed: 06/02/2024]
Abstract
Bi2O2CO3/In(OH)3 (BON) photocatalysts were synthesized by a one-pot method and loaded onto polyvinylidene fluoride (PVDF) membranes to obtain a Bi2O2CO3/In(OH)3/PVDF (BON-M) catalytic membrane system. The catalytic membranes demonstrated complete degradation of tetracycline within 40 min under visible light. They demonstrated robust photocatalytic activity across a broad pH range (5-11) and in the presence of coexisting ions. The membranes demonstrated excellent self-cleaning performance. Following exposure to light, the irreversible contamination decreased from 27.1% to 4.7% and the membrane's permeability was almost completely restored. Moreover, the charge transfer mechanism at the S-scheme heterojunction interface of BON was demonstrated by Density functional theory and in-situ X-ray Photoelectron Spectroscopy characterisation, and the active sites involved in tetracycline's degradation were identified. Meanwhile, the mechanism of the "anemone effect" of BON-M was demonstrated in conjunction with Electron paramagnetic resonance, and the intrinsic Some factors enhancing the membranes' photocatalytic activity are specified.
Collapse
Affiliation(s)
- Lei Song
- College of Civil Engineering, Guizhou University, Guiyang 550025, China
| | - Bin Wang
- College of Civil Engineering, Guizhou University, Guiyang 550025, China; Department of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China.
| | - Jiang Li
- College of Resources and Environmental Engineering, Guizhou University, Guiyang 550025, China
| | - Tao Wang
- College of Resources and Environmental Engineering, Guizhou University, Guiyang 550025, China
| | - Wenjia Li
- College of Civil Engineering, Guizhou University, Guiyang 550025, China
| | - Xiaoyi Xu
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China
| | - Taotao Feng
- College of Civil Engineering, Guizhou University, Guiyang 550025, China
| | - Huaikai Yang
- College of Resources and Environmental Engineering, Guizhou University, Guiyang 550025, China
| | - Li'an Hou
- Department of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China.
| |
Collapse
|
6
|
Chen M, Li W, Teng H, Hu W, Dong Z, Zhang D, Liu T, Zheng Q. Impact of Combined Pollution of Ciprofloxacin and Copper on the Diversity of Archaeal Communities and Antibiotic-Resistance Genes. Antibiotics (Basel) 2024; 13:734. [PMID: 39200034 PMCID: PMC11350791 DOI: 10.3390/antibiotics13080734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 07/31/2024] [Accepted: 08/01/2024] [Indexed: 09/01/2024] Open
Abstract
This study aimed to explore the response of archaeal communities and antibiotic-resistance genes (ARGs) to ciprofloxacin (CIP, 0.05-40 mg/L) and copper (Cu, 3 mg/L) combined pollution during stress- and post-effect periods in an activated sludge system. With the increase in the CIP concentration, the diversity of archaea decreased, but the richness increased under the stress of 10 mg/L CIP. Under stress and post effects, the change in unknown archaeal community structure was more significant than that of the known archaea. The relative abundance of unknown archaea was significantly reduced with the increase in CIP concentration. Meanwhile, there were certain archaea that belonged to abundant and rare taxa with different resistance and recovery characteristics. Among them, Methanosaeta (49.15-83.66%), Methanoculleus (0.11-0.45%), and Nitrososphaera (0.03-0.36%) were the typical resistant archaea to combined pollution. And the resistance of the abundant taxa to combined pollution was significantly higher than that of the rare taxa. Symbiotic and competitive relationships were observed between the known and the unknown archaea. The interactions of abundant known taxa were mainly symbiotic relationships. While the rare unknown taxa were mainly competitive relationships in the post-effect period. Rare archaea showed an important ecological niche under the stress-effect. Some archaea displayed positive correlation with ARGs and played important roles as potential hosts of ARGs during stress- and post-periods. Methanospirillum, Methanosphaerula, Nitrososphaera and some rare unknown archaea also significantly co-occurred with a large number of ARGs. Overall, this study points out the importance of interactions among known and unknown archaeal communities and ARGs in a wastewater treatment system under the stress of antibiotics and heavy metal combined pollution.
Collapse
Affiliation(s)
- Meijuan Chen
- College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; (M.C.); (Z.D.); (D.Z.)
- East Line Smart Water of China South-to-North Water Diversion Corporation Limited, Beijing 100071, China; (H.T.); (W.H.); (T.L.); (Q.Z.)
| | - Weiying Li
- College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; (M.C.); (Z.D.); (D.Z.)
| | - Haibo Teng
- East Line Smart Water of China South-to-North Water Diversion Corporation Limited, Beijing 100071, China; (H.T.); (W.H.); (T.L.); (Q.Z.)
| | - Wenxin Hu
- East Line Smart Water of China South-to-North Water Diversion Corporation Limited, Beijing 100071, China; (H.T.); (W.H.); (T.L.); (Q.Z.)
| | - Zhiqiang Dong
- College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; (M.C.); (Z.D.); (D.Z.)
| | - Dawei Zhang
- College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; (M.C.); (Z.D.); (D.Z.)
| | - Tianyi Liu
- East Line Smart Water of China South-to-North Water Diversion Corporation Limited, Beijing 100071, China; (H.T.); (W.H.); (T.L.); (Q.Z.)
| | - Quan Zheng
- East Line Smart Water of China South-to-North Water Diversion Corporation Limited, Beijing 100071, China; (H.T.); (W.H.); (T.L.); (Q.Z.)
| |
Collapse
|
7
|
Esquivel-Mackenzie SP, Oltehua-Lopez O, Cuervo-López FDM, Texier AC. Physiological adaptation and population dynamics of a nitrifying sludge exposed to ampicillin. Int Microbiol 2024; 27:1035-1047. [PMID: 38010565 DOI: 10.1007/s10123-023-00452-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 11/06/2023] [Accepted: 11/10/2023] [Indexed: 11/29/2023]
Abstract
Antibiotics in wastewater treatment plants can alter the physiological activity and the structure of microbial communities through toxic and inhibitory effects. Physiological adaptation, kinetic, and population dynamics behavior of a nitrifying sludge was evaluated in a sequential batch reactor (SBR) fed with 14.4 mg/L of ampicillin (AMP). The addition of AMP did not affect ammonium consumption (100 mg NH4+-N/L) but provoked nitrite accumulation (0.90 mg NO2--N formed/mg NH4+-N consumed) and an inhibition of up to 67% on the nitrite oxidizing process. After 30 cycles under AMP feeding, the sludge recovered its nitrite oxidizing activity with a high nitrate yield (YNO3-) of 0.87 ± 0.10 mg NO3--N formed/mg NH4+-N consumed, carrying out again a stable and complete nitrifying process. Increases in specific rate of nitrate production (qNO3-) showed the physiological adaptation of the nitrite oxidizing bacteria to AMP inhibition. Ampicillin was totally removed since the first cycle of addition. Exposure to AMP had effects on the abundance of bacterial populations, promoting adaptation of the nitrifying sludge to the presence of the antibiotic and its consumption. Nitrosomonas and Nitrosospira always remained within the dominant genera, keeping the ammonium oxidizing process stable while an increase in Nitrospira abundance was observed, recovering the stability of the nitrite oxidizing process. Burkholderia, Pseudomonas, and Thauera might be some of the heterotrophic bacteria involved in AMP consumption.
Collapse
Affiliation(s)
- Sergio Pavel Esquivel-Mackenzie
- Department of Biotechnology-CBS, Metropolitan Autonomous University Iztapalapa, Av. Ferrocarril San Rafael Atlixco 186, 09310, Mexico City, Mexico
| | - Omar Oltehua-Lopez
- Department of Biotechnology-CBS, Metropolitan Autonomous University Iztapalapa, Av. Ferrocarril San Rafael Atlixco 186, 09310, Mexico City, Mexico
| | - Flor de María Cuervo-López
- Department of Biotechnology-CBS, Metropolitan Autonomous University Iztapalapa, Av. Ferrocarril San Rafael Atlixco 186, 09310, Mexico City, Mexico
| | - Anne-Claire Texier
- Department of Biotechnology-CBS, Metropolitan Autonomous University Iztapalapa, Av. Ferrocarril San Rafael Atlixco 186, 09310, Mexico City, Mexico.
| |
Collapse
|
8
|
Song Z, Zhang L, Yang J, Ni SQ, Peng Y. Achieving high nitrogen and antibiotics removal efficiency by nZVI-C in partial nitritation/anammox system with a single-stage membrane-aerated biofilm reactor. JOURNAL OF HAZARDOUS MATERIALS 2024; 473:134626. [PMID: 38759403 DOI: 10.1016/j.jhazmat.2024.134626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 04/26/2024] [Accepted: 05/13/2024] [Indexed: 05/19/2024]
Abstract
This study innovated constructed an activated carbon-loaded nano-zero-valent iron (nZVI-C) enhanced membrane aerated biofilm reactor (MABR) coupled partial nitritation/anammox (PN/A) system for optimizing nitrogen and antibiotics removal. Results showed that nitrogen and antibiotic removal efficiencies of 88.45 ± 0.14% and 89.90 ± 3.07% were obtained by nZVI-C, respectively. nZVI-C hastened Nitrosomonas enrichment (relative abundance raised from 2.85% to 12.28%) by increasing tryptophan content in EPS. Furthermore, nZVI-C proliferated amo gene by 3.92 times and directly generated electrons, stimulating Ammonia monooxygenase (AMO) co-metabolism activity. Concurrently, via antibiotic resistance genes (ARGs) horizontal transfer, Nitrosomonas synergized with Arenimonas and Comamonadaceae for efficient antibiotic removal. Moreover, nZVI-C mitigated antibiotics inhibition of electron transfer by proliferating genes for PN and anammox electron production (hao, hdh) and utilization (amo, hzs, nir). That facilitated electron transfer and synergistic substrate conversion between ammonia oxidizing bacteria (AOB) and anaerobic ammonia oxidizing bacteria (AnAOB). Finally, the high nitrogen removal efficiency of the MABR-PN/A system was achieved.
Collapse
Affiliation(s)
- Zixuan Song
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Key Laboratory of Beijing for Water Quality Science and Water Environment Recovery Engineering, Beijing 100124, China
| | - Li Zhang
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Key Laboratory of Beijing for Water Quality Science and Water Environment Recovery Engineering, Beijing 100124, China.
| | - Jiachun Yang
- China Coal Technology & Engineering Group Co. Ltd., Tokyo 100-0011, Japan
| | - Shou-Qing Ni
- School of Environmental Science and Engineering, Shandong University, Qingdao, Shandong 266237, China
| | - Yongzhen Peng
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Key Laboratory of Beijing for Water Quality Science and Water Environment Recovery Engineering, Beijing 100124, China
| |
Collapse
|
9
|
Wang J, Liu C, Cao Q, Li Y, Chen L, Qin Y, Wang T, Wang C. Enhanced biodegradation of microplastic and phthalic acid ester plasticizer: The role of gut microorganisms in black soldier fly larvae. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 924:171674. [PMID: 38479533 DOI: 10.1016/j.scitotenv.2024.171674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 02/23/2024] [Accepted: 03/10/2024] [Indexed: 03/17/2024]
Abstract
Hermetia illucens larvae are recognized for their ability to mitigate or eliminate contaminants by biodegradation. However, the biodegradation characteristics of microplastics and phthalic acid esters plasticizers, as well as the role of larval gut microorganisms, have remained largely unrevealed. Here, the degradation kinetics of plasticizers, and biodegradation characteristics of microplastics were examined. The role of larval gut microorganisms was investigated. For larval development, microplastics slowed larval growth significantly (P < 0.01), but the effect of plasticizer was not significant. The degradation kinetics of plasticizers were enhanced, resulting in an 8.11 to 20.41-fold decrease in degradation half-life and a 3.34 to 3.82-fold increase in final degradation efficiencies, compared to degradation without larval participation. The depolymerization and biodeterioration of microplastics were conspicuously evident, primarily through a weight loss of 17.63 %-25.52 %, variation of chemical composition and structure, bio-oxidation and bioerosion of microplastic surface. The synergistic effect driven by larval gut microorganisms, each with various functions, facilitated the biodegradation. Specifically, Ignatzschineria, Paenalcaligenes, Moheibacter, Morganella, Dysgonomonas, Stenotrophomonas, Bacteroides, Sphingobacterium, etc., appeared to be the key contributors, owing to their xenobiotic biodegradation and metabolism functions. These findings offered a new perspective on the potential for microplastics and plasticizers biodegradation, assisted by larval gut microbiota.
Collapse
Affiliation(s)
- Jiaqing Wang
- Key Laboratory of Green Chemical Process of Ministry of Education, Key Laboratory of Novel Reactor and Green Chemical Technology of Hubei Province, School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, Wuhan 430205, People's Republic of China
| | - Cuncheng Liu
- Key Laboratory of Green Chemical Process of Ministry of Education, Key Laboratory of Novel Reactor and Green Chemical Technology of Hubei Province, School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, Wuhan 430205, People's Republic of China; Research Center for Environmental Ecology and Engineering, School of Environmental Ecology and Biological Engineering, Wuhan Institute of Technology, Wuhan 430205, People's Republic of China.
| | - Qingcheng Cao
- Key Laboratory of Green Chemical Process of Ministry of Education, Key Laboratory of Novel Reactor and Green Chemical Technology of Hubei Province, School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, Wuhan 430205, People's Republic of China
| | - Yun Li
- Key Laboratory of Green Chemical Process of Ministry of Education, Key Laboratory of Novel Reactor and Green Chemical Technology of Hubei Province, School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, Wuhan 430205, People's Republic of China
| | - Li Chen
- Key Laboratory of Green Chemical Process of Ministry of Education, Key Laboratory of Novel Reactor and Green Chemical Technology of Hubei Province, School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, Wuhan 430205, People's Republic of China
| | - Yuanhang Qin
- Key Laboratory of Green Chemical Process of Ministry of Education, Key Laboratory of Novel Reactor and Green Chemical Technology of Hubei Province, School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, Wuhan 430205, People's Republic of China
| | - Tielin Wang
- Key Laboratory of Green Chemical Process of Ministry of Education, Key Laboratory of Novel Reactor and Green Chemical Technology of Hubei Province, School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, Wuhan 430205, People's Republic of China
| | - Cunwen Wang
- Key Laboratory of Green Chemical Process of Ministry of Education, Key Laboratory of Novel Reactor and Green Chemical Technology of Hubei Province, School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, Wuhan 430205, People's Republic of China.
| |
Collapse
|
10
|
Su Y, Qian J, Wang J, Mi X, Huang Q, Zhang Y, Jiang Q, Wang Q. Unraveling the mechanism of norfloxacin removal and fate of antibiotics resistance genes (ARGs) in the sulfur-mediated autotrophic denitrification via metagenomic and metatranscriptomic analyses. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 922:171328. [PMID: 38428600 DOI: 10.1016/j.scitotenv.2024.171328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 02/23/2024] [Accepted: 02/26/2024] [Indexed: 03/03/2024]
Abstract
The co-contamination of antibiotics and nitrogen has attracted widespread concerns due to its potential harm to ecological safety and human health. Sulfur-driven autotrophic denitrification (SAD) with low sludge production rate was adopted to treat antibiotics laden-organic deficient wastewater. Herein, a lab-scale sequencing batch reactor (SBR) was established to explore the simultaneous removal of nitrate and antibiotics, i.e. Norfloxacin (NOR), as well as microbial response mechanism of SAD sludge system towards NOR exposure. About 80.78 % of NOR was removed by SAD sludge when the influent NOR level was 0.5 mg/L, in which biodegradation was dominant removal route. The nitrate removal efficiency decreased slightly from 98.37 ± 0.58 % to 96.58 ± 1.03 % in the presence of NOR. Thiobacillus and Sulfurimonas were the most abundant sulfur-oxidizing bacteria (SOB) in SAD system, but Thiobacillus was more sensitive to NOR. The up-regulated genes related to Xenobiotics biodegradation and metabolism and CYP450 indicated the occurrence of NOR biotransformation in SAD system. The resistance of SAD sludge to the exposure of NOR was mainly ascribed to antibiotic efflux. And the effect of antibiotic inactivation was enhanced after long-term fed with NOR. The NOR exposure resulted in the increased level of antibiotics resistance genes (ARGs) and mobile genetic elements (MGEs). Besides, the enhanced ARG-MGE co-existence patterns further reveals the higher horizontal mobility potential of ARGs under NOR exposure pressures. The most enriched sulfur oxidizing bacterium Thiobacillus was a potential host for most of ARGs. This study provides a new insight for the treatment of NOR-laden wastewater with low C/N ratio based on the sulfur-mediated biological process.
Collapse
Affiliation(s)
- Yan Su
- Xi'an TPRI Water-Management & Environmental Protection Co. Ltd., State Key Laboratory of High-Efficiency Flexible Coal Power Generation and Carbon Capture Utilization and Storage, PR China
| | - Jin Qian
- Research & Development Institute in Shenzhen, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, PR China.
| | - Jing Wang
- Xi'an TPRI Water-Management & Environmental Protection Co. Ltd., State Key Laboratory of High-Efficiency Flexible Coal Power Generation and Carbon Capture Utilization and Storage, PR China
| | - Xiaohui Mi
- Research & Development Institute in Shenzhen, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, PR China
| | - Qiong Huang
- Xi'an TPRI Water-Management & Environmental Protection Co. Ltd., State Key Laboratory of High-Efficiency Flexible Coal Power Generation and Carbon Capture Utilization and Storage, PR China; Xi'an Yitong Thermal Technology Service Co., Ltd., Xi'an 710000, PR China
| | - Yichu Zhang
- Research & Development Institute in Shenzhen, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, PR China
| | - Qi Jiang
- Xi'an TPRI Water-Management & Environmental Protection Co. Ltd., State Key Laboratory of High-Efficiency Flexible Coal Power Generation and Carbon Capture Utilization and Storage, PR China
| | - Qilin Wang
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Ultimo, NSW 2007, Australia
| |
Collapse
|
11
|
Xu Y, Liu Y, Liang C, Guo W, Ngo HH, Peng L. Favipiravir biotransformation by a side-stream partial nitritation sludge: Transformation mechanisms, pathways and toxicity evaluation. CHEMOSPHERE 2024; 353:141580. [PMID: 38430943 DOI: 10.1016/j.chemosphere.2024.141580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Accepted: 02/28/2024] [Indexed: 03/05/2024]
Abstract
Information on biotransformation of antivirals in the side-stream partial nitritation (PN) process was limited. In this study, a side-stream PN sludge was adopted to investigate favipiravir biotransformation under controlled ammonium and pH levels. Results showed that free nitrous acid (FNA) was an important factor that inhibited ammonia oxidation and the cometabolic biodegradation of favipiravir induced by ammonia oxidizing bacteria (AOB). The removal efficiency of favipiravir reached 12.6% and 35.0% within 6 days at the average FNA concentrations of 0.07 and 0.02 mg-N L-1, respectively. AOB-induced cometabolism was the sole contributing mechanism to favipiravir removal, excluding AOB-induced metabolism and heterotrophic bacteria-induced biodegradation. The growth of Escherichia coli was inhibited by favipiravir, while the AOB-induced cometabolism facilitated the alleviation of the antimicrobial activities with the formed transformation products. The biotransformation pathways were proposed based on the roughly identified structures of transformation products, which mainly involved hydroxylation, nitration, dehydrogenation and covalent bond breaking under enzymatic conditions. The findings would provide insights on enriching AOB abundance and enhancing AOB-induced cometabolism under FNA stress when targeting higher removal of antivirals during the side-stream wastewater treatment processes.
Collapse
Affiliation(s)
- Yifeng Xu
- Hubei Key Laboratory of Mineral Resources Processing and Environment, Wuhan University of Technology, Luoshi Road 122, Wuhan, 430070, China; School of Resources and Environmental Engineering, Wuhan University of Technology, Luoshi Road 122, Wuhan, 430070, China
| | - Yaxuan Liu
- School of Resources and Environmental Engineering, Wuhan University of Technology, Luoshi Road 122, Wuhan, 430070, China
| | - Chuanzhou Liang
- Hubei Key Laboratory of Mineral Resources Processing and Environment, Wuhan University of Technology, Luoshi Road 122, Wuhan, 430070, China; School of Resources and Environmental Engineering, Wuhan University of Technology, Luoshi Road 122, Wuhan, 430070, China
| | - Wenshan Guo
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Sydney, New South Wales 2007, Australia
| | - Huu Hao Ngo
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Sydney, New South Wales 2007, Australia
| | - Lai Peng
- Hubei Key Laboratory of Mineral Resources Processing and Environment, Wuhan University of Technology, Luoshi Road 122, Wuhan, 430070, China; School of Resources and Environmental Engineering, Wuhan University of Technology, Luoshi Road 122, Wuhan, 430070, China.
| |
Collapse
|
12
|
Chen S, Peng L, Xu Y, Wang N, Wang X, Liang C, Song K, Zhou Y. Modeling Free Nitrous Acid Inhibition on the Removal of Nitrogen and Atenolol during Sidestream Partial Nitritation Processes. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:5162-5173. [PMID: 38358933 DOI: 10.1021/acs.est.3c10107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/17/2024]
Abstract
Sidestream serves as an important reservoir collecting pharmaceuticals from sludge. However, the knowledge on sidestream pharmaceutical removal is still insufficient. In this work, atenolol biodegradation during sidestream partial nitritation (PN) processes characterized by high free nitrous acid (FNA) accumulation was modeled. To describe the FNA inhibition on ammonia oxidation and atenolol removal, Vadivelu-type and Hellinga-type inhibition kinetics were introduced into the model framework. Four inhibitory parameters along with four biodegradation kinetic parameters were calibrated and validated separately with eight sets of batch experimental data and 60 days' PN reactor operational data. The developed model could accurately reproduce the dynamics of nitrogen and atenolol. The model prediction further revealed that atenolol biodegradation efficiencies by ammonia-oxidizing bacteria (AOB)-induced cometabolism, AOB-induced metabolism, and heterotrophic bacteria-induced biodegradation were 0, ∼ 60, and ∼35% in the absence of ammonium and FNA; ∼ 14, ∼ 29, and ∼28% at 0.03 mg-N L-1 FNA; and 7, 15, and 5% at 0.19 mg-N L-1 FNA. Model simulation showed that the nitritation efficiency of ∼99% and atenolol removal efficiency of 57.5% in the PN process could be achieved simultaneously by controlling pH at 8.5, while 89.2% total nitrogen and 57.1% atenolol were removed to the maximum at pH of 7.0 in PN coupling with the anammox process. The pH-based operational strategy to regulate FNA levels was mathematically demonstrated to be effective for achieving the simultaneous removal of nitrogen and atenolol in PN-based sidestream processes.
Collapse
Affiliation(s)
- Shi Chen
- Hubei Key Laboratory of Mineral Resources Processing and Environment, Wuhan University of Technology, Luoshi Road 122, Wuhan 430070, China
- School of Resources and Environmental Engineering, Wuhan University of Technology, Luoshi Road 122, Wuhan 430070, China
| | - Lai Peng
- Hubei Key Laboratory of Mineral Resources Processing and Environment, Wuhan University of Technology, Luoshi Road 122, Wuhan 430070, China
- School of Resources and Environmental Engineering, Wuhan University of Technology, Luoshi Road 122, Wuhan 430070, China
| | - Yifeng Xu
- Hubei Key Laboratory of Mineral Resources Processing and Environment, Wuhan University of Technology, Luoshi Road 122, Wuhan 430070, China
- School of Resources and Environmental Engineering, Wuhan University of Technology, Luoshi Road 122, Wuhan 430070, China
| | - Ning Wang
- Hubei Key Laboratory of Mineral Resources Processing and Environment, Wuhan University of Technology, Luoshi Road 122, Wuhan 430070, China
- School of Resources and Environmental Engineering, Wuhan University of Technology, Luoshi Road 122, Wuhan 430070, China
| | - Xi Wang
- Hubei Key Laboratory of Mineral Resources Processing and Environment, Wuhan University of Technology, Luoshi Road 122, Wuhan 430070, China
- School of Resources and Environmental Engineering, Wuhan University of Technology, Luoshi Road 122, Wuhan 430070, China
| | - Chuanzhou Liang
- Hubei Key Laboratory of Mineral Resources Processing and Environment, Wuhan University of Technology, Luoshi Road 122, Wuhan 430070, China
- School of Resources and Environmental Engineering, Wuhan University of Technology, Luoshi Road 122, Wuhan 430070, China
| | - Kang Song
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei 430072, China
| | - Yan Zhou
- School of Civil and Environmental Engineering, Nanyang Technological University, Singapore 639798, Singapore
| |
Collapse
|
13
|
Deng Z, Li Y, Zheng X, Guo Y. Photocatalytic activity evaluation of polyvinylpyrrolidone K30 assisted synthesis of 1D oxygen-vacancy-rich Bi5O7BrxI1-x nanorod solid solution. JOURNAL OF HAZARDOUS MATERIALS 2024; 465:133361. [PMID: 38157811 DOI: 10.1016/j.jhazmat.2023.133361] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2023] [Revised: 12/15/2023] [Accepted: 12/21/2023] [Indexed: 01/03/2024]
Abstract
The unique layered structure of bismuth halide oxide has led to an extensive application in the degradation of refractory antibiotics from water environments. With the aid of regulating the energy band structure of photocatalytic materials and equilibrating the response towards visible light and redox ability, a novel oxygen-vacancy-rich Bi5O7BrxI1-x nanorod solid solution was synthesized by polyvinylpyrrolidone K30 assisted solvothermal method, and its photocatalytic behavior was investigated for the degradation of antibiotic levofloxacin under visible light. The degradation rate of the optimal Bi5O7Br0.5I0.5 to levofloxacin can reach 82.7% within 30 min, which is 9.22 and 4.74 times higher than those of the monomers Bi5O7Br and Bi5O7I. The catalyst of Bi5O7Br0.5I0.5 shows 99.88% antibacterial activity against Escherichia coli. The efficient photocatalytic ability of the Bi5O7Br0.5I0.5 is resulted from the alteration of energy band structure and suppression of charge recombination due to benign changes in the electronic and crystal structures. Furthermore, both various characterizations and Density Functional Theory calculations reveal that a multitude of oxygen vacancies exist in the Bi5O7Br0.5I0.5. The photocatalytic degradation pathways were explored and the toxicity of the intermediates was also appraised. The present work provides a mild and feasible construction of solid solutions and introduction of oxygen vacancies to eliminate environmentally refractory organic pollutants with photocatalytic technology.
Collapse
Affiliation(s)
- Ziran Deng
- Department of Municipal Engineering, Suzhou University of Science and Technology, Suzhou 215009, China
| | - Yiwen Li
- Department of Municipal Engineering, Suzhou University of Science and Technology, Suzhou 215009, China
| | - Xinyu Zheng
- Department of Municipal Engineering, Suzhou University of Science and Technology, Suzhou 215009, China
| | - Yongfu Guo
- Department of Municipal Engineering, Suzhou University of Science and Technology, Suzhou 215009, China; Jiangsu Collaborative Innovation Center of Technology and Material of Water Treatment, Suzhou 215009, Jiangsu, China.
| |
Collapse
|
14
|
Xu Y, Wang X, Gu Y, Liang C, Guo W, Ngo HH, Peng L. Optimizing ciprofloxacin removal through regulations of trophic modes and FNA levels in a moving bed biofilm reactor performing sidestream partial nitritation. WATER RESEARCH X 2024; 22:100216. [PMID: 38831973 PMCID: PMC11144728 DOI: 10.1016/j.wroa.2024.100216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 02/28/2024] [Accepted: 02/29/2024] [Indexed: 06/05/2024]
Abstract
The performance of partial nitritation (PN)-moving bed biofilm reactor (MBBR) in removal of antibiotics in the sidestream wastewater has not been investigated so far. In this work, the removal of ciprofloxacin was assessed under varying free nitrous acid (FNA) levels and different trophic modes. For the first time, a positive correlation was observed between ciprofloxacin removal and FNA levels, either in the autotrophic PN-MBBR or in the mixotrophic PN-MBBR, mainly ascribed to the FNA-stimulating effect on heterotrophic bacteria (HB)-induced biodegradation. The maximum ciprofloxacin removal efficiency (∼98 %) and removal rate constant (0.021 L g-1 SS h-1) were obtained in the mixotrophic PN-MBBR at an average FNA level of 0.056 mg-N L-1, which were 5.8 and 51.2 times higher than the corresponding values in the autotrophic PN-MBBR at 0 mg FNA-N L-1. Increasing FNA from 0.006 to 0.056 mg-N L-1 would inhibit ammonia oxidizing bacteria (AOB)-induced cometabolism and metabolism from 10.2 % and 6.9 % to 6.2 % and 6.4 %, respectively, while HB-induced cometabolism and metabolism increased from 31.2 % and 22.7 % to 41.9 % and 34.5 %, respectively. HB-induced cometabolism became the predominant biodegradation pathway (75.9 %-85.8 %) in the mixotrophic mode. Less antimicrobial biotransformation products without the piperazine or fluorine were newly identified to propose potential degradation pathways, corresponding to microbial-induced metabolic types and FNA levels. This work shed light on enhancing antibiotic removal via regulating both FNA accumulation and organic carbon addition in the PN-MBBR process treating sidestream wastewater.
Collapse
Affiliation(s)
- Yifeng Xu
- Hubei Key Laboratory of Mineral Resources Processing and Environment, Wuhan University of Technology, Luoshi Road 122, Wuhan 430070, China
- School of Resources and Environmental Engineering, Wuhan University of Technology, Luoshi Road 122, Wuhan 430070, China
| | - Xi Wang
- School of Resources and Environmental Engineering, Wuhan University of Technology, Luoshi Road 122, Wuhan 430070, China
| | - Ying Gu
- School of Resources and Environmental Engineering, Wuhan University of Technology, Luoshi Road 122, Wuhan 430070, China
| | - Chuanzhou Liang
- Hubei Key Laboratory of Mineral Resources Processing and Environment, Wuhan University of Technology, Luoshi Road 122, Wuhan 430070, China
- School of Resources and Environmental Engineering, Wuhan University of Technology, Luoshi Road 122, Wuhan 430070, China
| | - Wenshan Guo
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Sydney, New South Wales 2007, Australia
| | - Huu Hao Ngo
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Sydney, New South Wales 2007, Australia
| | - Lai Peng
- Hubei Key Laboratory of Mineral Resources Processing and Environment, Wuhan University of Technology, Luoshi Road 122, Wuhan 430070, China
- School of Resources and Environmental Engineering, Wuhan University of Technology, Luoshi Road 122, Wuhan 430070, China
| |
Collapse
|
15
|
Nath SK, Hossain MT, Ferdous M, Siddika MA, Hossain A, Maruf AA, Chowdhory AT, Nath TC. Effects of antibiotic, acidifier, and probiotic supplementation on mortality rates, lipoprotein profile, and carcass traits of broiler chickens. Vet Anim Sci 2023; 22:100325. [PMID: 38058382 PMCID: PMC10696248 DOI: 10.1016/j.vas.2023.100325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/08/2023] Open
Abstract
Antimicrobial resistance is a significant issue, therefore it's relevant to assess the effects of antibiotics, acidifiers, and probiotic supplementation finding a good alternative to reduce the use of antibiotics in broiler production in rural areas of Bangladesh. Using randomized control trial, this 28-day study evaluated 360 Hubbard Classic broiler chicks divided into four groups: oxytetracycline-treated, acidifier-treated, Lactobacillus-based probiotic-treated, and control (no antibiotics, acidifiers, or probiotics). Each group was replicated three times with 30 birds each with adlibitum feeding. Body weight and feed intake were recorded weekly, and on 28th day, carcass traits and blood lipoprotein levels were evaluated. Results showed that in first and fourth weeks, the body weight gain significantly varied in probiotics and acidifier-treated birds than the control group (P < 0.001). The probiotic group had gained considerable increase in body weight (185.0 g vs 161.7 g and 1745.0 g vs 1592.7 g) than the control group. Notably, in the first week, the feed conversion ratio for the probiotic group was 0.76, but the antibiotic group's was 0.96 (P < 0.001). The weights of the drumstick (88.33 g) and liver (61.0 g) having probiotic supplements were substantially higher than those in the control group (77.0 g and 51.33 g, respectively) (P < 0.001). According to serum lipoprotein analysis, the probiotic and acidifier groups exhibited lower LDL levels (71.1 mg/dl and 69.8 mg/dl, respectively) and higher triglyceride levels (122.9 mg/dl and 135.4 mg/dl). These findings highlight the potential of probiotics and acidifiers as effective antibiotic alternatives, promoting carcass traits and lowering LDL levels in broilers in Bangladesh.
Collapse
Affiliation(s)
- Sabuj Kanti Nath
- Department of Animal Nutrition, Faculty of Veterinary, Animal and Biomedical Sciences, Khulna Agricultural University, Khulna-9100, Bangladesh
| | - Md Taslim Hossain
- Department of Animal Nutrition, Faculty of Veterinary, Animal and Biomedical Sciences, Khulna Agricultural University, Khulna-9100, Bangladesh
| | - Mahfuza Ferdous
- Department of Animal Nutrition, Faculty of Veterinary, Animal and Biomedical Sciences, Khulna Agricultural University, Khulna-9100, Bangladesh
| | - Mst. Assrafi Siddika
- Department of Animal Nutrition, Faculty of Veterinary, Animal and Biomedical Sciences, Khulna Agricultural University, Khulna-9100, Bangladesh
| | - Amir Hossain
- Department of Poultry Science, Faculty of Veterinary, Animal and Biomedical Sciences, Khulna Agricultural University, Khulna-9100, Bangladesh
| | - Amim Al Maruf
- Faculty of Veterinary, Animal and Biomedical Sciences, Khulna Agricultural University, Khulna-9100, Bangladesh
| | - Ahanaf Tahmid Chowdhory
- Faculty of Veterinary, Animal and Biomedical Sciences, Khulna Agricultural University, Khulna-9100, Bangladesh
| | - Tilak Chandra Nath
- Department of Parasitology, Faculty of Veterinary, Animal and Biomedical Sciences, Sylhet Agricultural University, Sylhet-3100, Bangladesh
| |
Collapse
|
16
|
Kolovou M, Panagiotou D, Süße L, Loiseleur O, Williams S, Karpouzas DG, Papadopoulou ES. Assessing the activity of different plant-derived molecules and potential biological nitrification inhibitors on a range of soil ammonia- and nitrite-oxidizing strains. Appl Environ Microbiol 2023; 89:e0138023. [PMID: 37916825 PMCID: PMC10686072 DOI: 10.1128/aem.01380-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Accepted: 09/26/2023] [Indexed: 11/03/2023] Open
Abstract
IMPORTANCE Synthetic nitrification inhibitors are routinely used with nitrogen fertilizers to reduce nitrogen losses from agroecosystems, despite having drawbacks like poor efficiency, cost, and entry into the food chain. Plant-derived BNIs constitute a more environmentally conducive alternative. Knowledge on the activity of BNIs to soil nitrifiers is largely based on bioassays with a single Nitrosomonas europaea strain which does not constitute a dominant member of the community of ammonia-oxidizing microorganisms (AOM) in soil. We determined the activity of several plant-derived molecules reported as having activity, including the recently discovered maize-isolated BNI, zeanone, and its natural analog, 2-methoxy-1,4-naphthoquinone, on a range of ecologically relevant AOM and one nitrite-oxidizing bacterial culture, expanding our knowledge on the intrinsic inhibition potential of BNIs toward AOM and highlighting the necessity for a deeper understanding of the effect of BNIs on the overall soil microbiome integrity before their further use in agricultural settings.
Collapse
Affiliation(s)
- Maria Kolovou
- Department of Environmental Sciences, Laboratory of Environmental Microbiology, University of Thessaly, Larissa, Greece
| | - Dimitra Panagiotou
- Department of Biochemistry and Biotechnology, Laboratory of Plant and Environmental Biotechnology, University of Thessaly, Larissa, Greece
| | - Lars Süße
- Syngenta Crop Protection AG, Basel, Switzerland
| | | | | | - Dimitrios G. Karpouzas
- Department of Biochemistry and Biotechnology, Laboratory of Plant and Environmental Biotechnology, University of Thessaly, Larissa, Greece
| | - Evangelia S. Papadopoulou
- Department of Environmental Sciences, Laboratory of Environmental Microbiology, University of Thessaly, Larissa, Greece
| |
Collapse
|
17
|
Diao Y, Shan R, Li M, Li S, Huhe T, Yuan H, Chen Y. Magnetized algae catalyst by endogenous N to effectively trigger peroxodisulfate activation for ultrafast degraded sulfathiazole: Radical evolution and electron transfer. CHEMOSPHERE 2023; 342:140205. [PMID: 37722535 DOI: 10.1016/j.chemosphere.2023.140205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 09/14/2023] [Accepted: 09/15/2023] [Indexed: 09/20/2023]
Abstract
An innovative Fe-N co-coupled catalyst MN-2 was prepared from waste spirulina by co-pyrolysis as a highly active carbon-based catalyst for the activation of peroxydisulfate (PDS) for the degradation of sulfathiazole (ST). The protein-rich raw material Spirulina provided sufficient N during the pyrolysis process, thus achieving N doping without an additional nitrogen source, optimizing the interlayer structure of the biochar material and effectively inhibiting the leaching of the ligand metal Fe. MN-2 showed highly efficient catalytic activity for peroxydisulfate (PDS), with a degradation efficiency of 100% for ST within 30 min and a kinetic constant (kobs) reached 0.306 min-1, benefiting from the excellent adsorption ability of MN-2 forming MN-2-PDS* complexes and the electron transfer process generated by Fe3+ and Fe2+ cycling, oxygen-containing functional groups. The effects of PDS dosage, initial pH and coexisting anions on the oxidation process were also investigated. Free radical quenching, electron paramagnetic resonance and electrochemical measurements were employed to explain the hydroxyl (·OH) and sulfate (SO4·-) as the dominant active species and the electron transfer effect on the removal of ST. MN-2 maintained a ST removal rate of 84% after four recycling experiments, showing a high reusability performance. This work provides a simple way to prepare magnetized N-doped biochar, a novel catalyst (MN-2) for efficient activation of PDS for ST degradation, and a feasible method for removing sulfanilamide antibiotics in water environment.
Collapse
Affiliation(s)
- Yuan Diao
- Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou, 510640, PR China; School of Municipal & Environmental Engineering, Shandong Jianzhu University, Jinan, Shandong, 250000, PR China; CAS Key Laboratory of Renewable Energy, Guangzhou 510640, PR China; Guangdong Provincial Key Laboratory of New and Renewable Energy Research and Development, Guangzhou 510640, PR China
| | - Rui Shan
- Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou, 510640, PR China; CAS Key Laboratory of Renewable Energy, Guangzhou 510640, PR China; Guangdong Provincial Key Laboratory of New and Renewable Energy Research and Development, Guangzhou 510640, PR China
| | - Mei Li
- School of Municipal & Environmental Engineering, Shandong Jianzhu University, Jinan, Shandong, 250000, PR China
| | - Shuang Li
- Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou, 510640, PR China; CAS Key Laboratory of Renewable Energy, Guangzhou 510640, PR China; Guangdong Provincial Key Laboratory of New and Renewable Energy Research and Development, Guangzhou 510640, PR China
| | - Taoli Huhe
- Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou, 510640, PR China; CAS Key Laboratory of Renewable Energy, Guangzhou 510640, PR China; Guangdong Provincial Key Laboratory of New and Renewable Energy Research and Development, Guangzhou 510640, PR China
| | - Haoran Yuan
- Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou, 510640, PR China; CAS Key Laboratory of Renewable Energy, Guangzhou 510640, PR China; Guangdong Provincial Key Laboratory of New and Renewable Energy Research and Development, Guangzhou 510640, PR China.
| | - Yong Chen
- Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou, 510640, PR China; CAS Key Laboratory of Renewable Energy, Guangzhou 510640, PR China; Guangdong Provincial Key Laboratory of New and Renewable Energy Research and Development, Guangzhou 510640, PR China
| |
Collapse
|
18
|
Mu X, Huang Z, Ohore OE, Yang J, Peng K, Li S, Li X. Impact of antibiotics on microbial community in aquatic environment and biodegradation mechanism: a review and bibliometric analysis. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:66431-66444. [PMID: 37101213 DOI: 10.1007/s11356-023-27018-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Accepted: 04/10/2023] [Indexed: 05/25/2023]
Abstract
Antibiotic residues in aquatic environments pose a potential hazard, and microbes, which play important roles in aquatic ecosystems, are vulnerable to the impacts of antibiotics. This study aimed to analyze the research progress, trends, and hot topics of the impact of antibiotics on microbial community and biodegradation mechanism using bibliometric analysis. An in-depth analysis of the publication characteristics of 6143 articles published between 1990 and 2021 revealed that the number of articles published increased exponentially. The research sites have been mainly concentrated in the Yamuna River, Pearl River, Lake Taihu, Lake Michigan, Danjiangkou Reservoir, etc., illustrating that research around the world is not even. Antibiotics could change the diversity, structure, and ecological functions of bacterial communities, stimulate a widespread abundance of antibiotic-resistant bacteria and antibiotic-resistant genes, and increase the diversity of eukaryotes, thus triggering the shift of food web structure to predatory and pathogenic. Latent Dirichlet allocation theme model analysis showed three clusters, and the research hotspots mainly included the effect of antibiotics on the denitrification process, microplastics combined with antibiotics, and methods for removing antibiotics. Furthermore, the mechanisms of microbe-mediated antibiotic degradation were unraveled, and importantly, we provided bottlenecks and future research perspectives on antibiotics and microbial diversity research.
Collapse
Affiliation(s)
- Xiaoying Mu
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
- State Environmental Protection Key Laboratory of Simulation and Control of Goundwater Pollution, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| | - Zhihua Huang
- China Institute of Water Resources and Hydropower Research, Beijing, China
| | - Okugbe Ebiotubo Ohore
- Guangdong Provincial Key Laboratory of Marine Disaster Prediction and Prevention, and Guangdong Provincial Key Laboratory of Marine Biotechnology, Shantou University, Shantou, 515063, China
| | - Jinjin Yang
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
- State Environmental Protection Key Laboratory of Simulation and Control of Goundwater Pollution, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| | - Kai Peng
- Taihu Laboratory for Lake Ecosystem Research, State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing, China
| | - Shaokang Li
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
- State Environmental Protection Key Laboratory of Simulation and Control of Goundwater Pollution, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| | - Xiang Li
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China.
- State Environmental Protection Key Laboratory of Simulation and Control of Goundwater Pollution, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China.
- Chinese Research Academy of Environmental Sciences, No. 8 Dayangfang, Beiyuan Road, Chaoyang District, Beijing, 10012, China.
| |
Collapse
|
19
|
Niu L, Chen Y, Li Y, Wang Y, Shen J, Wang L, Zhang W, Zhang H, Zhao B. Diversity, abundance and distribution characteristics of potential polyethylene and polypropylene microplastic degradation bacterial communities in the urban river. WATER RESEARCH 2023; 232:119704. [PMID: 36764109 DOI: 10.1016/j.watres.2023.119704] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 12/28/2022] [Accepted: 02/02/2023] [Indexed: 06/18/2023]
Abstract
Carbon chain microplastics, polyethylene (PE), and polypropylene (PP) are the main types of refractory organics. Compared to heterochain microplastics, PE/PP degrading bacterial community and their distribution characteristics in natural rivers are unclear. In this study, the field in situ experiment and indoor enrichment experiment with PE/PP resin as only carbon sources were conducted for a total period of 1150 days. The microbial degradation of pure PE/PP resin was determined by SEM, FTIR, CLSM, GC-MS, and GPC. The Chao 1 index and Invsimpson index of the bacterial community significantly reduced after a series of incubation, demonstrating that the bacterial community was selectively enriched. Empirical core PE/PP degrading bacteria (C-bacteria) and resuscitated PE/PP degrading bacteria (R-bacteria) were screened based on the variation of the abundance of OTUs, and co-occurrence analysis displayed that C-bacteria presented higher betweenness centrality than R-bacteria. The higher abundance and diversity of R-bacteria in biofilms suggest the presence of many rare or low abundance bacteria in natural rivers that may be potential PE/PP degrading bacteria or PE/PP degrading bacteria to be activated, while the lower abundance and diversity of C-bacteria support the slow degradation rate of PE and PP in waters. Compared to the isolated and indicatory PE/PP degrading bacterial genera, the C-bacteria OTUs or genera enriched in this study displayed higher richness and abundance. Enriched PE/PP degrading bacteria occurred in all sampled sites of the Qinhuai River with higher abundance and standard betweenness centrality in sediments (averaging 0.01354 and 0.44421, respectively) than those in overlying water (averaging 0.00536 and 0.17571, respectively), while the highest abundance of degrading bacteria presented in the eutrophic sediments. Inorganic nitrogen was determined to be significantly correlated with the distribution of PE/PP degrading bacteria in sediments via redundancy analysis. This study provides a new perspective on the natural degradation potential of carbon chain microplastics by microbial communities in rivers.
Collapse
Affiliation(s)
- Lihua Niu
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Xikang Road #1, Nanjing 210098, PR China
| | - Yamei Chen
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Xikang Road #1, Nanjing 210098, PR China
| | - Yi Li
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Xikang Road #1, Nanjing 210098, PR China.
| | - Yingjie Wang
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Xikang Road #1, Nanjing 210098, PR China
| | - Jiayan Shen
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Xikang Road #1, Nanjing 210098, PR China
| | - Longfei Wang
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Xikang Road #1, Nanjing 210098, PR China
| | - Wenlong Zhang
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Xikang Road #1, Nanjing 210098, PR China
| | - Huanjun Zhang
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Xikang Road #1, Nanjing 210098, PR China
| | - Bo Zhao
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Xikang Road #1, Nanjing 210098, PR China
| |
Collapse
|
20
|
Kamal N, Sindhu R, Chaturvedi Bhargava P. Biodegradation of emerging organic pollutant gemfibrozil: Mechanism, kinetics and pathway modelling. BIORESOURCE TECHNOLOGY 2023; 374:128749. [PMID: 36796732 DOI: 10.1016/j.biortech.2023.128749] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 02/09/2023] [Accepted: 02/11/2023] [Indexed: 06/18/2023]
Abstract
The increasing population has raised the demand for pharmaceutical and personal care products to maintain a good health. Gemfibrozil (GEM), is extensively used as a lipid regulator and is frequently detected in wastewater treatment systems and poses deleterious health and ecological effects. Hence, the current study employing Bacillus sp. N2 reports the degradation of gemfibrozil via co-metabolism in 15 days. The study reported 86 % degradation with GEM (20 mgL-1) using sucrose (150 mgL-1) as a co-substrate; as compared to 42 % without a co-substrate. Further, time-profiling studies of metabolites revealed significant demethylation and decarboxylation reactions during degradation that leads to formation of six (M1, M2, M3, M4, M5, M6) metabolites as by-products. Based on the LC-MS analysis a potential degradation pathway for GEM by Bacillus sp. N2 was proposed. The degradation of GEM has not been reported so far and the study envisages eco-friendly approach to tackle pharmaceutical- active- compounds.
Collapse
Affiliation(s)
- Neha Kamal
- Aquatic Toxicology Laboratory, Environmental Toxicology Group, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Vishvigyan Bhawan, 31, M.G. Marg, Lucknow 226001, Uttar Pradesh, India
| | - Raveendran Sindhu
- Department of Food Technology, T K M Institute of Technology, Kollam 691505, Kerala, India
| | - Preeti Chaturvedi Bhargava
- Aquatic Toxicology Laboratory, Environmental Toxicology Group, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Vishvigyan Bhawan, 31, M.G. Marg, Lucknow 226001, Uttar Pradesh, India.
| |
Collapse
|
21
|
Adsorption modeling of tetracycline removal by multi-walled carbon nanotube functionalized with aspartic acid and poly-pyrrole using Bayesian optimized artificial neural network. J Taiwan Inst Chem Eng 2023. [DOI: 10.1016/j.jtice.2023.104743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/27/2023]
|
22
|
Abudureheman M, Ailijiang N, Mamat A, Feng Y, He C, Pu M. Enhanced biodegradation of fluoroquinolones and the changes of bacterial communities and antibiotic-resistant genes under intermittent electrical stimulation. ENVIRONMENTAL RESEARCH 2023; 219:115127. [PMID: 36549493 DOI: 10.1016/j.envres.2022.115127] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2022] [Revised: 12/14/2022] [Accepted: 12/18/2022] [Indexed: 06/17/2023]
Abstract
In this study, an anaerobic-aerobic coupling system under intermittent electrical stimulation was used to improve the biodegradation of synthetic wastewater containing fluoroquinolones (FQs). The effect of electrical stimulation on FQ removal performance is more pronounced with appropriate voltage and hydraulic retention time. In addition, the combination of anaerobic-anodic and aerobic-cathodic chambers is more conducive to improving the removal efficiency of FQs. Under 0.9 V, the removal efficiencies of ofloxacin, norfloxacin, ciprofloxacin, and enrofloxacin were significantly improved in the anaerobic-anodic and aerobic-cathodic system. The contribution of the anaerobic/aerobic anodic chambers to FQ removal was greater than that of the anaerobic/aerobic cathodic chambers. Electrical stimulation selectively enriched electroactive bacteria related to biodegradation (Desulfovibrio and Terrimonas), antibiotic-resistant bacteria (Atopobium and Neochlamydia), and nitrifying bacteria (SM1A02 and Reyranella). This study indicated the potential effectiveness of intermittent electrical stimulation in treating fluoroquinolone-containing wastewater in a biofilm reactor. However, electrical stimulation led to an increase in mobile genetic elements , induced horizontal gene transfer and enriched resistant bacteria, which accelerated the spread of antibiotic-resistant genes (ARGs) in the system, indicating that the diffusion of ARGs remains a challenge.
Collapse
Affiliation(s)
- Mukadasi Abudureheman
- Key Laboratory of Oasis Ecology of Education Ministry, College of Ecology and Environment, Xinjiang University, Urumqi 830017, PR China; Xinjiang Jinghe Observation and Research Station of Temperate Desert Ecosystem, Ministry of Education, Urumqi 830017, PR China
| | - Nuerla Ailijiang
- Key Laboratory of Oasis Ecology of Education Ministry, College of Ecology and Environment, Xinjiang University, Urumqi 830017, PR China; Xinjiang Jinghe Observation and Research Station of Temperate Desert Ecosystem, Ministry of Education, Urumqi 830017, PR China.
| | - Anwar Mamat
- School of Chemical Engineering and Technology, Xinjiang University, Urumqi 830017, PR China
| | - Yuran Feng
- Key Laboratory of Oasis Ecology of Education Ministry, College of Ecology and Environment, Xinjiang University, Urumqi 830017, PR China; Xinjiang Jinghe Observation and Research Station of Temperate Desert Ecosystem, Ministry of Education, Urumqi 830017, PR China
| | - Chaoyue He
- Key Laboratory of Oasis Ecology of Education Ministry, College of Ecology and Environment, Xinjiang University, Urumqi 830017, PR China; Xinjiang Jinghe Observation and Research Station of Temperate Desert Ecosystem, Ministry of Education, Urumqi 830017, PR China
| | - Miao Pu
- Key Laboratory of Oasis Ecology of Education Ministry, College of Ecology and Environment, Xinjiang University, Urumqi 830017, PR China; Xinjiang Jinghe Observation and Research Station of Temperate Desert Ecosystem, Ministry of Education, Urumqi 830017, PR China
| |
Collapse
|
23
|
Liu A, Zhao Y, Cai Y, Kang P, Huang Y, Li M, Yang A. Towards Effective, Sustainable Solution for Hospital Wastewater Treatment to Cope with the Post-Pandemic Era. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2023; 20:2854. [PMID: 36833551 PMCID: PMC9957062 DOI: 10.3390/ijerph20042854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 02/01/2023] [Accepted: 02/02/2023] [Indexed: 06/18/2023]
Abstract
Severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) has spread across the globe since the end of 2019, posing significant challenges for global medical facilities and human health. Treatment of hospital wastewater is vitally important under this special circumstance. However, there is a shortage of studies on the sustainable wastewater treatment processes utilized by hospitals. Based on a review of the research trends regarding hospital wastewater treatment in the past three years of the COVID-19 outbreak, this review overviews the existing hospital wastewater treatment processes. It is clear that activated sludge processes (ASPs) and the use of membrane bioreactors (MBRs) are the major and effective treatment techniques applied to hospital wastewater. Advanced technology (such as Fenton oxidation, electrocoagulation, etc.) has also achieved good results, but the use of such technology remains small scale for the moment and poses some side effects, including increased cost. More interestingly, this review reveals the increased use of constructed wetlands (CWs) as an eco-solution for hospital wastewater treatment and then focuses in slightly more detail on examining the roles and mechanisms of CWs' components with respect to purifying hospital wastewater and compares their removal efficiency with other treatment processes. It is believed that a multi-stage CW system with various intensifications or CWs incorporated with other treatment processes constitute an effective, sustainable solution for hospital wastewater treatment in order to cope with the post-pandemic era.
Collapse
Affiliation(s)
- Ang Liu
- State Key Laboratory of Eco-Hydraulics in Northwest Arid Region, Xi’an University of Technology, Xi’an 710048, China
- Department of Municipal and Environmental Engineering, School of Water Resources and Hydroelectric Engineering, Xi’an University of Technology, Xi’an 710048, China
| | - Yaqian Zhao
- State Key Laboratory of Eco-Hydraulics in Northwest Arid Region, Xi’an University of Technology, Xi’an 710048, China
- Department of Municipal and Environmental Engineering, School of Water Resources and Hydroelectric Engineering, Xi’an University of Technology, Xi’an 710048, China
| | - Yamei Cai
- State Key Laboratory of Eco-Hydraulics in Northwest Arid Region, Xi’an University of Technology, Xi’an 710048, China
- Department of Municipal and Environmental Engineering, School of Water Resources and Hydroelectric Engineering, Xi’an University of Technology, Xi’an 710048, China
| | - Peiying Kang
- State Key Laboratory of Eco-Hydraulics in Northwest Arid Region, Xi’an University of Technology, Xi’an 710048, China
- Department of Municipal and Environmental Engineering, School of Water Resources and Hydroelectric Engineering, Xi’an University of Technology, Xi’an 710048, China
| | - Yulong Huang
- State Key Laboratory of Eco-Hydraulics in Northwest Arid Region, Xi’an University of Technology, Xi’an 710048, China
- Department of Municipal and Environmental Engineering, School of Water Resources and Hydroelectric Engineering, Xi’an University of Technology, Xi’an 710048, China
| | - Min Li
- State Key Laboratory of Eco-Hydraulics in Northwest Arid Region, Xi’an University of Technology, Xi’an 710048, China
- Department of Municipal and Environmental Engineering, School of Water Resources and Hydroelectric Engineering, Xi’an University of Technology, Xi’an 710048, China
| | - Anran Yang
- State Key Laboratory of Eco-Hydraulics in Northwest Arid Region, Xi’an University of Technology, Xi’an 710048, China
- Department of Municipal and Environmental Engineering, School of Water Resources and Hydroelectric Engineering, Xi’an University of Technology, Xi’an 710048, China
| |
Collapse
|
24
|
Liu Q, Hou J, Zeng Y, Xia J, Miao L, Wu J. Integrated photocatalysis and moving bed biofilm reactor (MBBR) for treating conventional and emerging organic pollutants from synthetic wastewater: Performances and microbial community responses. BIORESOURCE TECHNOLOGY 2023; 370:128530. [PMID: 36574888 DOI: 10.1016/j.biortech.2022.128530] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 12/15/2022] [Accepted: 12/22/2022] [Indexed: 06/17/2023]
Abstract
Increasing concern for emerging organic pollutants (e.g. antibiotics) urges improvements in conventional biological wastewater treatment processes. This study examined the performance of an integrated photocatalysis and moving bed biofilm reactor (MBBR) system in treating synthetic wastewater containing sulfamethoxazole (SMX). It was found that the integrated system could remove over 80.5 % of SMX and 67.7-80.7 % of chemical oxygen demand (COD) with a hydraulic retention time of 24 h. The introduction of photocatalysis had no impact on COD removal and significantly enhanced SMX removal. High-throughput analysis indicated that microbial community greatly altered due to photocatalytic oxidation stress, with clostridiaceae and enterobacteriaceae becoming dominant families. Nevertheless, microorganisms maintained metabolic activity, which may be ascribed to the protection of carriers and microbial self-preservation by secreting extracellular polymeric substances and antioxidant enzymes. Collectively, this study sheds light on treating wastewater containing conventional and emerging organic pollutants by integrating photocatalysis with MBBR.
Collapse
Affiliation(s)
- Qidi Liu
- Key Laboratory of Integrated Regulation and Resources Development on Shallow Lakes of Ministry of Education, College of Environment, Hohai University, Nanjing 210098, China
| | - Jun Hou
- Key Laboratory of Integrated Regulation and Resources Development on Shallow Lakes of Ministry of Education, College of Environment, Hohai University, Nanjing 210098, China
| | - Yuan Zeng
- Nanjing Institute of Environmental Science, Ministry of Ecology and Environment of the People's Republic of China, Nanjing 210042, China
| | - Jun Xia
- School of Civil Engineering and Transportation, Hohai University, Nanjing 210098, China
| | - Lingzhan Miao
- Key Laboratory of Integrated Regulation and Resources Development on Shallow Lakes of Ministry of Education, College of Environment, Hohai University, Nanjing 210098, China
| | - Jun Wu
- Key Laboratory of Integrated Regulation and Resources Development on Shallow Lakes of Ministry of Education, College of Environment, Hohai University, Nanjing 210098, China.
| |
Collapse
|
25
|
Liu A, Liu J, He S, Zhang J, Shao W. Bimetallic MOFs loaded cellulose as an environment friendly bioadsorbent for highly efficient tetracycline removal. Int J Biol Macromol 2023; 225:40-50. [PMID: 36473529 DOI: 10.1016/j.ijbiomac.2022.11.321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2022] [Revised: 11/28/2022] [Accepted: 11/30/2022] [Indexed: 12/12/2022]
Abstract
Due to the increasingly serious antibiotic-related pollution, it is crucial to develop novel green bioadsorbents to effectively remove antibiotics from aqueous solutions. In this study, Fe doped zeolitic imidazolate frameworks-8 loaded cellulose (Fe/ZIF-8@cellulose) aerogels were prepared. The synthesized Fe/ZIF-8@cellulose aerogels were characterized experimentally including morphology observation and chemical compositions determination. The effects of bioadsorbent dosage, solution pH, adsorption time, initial TC concentration and adsorption temperature on the TC adsorption behaviors were systematically studied. Due to the introduction of Fe in the ZIF-8, the maximum adsorption capacity of Fe/ZIF-8@cellulose for TC could reach as high as 1359.2 mg/g, which is higher than the reported ZIF-8 loaded polysaccharide based adsorbents. The adsorption kinetics and isotherm of TC adsorption were also determined. With the cellulose as the matrix to load Fe/ZIF-8, the obtained Fe/ZIF-8@cellulose aerogels exhibited good reusability. Most importantly, the TC adsorption mechanism was proposed. The results of our finding suggest that the Fe doping into MOFs is an effective strategy to improve the antibiotics adsorption performance and the application of cellulose as the matrix is a valuable method to increase the cyclic utilization. This study highlights the potentials of applying the Fe/ZIF-8@cellulose aerogels in the antibiotics removal for practical wastewater.
Collapse
Affiliation(s)
- An Liu
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing
| | - Jia Liu
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing
| | - Shu He
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing
| | - Jie Zhang
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing
| | - Wei Shao
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing.
| |
Collapse
|
26
|
Guo N, Liu M, Yang Z, Wu D, Chen F, Wang J, Zhu Z, Wang L. The synergistic mechanism of β-lactam antibiotic removal between ammonia-oxidizing microorganisms and heterotrophs. ENVIRONMENTAL RESEARCH 2023; 216:114419. [PMID: 36174754 DOI: 10.1016/j.envres.2022.114419] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 09/18/2022] [Accepted: 09/20/2022] [Indexed: 06/16/2023]
Abstract
Nitrifying system is an effective strategy to remove numerous antibiotics, however, the contribution of ammonia-oxidizing bacteria (AOB), ammonia-oxidizing archaea (AOA) and heterotrophs for antibiotic removal are still unclear. In this study, the mechanism of β-lactam antibiotic (cefalexin, CFX) removal was studied in a nitrifying sludge system. Results showed that CFX was synergistically removed by AOB (Nitrosomonas, played a major role) and AOA (Candidatus_Nitrososphaera) through ammonia monooxygenase-mediated co-metabolism, and by heterotrophs (Pseudofulvimonas, Hydrogenophaga, RB41, Thauera, UTCFX1, Plasticicumulans, Phaeodactylibacter) through antibiotic resistance genes (ARGs)-encoded β-lactamases-mediated hydrolysis. Regardless of increased archaeal and heterotrophic CFX removal with the upregulation of amoA in AOA and ARGs, the system exhibited poorer CFX removal performance at 10 mg/L, mainly due to the inhibition of AOB. This study provides new reference for the important roles of heterotrophs and ARGs, opening the possibilities for the application of ARGs in antibiotic biodegradation.
Collapse
Affiliation(s)
- Ning Guo
- School of Municipal and Environmental Engineering, Shandong Jianzhu University, Jinan, 250101, China; Resources and Environment Innovation Institute, Shandong Jianzhu University, Jinan, 250101, China
| | - Mengmeng Liu
- School of Municipal and Environmental Engineering, Shandong Jianzhu University, Jinan, 250101, China
| | - Zhuhui Yang
- School of Municipal and Environmental Engineering, Shandong Jianzhu University, Jinan, 250101, China
| | - Daoji Wu
- School of Municipal and Environmental Engineering, Shandong Jianzhu University, Jinan, 250101, China; Resources and Environment Innovation Institute, Shandong Jianzhu University, Jinan, 250101, China
| | - Feiyong Chen
- Resources and Environment Innovation Institute, Shandong Jianzhu University, Jinan, 250101, China
| | - Jinhe Wang
- School of Municipal and Environmental Engineering, Shandong Jianzhu University, Jinan, 250101, China; Resources and Environment Innovation Institute, Shandong Jianzhu University, Jinan, 250101, China
| | - Zhaoliang Zhu
- School of Municipal and Environmental Engineering, Shandong Jianzhu University, Jinan, 250101, China.
| | - Lin Wang
- School of Municipal and Environmental Engineering, Shandong Jianzhu University, Jinan, 250101, China; Resources and Environment Innovation Institute, Shandong Jianzhu University, Jinan, 250101, China.
| |
Collapse
|
27
|
FeOx nanoclusters decorated TiO2 for boosting white LED driven photocatalytic Fenton-like norfloxacin degradation. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.122194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
28
|
Jiang J, Liang D, Hu Y. Solid slow-release carbon sources improve the simultaneous nitrification and denitrification processes in low carbon resource wastewater. BIORESOURCE TECHNOLOGY 2022; 365:128148. [PMID: 36265784 DOI: 10.1016/j.biortech.2022.128148] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 10/08/2022] [Accepted: 10/12/2022] [Indexed: 06/16/2023]
Abstract
In this study, A Acinetobacter pittii sp. was isolated with high efficiency for heterotrophic nitrification and aerobic denitrification (HN-AD). The boundary conditions for total nitrogen (TN) removal were as follows: C/N ratios 8-14, temperature 25-35 °C, initial pH 7-9, and shaker speed 100-120 rpm. Addition of mixed carbon resources achieved 97.38 % ammonia-N and 91.50 % TN removal, which was higher than that of the group with sole carbon resources. The ammonia-N and TN removal profiles matched well with first-order kinetics in the rapid response period and zero-order kinetics in the slow reaction period. Meanwhile, enzyme activity related to nitrogen conversion would remarkably increase with mixed carbon resources. Furthermore, proposed a possible relationship between the solid carbon source, hydrolysis, soluble small molecule organic matter, microbial activity, and heterotrophic nitrification and aerobic denitrification (HN-AD). This study provides a new strategy for improving nitrogen removal in wastewater with low-carbon resources.
Collapse
Affiliation(s)
- Jinjin Jiang
- College of Urban and Rural Construction, Zhongkai University of Agriculture and Engineering, Zhongkai Road, Haizhu District, Guangzhou 510225, PR China; School of Environment and Energy, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou 510006, PR China
| | - Donghui Liang
- College of Urban and Rural Construction, Zhongkai University of Agriculture and Engineering, Zhongkai Road, Haizhu District, Guangzhou 510225, PR China; School of Environment and Energy, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou 510006, PR China.
| | - Yongyou Hu
- School of Environment and Energy, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou 510006, PR China
| |
Collapse
|
29
|
Liang Z, Wen J, Zhou Y, Liu T, Dong J, Zheng W, Chang C, Xiao X, Liu Q, Zheng X. Comparative investigation of BiOCl0.5X0.5 (X= F, Br, and I) heterojunctions for solar-light driven photodegradation of tetracycline hydrochloride. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.130477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
30
|
Liu B, Lin W, Huang S, Sun Q, Yin H, Luo J. Removal of Mg 2+ inhibition benefited the growth and isolation of ammonia-oxidizing bacteria: An inspiration from bacterial interaction. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 838:155923. [PMID: 35577082 DOI: 10.1016/j.scitotenv.2022.155923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 05/09/2022] [Accepted: 05/10/2022] [Indexed: 06/15/2023]
Abstract
Ammonia-oxidizing bacteria (AOB) play an important role in the global nitrogen cycle and have broad applications in the nitrogen removal from wastewater. However, the AOB species are sensitive to environmental factors and usually form tight relationships with other microbes, making the AOB isolation and maintenance are difficult and time-consuming. In this study, the relationship that occurred between AOB and their bacterial partners was found to be able to improve the ammonia oxidation; during the co-cultivation, the magnesium ions (Mg2+) with removal rate as high as 36.7% was removed from culture medium by the concomitant bacterial species, which was regarded as the main reason for improving ammonia oxidation. During the pure cultivation of AOB isolate, when the concentration of Mg2+ reduced to low levels, the ammonia-oxidizing activity was more than 5 times and the amoA gene expression was more than 12 times higher than that grown in the initial culture medium. Based on a newly designed culture medium, the ammonia oxidation of AOB isolate grown in liquid culture was significantly promoted and the visible AOB colonies with much more number and larger diameter were observed to form on agar plates. With the addition of high concentration of calcium carbonate (CaCO3), AOB colonies could be easily and specifically identified by following the hydrolytic zones that formed around AOB colonies. Another AOB isolates were successively obtained from different samples and within a short time, suggesting the feasibility and effectivity of this culture medium and strategy on the AOB isolation from environments.
Collapse
Affiliation(s)
- Buchan Liu
- Guangdong Key Laboratory of Fermentation and Enzyme Engineering, School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, PR China
| | - Weitie Lin
- Guangdong Key Laboratory of Fermentation and Enzyme Engineering, School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, PR China; MOE Joint International Research Laboratory of Synthetic Biology and Medicine, South China University of Technology, Guangzhou 510006, PR China
| | - Shenxi Huang
- Guangdong Key Laboratory of Fermentation and Enzyme Engineering, School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, PR China
| | - Qiuyun Sun
- Guangdong Key Laboratory of Fermentation and Enzyme Engineering, School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, PR China
| | - Hao Yin
- Guangdong Key Laboratory of Fermentation and Enzyme Engineering, School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, PR China
| | - Jianfei Luo
- Guangdong Key Laboratory of Fermentation and Enzyme Engineering, School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, PR China; MOE Joint International Research Laboratory of Synthetic Biology and Medicine, South China University of Technology, Guangzhou 510006, PR China.
| |
Collapse
|
31
|
Al-Ajeel S, Spasov E, Sauder LA, McKnight MM, Neufeld JD. Ammonia-oxidizing archaea and complete ammonia-oxidizing Nitrospira in water treatment systems. WATER RESEARCH X 2022; 15:100131. [PMID: 35402889 PMCID: PMC8990171 DOI: 10.1016/j.wroa.2022.100131] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 03/07/2022] [Accepted: 03/11/2022] [Indexed: 05/27/2023]
Abstract
Nitrification, the oxidation of ammonia to nitrate via nitrite, is important for many engineered water treatment systems. The sequential steps of this respiratory process are carried out by distinct microbial guilds, including ammonia-oxidizing bacteria (AOB) and archaea (AOA), nitrite-oxidizing bacteria (NOB), and newly discovered members of the genus Nitrospira that conduct complete ammonia oxidation (comammox). Even though all of these nitrifiers have been identified within water treatment systems, their relative contributions to nitrogen cycling are poorly understood. Although AOA contribute to nitrification in many wastewater treatment plants, they are generally outnumbered by AOB. In contrast, AOA and comammox Nitrospira typically dominate relatively low ammonia environments such as drinking water treatment, tertiary wastewater treatment systems, and aquaculture/aquarium filtration. Studies that focus on the abundance of ammonia oxidizers may misconstrue the actual role that distinct nitrifying guilds play in a system. Understanding which ammonia oxidizers are active is useful for further optimization of engineered systems that rely on nitrifiers for ammonia removal. This review highlights known distributions of AOA and comammox Nitrospira in engineered water treatment systems and suggests future research directions that will help assess their contributions to nitrification and identify factors that influence their distributions and activity.
Collapse
|